
HoneyBee: Efficient Role-based Access Control for Vector
Databases via Dynamic Partitioning

Hongbin Zhong
Georgia Institute of Technology

hzhong81@gatech.edu

Matthew Lentz
Duke University

mlentz@cs.duke.edu

Nina Narodytska
VMware Research

n.narodytska@gmail.com

Adriana Szekeres
VMware Research

adriana.szekeres@gmail.com

Kexin Rong
Georgia Institute of Technology

krong@gatech.edu

ABSTRACT

As vector databases gain traction in enterprise applications, ro-
bust access control has become critical to safeguard sensitive data.
Access control in these systems is often implemented through hy-
brid vector queries, which combine nearest neighbor search on
vector data with relational predicates based on user permissions.
However, existing approaches face significant trade-offs: creating
dedicated indexes for each user minimizes query latency but intro-
duces excessive storage redundancy, while building a single index
and applying access control after vector search reduces storage
overhead but suffers from poor recall and increased query latency.

This paper introduces HoneyBee, a dynamic partitioning frame-
work that bridges the gap between these approaches by leveraging
the structure of Role-Based Access Control (RBAC) policies. RBAC,
widely adopted in enterprise settings, groups users into roles and
assigns permissions to those roles, creating a natural "thin waist"
in the permission structure that is ideal for partitioning decisions.
Specifically, HoneyBee produces overlapping partitions where vec-
tors can be strategically replicated across different partitions to
reduce query latency while controlling storage overhead. By in-
troducing analytical models for the performance and recall of the
vector search, HoneyBee formulates the partitioning strategy as
a constrained optimization problem to dynamically balance stor-
age, query efficiency, and recall. Evaluations on RBAC workloads
demonstrate thatHoneyBee reduces storage redundancy compared
to role partitioning and achieves up to 6x faster query speeds than
row-level security (RLS) with only 1.4x storage increase, offering a
practical middle ground for secure and efficient vector search.

1 INTRODUCTION

Vector databases have emerged as a building block in modern ap-
plications, powering a wide variety of use cases such as in search
engines, recommendation systems, and retrieval-augmented gener-
ation (RAG) pipelines driven by large language models (LLMs) [1, 4,
27, 32]. Vector databases provide efficient vector similarity search
to retrieve semantically relevant results from high-dimensional
vector spaces, often implemented via approximate nearest neighbor
(ANN) algorithms [3, 9, 11, 12, 16, 21, 24].

As vector databases gain traction in enterprise settings, partic-
ularly in applications like retrieval-augmented generation (RAG)
pipelines powered by large language models, enforcing appropriate
access controls has become a critical challenge [29]. Role-based

Q
ue

ry
 T

im
e

1x 2x

Post-Filtering on
Shared Index

Dedicated Indices
per Role

≈

Documents + RBAC Policy
Storage Constraint ≤ 2x (⍺)
Recall Constraint ≥ 0.95 (β)

Optimized Data
Partitioning Strategy

Storage Overhead

HoneyBeeSearch Space

Figure 1: Given RBAC policies, storage and recall constraints,

HoneyBee optimizes for a partitioning of documents to achieve

a balanced trade-off between query latency and storage overhead.

access control (RBAC) is a widely adopted framework for man-
aging access to sensitive data [6, 10, 18, 25, 26]. RBAC simplifies
permission management by grouping users into roles (e.g., HR, Fi-
nance, Engineering) and assigning data access permissions to these
roles, rather than managing permissions at the individual user level.
While RBAC is well-established for traditional relational databases,
its implementation in vector databases introduces unique com-
plexities. In relational databases, RBAC can be enforced through
simple query predicates (e.g., "SELECT * FROM documents WHERE
user=Alice"). However, vector databases must integrate these re-
lational predicates with vector search on ANN indexes, requiring
hybrid queries that simultaneously satisfy both vector similarity
and access control constraints.

Access control can be readily integrated with vector databases
using one of the two approaches: (1) dedicated indices for each user
(or role), or (2) post-filtering on a single, shared index. These ap-
proaches represent two ends of a spectrum in the trade-off between
storage overhead and query performance, as shown in Figure 1.
The dedicated indices approach creates separate indices for each
user or role, ensuring that queries only access authorized data. This
eliminates the need for runtime filtering and enables fast query
execution. However, it incurs significant storage overhead, as vec-
tors accessible to multiple users or roles must be duplicated across
partitions. For example, in our experiments, even partitioning by
roles (rather than individual users) resulted in storage overheads
that were 27× larger than a unified index. In contrast, the post-
filtering approach constructs a single unified index and applies

ar
X

iv
:2

50
5.

01
53

8v
1

 [
cs

.D
B

]
 2

 M
ay

 2
02

5

Hongbin Zhong, Matthew Lentz, Nina Narodytska, Adriana Szekeres, and Kexin Rong

access control filters after performing the ANN search. Although
this minimizes storage overhead by avoiding data duplication, it
suffers from poor recall and performance when filters are highly
selective (i.e., users can access only a small fraction of the data).
In such cases, most search results are discarded, requiring the sys-
tem to expand the search scope to achieve acceptable recall, which
increases query latency. Recent works have explored specialized
index structures to better support vector similarity search with fil-
tering conditions [13, 23, 33]. However, these methods still operate
within the constraints of a single index and do not fully exploit the
potential benefits of storing redundant vector copies across indices.

In this work, we propose HoneyBee, a dynamic partitioning
framework that efficiently implements RBAC in vector databases.
Our key insight is that the structure of RBAC policies can be lever-
aged to design a hybrid approach that balances the strengths of
dedicated indices and post-filtering. Enterprise RBAC deployments
typically feature far fewer roles than users (e.g., tens to hundreds
of roles versus tens of thousands of users). Moreover, role defini-
tions tend to remain stable over time, even as user assignments
change frequently [6, 10, 19, 25, 26, 30]. Empirically, we find that
partitioning by user (or unique combinations of roles) significantly
increases storage overhead compared to partitioning by roles, while
offering diminishing returns in query latency improvements (e.g.,
> 50× increase in storage for < 2× improvement in query latency).
We exploit these properties by treating roles as the finest level of
partitioning granularity.

Specifically, HoneyBee introduces analytical models to quantify
the expected search performance and recall with respect to key
factors, such as partition size, average filter selectivity, and index-
specific parameters that control the trade-off between search per-
formance and recall. Based on these models, HoneyBee formulates
the partitioning strategy as a mixed-integer nonlinear program-
ming (MINLP) optimization problem. Since solving this problem
is NP-hard, HoneyBee further introduces a greedy algorithm that
generates a spectrum of partitioning strategies under different stor-
age constraints, ranging from post-filtering to dedicated indices
per role. Importantly, this partitioning strategy is orthogonal to the
choice of index structure. For example, specialized hybrid search
indices can be used on individual partitions to further improve
post-filtering performance within each partition. This flexibility
allows HoneyBee to create a spectrum of solutions that balance
storage overhead and query performance.

In summary, our key contributions are as follows:

• We identify the unique challenges of implementing access
control in VectorDBs and analyze the limitations of existing
approaches, including post-filtering and partitioning.

• We propose HoneyBee, which integrates RBAC with op-
timized data partitioning strategies, striking a balance be-
tween storage and query efficiency.

• We demonstrate the adaptability of our framework to vari-
ous operational scenarios, including its compatibility with
hybrid search methods such as ACORN.

• We evaluate our approach on real-world datasets with di-
verse permission structures, highlighting its practical ap-
plicability compared to state-of-the-art baselines. Using

pgvector with the HNSW index, HoneyBee reduces stor-
age redundancy compared to dedicated indices per role and
achieves up to 6× faster query speeds than post-filtering
on shared index (implemented via PostgreSQL’s row-level
security feature), with only 1.4× storage increase.

2 BACKGROUND

In this section, we provide background on role-based access control
(RBAC) (§ 2.1) and vector indexes for ANN search (§ 2.2).

2.1 Role-Based Access Control

The simplest way to enforce access control is via access control
lists (ACLs), which specifies for each protected resource (e.g., a
patient’s record), a list of users that have access to that object.
However, ACLs face several challenges. ACL directly associate users
with permissions, which is hard to maintain when dealing with a
large number of users and permissions that need constant updating.
Furthermore, organizations typically need to specify access policies
based on user functions or roles within the enterprise. For example,
the information security principle of least privilege, which states
that users and applications should only have access to the data and
operations necessary for their jobs, is burdensome to implement
directly on top of ACLs.

Role-Based Access Control (RBAC) emerged as a solution to
address these aforementioned challenges in enterprise settings [10,
19, 26]. By introducing roles as an intermediary layer between users
and permissions, RBAC simplifies the management of complex
access policies and reduces administrative overhead.

Definition 2.1. 𝛾 = ⟨𝑈 , 𝑅, 𝐷, 𝜙𝑈𝐴, 𝜙𝑃𝐴⟩ defines a basic RBAC
system, where

• 𝑈 , 𝑅 and 𝐷 are the sets of users, roles, and documents in the
systems, respectively.

• 𝜙𝑈𝐴 : 𝑈 → 2𝑅 defines the many-to-many relationship be-
tween users and roles.

• 𝜙𝑃𝐴 : 𝑅 → 2𝐷 defines the many-to-many relationship be-
tween roles and documents.

In this system, a user 𝑢𝑖 ’s authorized permissions are determined by
the union of permissions acquired through their assigned roles:

𝑎𝑐𝑐 (𝑢𝑖) =
⋃

𝑟 ∈𝜙𝑈𝐴 (𝑢𝑖)
𝜙𝑃𝐴 (𝑟) (1)

The RBAC system can also incorporate a partial order of roles to
support role hierarchies. For example, in a healthcare setting, rather
than granting physicians blanket access to all patient record data,
RBAC allows administrators to define a hierarchy of roles based
on the physician’s specialization, and restrict access to only those
fields relevant to a particular type of physician’s practice. RBAC also
supports customized constraints on user-role and role-permission
assignments. For example, administrators can implement policies
to limit the maximum number of users assigned to a particular role,
or to establish mutual exclusivity between roles to prevent users
from simultaneously holding potentially conflicting positions.

Relational databases such as SQL Server and PostgreSQL provide
Row-Level Security (RLS) as a built-in security feature to control
access to rows in a database table [5, 22]. RBAC policies can be

HoneyBee: Efficient Role-based Access Control for Vector Databases via Dynamic Partitioning

easily implemented using a set of tables that mirror the main RBAC
components. When a user attempts to access a protected resource,
the database system performs a series of JOIN operations across
these tables to determine if the access should be granted. For ex-
ample, Listing 1 checks if a user has permissions to specific rows
in the PatientRecords table by joining the user-role and role-
permission assignment tables.
CREATE POLICY access_policy ON PatientRecords

FOR SELECT

USING (

EXISTS (

SELECT 1

FROM PermissionAssignment pa

JOIN UserRoles ur ON pa.role_id = ur.role_id

WHERE pa.record_id = PatientRecords.record_id

AND ur.user_id = current_user::int

)

);

Listing 1: RBAC policy implemented via Row-Level Security.

2.2 Vector Search

Vector Search. Vector indexes for 𝑘−ANN search typically fall into
two categories: graph-based and partition-based indexes. Graph-
based indexes, such as Hierarchical Navigable Small World Graphs
(HNSW) and Navigating Spreading-out Graphs (NSG), organize
vectors as nodes in a proximity graph where edges connect similar
vectors [11, 21, 28, 35]. During search, the algorithm starts from
predefined entry points and greedily moves to neighboring nodes
that are closer to the query vector. The performance of these indexes
can be tuned via parameters like HNSW’s ef𝑠 , which controls the
size of the dynamic candidate list during search. A larger ef𝑠 allows
the algorithm to explore more paths in the proximity graph, leading
to better accuracy but slower search speed.

Partition-based indexes, like the IVF index (Inverted File), di-
vide the vector space into clusters using algorithms such as k-
Means [2, 14, 15, 20]. Each cluster is represented by a centroid
vector, and vectors are assigned to their nearest centroid during
indexing. During search, the system identifies relevant clusters by
comparing the query vector with cluster centroids, then performs
similarity search within the selected clusters. The index perfor-
mance is controlled by parameters like IVF’s 𝑛𝑝𝑟𝑜𝑏𝑒𝑠 , which speci-
fies the number of closest clusters to search. Higher 𝑛𝑝𝑟𝑜𝑏𝑒𝑠 values
increase the search space, resulting in better accuracy at the cost
of increased search time.
Hybrid Search. Hybrid search refers to vector similarity search
integrated with filtering conditions, enabling systems to retrieve
semantically relevant results while adhering to specific constraints,
such as access control policies. For example, in access-controlled
𝑘−ANN search, users expect to retrieve documents relevant to their
query (measured by vector distance), among those that they have
access to (filtering condition).

Recently, researchers have developed specialized index struc-
tures to better support hybrid vector search [13, 17, 23, 31, 33, 34].
For instance, ACORN [23], a state-of-the-art index built on top
of HNSW, integrates filtering conditions directly into the index
construction process. ACORN considers the selectivity of filtering
predicates to improve the connectivity of the HNSW graph, leading

to better query recall and latency compared to treating filtering as
a separate post-processing step after vector search.

3 OVERVIEW

In this section, we provide an overview of HoneyBee, including
the problem statement (§ 3.1) and main system components (§ 3.2).

3.1 Problem Statement

Consider a vector database system managing document access
with role-based permissions. Let 𝐷 = {𝑑1, 𝑑2, ...} be the set of all
managed documents. Each document 𝑑𝑖 ∈ 𝐷 represents an atomic
unit for permission assignment and may contain either a single
vector (e.g., embeddings for a single image) or multiple vectors (e.g.,
embeddings for paragraphs within a webpage).

Let𝑈 = {𝑢1, 𝑢2, ...} be the set of users, and 𝑅 = {𝑟1, 𝑟2, ...} be the
set of roles (e.g., "manager", "HR"). As discussed in Definition 2.1,
RBAC policies can be defined by two mappings, 𝜙𝑈𝐴 : 𝑈 → 2𝑅
(assigns users to roles), and 𝜙𝑃𝐴 : 𝑅 → 2𝐷 (grants roles access to
documents). 𝑎𝑐𝑐 (𝑢𝑖) is the set of documents accessible to user 𝑢𝑖 .

The system processes queries in the form of 𝑞𝑖 = (𝑢𝑞𝑖 , 𝑣𝑖), con-
taining a user 𝑢𝑞𝑖 ∈ 𝑅 and a query vector 𝑣𝑖 . The vector database’s
goal is to retrieve the top-k most relevant documents based on
vector similarity, subject to the users’ access permissions.

To optimize for search performance, the system can be con-
figured using different partitioning strategies. A configuration is
represented as a non-disjoint partitioning Π = {𝜋1, 𝜋2, ...}, where
∪𝑖𝜋𝑖 = 𝐷 and ∀𝑖 : 𝜋𝑖 ⊆ 𝐷 and 𝜋𝑖 ≠ ∅. The configurations can
range from creating separate partitions for each user, to using a
single shared partition for all users. The set of partition indices that
contain documents accessible to role 𝑟𝑖 is defined as:

𝐴𝑃 (𝑟𝑖 ,Π) = { 𝑗 | 𝜋 𝑗 ∈ Π, 𝜋 𝑗 ∩ 𝜙𝑃𝐴 (𝑟𝑖) ≠ ∅} (2)

The set of partition indices that contain documents accessible to
user 𝑢𝑖 is the union of partitions accessible to each of its roles:

𝐴𝑃 (𝑢𝑖 ,Π) =
⋃

𝑟 ∈𝜙𝑈𝐴 (𝑢𝑖)
𝐴𝑃 (𝑟,Π) (3)

Configurations are evaluated on three dimensions:
• Storage overhead:

∑
𝑖 |𝜋𝑖 |
|𝐷 | , the ratio of actual storage to mini-

mum required storage to store the document embeddings. We
assume that documents have roughly uniform sizes by default,
but the metric can also be extended with appropriate weight-
ing to account for difference in sizes. We omit index size as it
also scales linearly with the number of embeddings.
• Search quality:𝑅(Π, 𝑢𝑖), the search recall for user𝑢𝑖 is defined

as the ratio between (1) results from our indexed search filtered
by 𝑢𝑖 ’s access permissions and (2) the top-𝑘 results obtained
from first performing an exhaustive search and then applying
role-based access control filtering specific to 𝑢𝑖 .
• Search performance: 𝐶 (Π, 𝑢𝑖) =

∑
𝑗∈𝐴𝑃 (𝑢𝑖 ,Π) 𝑐 (𝜋 𝑗), where

𝑐 (𝜋 𝑗) is the cost of retrieving the top-𝑘 nearest neighbors for
the query in partition 𝜋 𝑗 . 𝑐 (𝜋 𝑗) depends on factors such as
partition size |𝜋 𝑗 |, index types, and index parameters.

In the following sections, we will introduce analytical models to
approximate the query performance and recall models.

Hongbin Zhong, Matthew Lentz, Nina Narodytska, Adriana Szekeres, and Kexin Rong

Documents
RBAC Policy

Constraints

1
2

51 2 3

Performance
Model

Administrator Inputs

Admin provides the
set of documents for

ingestion.

Documents RBAC Policy Index Type Model Parameters

§4.2-4.3
Dynamic
Partition

§5.1

Offline Online

Index Type 3 5

1
2

4 Constraints

Processing

D1 D2 D3

HR

Finance

IT

Users Roles Perms.

Admin specifies the role-based
access control (RBAC) policy

applied to the documents.

Admin specifies
constraints on

storage and recall.

Storage ≤ ⍺
(Ratio of Actual

vs Minimum)

Recall ≥ ϵ

6

6 Partition Strategy
No Index,
HNSW,
ACORN,

…

Admin
configures the

indexing (if any).

4

Cost
Fit a and b

Recall
Fit β and 𝜸

HoneyBee profiles the
configuration to determine

model parameters.

…
HoneyBee computes a
partitioning to minimize

query time subject to the
deployment constraints.

D1 D2 D3

P1 P2

…

§3.2

Updating
§5.2

Users
Submit queries

Admin
Insert/Delete users,
documents, and roles

OR

HNSW
Vary efs

Figure 2: Overview of HoneyBee’s workflow. Yellow elements represent main components as well as inputs and outputs of HoneyBee, while

blue elements represent configurable components by administrators, such as documents, RBAC policies, index types, and constraints.

Problem 1. Given a set of documents 𝐷 , RBAC policies, storage
constraint 𝛼 (≥ 1), and recall constraint 𝜖 (< 1), find a partitioning
Π = {𝜋1, 𝜋2, ...} that:

minimize
Π

1
|𝑈 |

|𝑈 |∑︁
𝑖=1

𝐶 (Π, 𝑢𝑖)

subject to
∑
𝑖 |𝜋𝑖 |
|𝐷 | ≤ 𝛼,

1
|𝑈 |

|𝑈 |∑︁
𝑖=1

𝑅(Π, 𝑢𝑖) ≥ 𝜖

By default, the objective function optimizes for the average query
latency over all users. Alternative objectives are also available, such
as the average query latency over a query workload (weighted version
of the above), or the average query latency over all roles.

3.2 System Overview

HoneyBee operates in two phases: an offline phase for data orga-
nization and indexing, and an online phase for query processing.
Figure 2 provides an overview of the workflow.
Offline. In the offline phase, HoneyBee optimizes the objectives
and satisfies the constraints specified in Problem 1. Depending on
the storage constraints, the partitioning strategy can span a spec-
trum from a single shared partition (post-filter on a shared index
approach) to role-specific partitions (dedicated indices approach),
or more commonly, utilize a hybrid approach with overlapping
partitions based on access patterns.

For each partition 𝜋𝑖 ∈ Π, HoneyBee builds a separate similar-
ity search index. The type of index is configurable by users, with
options ranging from no index (exhaustive search), vector indices
for 𝑘−ANN search (e.g., HNSW), or specialized indices for hybrid
search (e.g., ACORN). Along with partitioning, HoneyBee deter-
mines the index-specific parameter (e.g., ef𝑠 in HNSW) that controls
search depth, or how many candidate results are considered during
similarity search. When all documents are in one partition, high
search depth is required to ensure sufficient results remain after
access control filtering. However, when documents are distributed
across multiple partitions, each partition contains a higher density
of accessible documents for its intended users, allowing HoneyBee
to use a lower search depth while achieving the target recall.

Since partitions may overlap, the set of partitions containing doc-
uments accessible to a user (𝐴𝑃 (𝑢𝑖 ,Π) defined in Eq 3) could include
redundant partitions. To optimize query processing,HoneyBee pre-
computes and maintains a routing table, 𝐴𝑃𝑚𝑖𝑛 (𝑢𝑖 ,Π), from each
unique combination of roles (or each distinct user) to their minimal
required set of partitions:

𝐴𝑃𝑚𝑖𝑛 (𝑢𝑖 ,Π) = argmin
𝑆⊆𝐴𝑃 (𝑢𝑖 ,Π)

∑︁
𝑗∈𝑆

𝑐 (𝜋 𝑗), s.t.
⋃
𝑗∈𝑆

𝜋 𝑗 ⊇ 𝑎𝑐𝑐 (𝑢𝑖) (4)

where 𝑎𝑐𝑐 (𝑢𝑖) is the set of documents accessible to user 𝑢𝑖 (Eq 1).
Online. When processing a query 𝑞𝑖 = (𝑢𝑞𝑖 , 𝑣𝑖), HoneyBee first
identifies the relevant partitions using the precomputed mapping
𝐴𝑃𝑚𝑖𝑛 (𝑢𝑞𝑖 ,Π). For each identified partition, the system performs
vector similarity search using the query vector 𝑣𝑖 , with search depth
controlled by the pre-tuned index parameters. If needed, access
control is applied to filter out unauthorized documents. This can
be implemented through traditional post-filtering (Listing 1), or
via hybrid search indexes that integrate filtering directly into the
similarity search process. Finally, HoneyBee merges the filtered
results from all searched partitions, sorts them by similarity score,
and returns the global top-𝑘 documents as the final result.

4 ANALYTICAL MODELING

In this section, we introduce the analytic models for the search
performance and recall using the HNSW index, as well as the opti-
mization problem formulation based on these models. Although we
focus on HNSW in this section, we demonstrate in the evaluation
that the optimization framework is also applicable to other types
of indices (§ 7.2).

4.1 Background: HNSW Index Parameters

HNSW is one of the most widely adopted graph-based indexes for
ANN search [21]. Its behavior is governed by three key parameters:
𝑀 , ef𝑐 (𝑒 𝑓 _𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛), and ef𝑠 (𝑒 𝑓 _𝑠𝑒𝑎𝑟𝑐ℎ). During the index
construction phase, 𝑀 controls the number of links each node
maintains, affecting memory usage and search efficiency, while ef𝑐
determines how many neighbors are considered when inserting a
new point, influencing indexing speed and accuracy. In contrast,
ef𝑠 is dynamically adjusted at query time, controlling the size of the

HoneyBee: Efficient Role-based Access Control for Vector Databases via Dynamic Partitioning

priority queue used to manage candidate nodes. Higher ef𝑠 values
improve recall at the cost of increased query latency.

In the following study, we use fixed𝑀 and ef𝑐 parameters dur-
ing index construction (e.g., M = 16 and ef𝑐 = 64 are commonly
used [21]), as these parameters primarily impact the structure of
the HNSW graph and are typically set during the indexing phase.
In contrast, ef𝑠 remains the key tunable parameter at query time,
directly influencing recall and query performance.

In the following sections, we establish analytical models to char-
acterize the relationship between ef𝑠 , query recall, and query la-
tency. Recall is primarily influenced by the structure of the HNSW
index, including the connectivity parameter𝑀 , the search depth pa-
rameter ef𝑠 , and the selectivity imposed by user access permissions.
Meanwhile, query latency is largely determined by the number of
partitions, the size of each partition, and ef𝑠 .

4.2 Model for Search Performance

The query time in HNSW is influenced by two main factors: the
traversal of the hierarchical graph and the cost of vector similarity
calculations. The traversal complexity is approximately 𝑂 (log𝑛),
where𝑛 is the number of points in the graph [21]. The parameter ef𝑠
directly impacts query time by determining the number of candidate
nodes visited during the search.

We model the query time for a partition as 𝑐 (𝜋𝑖 , ef𝑠) = log(|𝜋𝑖 |) ·
𝑓 (ef𝑠), where 𝑓 (ef𝑠) represents the relationship between search
queue size and query time. We use the same ef𝑠 for all partitions.
Empirical analysis demonstrates that 𝑓 (ef𝑠) exhibits a linear rela-
tionship1 with ef𝑠 which we model as 𝑓 (ef𝑠) = 𝑎 · ef𝑠 + 𝑏. Here, 𝑎
and 𝑏 are system-dependent parameters influenced by hardware ca-
pabilities, software optimizations, and dataset characteristics such
as intrinsic dimensionality and data distribution.

Overall, the query cost is a function of the partitioning design Π,
the index specific parameter ef𝑠 , and the query itself. We consider
two types of query costs: user-level (𝐶𝑢) and role-level (𝐶𝑟). For a
given user 𝑢𝑖 , the total query cost 𝐶 (Π, 𝑢𝑖 , ef𝑠) must account for all
partitions that contain documents accessible to that user, as defined
by 𝐴𝑃𝑚𝑖𝑛 (𝑢𝑖 ,Π) in Eq 4:

𝐶𝑢 (Π, 𝑢𝑖 , ef𝑠) =
∑︁

𝑗∈𝐴𝑃𝑚𝑖𝑛 (𝑢𝑖 ,Π)
log(|𝜋 𝑗 |) · (𝑎 · ef𝑠 + 𝑏) (5)

Similarly, the role-level query cost is defined as

𝐶𝑟 (Π, 𝑟𝑖 , ef𝑠) =
∑︁

𝑗∈𝐴𝑃𝑚𝑖𝑛 (𝑟𝑖 ,Π)
log(|𝜋 𝑗 |) · (𝑎 · ef𝑠 + 𝑏) (6)

Note that since different roles could be mapped to the same parti-
tions via 𝐴𝑃𝑚𝑖𝑛 (𝑟𝑖 ,Π), the user-level cost is not simply a weighted
average of the role-level cost.

To fit 𝑎 and𝑏, we use an RBAC permission generator (§ 6.1) to cre-
ate a workload where each user maps to one role, and one partition
is created per role. Here, APmin (𝑟𝑖 ,Π) = 𝜋𝑟𝑖 , and 𝐶𝑢 (Π, 𝑢𝑖 , ef𝑠) =
𝐶𝑟 (Π, 𝑟𝑖 , ef𝑠) = log(|𝜋𝑟𝑖 |) · (𝑎 · ef𝑠 + 𝑏). We generate 1000 queries,
test multiple ef𝑠 values, and derive an average query time per ef𝑠 .
This allows us to compute querytime

log(|𝜋𝑟𝑖 |)
= 𝑎 · ef𝑠 + 𝑏 for fitting 𝑎 and 𝑏.

1This linear relationship is observed under typical settings, though query time can
also be influenced by factors such as data distribution and intrinsic dimensionality [7]
that we omit in the modeling for simplicity.

4.3 Model for Search Recall

Next, we model the recall behavior of HNSW index with post-
filtering access control. Other than the search depth parameter ef𝑠 ,
the primary factor affecting recall is selectivity - the fraction of
documents a user can access in their assigned partitions. For a user
𝑢𝑖 , selectivity is defined as:

𝑠𝑢 (𝑢𝑖) =
1

|𝐴𝑃𝑚𝑖𝑛 (𝑢𝑖 ,Π) |
∑︁

𝑗∈𝐴𝑃𝑚𝑖𝑛 (𝑢𝑖 ,Π)

|𝑎𝑐𝑐 (𝑢𝑖) ∩ 𝜋 𝑗 |
|𝜋 𝑗 |

(7)

This represents the average fraction of accessible documents across
all partitions the user needs to query. We then compute the system-
wide average selectivity across all users:

𝑠𝑢 =
1
|𝑈 |

|𝑈 |∑︁
𝑖=1

𝑠 (𝑢𝑖) (8)

For simiplicity, we ignore additional factors that can impact recall
in the modeling, such as the correlation between query vector and
the access permission filter [23].

Our analytical model is based on the observation that recall
follows a two-phase pattern as ef𝑠 increases: it first grows linearly,
then gradually saturates. This leads us to model recall as a piecewise
function in Eq 9: a linear function for the initial rapid increase and
a sigmoid function to capture the saturation effect.

𝑅(Π, 𝑠𝑢 , ef𝑠) =

ef𝑠 ·𝑠𝑢
𝑘

, if ef𝑠 ≤ 𝛾 · 𝑘𝑠𝑢 ,
1

1+𝑒−𝛽 ·
𝑠𝑢
𝑘
(ef𝑠 −𝛾 · 𝑘𝑠𝑢)

+
(
𝛾 − 1

2

)
, otherwise.

(9)
Here, 𝑘 (from top-𝑘) is the result count, 𝑠𝑢 is the average selec-
tivity across all users (Eq 8). The recall model uses two scaling
relationships with fitted constants 𝛾 and 𝛽 :
• Transition point 𝛾 · 𝑘

𝑠𝑢
: This determines when we transition

from linear growth to saturation. With lower selectivity, we
need to examine more candidates (higher ef𝑠) to find 𝑘 valid
results. The offset value 𝛾 − 1

2 is chosen to ensure continuity
of function value at the transition point.
• Sigmoid steepness 𝛽 · 𝑠𝑢

𝑘
: This parameter controls the rate

at which recall improves beyond the transition point. Higher
selectivity (𝑠𝑢) increases the likelihood of retrieving relevant
results, resulting in faster recall gains and a steeper curve.

To estimate 𝛽 and 𝛾 , we use an RBAC generator to create a per-
mission workload with an average selectivity of 0.1. As ef𝑠 increases
from 1 to 1000 (a typical upper limit in databases like pgvector),
recall transitions from 0 to 1. We execute 1000 randomly generated
queries across varying ef𝑠 values (10 to 1000), collecting average
recall per setting. Before each query, we compute selectivity and
retrieve 𝑘 to use in Eq 9 to fit 𝛽 and 𝛾 .

4.4 Optimization Problem Formulation

Given the analytical models for query performance and recall, we
can formulate Problem 1 as a constraint optimization problem.
Given Constants:

• 𝑈 , 𝑅, 𝐷 : Sets of users, roles, and documents.
• 𝑎𝑐𝑐 (𝑢𝑖) : User-to-document access mapping from RBAC (Eq 1).
• 𝑛𝑝 : Number of partitions in configuration Π.
• 𝛼 : Storage overhead constraint (≥ 1).

Hongbin Zhong, Matthew Lentz, Nina Narodytska, Adriana Szekeres, and Kexin Rong

• 𝜖 : Minimum recall threshold (< 1).
• 𝑅(𝑠, ef𝑠): Recall model with fitted parameters (Eq 9).

Variables:

• 𝑝 𝑗,𝑘 ∈ {0, 1} |𝐷 |×𝑛𝑝 : Binary decision variable indicatingwhether
document 𝑑 𝑗 is assigned to partition 𝜋𝑘 .
• 𝑥𝑖,𝑘 ∈ {0, 1} |𝑈 |×𝑛𝑝 : Binary decision variable indicatingwhether
user 𝑢𝑖 should access partition 𝜋𝑘 for their queries.
• ef𝑠 : HNSW search depth parameter

minimize
𝑝 𝑗,𝑘 , 𝑥𝑖,𝑘 , ef𝑠

1
|𝑈 |

|𝑈 |∑︁
𝑖=1

𝑛𝑝∑︁
𝑘=1

𝑥𝑖,𝑘 · log
©«
|𝐷 |∑︁
𝑗=1

𝑝 𝑗,𝑘
ª®¬ (𝑎 · ef𝑠 + 𝑏) (10a)

subject to
𝑛𝑝∑︁
𝑘=1

𝑥𝑖,𝑘 ≥ 1, ∀𝑖 ∈ {1, 2, . . . , |𝑈 |} (access mapping), (10b)

|𝐷 |∑︁
𝑘=1

𝛿𝑖, 𝑗,𝑘 ≥ 1, ∀𝑖 ∈ {1, 2, . . . , |𝑈 |},∀𝑗 ∈ 𝑎𝑐𝑐 (𝑢𝑖), (10c)

𝑥𝑖,𝑘 ≥ 𝛿𝑖, 𝑗,𝑘 , 𝛿𝑖, 𝑗,𝑘 ≤ 𝑝 𝑗,𝑘 ∀𝑖, 𝑗, 𝑘, (10d)
|𝐷 |∑︁
𝑗=1

𝑝 𝑗,𝑘 ≥ 1, ∀𝑘 ∈ {1, . . . , 𝑛𝑝 }(non-empty partitions), (10e)

𝑛𝑝∑︁
𝑘=1

|𝐷 |∑︁
𝑗=1

𝑝 𝑗,𝑘 ≤ 𝛼 |𝐷 | (storage), (10f)

𝑅(𝑠, ef𝑠) ≥ 𝜖 (recall), (10g)

𝑠 =
1
|𝑈 |

|𝑈 |∑︁
𝑖=1

1∑𝑛𝑝

𝑘=1 𝑥𝑖,𝑘

𝑛𝑝∑︁
𝑘=1

𝑥𝑖,𝑘 ·
∑

𝑗∈𝑎𝑐𝑐 (𝑢𝑖) 𝑝 𝑗,𝑘∑
𝑗 𝑝 𝑗,𝑘

(selectivity) (10h)

The objective is to minimize the average query cost across all
users, based on the user-level performance model (Eq 5). The con-
straints ensure that: (1) user access indicators 𝑥𝑖,𝑘 accurately reflect
document assignments via acc(𝑢𝑖), using a helper variable 𝛿𝑖, 𝑗,𝑘 to
link 𝑝 𝑗,𝑘 and 𝑥𝑖,𝑘 (Eq 10b, 10c, 10d); during optimization, 𝑥𝑖,𝑘 natu-
rally approaches APmin defined in Eq 4, (2) no partition is empty
(Eq 10e), (3) total storage overhead doesn’t exceed 𝛼 (Eq 10f), (4)
recall meets the minimum threshold 𝜖 using the model from Eq 9
(Eq 10g), and (5) average selectivity is properly computed based on
document assignments and access patterns (Eq 10h).

The optimization process involves three steps. First we compute
the user selectivity 𝑠 (𝑢𝑖) from document assignments 𝑝 𝑗,𝑘 , as well
as the average selectivity 𝑠 . Second, we determine the minimum ef𝑠
needed to achieve recall threshold 𝜖 . Note that we apply the same
ef𝑠 for all partitions. Finally, we optimize partition assignments 𝑝 𝑗,𝑘
to minimize average query time.

This optimization problem belongs to the class of Mixed-Integer
Nonlinear Programming (MINLP), which is NP-hard due to its
combinatorial nature and nonlinear constraints. In addition, the
the problem involves 𝑂 ((|𝐷 | + |𝑅 |)𝑛𝑝) binary variables, making it
intractable for large-scale datasets using off-the-shelf solvers. In the
next section, we introduce a greedy dynamic partitioning algorithm
that effectively solves this optimization problem. While 𝑛𝑝 (number
of partitions) is treated as a constant in the optimization problem,
the greedy algorithm treats 𝑛𝑝 as a variable to enhance flexibility.

𝜋!

𝜋"

𝜙#$ 𝑟% ∪ 𝜙#$(𝑟&)

𝜙#$(𝑟")

…

1

2

𝜋&

𝜋& …

…

𝜋& …

r1 = FindBestSplit(…)

𝜋!

r7 = FindBestSplit(…)

r3 = FindBestSplit(…)

Figure 3: Each iteration of the greedy algorithm, one or more roles

are moved from the largest partition to form a new partition (green

blocks). The roles are chosen greedily based on the estimate perfor-

mance improvement using the analytical models.

5 DYNAMIC PARTITIONING STRATEGY

In this section, we introduce HoneyBee’s partitioning strategy that
minimizes average query latency while satisfying the given storage
and recall constraints.

5.1 Greedy Split Algorithm

To solve the MINLP optimization problem introduced in § 4.4,
HoneyBee makes a key observation. The design space of the parti-
tioning is challenging as it scales with the total number of docu-
ments. HoneyBee constrains this design space by ensuring that all
documents accessible by each role are contained in a single parti-
tion. This intuition constraint is justified by our performance model,
which scales logarithmically with datast size. When documents for
a specific role are split across two partitions 𝜋𝑖 and 𝜋 𝑗 , the query
time becomes 𝑙𝑜𝑔(|𝜋𝑖 |) + 𝑙𝑜𝑔(|𝜋 𝑗 |) = 𝑙𝑜𝑔(|𝜋𝑖 | |𝜋 𝑗 |), which is typi-
cally larger than the time required for accessing a single merged
partition 𝑙𝑜𝑔(|𝜋𝑖 ∪ 𝜋 𝑗 |).

Algorithm 1 Greedy Split Algorithm
Input: Storage constraint 𝛼
Output: Partitions Π, partition-to-role mapping𝑀

1: function FindLargestPartition(Π, 𝑀)
2: return argmax𝑖∈{1,...,|Π |},|𝑀 [𝑖] |>1 |Π[𝑖] |
3: function CreatePartition(R) ⊲ All docs needed by roles in R

4: return

⋃
𝑟 ∈R𝜙𝑃𝐴 (𝑟)

5: Π[1] ← 𝐷 ⊲ Initialize partition with all documents and roles
6: 𝑀 [1] ← 𝑅

7: while

∑
𝜋𝑖 ∈Π |𝜋𝑖 | ≤ 𝛼 |𝐷 | do

8: 𝑖𝑠𝑟𝑐 ← FindLargestPartition(Π, 𝑀)
9: 𝑖𝑑𝑠𝑡 ← |Π | + 1 ⊲ Create new partition
10: Π[𝑖𝑑𝑠𝑡] ← ∅,𝑀 [𝑖𝑑𝑠𝑡] ← ∅
11: while

∑
𝜋𝑖 ∈Π

|𝜋𝑖 | ≤ 𝛼 |𝐷 | do

12: 𝑟 ∗ ← FindBestSplit(Π, 𝑀, 𝑖𝑠𝑟𝑐 , 𝑖𝑑𝑠𝑡)
13: 𝑀 [𝑖𝑠𝑟𝑐] ← 𝑀 [𝑖𝑠𝑟𝑐] \ {𝑟 ∗} ⊲ Update mappings
14: 𝑀 [𝑖𝑑𝑠𝑡] ← 𝑀 [𝑖𝑑𝑠𝑡] ∪ {𝑟 ∗}
15: Π[𝑖𝑠𝑟𝑐] ← CreatePartition(𝑀 [𝑖𝑠𝑟𝑐]) ⊲ Update partitions
16: Π[𝑖𝑑𝑠𝑡] ← CreatePartition(𝑀 [𝑖𝑑𝑠𝑡])
17: if 𝑖𝑠𝑟𝑐 ≠ FindLargestPartition(Π, 𝑀) then
18: break ⊲ Source is no longer the largest
19: return Π, 𝑀

HoneyBee: Efficient Role-based Access Control for Vector Databases via Dynamic Partitioning

We propose a greedy partitioning algorithm (Algorithm 1) based
on this intuition. The algorithm returns the final partitioning design
Π, as well as a mapping𝑀 which maps each partition to the roles
that it contains.𝑀 can be used to calculate 𝐴𝑃 (𝑢𝑖 ,Π) as defined in
Eq 2.

As shown in Figure 3, our algorithm follows an iterative split-
ting approach that begins with a single partition containing all
documents and all roles. In each iteration, we identify the largest
partition containing more than one role and attempt to split it
by moving selected roles 𝑟∗ to a new partition. The roles are cho-
sen based on two criteria: (1) all documents accessible by the 𝑟∗
are grouped into the new partition, and (2) the selection maxi-
mizes query performance improvements based on our analytical
model. Each split operation introduces a trade-off between storage
and query efficiency. Storage increases because documents shared
between 𝑟∗ and roles remaining in the source partition must be
duplicated. However, query latency typically improves as queries
involving 𝑟∗ benefit from having a higher fraction of accessible
documents (increased selectivity) in the new partition.

For each round of splitting (line 7, outer loop), the algorithms
choose Π[𝑖𝑠𝑟𝑐], the largest partition with more than one role as the
source partition for splitting. At the end of the round, the partition
gets split into two partition with ids Π[𝑖𝑠𝑟𝑐] and Π[𝑖𝑑𝑠𝑡]. In the
inner loop (line 11), the algorithm evaluates the benefit of moving
each role from partition Π[𝑖𝑠𝑟𝑐] to the new partition Π[𝑖𝑑𝑠𝑡], and
greedily selects the role 𝑟∗ with the largest improvement of query
latency based on the performance model (line 12). We then update
Π[𝑖𝑑𝑠𝑡] by adding documents belonging to 𝑟∗, and update Π[𝑖𝑠𝑟𝑐]
by removing documents that are unique to 𝑟∗, as no other roles in
Π[𝑖𝑠𝑟𝑐] would have access to these documents. In each iteration of
the inner loop, we add one role to Π[𝑖𝑑𝑠𝑡], until query latency no
longer improves, or the storage constraint is met or Π[𝑖𝑠𝑟𝑐] is no
longer the largest splittable partition. Note that at the end of the
inner loop, Π[𝑖𝑑𝑠𝑡] can contain multiple roles.

Algorithm 2 FindBestSplit Algorithm
1: function FindBestSplit(Π, 𝑀, 𝑖𝑠𝑟𝑐 , 𝑖𝑑𝑠𝑡)
2: for all 𝑟 ∈ 𝑀 [𝑖𝑠𝑟𝑐] do ⊲ Try each split
3: 𝜋 ′

𝑑𝑠𝑡
← CreatePartition(𝑀 [𝑖𝑑𝑠𝑡] ∪ {𝑟 })

4: 𝜋 ′𝑠𝑟𝑐 ← CreatePartition(𝑀 [𝑖𝑠𝑟𝑐] \ {𝑟 })
5: Π′ ← Π \ {Π[𝑖𝑠𝑟𝑐],Π[𝑖𝑑𝑠𝑡] } ∪ {𝜋 ′𝑠𝑟𝑐 , 𝜋 ′𝑑𝑠𝑡 }
6: Δ𝑆 ← |𝜋 ′𝑠𝑟𝑐 | + |𝜋 ′𝑑𝑠𝑡 | − |Π[𝑖𝑠𝑟𝑐] | − |Π[𝑖𝑑𝑠𝑡] | ⊲ ΔStorage
7: Δ𝑄𝑟 ← 𝐶𝑟 (Π) − 𝐶𝑟 (Π′) ⊲ ΔQuery time
8: Δ𝑄𝑢 ← 𝐶𝑢 (Π) − 𝐶𝑢 (Π′)
9: if Δ𝑄𝑟 < 0 and Δ𝑄𝑢 < 𝜂 then ⊲ Check if move is beneficial
10: if (Δ𝑄𝑟 + Δ𝑄𝑢)/Δ𝑆 > Δ𝑚𝑎𝑥 then

11: 𝑟 ∗ ← 𝑟

12: Δ𝑚𝑎𝑥 ← (Δ𝑄𝑟 + Δ𝑄𝑢)/Δ𝑆
13: return 𝑟 ∗

Algorithm 2 implements FindBestSplit, evaluating the cost
of each candidate split to determine the most effective one. Two
performance models are considered: a role-level model 𝐶𝑟 (Eq 6)
and a user-level model 𝐶𝑢 (Eq 6). For 𝐶𝑟 (Π) or 𝐶𝑢 (Π), users spec-
ify a target recall and input it into the program to compute the
corresponding average selectivity 𝑠𝑢 for a given partition Π. Then
the ef𝑠 is derived using Eq. 9. Intuitively, the role-level model re-
flects the local effect - reduction in per role query time is a good

objective that can guide the partitioning from a single partition to
the solution of partitioning by roles (one partition per role). The
user-level model reflects the global effect - reduction in user-level
model would directly reduces the optimization objective of query
time.

A split is considered beneficial if Δ𝑄𝑟 < 0 and Δ𝑄𝑢 is below
a predefined threshold 𝜂, preventing the greedy algorithm from
becoming trapped in locally optimal but globally suboptimal con-
figurations. Empirically, if Δ𝑄𝑟 < 0, it’s likely that user-level query
time will improve in future splits, even if 𝑄𝑢 slightly increases in
the current iteration. Δ𝑆 denotes storage cost increase. We normal-
ize the query improvements by the storage cost to identify the split
that is most effective per unit storage. In practice, Δ𝑆 could also be
zero or negative; we then use (Δ𝑄𝑟 + Δ𝑄𝑢)/(Δ𝑆 + 𝜖), prioritizing
roles 𝑟 with Δ𝑆 < 0 for reduced storage and query latency.

5.2 Handling Updates

In this section, we discuss how HoneyBee updates the partitioning
strategy under changes to the permission workload. We consider
three cases: (1) inserting and deleting users, (2) inserting and delet-
ing documents from a role, and (3) inserting and deleting roles.
Since HoneyBee’s partitioning strategy is based on roles, these
updates can be performed incrementally without requiring a full
rebuild of the partitions.

When a new user is added to existing roles, HoneyBee deter-
mines the optimal set of partitions for the user and updates the
routing table from users to partitions (𝐴𝑃𝑚𝑖𝑛 , Eq 4) accordingly.
Conversely, deleting a user requires no changes to partitions; only
the user’s access paths in the routing table are removed.

When inserting new documents into an existing role,HoneyBee
locates the corresponding partition and inserts the documents. Sim-
ilarly, when deleting documents from a role, HoneyBee removes
the specific documents from the partition containing the role, but
the user routing remains unchanged.

When inserting a new role, the system evaluates the performance
impact (Δ𝐶/Δ𝑆𝑡𝑜𝑟𝑎𝑔𝑒), assigns the role’s documents to either an
existing partition or a newly created one, and updates routing for
users assigned to the new role. Deleting a role involves identifying
all partitions containing the role, removing documents exclusively
required by the role, and updating the user-to-role assignment
(𝜙𝑈𝐴). In both cases, only the indices for the affected partitions
need to be updated.

6 EXPERIMENTAL SETUP

In this section, we describe the setup used for our evaluations.
The experiments are conducted on a server with 64GB ofmemory

and an Intel i5-13600K processor, featuring 14 cores and 20 threads.
All experiments are performed using PostgreSQL 16 with pgvec-

tor 0.8.0. The primary evaluations use the HNSW indexing struc-
ture, with additional experiments applying HoneyBee on top of
the ACORN [23] index.

6.1 RBAC Benchmark

Following practices in RBAC literature, we use synthetic permission
generators to generate permissions with different structures for

Hongbin Zhong, Matthew Lentz, Nina Narodytska, Adriana Szekeres, and Kexin Rong

evaluation [18, 19, 30]. By default, we use |𝑈 | = 1000 users and
|𝑅 | = 100 roles for all generators.
Random Generator [30]. This generator creates permission data
without imposing any specific structure. It requires two parameters:
the maximum number of roles a user can have (𝑚𝑟), and the maxi-
mum number of documents a role can access (𝑚𝑝). All selections
are made uniformly at random.
• Role-permission assignment (𝜙𝑃𝐴): For each role 𝑟 , the genera-
tor randomly selects a number of permissions𝑚(𝑟) between
1 and the total number of permissions |𝐷 |. Then, it randomly
picks𝑚(𝑟) permissions from 𝐷 and assigns them to the role.
• User-role assignment (𝜙𝑈𝐴): For each user 𝑢, the generator

randomly selects a number of roles𝑚(𝑢) the user has between
1 and |𝑅 |. Then,𝑚(𝑢) roles are randomly chosen from 𝑅 and
assigned to the user.

We evaluate performance using two different sets of parameters.
The first set, Random-𝛼 , used in § 7.1, is as follows:𝑚𝑟 = 2, and𝑚𝑝

= |𝐷 |/|𝑅 | × 5. The second set, Random-𝛾 , used in § 7.3, includes:𝑚𝑟

= 1, and𝑚𝑝 = |𝐷 |/|𝑅 | × 9.
Tree-based Generator [19]. This generator models hierarchical
role structures commonly seen in organizations (e.g., CEO→ depart-
ment heads→ team leads→ employees). The generator-specific
parameters include: the height of the tree (ℎ) and the lower-bound
(𝑏0) and upper-bound (𝑏1) on the number of children each internal
node can have. The generator works as follows:
• Tree and role construction: Generate a tree𝑇 of height ℎ, where
the role hierarchy is constructed recursively from the root,
with each internal node assigned a random number of children
in the range [𝑏0, 𝑏1], stopping when the role pool of size |𝑅 |
is exhausted or height ℎ is reached. Each node in the tree
represents a role within the organization. Roles are organized
hierarchically. For instance, consider a company with multiple
departments, each containing several offices; the root node
grants universal permissions, while a leaf nodemight represent
a specialized role in a specific office.
• Role-permission assignment (𝜙𝑃𝐴): Divide the set of documents
𝐷 into |𝑅 | subsets, and assign each subset to a corresponding
role. Roles inherit all permissions from their ancestor roles,
so each role 𝑟 ’s effective document access is computed as the
union of documents directly assigned to 𝑟 and all documents
assigned to 𝑟 ’s ancestors2.
• User-role assignment (𝜙𝑈𝐴): Evenly distribute the set of users
across all roles in the tree, excluding the root role. Each user
is assigned to one role.

We evaluate performance using two different sets of parameters.
The first set, Tree-𝛼 , used in 7.1, is as follows: ℎ = 4, 𝑏0 = 3, 𝑏1 = 4.
The second set, Tree-𝛾 , has the same basic parameters as Tree-𝛼 ,
but uses the Poisson distribution for 𝜙𝑃𝐴 . The Poisson distribution
parameters are adjusted to vary the selectivity of permissions.

2For example, an employee in the Business Office of Department A would have access
to company-wide permissions (from the root), Department A-specific permissions
(from an intermediate node), and permissions unique to the Business Office (from
a leaf node). Department-wide permissions are exclusive to employees within that
department and never shared across departments, while office-specific permissions
are restricted to employees of that office and not shared with other offices.

Tree-𝛼 Random-𝛼 ERBAC-𝛼 ERBAC-𝛽
Avg Selectivity 0.036 0.054 0.128 0.285
Max Roles Per User 1 3 3 9
RP Storage Overhead 3.5× 3.8× 7.0× 7.0×
UP Storage Overhead 3.5× 74.9× 134× 408×

Table 1: Comparison of Workload configurations

ERBAC Generator [18, 19]. The generator is based on the En-
terprise Role-Based Access Control (ERBAC) model, which uses
a two-level layered role hierarchy commonly found in real-world
organizations. It introduces two types of roles: functional roles,
which define specific job functions and hold permissions directly,
and business roles, which group functional roles and inherit their
permissions. Notably, business roles represent the actual roles (𝑅)
assigned to users (𝑈). This generator requires five parameters: the
number of functional roles (𝑛𝑓 𝑟), the number of business roles (𝑛𝑏𝑟),
the maximum number of permissions a functional role can have
(𝑚𝑝), the maximum number of functional roles a business role can
connect to (𝑚𝑓 𝑟), and the maximum number of business roles a
user can have (𝑚𝑏𝑟). The generator works as follows:
• Generate functional and business roles: For each functional role
𝑟 , randomly select the number of permissions𝑚(𝑟) between
1 and the total number of permissions |𝐷 |. Assign𝑚(𝑟) ran-
domly chosen permissions from the set 𝐷 to 𝑟 . For each busi-
ness role 𝑟 , randomly select the number of functional roles
𝑚(𝑟) from {1, 2, . . . ,𝑚𝑓 𝑟 }. Assign𝑚(𝑟) randomly chosen func-
tional roles to 𝑟 . For each business role the permission set is the
union of all the permissions held by its associated functional
roles.
• Assign business roles to users: For each user 𝑢, randomly select

the number of business roles𝑚(𝑢) from {1, 2, . . . ,𝑚𝑏𝑟 }. Assign
𝑚(𝑢) randomly chosen business roles to 𝑢. For each user the
permission is the union of all permissions inherited from the
assigned business roles.

We evaluate performance using two different sets of parameters.
The first set, ERBAC-𝛼 , used in 7.1, is defined as follows: 𝑛𝑓 𝑟 = 40,
𝑛𝑏𝑟 = 100, 𝑚𝑓 𝑟 = 3, 𝑚𝑏𝑟 = 3, 𝑛𝑝 = |𝐷 |, and 𝑚𝑝 = |𝐷 |/25. The
second set, ERBAC-𝛽 , also used in 7.1, is similar to ERBAC-𝛼 , except
that𝑚𝑏𝑟 = 9. The third set, ERBAC-𝛾 , used in 7.3, shares the same
basic parameters as ERBAC-𝛼 , with the exception of𝑚𝑏𝑟 = 1.

6.2 Dataset and Query Workload

For our evaluation, we utilize a dataset from the Wikipedia-22-12
collection, accessible via Hugging Face [8]. We work with 1 million
rows of Wikipedia articles for this study. Each entry includes at-
tributes such as a unique identifier (id), the article title (title), the
content (text), a URL (url), and a unique wiki identifier (wiki_id). In
our experiments, we map these fields to our system as follows: the
wiki_id serves as a reference for each document, individual para-
graphs within the text are treated as distinct units of content, and
the text provides the basis for generating embeddings. These em-
beddings are created using the en_core_web_md model to capture
the semantic representation of each paragraph.

Each query 𝑞𝑖 = (𝑢𝑞𝑖 , 𝑣𝑖) contains a user 𝑢𝑞𝑖 and a query vector
𝑣𝑖 . We randomly sample 1000 vectors from the database to serve as
query vectors, and randomly select 1,000 user IDs to associate with

HoneyBee: Efficient Role-based Access Control for Vector Databases via Dynamic Partitioning

the queries. For each query, we want to retrieve top 𝑘 = 10 closest
vectors to the query vector under the user’s permission. We record
the selectivity for each query, which is defined as the ratio of the
number of documents accessible to the user to the total number of
documents.

6.3 Baseline Methods and Metrics

We compare HoneyBee against three baselines:
• Role Partition:We create a separate partition for each role.
This approach is efficient for single-role users. However, for
users assigned multiple roles, its performance may lag behind
that of user partitioning due to the need to aggregate docu-
ments from multiple partitions during query execution.
• User Partition:We create a separate partition for each unique

combination of roles. This way, users with the same roles can
share the same partition.
• Row-level Security (RLS): This method applies PostgreSQL’s
row-level security feature [5, 22] to filter query results based
on permissions after performing similarity search. This is an
example of a post-filter method.

The methods are compared using the following metrics:
• Storage: The algorithm leverages PostgreSQL to assess the

actual table size, calculating the total storage needed for both
data and indexes. We present the normalized storage cost by
dividing the storage requirements of HoneyBee by those of
Row-Level Security (RLS).
• Query Latency: Average time to execute multiple queries.

Each query is run twice: the first execution serves as a warmup
to populate the cache, and the second is used for latency mea-
surement.
• Recall@10: Proportion of correct documents in the top-10
vector search results, assessing accuracy against ground truth.

7 EVALUATION

We evaluate HoneyBee using the described permission generators
above and real-world document datasets. Our experiments highlight
the following key findings:
• HoneyBee significantly reduces query time while maintaining
a reasonable storage overhead, achieving up to 6× speedup
compared to RLS with only 1.4× storage increase.
• HoneyBee performs best in structured datasets with hierar-

chical role distributions (e.g., Tree and ERBAC), while Random
workloads show more limited gains. The trade-off curve is
convex for structured workloads but concave in random cases.
• HoneyBee enhances hybrid searchmethods like ACORN, achiev-
ing up to 3× speedup at 1.2× storage compared to ACORN
alone. Further improvements could be achieved by refining
the performance model to account for ACORN indexing.
• Lower selectivity and structured sharing degree patterns lead

to greater efficiency gains. When selectivity is low (e.g., 0.04),
HoneyBee offers more optimization potential, while at higher
selectivity levels, storage demands increase, narrowing the
performance gap.

7.1 Trade-off between Storage, Latency, Recall

In this section, we evaluate the trade-off between storage overhead,
query latency, and recall under different permission workloads.

Figure 4 shows the trade-off between storage overhead and av-
erage query latency across different permission workloads while
maintaining a consistent recall threshold of 0.95. RLS (black point)
offers minimal storage (1×) but high query latency, while Role Par-
tition (red point) delivers low query latency but at significantly
higher storage costs. HoneyBee generates partitioning strategies
that occupy the intermediate space, with partition sizes ranging
from 1 to |𝑅 | based on the storage constraint (for instance, for Tree
- 𝛼 with 1.4× storage constraint, it produces a partitioning strat-
egy that involves 20 partitions); curves closer to the bottom-left
corner reflect a superior balance between storage efficiency and
performance. Note that HoneyBee’s greedy algorithm: 1) estimates
the space needed by a partitioning strategy as the total number of
documents in all its partitions (instead of creating real partitions
and measuring their actual size), and 2) it permits the limit to be
exceeded (after a last partitioning step). This may lead to a deviation
from the space constraint factor (𝛼) used by the algorithm, when
calculating this space factor using the actual size of the space occu-
pied by the partitioning strategy (this real space factor is what we
report in subsequent experiments). However, in all our experiments
this deviation remained within 6%.

Figure 5 illustrates the relationship between query recall and la-
tency under fixed storage constraints. We vary the ef𝑠 parameter to
tune this trade-off. User Partition (green curve) consistently deliv-
ers the lowest query latency at fixed recall levels, followed by Role
Partition (red curve), while RLS delivers the highest latency (black
curve). However, as shown in Table 1, this performance comes at
substantial storage costs, with User Partition requiring 74-408× the
storage of RLS, while Role Partition typically requires up to 10×
storage. The minimal latency difference between these approaches
suggests limited benefits from extending storage beyond Role Par-
tition. HoneyBee (yellow curve) produces partition strategies that
lie between Role Partition and RLS, and generally shows a slower
growth in query latency compared to RLS at high recall levels.

For the Tree−𝛼 workload (Figure 4a), HoneyBee enables 6×
improvements in query latency at 1.4× storage overhead compared
to RLS, and the performance approaches that of Role Partition
which requires 3.5× storage. Figure 5a shows that HoneyBee with
1.4× storage significantly outperforms RLS and closely matches
Role Partition at 3.5× storage at varying recall levels. Moreover,
HoneyBee exhibits a much slower growth in query performance
as recall improves compared to RLS. User Partition is omitted from
this comparison as it matches Role Partition due to the one role
per user relationship in this workload. Overall, HoneyBee offers a
highly effective storage and latency trade-off in this workload.

For the ERBAC-𝛼 workload (Figure 4b), HoneyBee enables a
smooth, convex transition between RLS and Role Partition, indi-
cating an effective trade-off. At approximately 3× storage, query
latency is more than twice as fast as RLS. Figure 5b further shows
that HoneyBee with 3× storage has query latency closer to Role
Partition compared to RLS, and shows a slower growth trend com-
pared to RLS. User Partition shows slightly faster performance but

Hongbin Zhong, Matthew Lentz, Nina Narodytska, Adriana Szekeres, and Kexin RongHONEYBEE Row Level Security Role Partition

1x 2x 3x 4x
Storage

0

2

4

6

Qu
er

y
Ti

m
e

(m
s)

(a) Tree - 𝛼

1x 2x 3x 4x 5x 6x 7x
Storage

0

1

2

3

4

Qu
er

y
Ti

m
e

(m
s)

(b) ERBAC - 𝛼

1x 2x 3x 4x
Storage

1

2

3

4

Qu
er

y
Ti

m
e

(m
s)

(c) Random - 𝛼

1x 2x 3x 4x 5x 6x
Storage

0

1

2

3

Qu
er

y
Ti

m
e

(m
s)

(d) ERBAC - 𝛽

Figure 4: Trade-off between Query Time and Storage across Permission Workloads.

Row Level Security HONEYBEE Role Partition User Partition

0.7 0.8 0.9 1.0
Recall@10

0

2

4

6

8

Qu
er

y
Ti

m
e

(m
s)

(a) Tree - 𝛼

0.7 0.8 0.9 1
Recall@10

0

1

2

3

4

Qu
er

y
Ti

m
e

(m
s)

(b) ERBAC - 𝛼

0.7 0.8 0.9 1.0
Recall@10

0

1

2

3

4

5

Qu
er

y
Ti

m
e

(m
s)

(c) Random - 𝛼

0.8 0.85 0.9 0.95 1
Recall@10

0

1

2

3

Qu
er

y
Ti

m
e

(m
s)

(d) ERBAC-𝛽

Figure 5: Query Time vs Recall under RLS and Different Partitioning Strategies. For HoneyBee we used the following storage points for the

four workloads: (a) 1.4×; (b) 3.0×; (c) 1.9×; (d) 3.2×.

requires 134× storage compared to Role Partition’s 7×, which sug-
gest diminishing returns in query performance at larger storage
budgets.

The ERBAC - 𝛽 workload (Figure 4d) shows minimal query la-
tency difference between RLS and Role Partition despite a 6× stor-
age gap. This workload assigns up to 9 roles per user (versus 3 in
ERBAC-𝛼), resulting in higher user selectivity where post-filtering
approaches like RLS perform well. Note that that HoneyBee would
generate the RLS solution if given the 1× storage constraint, and
for a 3× storage overhead, HoneyBee can produce a solution with
query latency between RLS and Role Partition (Figure 5d). User
Partition, though faster than Role Partition, requires 408× storage.

For the Randomworkload (Figure 4c),HoneyBee shows less ben-
efit in trading off storage or query latency compared to the previous
workloads, as seen by the concave shape on the intermediate points.
At 1.9× storage, query latency improves only 1.3× over RLS, which
is still far from the Role Partition performance at around 3.5× stor-
age. Additionally, Figure 5c shows that HoneyBee at 1.9× storage
shows a slight improvement over RLS and has a similar growth
pattern as recall increases. The random role-permission assign-
ments make it challenging to identify cleanly separable permission
subsets, limiting HoneyBee’s effectiveness. We provide additional
analysis on the impact of the permission workload structure as well
as selectivity in § 7.3.

7.2 Evaluation with Alternative Index

To demonstrate that HoneyBee is compatible with different types
of indices, we replace the default HNSW index with ACORN [23], a

1x 2x 3x 4x
Storage

0.02

0.04

0.06

0.08

0.10

Qu
er

y
Ti

m
e

(m
s)

HoneyBee
ACORN
Role Partition

(a) Query Time vs Storage

0.9 0.93 0.96 0.99
Recall@10

0

0.05

0.1

0.15

0.2

Qu
er

y
Ti

m
e

(m
s)

ACORN
HONEYBEE
Role Partition

(b) Query Time vs Recal

Figure 6: Performance of HoneyBee using the ACORN index using

the Tree-𝛼 workload.

specialized index built on top of HNSW designed to support hybrid
vector search.

HoneyBee uses the performance and recall model for the HNSW
index to guide partitioning decisions. For each partition, we apply
the ACORN index if the partition requires permission filtering, and
the HNSW index if the partition does not (e.g., partitions containing
only one user). We use a Tree-𝛼 generator to produce permissions,
resulting in a low-selectivity setting (approximately 0.03). In such
settings, ACORN offers significant performance advantages over
post-filtering approaches like RLS [23].

The experiment uses ACORN’s implementation on the Faiss li-
brary with PostgreSQL. First, HoneyBee runs on PostgreSQL to
create partitions. Then, ACORN indexes are built on the document
table (the default single table with all documents) and its parti-
tions.We excludemulti-threading and caching optimizations for fair
evaluation. Figure 6a shows the trade-off between query time and
storage under dynamic partitioning. At 1.2× storage, HoneyBee is

HoneyBee: Efficient Role-based Access Control for Vector Databases via Dynamic Partitioning

1x 3x 5x 10x 15x 20x 25x
Storage

1

2

3

4

Qu
er

y
Ti

m
e

(m
s)

s=0.04
s=0.06
s=0.14
s=0.24

(a) Effect of selectivity

1x 2x 3x 4x 5x 6x
Storage

0

1

2

3

4

5

Qu
er

y
Ti

m
e

(m
s)

ERBAC -
Tree -
Random -

(b) Effect of sharing degree pattern

Figure 7: The effect of selectivity and sharing degree distribution on

HoneyBee performance.

roughly 3× faster than using a single ACORN index on all docu-
ments (1× storage). Notably, query time at 2.4× storage is slower
than at 2×, due to the mismatch with performance model based
on HNSW indexing. To elaborate, ACORN enhances HNSW by
incorporating predicate processing capabilities, altering its origi-
nal query processing mechanism. This modification particularly
benefits recall: ACORN significantly outperforms HNSW when
predicates are involved. In contrast, the HNSW model primarily
emphasizes vector similarity search and fails to account for these
predicate-related improvements. Therefore, replacing this perfor-
mance model with an ACORN-specific performance model would
likely improve results. Figure 6b shows the relationship between
query latency and recall, with dynamic partitioning at 1.2× storage.
The results show that both HoneyBee and Role Partition main-
tain stable latency as recall increases, while a single ACORN index
experiences a significant increase in latency at higher recall levels.

Overall, these results demonstrate that HoneyBee are comple-
mentary to specialized indexes, such as ACORN. While ACORN im-
proves the performance of post-filtering compared to using generic
indices such as HNSW, HoneyBee replicates vectors across dif-
ferent indices which can further improve the query performance
compared to using a single hybrid index on the entire dataset.

7.3 Sensitivity Analysis

In this section, we analyze HoneyBee sensitivity to average selec-
tivity (percentage of documents accessible to the user) and sharing
degree distribution pattern. The sharing degree distribution shows
the percentage of documents by the number of sharing roles (e.g.,
50% of the documents are accessible to 1 role each, 20% to 2 roles,
10% to 3, etc.). The sharing degree distribution pattern refers to
the pattern of this distribution, such as sharing degree 1 being the
highest peak (i.e, the percentage of documents accessible to 1 role
each is the largest in the distribution), with other degrees showing
lower peaks.
Impact of Selectivity. We use the Tree-𝛾 generator to isolate the
pattern across selectivity levels (0.04, 0.06, 0.14, 0.24). In Figure 8,
both panels show the pattern where sharing degree 1 is the highest
peak, with lower peaks for higher degrees, but the peak is higher
at selectivity 0.06 (left) than 0.24 (right), indicating that the pattern
is similar, yet the specific sharing degree distribution varies.

Figure 7a shows that at higher selectivity levels, RLS becomes
more efficient, so the query latency at 1× storage approaches the
performance of Role Partition (i.e., Δ𝐿𝑎𝑡𝑒𝑛𝑐𝑦 is small). Addition-
ally, Role Partition consumes more storage as selectivity increases

(Δ𝑆𝑡𝑜𝑟𝑎𝑔𝑒). Therefore,HoneyBee has the most optimization poten-
tial at low selectivity, where the gap between RLS and Role Partition
(Δ𝐿𝑎𝑡𝑒𝑛𝑐𝑦/Δ𝑆𝑡𝑜𝑟𝑎𝑔𝑒) is largest.

For similar sharing degree distribution patterns, HoneyBee’s
performance curves show similar trends at around 2× storage. We
observe that the rate of improvement in query latency decreases
the fastest at this point, whereas further increases in storage yield
diminishing returns.

100 101 102

Sharing degree (number of roles)
0%

20%

40%

60%

%
 o

f t
ot

al
 d

oc
um

en
ts

(a) Sharing Degree Distribution Pat-

tern - selectivity 0.06

100 101 102

Sharing degree (number of roles)
0%

20%

40%

60%

%
 o

f t
ot

al
 d

oc
um

en
ts

(b) Sharing Degree Distribution Pat-

tern - selectivity 0.24

Figure 8: Comparison of sharing degree distribution pattern in dif-

ferent selectivity.

0 5 10 15 20 25 30
Sharing degree (number of roles)

0.0%

20.0%

40.0%

60.0%

80.0%

%
 o

f t
ot

al
 d

oc
um

en
ts Business Roles

Functional Roles

(a) Sharing Degree Distribution Pat-

tern - ERBAC pattern

0 2 4 6 8 10 12 14 16
Sharing degree (number of roles)

0.0%

5.0%

10.0%

15.0%

%
 o

f t
ot

al
 d

oc
um

en
ts

(b) Sharing Degree Distribution Pat-

tern - Random pattern

Figure 9: Comparison of sharing degree distribution pattern in dif-

ferent permission workloads.

Impact of Sharing Degree Pattern. Next, we evaluate the per-
formance of HoneyBee under workloads with different sharing
degree patterns and similar selectivity (around 0.06 for all cases).

Three distinct sharing degree patterns are generated to ensure
similar selectivity. The Tree pattern (Figure 8a) peaks at small shar-
ing degrees, reflecting a hierarchical structure where documents are
primarily accessed by a few roles. The ERBAC pattern (Figure 9a)
reflects a two-layer hierarchical structure with functional roles and
business roles. The Random pattern (Figure 9b) follows a Poisson
distribution with an average sharing degree of 7.

Figure 7b shows that the query latency and storage consump-
tion across patterns are nearly identical when storage is 1× (RLS),
which is expected given that the workloads have the same average
selectivity. However,HoneyBee shows different trade-offs between
storage and query latency, where performance ranking is Tree >
ERBAC > Random (seen by the convexity of the trade-off curve).
This shows that the structure of the permission workload directly
impacts HoneyBee’s performance.

Comparing Figs. 8a and 9a, we find that functional roles fol-
low Tree pattern, but ERBAC performs worse due to the added

Hongbin Zhong, Matthew Lentz, Nina Narodytska, Adriana Szekeres, and Kexin Rong

complexity of business roles. Similarly, Fig. 9a vs. 9b shows that
Random, lacking hierarchical structure, performs worse, especially
as its peak moves away from lower sharing degrees, which makes
it more challenging to identify permission subsets that are good
candidates for partitioning.

7.4 Update Benchmark

1 3 6
#Roles Inserted

0.0

0.2

0.4

0.6

0.8

Qu
er

y
Ti

m
e

(m
s)

Insertion Algorithm
Rebuild

(a) Insertion time benchmark.

1 3 6
#Roles Deleted

0.0

0.2

0.4

0.6

0.8

Qu
er

y
Ti

m
e

(m
s)

Deletion Algorithm
Rebuild

(b) Deletion time benchmark.

Figure 10: Comparison of incrementally maintaining partitions un-

der workload change versus rebuilding from scratch.

In this section, we evaluate how efficiently HoneyBee can main-
tain its partitioning strategy during permission workload changes,
specifically insertions and deletions of roles.

Benchmark initialized with Tree-𝛼 generator, HoneyBee at 1.5×
storage. Insertions fix document sets, creating new roles from exist-
ing document subsets. For one insertion, we add users equaling 1%
of the original user base. For deletions, removing roles deletes all
users tied solely to those roles, potentially may altering document
sets. We enforce a one-to-one user-role mapping for both opera-
tions to isolate role management effects. We evaluate insertions
and deletions, grouped by operation count like (1, 3, or 6), com-
paring incremental update algorithms (insertion/deletion) to full
partitioning rebuilds with HoneyBee. Different insertion/deletion
counts use distinct query workloads (permission change).

Figure 10a shows the insertion performance comparison. For
small numbers of insertions (fewer than five), our incremental algo-
rithm performs similarly to the rebuild approach. However, as the
number of insertions increases, the incrementally maintained parti-
tioning begins to show higher query latency compared to rebuilt
partitions. This suggests thatHoneyBeemight benefit from rebuild-
ing when permission workloads change significantly. Figure 10b
illustrates the deletion performance. Our incremental deletion al-
gorithm consistently maintains query latency comparable to the
complete rebuild approach across all tested scenarios.

8 RELATEDWORK

Hybrid Search Indexes. Hybrid search indexes integrate struc-
tured filtering conditions into vector similarity search to enforce
constraints like access control efficiently [23, 33]. ACORN [23] in-
troduces an innovative approach to performant, predicate-agnostic
hybrid search, capable of handling high-cardinality and unbounded
predicate sets. It enhances the HNSW index by modifying its design,
while integrating seamlessly into existing HNSW libraries, making
it straightforward to implement. HQANN [33] offers a simple yet

effective hybrid query processing framework that can be effort-
lessly embedded into any proximity graph-based ANN search algo-
rithm. It efficiently manages hybrid queries by processing them in a
unified manner, enhancing performance and adaptability. Filtered-
DiskANN [13] constructs graph-structured indexes by leveraging
both vector geometry and label metadata (e.g., date, price). This ap-
proach advances beyond traditional methods by incorporating not
only the geometric relationships between points but also their asso-
ciated labels to build a more effective navigational graph structure.
Our focus on the partitioning design of the dataset is orthogonal to
the type of index used. As described in § 7.2, it complements hy-
brid search by addressing challenges at the partitioning and access
policy management levels, enabling seamless integration of hybrid
search techniques, such as ACORN, with our method.
Multi-Tenant Indexing. Curator [17] is a concurrent work ad-
dressing access control in vector databases, enhancing vector data-
base indexing for multi-tenant environments. It introduces a hi-
erarchical k-means clustering tree tailored to each tenant’s vec-
tor distribution, and embeds permission filters using Bloom filters
within a shared clustering tree, enabling efficient search by skip-
ping inaccessible vector clusters with minimal memory overhead.
While Curator improves query performance and memory efficiency
through its novel index designs, it considers enforcing access via ac-
ccess control list (user to permission mapping), instead of adopting
the more general RBAC policies. Moreover, HoneyBee’s partition-
ing strategy is orthogonal to the choice of the indices, and Curator
can be considered as another specialized index designed for hybrid
search. Thus, like ACORN, it is possible to integrate HoneyBee
with Curator to further improve its search performance.

9 CONCLUSION

We introduced HoneyBee, a dynamic partitioning framework that
bridges the gap between storage-efficient but slow post-filtering
methods and fast but redundant per-role indexing in access-controlled
vector databases. By leveraging the structure of RBAC policies,
HoneyBee partitions the vector space in a way that minimizes
query latency while maintaining storage efficiency. Our analyt-
ical model predicts search performance and recall, enabling an
optimization-driven partitioning strategy that balances query effi-
ciency with access control constraints. Experimental evaluations
on RBAC workloads demonstrate that HoneyBee achieves up to 6×
faster queries than row-level security while significantly reducing
the storage overhead of per-role indexing. The results confirm that
HoneyBee provides a practical, scalable, and effective approach to
enforcing access control in vector search, making it well-suited for
real-world enterprise applications.

HoneyBee: Efficient Role-based Access Control for Vector Databases via Dynamic Partitioning

REFERENCES

[1] [n.d.]. Q&A over Documents - LlamaIndex 0.8.43.
https://gpt-index.readthedocs.io/en/latest/

[2] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. 2020.
The k-means algorithm: A comprehensive survey and performance evaluation.
Electronics 9, 8 (2020), 1295.

[3] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. 2015. Practical and Optimal LSH for Angular Distance. Advances in
Neural Information Processing Systems 28 (2015).

[4] Dmitry Baranchuk, Artem Babenko, and Yury Malkov. 2018. Revisiting the
Inverted Indices for Billion-Scale Approximate Nearest Neighbors. In
Proceedings of the European Conference on Computer Vision (ECCV). 202–216.

[5] Satori Cyber. n.d.. Postgres Row-Level Security: Comprehensive Guide.
https://satoricyber.com/postgres-security/postgres-row-level-security/.
Accessed: January 5, 2025.

[6] NinghuiLi TianchengLi IanMolloy QihuaWang ElisaBertino and Seraphin
Calo Jorge Lobo. [n.d.]. Role Mining for Engineering and Optimizing Role Based
Access Control Systems. ([n. d.]).

[7] Owen P Elliott and Jesse Clark. 2024. The Impacts of Data, Ordering, and
Intrinsic Dimensionality on Recall in Hierarchical Navigable Small Worlds. In
Proceedings of the 2024 ACM SIGIR International Conference on Theory of
Information Retrieval. 25–33.

[8] Hugging Face. 2022. Wikipedia 22-12 Dataset.
https://huggingface.co/datasets/Cohere/wikipedia-22-12. Accessed: January
2025.

[9] Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr
El Abbadi. 2006. High dimensional nearest neighbor searching. Information
Systems 31, 6 (2006), 512–540.

[10] David F Ferraiolo, John A Cugini, and D Richard Kuhn. 1992. Proposed NIST
standard for role-based access control. ACM Transactions on Information and
System Security (TISSEC) (1992).

[11] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search with the Navigating Spreading-Out Graph.
Proceedings of the VLDB Endowment 12, 5 (2019), 461–474.

[12] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In Vldb, Vol. 99. 518–529.

[13] Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar
Krishnaswamy, Nikit Begwani, Swapnil Raz, Yiyong Lin, Yin Zhang, Neelam
Mahapatro, Premkumar Srinivasan, et al. 2023. Filtered-diskann: Graph
algorithms for approximate nearest neighbor search with filters. In Proceedings
of the ACM Web Conference 2023. 3406–3416.

[14] Long Gong, Huayi Wang, Mitsunori Ogihara, and Jun Xu. 2020. iDEC: Indexable
Distance Estimating Codes for Approximate Nearest Neighbor Search.
Proceedings of the VLDB Endowment 13, 9 (2020), 1483–1497.

[15] John A Hartigan, Manchek A Wong, et al. 1979. A k-means clustering algorithm.
Applied statistics 28, 1 (1979), 100–108.

[16] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality. In Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing (STOC). ACM, 604–613.

[17] Yicheng Jin, Yongji Wu, Wenjun Hu, Bruce M Maggs, Xiao Zhang, and Danyang
Zhuo. 2024. Curator: Efficient Indexing for Multi-Tenant Vector Databases.
arXiv preprint arXiv:2401.07119 (2024).

[18] Axel Kern, Andreas Schaad, and Jonathan Moffett. 2003. An administration
concept for the enterprise role-based access control model. In Proceedings of the
Eighth ACM Symposium on Access Control Models and Technologies (Como, Italy)
(SACMAT ’03). Association for Computing Machinery, New York, NY, USA, 3–11.
https://doi.org/10.1145/775412.775414

[19] Ninghui Li, Tiancheng Li, Ian Molloy, Qihua Wang, Elisa Bertino, Seraphic Calo,
and Jorge Lobo. 2007. Role mining for engineering and optimizing role based
access control systems. Purdue University, IBM TJ Watson Research Center (2007).

[20] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. 2003. The global k-means
clustering algorithm. Pattern recognition 36, 2 (2003), 451–461.

[21] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
Transactions on Pattern Analysis and Machine Intelligence 40, 9 (2018), 2227–2240.

[22] Microsoft. n.d.. Row-Level Security.
https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-
security?view=sql-server-ver16. Accessed: January 5, 2025.

[23] Liana Patel, Peter Kraft, Carlos Guestrin, and Matei Zaharia. 2024. ACORN:
Performant and Predicate-Agnostic Search Over Vector Embeddings and
Structured Data. Proceedings of the ACM on Management of Data 2, 3 (2024),
1–27.

[24] Yuting Qin et al. 2024. Understanding Indexing Efficiency for Approximate
Nearest Neighbor Search in High-dimensional Vector Databases. Ph.D.
Dissertation. Massachusetts Institute of Technology.

[25] Ravi S Sandhu. 1998. Role-based access control. In Advances in computers.
Vol. 46. Elsevier, 237–286.

[26] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. 1996.
Role-based access control models. IEEE Computer 29, 2 (1996), 38–47.

[27] Kunal Sawarkar, Abhilasha Mangal, and Shivam Raj Solanki. 2024. Blended rag:
Improving rag (retriever-augmented generation) accuracy with semantic search
and hybrid query-based retrievers. In 2024 IEEE 7th International Conference on
Multimedia Information Processing and Retrieval (MIPR). IEEE, 155–161.

[28] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri,
Ravishankar Krishnaswamy, and Rohan Kadekodi. 2019. DiskANN: Fast
Accurate Billion-point Nearest Neighbor Search on a Single Node. In Advances
in Neural Information Processing Systems, Vol. 32. Curran Associates, Inc.
https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-
Abstract.html

[29] Supabase. 2025. RAG with Permissions | Supabase Docs.
https://supabase.com/docs/guides/ai/rag-with-permissions Accessed: March 1,
2025.

[30] Jaideep Vaidya, Vijayalakshmi Atluri, and Janice Warner. 2006. RoleMiner:
mining roles using subset enumeration. In Proceedings of the 13th ACM
Conference on Computer and Communications Security (Alexandria, Virginia,
USA) (CCS ’06). Association for Computing Machinery, New York, NY, USA,
144–153. https://doi.org/10.1145/1180405.1180424

[31] Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and
Jiongkang Ni. 2024. An efficient and robust framework for approximate nearest
neighbor search with attribute constraint. Advances in Neural Information
Processing Systems 36 (2024).

[32] Brie Wolfson. 2023. Building chat langchain.
https://blog.langchain.dev/building-chat-langchain-2/

[33] Wei Wu et al. 2022. HQANN: Efficient and Robust Similarity Search for Hybrid
Queries with Structured and Unstructured Constraints. In Proceedings of the
ACM International Conference on Information & Knowledge Management.
4580–4584.

[34] Yuexuan Xu, Jianyang Gao, Yutong Gou, Cheng Long, and Christian S. Jensen.
2024. iRangeGraph: Improvising Range-dedicated Graphs for Range-filtering
Nearest Neighbor Search. Proc. ACM Manag. Data 2, 6, Article 239 (Dec. 2024),
26 pages. https://doi.org/10.1145/3698814

[35] Weijie Zhao, Shulong Tan, and Ping Li. 2020. SONG: Approximate Nearest
Neighbor Search on GPU. In Proceedings of the IEEE International Conference on
Data Engineering (ICDE). IEEE, 1033–1044.

https://gpt-index.readthedocs.io/en/latest/
https://satoricyber.com/postgres-security/postgres-row-level-security/
https://huggingface.co/datasets/Cohere/wikipedia-22-12
https://doi.org/10.1145/775412.775414
https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-server-ver16
https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Abstract.html
https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Abstract.html
https://supabase.com/docs/guides/ai/rag-with-permissions
https://doi.org/10.1145/1180405.1180424
https://blog.langchain.dev/building-chat-langchain-2/
https://doi.org/10.1145/3698814

	Abstract
	1 Introduction
	2 Background
	2.1 Role-Based Access Control
	2.2 Vector Search

	3 Overview
	3.1 Problem Statement
	3.2 System Overview

	4 Analytical Modeling
	4.1 Background: HNSW Index Parameters
	4.2 Model for Search Performance
	4.3 Model for Search Recall
	4.4 Optimization Problem Formulation

	5 Dynamic Partitioning Strategy
	5.1 Greedy Split Algorithm
	5.2 Handling Updates

	6 Experimental Setup
	6.1 RBAC Benchmark
	6.2 Dataset and Query Workload
	6.3 Baseline Methods and Metrics

	7 Evaluation
	7.1 Trade-off between Storage, Latency, Recall
	7.2 Evaluation with Alternative Index
	7.3 Sensitivity Analysis
	7.4 Update Benchmark

	8 Related Work
	9 Conclusion
	References

