
ar
X

iv
:2

50
5.

01
53

6v
1

 [
cs

.P
L

]
 2

 M
ay

 2
02

5

Disassembly as Weighted Interval Scheduling with Learned Weights

Antonio Flores-Montoya∗, Junghee Lim ∗, Adam Seitz ∗, Akshay Sood ∗, Edward Raff † and James Holt ‡

∗GrammaTech Inc.
†Booz Allen Hamilton

‡Laboratory for Physical Sciences

©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

Abstract—Disassembly is the first step of a variety of binary

analysis and transformation techniques, such as reverse engi-

neering, or binary rewriting. Recent disassembly approaches

consist of three phases: an exploration phase, that overap-

proximates the binary’s code; an analysis phase, that assigns

weights to candidate instructions or basic blocks; and a conflict

resolution phase, that downselects the final set of instructions.

We present a disassembly algorithm that generalizes this

pattern for a wide range of architectures, namely x86, x64,

arm32, and aarch64. Our algorithm presents a novel conflict

resolution method that reduces disassembly to weighted inter-

val scheduling. Additionally, we present a weight assignment

algorithm that allows us to learn optimal weights for the

various disassembly heuristics in the analysis phase. Learned

weights outperform manually tuned weights in most cases while

reducing the number of necessary heuristics by 40% (by setting

their weights to zero). Our implementation, built on top of

Ddisasm, outperforms state-of-the-art disassemblers in several

metrics and achieves the largest proportion of perfectly disas-

sembled binaries by a wide margin in all evaluated datasets.

1. Introduction

Disassembly is the process of recovering assembly in-
structions from binary code. This amounts to deciding, for
each byte in the binary program, whether it belongs to an
instruction or should be interpreted as data. Disassembly is
an essential first step of a variety of binary analysis and
transformation techniques, including reverse engineering,
binary rewriting, or vulnerability discovery.

Traditional approaches rely on linear sweep or recursive
disassembly. Linear sweep starts decoding instructions at the
beginning of the code section and proceeds sequentially.
This approach results in errors when data is interleaved
with code. Recursive disassembly recovers the assembly
code by traversing the control flow of the program, but
is disadvantaged in resolving indirect branches limiting its
coverage.

Modern reverse engineering frameworks [3], [6], [8],
[13], [16], [22], [29] often use a combination of both
linear and recursive disassembly, relying on heuristics to
find additional code or make decisions among conflicting

code blocks [23]. These techniques and heuristics are often
Instruction Set Architecture (ISA) specific. Several of the
more recent techniques [15], [21], [26], [32] can be thought
of as having the following steps:

1) An exploration phase in which a superset of all the
potential instructions or data blocks is collected.

2) An analysis phase in which static analysis is per-
formed to gather evidence for and against candidate
instructions or data blocks, usually in the form of
dependencies between candidates or weights as-
signed to each candidate.

3) A conflict resolution phase in which the evidence
is aggregated to reach a final decision.

For example, D-ARM [32] proposes an approach for
ARM in which the exploration phase considers all possibil-
ities, i.e. every aligned address can be ARM code, Thumb
code, or data; and expresses the conflict resolution problem
as maximum weight independent set (MWIS) optimization
problem [28]. Note that MWIS is NP-hard and D-ARM’s
implementation needs to resort to a greedy approximation.

Ddisasm [15], D-ARM [32], and other comparable ap-
proaches suffer what we will refer to as the weight as-

signment problem. Given a set of analyses, heuristics and a
conflict resolution method, what are the optimal weights that
should be assigned to each of the heuristics to maximize per-
formance? Are all heuristics necessary? Previous approaches
rely on hand-tuned weights [15] or ISA-specific statistical
studies combined and ad-hoc aggregation methods [26].

In our work, we present a multi-ISA (with support
for x86, x64, arm32, and aarch64 binaries) disassembly
approach that follows the three generic steps described
above, but presents two key innovations. First, it relies
on a tractable yet powerful conflict resolution algorithm.
Our disassembly algorithm expresses the conflict resolution
problem as a Weighted Interval Scheduling (WIS) problem,
for which there is a complete and efficient dynamic pro-
gramming algorithm [18]. In this setting, each code block
or data block is considered a “task” to be scheduled with
the restriction that tasks cannot overlap with each other. The
resulting disassembly corresponds to the optimal schedule
(the schedule with maximum aggregated weight).

Second, given this conflict resolution algorithm, we
provide a solution to the weight assignment problem by
encoding the inference of optimal heuristic weights with

http://arxiv.org/abs/2505.01536v1

respect to a set of binaries with known ground truth as a
linear programming (LP) problem with soft constraints. This
allows us to obtain optimal heuristic weights using off-the-
self solvers (like Pulp [2]) even in cases when no perfect
solution exists.

We build our implementation on top of Ddisasm [15]
and evaluate it in comparison with other state-of-the-art
tools on several ISAs. We perform this evaluation while
accounting for the limitations of the existing approaches
to gather ground truth [19], [24]. In addition, we evaluate
individual aspects of the algorithm: the completeness of
the exploration phase and the generalization properties of
the weight inference algorithm. Finally, we discuss some
insights about the learned heuristics weights.

In summary, our contributions are the following:

1) A multi-ISA disassembly algorithm that performs
conflict resolution among candidate instructions
and data blocks by solving a weighted interval
scheduling (WIS) optimization problem (Sect. 3).

2) A weight assignment algorithm that optimizes the
weights assigned to the heuristics used in the dis-
assembly algorithm based on a corpus of ground-
truth annotated binaries (Sect. 4). This algorithm
supports incomplete annotations to account for the
limitations in ground truth extraction techniques.

3) An extensive experimental evaluation of the disas-
sembly algorithm and its corresponding weight as-
signment algorithm that includes a large collection
of arm32, aarch64, x86, and x64 stripped binaries
compiled with various compilers, optimization lev-
els, and binary formats (ELF and PE) including the
datasets from [17], [19], [20], [24] (Sect. 5).

2. Static Disassembly Instruction Recovery

In this section, we define static disassembly and state
some simplifying assumptions that frame the problem.

2.1. Basic Definitions

Informally, we refer to disassembly as the process of
recovering assembly instructions from binary code, which
amounts to deciding the location and decode mode of the
assembly instructions in the binary’s executable sections.

We restrict ourselves to static disassembly, i.e., we only
consider instructions present in the binary file. In other
words, we do not consider dynamically generated or self-
modifying code.

Let us first define decode mode and instruction decoding.
The default decode mode for any ISA will be referred to as
A, and arm32’s second decode mode (Thumb, as opposed to
ARM) will be referred to as T . Instruction decoding maps
a sequence of bytes and a decode mode to an assembly
instruction. As such, instruction decoding is deterministic,
i.e. an address and a decode mode uniquely determine the
instruction located at that address and its size. Thus, given a
binary section spanning addresses [s, e), let d ∈ {A, T } be

a decode mode and a ∈ [s, e) an address within the binary
section. We define a partial function instr(a, d) that defines
the assembly instruction starting at address a and using the
decode mode d1. The function end(instr(a, d)) denotes the
end address of the instruction instr(a, d).

Given this characterization of instructions, we define a
binary’s Code as a set of instructions based on the binary
program semantics.

Definition 1 (Code). An instruction instr(a, d) is code
instr(a, d) ∈ Code if there exists a program trace that
contains the instruction instr(a, d).

Under this definition, unreachable instructions (dead
code) are not considered code, and determining code accu-
rately is not decidable (since it is connected to reachability).
Engel et al. [14]’s sound disassembly decidability theorems
allow overapproximating Code (which is indeed decidable
in our setting), whereas our goal is to recover it precisely.

This definition also accounts for the challenges in col-
lecting ground truth for disassembly [19], [24]. Developers
may encode instructions meant to be executed as data, which
confuses compiler-based ground truth generation.

Similarly, we can define data in a binary program based
on its dynamic behavior.

Definition 2 (Data). A program address a is data, a ∈ Data,
if there exists a program execution trace that reads or writes
that memory location.

Instruction recovery aims to infer Code . In general,
Code and Data are neither complementary nor mutually
exclusive. There can be regions of a binary that are neither
code (these regions are never executed) nor data (those bytes
are never read or written). We call such regions padding

since they are introduced by compilers to ensure alignment.

Example 1. The assembly listing in Figure 1 contains
padding in the address range [94c67− 94c70). Those bytes
are never executed2 nor are they read by any instructions.
Some disassemblers will interpret them as nops (as in the
figure) or as data but they are neither according to our
definition.

A binary region can also be both code and data. The
instructions in that region are executed and also read or
written during the lifetime of the program.

2.2. Assumptions

In the previous subsection, we have provided a general
definition of Code and the desired output of the disassembly
process. Next, we explicitly state two simplifying assump-
tions. In general, we find that while padding is extremely
common in compiler-generated binaries, binary regions that

1. instr(a, d) is partial because there might be combinations of decode
modes and addresses that do not define a valid instruction in the given ISA.

2. Actually proving that those bytes are never executed would be very
challenging but we are fairly confident in this particular case. The execution
cannot fall through 94c67 and we can find jumps that target 94c70 directly.

94c40: je 94c43

94c42: lock cmpxchg %rcx,0x13c6dd(%rip)
94c4b: cmp %rdx,%rax
94c4e: je 94cfc
94c54: mov 0x13c6cd(%rip),%rdx
94c5b: mov 0x14380e(%rip),%rax
94c62: jmpq 94ad4

94c67: nopw 0x0(%rax,%rax,1)
94c70: mov 0x870(%r12),%r12

Figure 1. x64 assembly snippet extracted from glibc-2.36. The example
contains both padding in the address range [94c67−94c70)) and a prefix-
enclosed instruction at address 94c43.

are both code and data are uncommon. Thus, our disassem-
bly algorithm rests on the following assumption:

Assumption 1. Code and Data are mutually exclusive.

Thus, our algorithm will approximate Data to better
determine Code .

Our second assumption concerns overlapping instruc-
tions. Overlapping instructions are uncommon, but present
in certain notable examples. In particular, we are aware of
certain instances of overlapping instructions in glibc (e.g.,
see Figure 1). These overlapping instructions follow a very
specific pattern in which an instruction can be executed with
and without a prefix. We call these cases prefix-enclosed

instructions.

Example 2. The assembly in Figure 1 contains a prefix-
enclosed instruction at address 94c43. The conditional
jump je 94c43 will fall through to address 94c42 or jump
to address 94c43 depending on the condition flag. This will
result in the execution of lock cmpxchg %rcx,0x13c6dd(%

rip) or cmpxchg %rcx,0x13c6dd(%rip), respectively.

Assumption 2. All instructions in Code are non-

overlapping except for prefix-enclosed instructions.

Note that most disassembly algorithms assume code and
data are mutually exclusive and non-overlapping instruc-
tions [15], [21], [26], [32] though these assumptions are
often not explicitly stated.

3. Disassembly Algorithm

3.1. Overview

Our disassembly algorithm relies on the concept of code
blocks and data blocks. These are sequences of consecutive
instructions or addresses containing data that are treated as
a single entity.

Definition 3 (Code Block). A code block is a sequence
of contiguous instructions with the same decode mode. Let
[s, e) be an address range and d be a decode mode, we can
define a code block codeBlock (s, e, d) as a sequence:

[instr(s1, d), instr(s2, d), . . . , instr(sn, d)]

such that s1 = s, end(instr(si, d)) = si+1 for all 1 ≤ i < n
and end(instr(sn, d)) = e. Let b be a code block, Insns(b)
denotes the set of all the instructions in b. Conversely,
BlockOf (instr(s, d)) defines the inverse mapping, i.e. the
set of blocks that contain instruction instr(s, d).

Definition 4 (Data Block). A data block dataBlock (s, e),
is a sequence of contiguous addresses in the range [s, e).

We define a unified block notation to represent both code
and data blocks. For that purpose we define a special “data”
(denoted D) decode mode: i.e.,

block (s, e,D) = dataBlock (s, e)
block (s, e, d) = codeBlock (s, e, d)

Given this definition, the result of the disassembly algo-
rithm is a set of blocks block ([s, e), d) ∈ Blocks which can
be mapped to Code and Data sets as defined in Sect. 2.1.

The disassembly algorithm has three phases:

1) Candidate Generation: The candidate generation
phase generates a set of candidate blocks CBlocks
in which the code blocks should be an overap-
proximation of the final code blocks. It does so by
performing a traversal of the binary that combines
linear sweep and recursive disassembly.

2) Block Weight Assignment: The block weight as-
signment phase performs a series of analyses and
assigns a weight to each of the candidate blocks
based on heuristics. That is, it defines a function
from candidate blocks to integers W : CBlocks →
Z where W (block ([s, e), d)) is the weight associ-
ated to the candidate block block (s, e, d).

3) Conflict-Resolution: The conflict resolution phase
selects a subset of blocks Blocks from CBlocks
(Blocks ⊆ CBlocks) based on their weight and
such that there are no overlaps among the selected
blocks.

Grouping instructions and data bytes into blocks serves
two purposes. (1) It decreases the number of overall can-
didates for improved performance, and (2) it provides a
coarser granularity for the analysis and conflict resolution
phase. Heuristics can consider the likelihood of sequences
of instructions rather than just individual instructions. This
is particularly relevant for x86/x64, which has a dense
instruction set and unaligned and variable-size instructions.
For example, let us consider a libc x64 implementation. Its
code section is 1.1MB and its superset disassembly contains
1,128,485 instructions with an average size of 3.2 bytes per
instruction. If we generate candidates for each instruction
and data byte, we will have approximately 2M candidates
and 5M overlaps. In contrast, our candidate generation algo-
rithm produces 100,820 candidates and only 5430 overlaps.

The following subsections describe each of the disas-
sembly phases in detail.

3.2. Candidate Generation

The candidate generation phase generates a set of can-
didate blocks CBlocks and its goal is to ensure that the set
is an overapproximation of the final blocks.

Our candidate generation algorithm extends Ddisasm’s
original algorithm [15]. Ddisasm is implemented in Datalog,
and so is our algorithm. Datalog can easily implement code
traversals using recursive rules and pattern-matching rules
for detecting code patterns (e.g. jump table patterns).

In Sect. 3.2.1 we summarize the original algorithm, and
Sect. 3.2.2 describes how this algorithm has been extended.
Sect. 3.2.3 formally defines the conditions that ensure that
our candidate set CBlocks is overapproximating and char-
acterizes possible failures during candidate generation.

3.2.1. Ddisasm’s original algorithm. The starting point of
Ddisasm’s original disassembly algorithm is the superset of
all instructions, i.e. it computes instr(s, d) for every address
s and decode mode d.

Ddisasm performs two traversals over this representa-
tion: a backward traversal conservatively discards instruc-
tions that lead (fallthrough or jump) to invalid locations,
and a forward traversal generates candidate code blocks on
the remaining instructions.

The forward traversal combines recursive and linear
disassembly. The traversal of a binary program starts from
an initial set of addresses, which is aggressively computed
by considering the entry point of the program, symbols,
exception information, and any sequence of bytes that could
be interpreted as an address anywhere in the binary.

From those starting points, the traversal follows the
control flow of the program. Whenever it encounters a
jump or a call, it generates new starting points both at the
jump/call target (if it is direct) and immediately after the
jump. Starting points are added even after unconditional
jumps or calls that are known not to return. That constitutes
the “linear” component of the traversal. This traversal does
not attempt to resolve indirect jumps or calls.

A post-processing phase then splits code blocks that
have common suffixes, which ensures that code blocks have
the following properties:

1) Candidate code blocks do not share instructions,
i.e., each instruction belongs to at most one candi-
date block.

2) Each instruction within a code block must fall
through into the next one in the block. This means
that instructions that affect the control flow (e.g.
jumps or function calls) or might stop the execution
(e.g. hlt) can only be at the end of code blocks.

3.2.2. Extended Traversal. The original traversal was de-
signed for Linux x64 binaries where data and code inter-
leaving are rare [5]. Our extended traversal is designed
to better support Windows x64, Linux arm32, and Linux
aarch64 binaries. This extended support requires (1) the
incorporation of multiple decode modes for arm32 (2) more

aee8: cmp r0, #211
aeec: bhi 0xd170
aef0: adr r1, 0xaef8
aef4: ldr pc, [r1, r0, LSL 2]
aef8: .word 0xcbc8
...
b16c: .word 0xb248

Figure 2. Jump table snippet in arm32 binutils’s strip binary. The
instruction at 0xaef0 loads the jump table start address (0xaef8), r0
corresponds to the index variable, and the shift LSL 2 implies that each
jump table entry is 4 bytes. The comparison at address aee8 indicates that
the jump table has 211 entries.

exhaustive handling of data and code interleavings. arm32
binaries make extensive use of literal pools [32], and Win-
dows binaries (compiled with Visual Studio) often have
jump tables in the code section.

For better handling of code and data interleavings, our
extended forward traversal (1) generates candidate data
blocks, and (2) extends its linear traversal.

Candidate Data block generation. The goal of data
blocks is to “compete” against code blocks and help us
discard spurious code blocks (relying on Assumption 1).
Candidate data blocks are created whenever the traversal
encounters code that accesses (reads or writes) memory
locations in the code sections. We have specialized rules for
creating candidate data blocks for the following situations:

• Jump tables We have multiple rules to detect differ-
ent kinds of jump tables. Most jump tables follow
a three-step pattern: (1) load the jump table start
address, (2) use an index variable to compute the
address of a jump table entry and load its content,
and (3) perform an indirect jump to the computed
address.
Our detection rules focus on extracting the jump
table start address, the size of the jump table entries,
and the number of entries in the jump table.

Example 3. Figure 2 contains an example of a
jump table in arm32 in which the starting point,
entry size, and number of entries can be identified.
Our algorithm will generate a data block candidate
spanning from 0xaef8 to 0xaef8+(212∗4) =0xb248.

Unfortunately, it is sometimes challenging to deter-
mine a jump table size (the number of entries). If the
jump table size cannot be determined, we start gen-
erating data block candidates at the jump table start
address and with the size of the jump table entry, and
continue generating candidates sequentially as long
as: (1) The corresponding jump table entry points3

to potentially valid code. (2) The jump table entry
does not overlap with any of the already traversed
jump table targets or with another jump table start.

3. Note that a jump table entry does not necessarily contain an absolute
address. It might contain a relative address in which case the target needs
to be computed accordingly.

Address
19754:
19756:
19758:
1975a:
1975c:
1975e:
19760:
19762:

Data
bcd6
0200
1340
2de9
6040
9fe5
0400
8de5

ARM
strheq sp,[r2],−ip

push {r0,r1,r4,lr}

ldr r4,[pc,#96]

str r0,[sp,#4]

Thumb

movs r2,r0
ands r3,r2
push.w {r5,r6,lr}

b #0x192a0
movs r4,r0

b #0x19280

Candidate blocks

D A

A

T
T

T

T
T

Sorted by end address

2 1

7

3
4

5

6
8

Figure 3. arm32 Binary snippet extracted from program procd from the openwrt dataset [17]. The example illustrates different possible interpretations
as Data (D), ARM (A), or Thumb (T) code of the address range [19754, 19764). The right hand side contains a representation of all the candidate blocks
generated by the extended traversal, annotated with the decode mode (left) and numbered according to their end address (right). The real blocks are gray.

This approach might overestimate the length of jump
tables and result in spurious data block candidates
which can be resolved by the conflict resolution
phase. In practice, we believe this happens rarely
since jump table targets are often located right after
the jump table.

Example 4. Let us consider the jump table in Fig-
ure 2 again. If the jump table size was not inferred
from the comparison at address 0xaee8, our algo-
rithm will generate data block candidates of size
4 starting at 0xaef8 and at 4 byte increments. At
address 0xaef8, we know the target of the jump table
entry 0xcbc8 points to code, and thus must be an
upper bound on the extent of the jump table. As we
traverse subsequent jump table entries, we tighten
that upper bound with the discovered jump table
targets. Once we reach the entry at address b16c,
we update the jump table limit to 0xb248 which is
indeed the end of the jump table.

• Potential strings Whenever we detect a memory
access to a location that could contain a string (a
sequence of valid ASCII characters that ends with
\0), we create a data block candidate with the size
of the potential string. For potential strings above a
threshold (>8 bytes), we generate data block candi-
dates even if no reference from the code is detected.

• Repeated bytes Whenever we find a sequence of
repeated bytes over a certain length (>8 bytes), we
create a data block candidate encompassing all the
repeated bytes.

• Other data accesses Data accesses from the code
that do not correspond to jump tables or strings fall
in this category. In such cases, we create a candidate
data block using the size of the data access. Note that
it is often necessary to consider multiple instructions
to determine memory accesses, especially for RISC
architectures like arm32.

Extended linear traversal. The linear traversal con-
tinues traversing code after the end of code blocks. Our
extension accounts for arm32 decode modes and data blocks.

The linear traversal in arm32 maintains the decode
mode, i.e. it will attempt to decode instructions using the
same decode mode (A or T) as the last visited code block.

However, if the traversal encounters invalid instructions (as
determined by the backward traversal), it will try switching
decode mode (e.g., from ARM to Thumb or vice-versa).

A linear traversal can cross padding instructions but
might be interrupted by data interleavings (since data in-
terleaving might not be interpretable as instructions). Thus,
we initiate linear traversal after all candidate data blocks
as well. For arm32, traversal after candidate data blocks is
attempted with both ARM and Thumb decode modes.

Example 5. The example in Figure 3 contains a candidate
data block dataBlock (19754, 19758). This data block will
trigger extended code traversals starting at address 19758 in
both ARM and Thumb mode, resulting in candidate blocks
7, 4, 5, 6, and 8, respectively (see numbering on the right-
hand side of Figure 3).

3.2.3. Sound Overapproximation. In this section, we for-
mally define the conditions that make a candidate block set
a sound overapproximation, discuss its failure modes, and
how our candidate generation phase can result in errors.

Definition 5 (Sound Candidate Overapproximation). A can-
didate block set CBlocks is a sound overapproximation of
the code if there exists a subset Blocks ⊂ CBlocks such
that

⋃

b∈Blocks
Insns(b) = Code .

There are two situations that can result in a CBlocks set
that is not a sound overapproximation.

Missed instructions. There is some instr(s, d) ∈
Code that does not belong to any candidate code block.
This can happen if the forward code traversal does not visit
those instructions. Missed instructions will inevitably lead to
false negatives, i.e. real instructions that are not considered
as code.

Incorrect code block boundaries. There is a candi-
date code block b in which some instructions are code and
others are not, i.e. Insns(b) ∩ Code 6= ∅ and Insns(b) 6⊆
Code . This situation can happen if a sequence of spurious
instructions falls through a sequence of real instructions, and
no block limit can be inferred at the boundary. Incorrect
code block boundaries will lead to false positives if the
candidate block with incorrect boundaries is selected during
conflict resolution or false negatives otherwise.

Example 6. Consider the example in Figure 3. If instruction
instr(19754, T) was code, it would be a missed instruction
since it does not belong to any candidate code block.

If no traversal started at address 19758 (as described
in Example 5), ARM instruction at 19754 would fall
through to 19758, generating a single candidate block
codeBlock (19754, 19764, A) instead of the two separate
candidates 2 and 7. Such a block would have incorrect
boundaries since it would contain both real (at [19758 −
19764)) and spurious instructions (at 19754).

Theorem 1. If a candidate block set CBlocks does not

present missed instructions nor incorrect code block bound-

aries, then CBlocks is a sound overapproximation.

Proofs for all theorems can be found in Appendix A.
The traversal outlined in this section does not guarantee

that we generate a sound overapproximation. However, this
characterization allows us to distinguish disassembly failures
caused by the candidate generation phase as opposed to
failures due to incomplete heuristics or inadequate heuristic
weights. We measure the prevalence of these errors (missed
instruction and incorrect block boundaries) experimentally
in Sect. 5.1.

3.3. Block Weight Assignment

The goal of this phase is to compute the weight as-
sociated with each candidate block (W (b) for each b ∈
CBlocks).

Our analysis defines a set of heuristic rules hj ∈ H that
can match individual candidate blocks one or several times
: CBlocks × H → N (where N is the set of natural
numbers). Each heuristic hj has a corresponding integer
weight wj ∈ Z. We distinguish two kinds of rules depending
on how they contribute to a block’s weight: simple and
proportional. Simple heuristics (Hs) contribute weight based
solely on the number of matches and the heuristic weight,
whereas proportional heuristics (Hp) contribute proportion-
ally to the size of the candidate block in bytes.

Let b ∈ CBlocks , its overall weight is computed as
follows.

W (b) =
∑

hj∈Hs

#(b, hj)wj+
∑

hk∈Hp

#(b, hk)size(b)wk (1)

We extended Ddisasm to have 34 multi-ISA heuristics
and 58 arm32-specific heuristics. While enumerating all the
heuristics falls beyond the scope of this paper, heuristics can
be grouped into the following categories:

• Control flow: Rules that assign points based on how
a candidate code block is referenced or references
other candidate code blocks.

• Instruction patterns: Rules that assign points based
on likely or unlikely instruction patterns.

• Metadata: Rules that use existing metadata (when-
ever available) such as symbols, relocations, or
exception information. For example, instructions

overlapping with function symbols receive negative
points.

• Data references: Rules that assign points to candi-
date data blocks that are referenced by candidate
code blocks. This includes rules that correspond to
jump table detection and literal pool accesses.

• Data content: Rules that assign points to candidate
data blocks based on their content.

• Surrounding context: Rules that assign points to
candidate blocks based on the surrounding candidate
blocks. E.g. a code block that fits in between two
other candidate code blocks is more likely to be real,
or a literal pool entry is often surrounded by other
literal pool entries.

3.4. Conflict Resolution

The conflict resolution phase selects a subset of blocks
from Blocks ⊆ CBlocks that maximizes the overall weight
and such that there are no overlaps among the selected
blocks (relying on the assumptions described in Sect. 2.2).
Prefix-enclosed instructions (Example 2) are handled as a
special case 4. For the remainder of the paper, we assume
that selected blocks Blocks do not overlap with each other.

Maximizing the weights of the selected blocks while
avoiding overlaps is a problem that can be encoded directly
as a weighted interval scheduling problem. In previous sec-
tions, we have described how to compute a set of candidate
blocks b ∈ CBlocks and assign weights to each candidate
block W (b). These correspond to the input of the algorithm.

Each candidate block b := block([s, e), d) corresponds
to a task that needs to be “scheduled” which starts at address
start(b) = s and ends at address end(b) = e. The output of
the algorithm is a set of selected blocks Blocks that form
the optimal schedule.

Algorithm 1’s implementation closely follows the text-
book dynamic programming implementation of a weighted
scheduling algorithm (e.g. [18]). The algorithm contains
three high-level steps. First, we sort candidate blocks by
increasing end address. If we have several candidate blocks
with the same end address we consider (1) the start address
and (2) the block mode (A < T < D) lexicographically to
ensure a total order. Figure 3 presents an example of this
ordering on its right-hand side. Given this ordering, we can
compute the predecessor index PRED(i) for each block bi.
bi’s predecessor index refers to the last block that precedes
bi and does not overlap with it (given the ordering of blocks
by end address, we know that all preceding blocks do not
overlap either).

Example 7. PRED(i) has the following values for the can-
didate blocks in Figure 3:

4. Prefix-enclosed instructions result in two overlapping candidate blocks
in which their first instruction has a prefix in one and no prefix in the other.
We consider only one of the blocks (the one with a prefix) for conflict
resolution. Whichever decision is taken for that candidate block (whether
it is included in the final Blocks) is also adopted for the other candidate
in a post-processing phase.

Algorithm 1 Block Conflict Resolution

1: function INTERVALSCHEDULING(CBlocks)
2: b1, b2, . . . , bn = SORTBYEND(CBlocks)
3: function PRED(i)
4: return max({0} ∪ {j | end(bj) ≤ start(bi)})
5: end function
6: // Compute maximum weight
7: opt [0] = 0
8: for i = 1 to n do
9: opt [i] = max(W (bi) + opt [PRED(i)], opt [i− 1])

10: if W (bi) + opt [PRED(i)] ≥ opt [i− 1] then

11: mem[i] = PRED(i)
12: else
13: mem[i] = i− 1
14: end if
15: end for
16: // Recover optimal schedule
17: Blocks = ∅
18: i = n
19: while i > 0 do

20: if mem [i] == PRED(i) and W (bi) ≥ 0 then
21: Blocks = Blocks ∪ {bi}
22: i = mem[i]
23: else
24: i = i− 1
25: end if

26: end while
27: return Blocks
28: end function

PRED(1) = 0 PRED(2) = 0 PRED(3) = 0 PRED(4) = 3
PRED(5) = 4 PRED(6) = 5 PRED(7) = 3 PRED(8) = 6

Second, the dynamic programming algorithm computes
the maximum weight for all the scheduling subproblems
up to block bi in opt[i]. Each iteration considers whether
a candidate block is included in the schedule or not. At
each step, mem[i] records that choice5. For example, in the
interval scheduling problem from Figure 3, we will have
W (b7) + opt[3] > opt [6], which results in b7 being chosen
over the optimal schedule up to block 6. Thus, we have
opt [7] = W (b7) + opt[3] and mem[7] = 3. Finally, in
the third step, we recover the optimal schedule (the final
block set) by traversing mem[i] backwards from the last
candidate block. When PRED(i) = i − 1, the choice is
between including bi in the schedule or not, which will
depend on whether bi’s weight is positive or negative.

4. Heuristic Weight Assignment

Our disassembly algorithm (Sect. 3) assumes each
heuristic hj ∈ H has a corresponding integer weight wj ∈
Z. In its initial implementation those weights were hand-
picked based on the programmer’s intuition and on manual
evaluations. Unfortunately, this approach does not scale, and
weight assignment becomes harder as new heuristics are

5. In case of a tie, Algorithm 1 selects the latter block (see ≥ in Line 10).

developed or updated. As mentioned in the introduction,
this problem is not exclusive to Ddisasm, but common
to approaches that rely on weighted heuristics such as D-
ARM [32].

In this section, we describe our automated approach for
assigning optimal weights to the disassembly heuristics to
maximize the disassembly’s accuracy. This approach relies
on having a collection of binaries annotated with ground
truth information. In particular, it assumes the existence
of partial ground truth information consisting of a set of
instructions TCode and a set of addresses Ignored for which
ground truth is not available. We discuss how ground truth
is extracted for each dataset in Sect. 5, and the specific
limitations that result in Ignored addresses in Appendix B.

4.1. Overview

Given a binary with ground truth, we can partially
run the disassembly algorithm. This allows us to collect
candidate blocks CBlocks and heuristic matches #(b, h)
for each candidate block b ∈ CBlocks and each heuristic
h ∈ H .

In addition, we can map our ground truth information
TCode and Ignored to two subsets of candidate blocks:
TBlocks ⊂ CBlocks and FBlocks ⊂ CBlocks (“True” and
“False” blocks respectively). We define TBlocks as:

TBlocks =
⋃

i∈TCode

BlockOf (i)

Let start(Insns(b)) denote the set of all starting ad-
dresses of instructions in a code block b. We then define
FBlocks as follows:

FBlocks = {b | b ∈ CBlocks \ TBlocks

∧ start(Insns(b)) 6⊆ Ignored}

If CBlocks is a sound overapproximation (Definition 5),
TBlocks contains all and only true instructions (TCode).
FBlocks are candidate code blocks that are neither true
blocks nor completely ignored. Note that there are candidate
blocks that are neither TBlocks nor FBlocks . Those are
blocks for which we do not have definitive ground truth. In
particular, this applies to all the candidate data blocks6.

Example 8. In our example in Figure 3, Code =
{instr(19758, A), instr(1975c, A), instr(19760, A)} and
Ignored = ∅, which results in TBlocks = {b7} and
FBlocks = {b1, b3−6, b8}. Candidate data block b2 does
not belong to either.

Rather than performing interval scheduling (conflict res-
olution) to find the block selection based on a given set of
fixed weights, we need to find out which weights will lead
to the right decisions during interval scheduling. The correct

6. As opposed to candidate code blocks, which are guaranteed not
to share instructions (Sect. 3.2.1), we do not enforce any properties on
candidate data blocks. For a region of the binary that should be considered
data, there might be multiple competing data blocks and our ground truth
does not tell us which ones to pick.

decisions involve selecting all candidate blocks in TBlocks
and not selecting any blocks in FBlocks . Schedules that
satisfy those conditions are optimal.

Definition 6 (Optimal schedule). A candidate block set S is
an optimal schedule if TBlocks ⊆ S and FBlocks ∩S = ∅.

We propose a new algorithm (Sect. 4.2) that performs
weighted interval scheduling symbolically (with symbolic
weights) and uses the ground truth information to collect
a set of linear constraints that enforce the selection of
an optimal schedule. For clarity, we first present a naive
implementation for inferring constraints from a weighted
interval scheduling problem in Sect. 4.2 and later present
an optimized implementation in Sect. 4.3.

We apply this algorithm to a collection of binaries and
infer a constraint set for each binary. The overall constraint
set is not guaranteed to be satisfiable—It is possible that
there is no weight assignment that satisfies all the con-
straints, which is an indication that additional heuristics
might be needed or some heuristic rules might need to
be refined. Thus, we encode the problem as a linear pro-
gramming (LP) optimization with soft constraints to find a
weight assignment that maximizes the number of satisfied
constraints (see Sect. 4.4).

4.2. Weight Constraints Inference

The naive algorithm for inferring constraints (Algo-
rithm 2) follows a similar structure as Algorithm 1. They
both iterate over all candidate blocks sorted by their end
address. While Algorithm 1 collects an optimal numerical
value in each iteration opt[i], the constraint inference algo-
rithm collects a set of symbolic schedules in symopt [i].

Let b be a candidate block, its symbolic weight is defined
as SW (b). We compute it with the same formula as W (b)
(Equation 1) but using symbolic values for the heuristic
weights wj . Instead of an integer, SW (b) returns a linear
expression of the form c1w1 + c2w2 + . . . + cmwm where
cj ∈ N and w1, w2, . . . , wm are variables representing the
unknown heuristic weights.

Let S be a set of blocks representing a concrete
schedule, we represent in our algorithm with a tuple
〈SW (S), score(S)〉. The first term SW (S) represents the
symbolic weight of the schedule, defined as SW (S) =
∑

b∈S SW (b). The second term score(S) is a numerical
score based on the number of TBlocks and FBlocks that
are included in the schedule.

score(S) =

{

−1 if FBlocks ∩ S 6= ∅

|TBlocks ∩ S| otherwise
(2)

This score captures our priority in selecting schedules.
Optimal schedules are guaranteed to have maximal score.

Lemma 1. Let S be a schedule, if S is optimal (Def-

inition 6), its score is score(S) = |TBlocks |, otherwise

score(S) < |TBlocks |.

Lemma 1 follows directly from the definition of score
(Equation 2).

Algorithm 2 Naive Constraint Inference

1: function INFERCS(CBlocks ,TBlocks ,FBlocks)
2: symopt [0] = {〈0, 0〉}
3: for i = 1 to n do
4: take= {〈SW (bi) + s.weight, uScore(s.score, bi)〉
5: | s ∈ symopt [PRED(i)]}
6: leave = symopt [i− 1]
7: symopt [i] = take ∪ leave
8: end for
9: l = bestSched(symopt [n])

10: rs = {r | r ∈ symopt [n] ∧ r.score < l.score}
11: return {l.weight > r.weight | r ∈ rs}
12: end function

Algorithm 2’s main loop amounts to the incremental
computation of all the symbolic schedules. Let s be a
symbolic schedule, we use s.weight and s.score to refer
to the weight and score of s respectively. On each iteration
i, we have a decision point: whether bi is included in the
schedule. We compute the two alternatives take (when bi is
included) and leave (when bi is not included). To compute
take we need to add a symbolic expression corresponding to
block bi’s weight to all the schedules in symopt [PRED(i)]
(we reuse PRED’s definition from Algorithm 1).

The score of the schedules in take is updated using
uScore which corresponds to the incremental computation
of score (see Equation 2). Let s be a score and b a block
under consideration, uScore is defined as follows:

uScore(s, b) =

−1 if s = −1 ∨ b ∈ FBlocks

s+ 1 if b ∈ TBlocks

s otherwise

(3)

The value of symopt [i] corresponds to the maximum
of all the potential schedules in take and leave . Once we
have computed symopt , symopt [n] contains a symbolic
representation of all the possible schedules (block selec-
tions) for the binary. In particular, it contains at least one
optimal schedule. Given that our ground truth is partial and
there can be overlapping candidate data blocks, there can
be several optimal schedules. Function bestSched returns
an optimal schedule by leveraging Lemma 1. If there are
several, it chooses one of them heuristically by selecting the
optimal schedule with the highest sum of positive heuristic
coefficients. Then, we generate linear constraints that ensure
that our selected optimal schedule has a higher overall
weight than every other non-optimal schedule (which are
guaranteed to have a lower score by Lemma 1).

Example 9. Continuing from Example 8, let us assume we
have 4 heuristic rules s (size), j (jumped), l (literal pool),
and c (called) with unknown weights ws, wj , wl, and wc

respectively. Assume further that s is a proportional rule and
all the others are simple, each block matches #(b, s) = 1,
and we have #(b2, l) = 1, #(b3, j) = 1, #(b5, j) = 1, and

#(b7, c) = 1. All other combinations of blocks and rules
yield zero. In this scenario, we have the following symbolic
weights for each of the blocks:
SW (b1) = 4ws SW (b5) = 6ws + wj

SW (b2) = 4ws + wl SW (b6) = 2ws

SW (b3) = 2ws + wj SW (b7) = 12ws + wc

SW (b4) = 2ws SW (b8) = 2ws

At the end of the loop, symopt [8] contains symbolic
schedules representing all the combinations of blocks. In
particular, it contains a tuple representing the optimal sched-
ule {b2, b7}: 〈16ws + wl + wc, 1〉, as well as non-optimal
schedules, such as {b3, b7}: 〈14ws+wj ,−1〉, which should
not be selected. Based on those two schedules, Algorithm 2
generates a linear constraint 16ws +wl +wc > 14ws +wj .
Note that even in this example, there are two optimal
schedules {b7} and {b2, b7}.

Theorem 2. Let Cs be the set of constraints generated by

Algorithm 2 and let α : H → Z be a weight assignment that

satisfies the constraints α |= Cs , then there is an optimal

schedule S such that α(SW (S)) > α(SW (S′)) for every

non-optimal schedule S′.

Collorary 1. Let Cs be the set of constraints generated by

Algorithm 2 and let α : H → Z be a weight assignment that

satisfies the constraints α |= Cs , then the schedule selected

by Algorithm 1 using weight assignment α is optimal.

This theorem and corresponding corollary ensure that
a satisfying weight assignment will lead to an optimal
schedule—an optimal block selection with respect to the
ground truth—being selected during conflict resolution.

The fact that we choose only one optimal schedule in
bestSched and that optimal schedules are not necessarily
unique (see Example 9) means that our algorithm is not
complete. Even if we fail to find a satisfying weight assign-
ment that selects an optimal schedule, there might exist one
for a different optimal schedule. This is acceptable for our
use case since our goal is to learn heuristic weights that work
well in practice and minimize the number of errors even in
situations where errors cannot be completely eliminated.

4.3. Optimized Constraint Inference

The number of potential schedules in symopt [i] can, in
the worst case, double in each iteration. We alleviate this
exponential growth risk by incorporating several optimiza-
tions. Algorithm 3 contains the most relevant optimizations.

4.3.1. Interval Scheduling Decomposition. Up to this
point, we have considered the block conflict resolution
as a single WIS problem that encompasses all candidate
blocks in a binary. However, WIS problems can often be
decomposed into smaller subproblems.

Example 10. Consider the interval scheduling problem in
Figure 3. There are many possible schedules, e.g. {1, 7},
{2, 7}, {1, 4}, or {2, 4}. However, this problem can be
decomposed into two completely independent decisions: (i)
which intervals are chosen between from 1-3 (ii) which ones

are chosen from 4-8. None of the choices for blocks in 4-8
preclude us from choosing any of the blocks from 1-3. This
means that we split this scheduling problem into two and
generate constraints for each of the subproblems.

More formally, we can split an interval scheduling prob-
lem b1, b2, . . . bn on bi if all PRED(j) >= i for i < j ≤ n.
In that case, we can recursively unfold symopt [n]’s defi-
nition until every term contains symopt [i], which can be
factored out. Thus, we can compute the optimal schedule
for b1, b2, . . . , bi and for bi+1, b2, . . . , bn separately and then
combine them. In practice, an interval scheduling problem
for a binary can often be split into many small independent
subproblems. This splitting can lead to important savings in
Algorithm 3. The size of symopt can grow exponentially
(in the worst case) with the number of intervals considered
(2n), so reducing the size of n has a very significant effect.
For example, the procd binary selected in Figure 3 has
4926 candidate blocks, but after decomposition, the largest
scheduling subproblem contains only 11 candidates.

4.3.2. Schedule Subsumption. Despite not knowing the
optimal values of the heuristic weights beforehand, it is
reasonable to fix their sign. We can divide heuristics into
positive and negative heuristics H = H+ ∪H− (wj ≥ 0 if
hj ∈ H+ and wj ≤ 0 if hj ∈ H−). This distinction allows
us to perform further optimizations.

Let e = c1w1+c2w2+. . .+cmwm be a linear expression
where cj ∈ Z and wj are variables representing weights. We
know that e is positive (e ≥ 0) if cj ≥ 0 for all positive
heuristics hj ∈ H+ and cj ≤ 0 for all negative heuristics
hj ∈ H−. Then, given two partial schedules A and B, we
say A subsumes B if we can prove SW (A) ≥ SW (B)
(we know A’s weight will be higher than or equal to B’s
regardless of the chosen weights) and score(A) ≤ score(B).
The second condition score(A) ≤ score(B) means there are
three possibilities:

1) Both A and B will be part of optimal schedules.
In that case A is a better schedule for generating
constraints. Any satisfying weight assignment α for
B, will also be satisfying for A, but there might be
additional possibilities for A.

2) Both A and B will be part of non-optimal sched-
ules. Then, a constraint that ensures the weight of
A is smaller than that of an optimal schedule, will
also guarantee that B’s weight is smaller.

3) A is part of a non-optimal schedule and B part of
an optimal schedule. In this case, any constraints
trying to enforce SW (B) > SW (A) will be triv-
ially unsatisfiable.

In all the cases above, we can discard B (we do not need
to take it into account for generating constraints). At each
iteration, function simplifyS removes subsumed schedules
from symopt [i] (Line 14).

Example 11. In the previous example, we decomposed the
scheduling from Figure 3 into two, one for candidates 1−3
and another for candidates 4 − 8. Let us focus now on the

latter and assume the same heuristics and heuristic matches
as Example 8. We also assume all heuristics are positive.

Without subsumption, symopt [4] contains tuples 〈0, 0〉,
〈2ws,−1〉 corresponding to schedules {} and {4} respec-
tively. Since ws is positive, we know that 2ws ≥ 0 and
〈2ws,−1〉 subsumes 〈0, 0〉 which can be discarded. After
simplifying, symopt [4] only contains the tuple 〈2ws,−1〉.

A similar situation happens for symopt [5]. Without sub-
sumption, symopt [5] contains 4 tuples corresponding to
schedules {}, {4}, {5}, and {4, 5}. However, they are all
subsumed by the tuple corresponding to schedule {4, 5}:
〈8ws + wj ,−1〉. Thus, the optimized version contains a
single tuple.

Algorithm 3 Optimized Constraint Inference

1: function INFERCS(CBlocks ,TBlocks ,FBlocks)
2: symopt [0] = {〈0, 0〉}
3: Cs [0] = ∅
4: for i = 1 to n do
5: take = {〈SW (bi)+s.weight, uScore(s.score, bi)〉
6: | s ∈ symopt [PRED(i)]}
7: leave = symopt [i− 1]
8: if bi ∈ TBlocks then
9: l = bestSched(take)

10: newCs = {l.weight > r.weight | r ∈ leave}
11: symopt [i] = {l}
12: Cs [i] = simplifyC (Cs [PRED(i)] ∪ newCs)
13: else
14: symopt [i] = simplifyS (take ∪ leave)
15: Cs [i] = simplifyC (Cs [PRED(i)] ∪ Cs [i− 1])
16: end if
17: end for
18: l = bestSched(symopt [n])
19: rs = {r|r ∈ symopt [n] ∧ r.score < l.score}
20: newCs = {l.weight > r.weight | r ∈ rs}
21: return simplifyC (newCs ∪ Cs [n])
22: end function

4.3.3. Constraint Subsumption. Similarly to schedule sub-
sumption, we can detect constraint subsumption. Let c1 :=
l1 > r1 and c2 := l2 > r2 be two linear constraints. If
(l2 − r2) − (l1 − r1) ≥ 0, then c1 ⇒ c2 and c2 can be
discarded. This can be checked similarly to schedule sub-
sumption by checking the coefficients of positive and nega-
tive heuristics in the linear expression (l2 − r2)− (l1 − r1).

Function simplifyC (Lines 12, 15 and 21) simplifies the
generated constraint sets by removing subsumed constraints.

4.3.4. Partial Schedule Constraints. Whenever we en-
counter a bi ∈ TBlocks in the main loop, we know that
bi must be part of all optimal schedules, and the decision
needs to happen based on the currently accumulated weight.
Thus, we can generate constraints based on those partial
schedules and discard the partial schedules that do not select
bi and thus are guaranteed to be non-optimal (see Lines 9-11
in Algorithm 3). These constraints are accumulated in Cs

throughout the loop, and we add them to the final constraint
set at the end. This optimization reduces the growth of
symopt , given that on each iteration that corresponds to a
true block bi ∈ TBlocks , we reset the size of symopt [i] to 1.
It can also result in a smaller number of overall constraints.

4.4. Solving Weight Constraints

We can repeat the procedure described in the previous
section (Sect. 4.2) to obtain a constraint set for each binary
with ground truth. We accumulate those constraints for a
collection of binaries and try to find a weight assignment
that satisfies all constraints. However, this might not be
feasible. If an optimal weight assignment does not exist, this
is an indication that the existing heuristics are insufficient
to handle all possible cases. Nevertheless, we want to find
an assignment that minimizes the errors, i.e. that maximizes
the number of satisfied constraints.

We encode this problem as an LP problem with soft
constraints. For each constraint ci ∈ Cs of the form li > ri,
we introduce a positive slack variable si and reformulate
the constraint as li + si ≥ ri + 1. Our modified constraint
set is denoted as Cs ′, the set of all slack variables is SKs,
and our objective function is the sum of the slack variables.
The resulting linear program is:

minimize
∑

s∈SKs

s

subject to : Cs ′

wj ≥ 0 for hj ∈ H+

wj ≤ 0 for hj ∈ H−

s ≥ 0 for s ∈ SKs

This linear program can be efficiently solved by off-the-shelf
solvers (we use Pulp [2]). Sect. 5 includes experiments that
validate our weight inference approach.

5. Experimental Evaluation

In this section, we evaluate our disassembly algorithm
and its corresponding weight inference algorithm on a large
collection of binaries with ground truth. The evaluation is
divided into four parts.

First, in Sect. 5.1, we experimentally validate our can-
didate generation algorithm (Sect. 3.2). Second, in Sect. 5.2
we evaluate our weight inference algorithm and how inferred
weights generalize to unseen binaries. Third, in Sect. 5.3
we evaluate the overall disassembly effectiveness (precision
and recall) and compare it to other state-of-the-art (SOTA)
disassemblers. Fourth, in Sect. 5.4 we measure the runtime
performance of both our improved disassembly algorithm,
and the heuristic weight inference. All of our experiments
are performed on stripped binaries.

Our experiments leverage four publicly available
datasets7. Table 1 describes the Instruction Set Architecture

7. We only include the publicly available portion of Jiang’s (excluding
SPEC binaries) and Assemblage’s PE dataset.

TABLE 1. EVALUATION DATASETS. EACH DATASET INCLUDES

DIFFERENT ISAS AND BINARY FORMATS. EACH DATASET RELIES ON A

DIFFERENT METHOD FOR EXTRACTING GROUND TRUTH.

Dataset ISA Format Ground Truth

SOK [24] x86/x64, ELF Compiler
arm32, aarch64 Modification

Pangine [19] x86/x64 ELF Intermediate
Compilation Artifacts

Jiang [17] arm32 ELF Marker symbols
Assemb [20] x86/x64 PE PDB files

(ISA), binary formats, and ground truth source for each of
the datasets. These datasets contain binaries compiled with
a variety of compilers, including GCC, Clang, ICC, MSVC,
and compiler optimizations O0-O3, Of, and Os. We refer
the readers to the original publications for details.

Pang et al. [24] provide an extensive discussion on the
limitations of each ground truth source. While modifying the
compiler (as in dataset SOK) provides the highest quality
ground truth, this is not feasible for closed-source compil-
ers such as MSVC or ICC. The Pangine and Assemblage
datasets (shortened as Assemb) complement Pang’s dataset
with binaries compiled with those compilers.

During our experiments, we have identified limitations in
the ground truth of each of the considered datasets. We pro-
vide a detailed account of these limitations in Appendix B.

We have released the code to run all the experiments8.

5.1. Candidate Block Generation

To substantiate the effectiveness of our algorithm pre-
sented in Sect. 3.2, we measure the prevalence of missed
instructions and incorrect code block boundaries for each
of the datasets. For each binary, we run our tool Ddisasm-
WIS9 with a 1-hour timeout and collect information about
the generated candidate blocks. We then compare that infor-
mation with the ground truth to compute missed instructions

and incorrect code block boundaries (see Sect. 3.2.3). A
binary’s block candidate set is a sound overapproximation
if it has neither, it is unsound otherwise. Thus, a binary
can either be sound, unsound, or count as a failure. Failures
include (1) timeouts (51 binaries), (2) Ddisasm-WIS failing
to produce an output (3473 binaries), (3) failures in the
ground truth extraction from PDBs (273 binaries), or (4) our
scripts failing to decode an instruction marked as code by
the ground truth (2545 binaries). The latter can be caused by
limitations of our instruction decoder (Capstone 5.0.1 [27]),
or it might signal an error in the ground truth.

Table 2 reports the number of binaries (and percentage)
in each category, the total number of true instructions (In-
sns), the number (and percentage) of missed instructions,
and the number of candidate blocks with incorrect bound-
aries (Incorrect Blocks). Our extended traversal (Sect. 3.2.2)

8. https://github.com/GrammaTech/ddisasm-wis-evaluation

9. Ddisasm-WIS’s improvements have been merged into the official
Ddisasm repository https://github.com/GrammaTech/ddisasm. We run our
experiments with commit 415a2be.

generates a sound overapproximation in the vast majority
of cases. Consider SOK’s dataset. 6 out of the 7 unsound
binaries in SOK’s x86/x64 dataset correspond to different
versions of libc which present prefix-enclosed instructions
(see Figure 1). While our tool can correctly handle those
patterns, they are not currently handled by our evaluation
scripts. As for SOK’s arm32 binaries, our experiments report
9 unsound binaries, all of them in the Thumb dataset. These
binaries have 65 missing instructions where 61 of those are
concentrated in 3 different versions of the same program
(ssh-keyscan). We believe these are reported due to
errors in the ground truth. The overall ratio of unsound
binaries is less than 0.4% across all datasets, with the
exception of Assemblage. We manually examined a sample
of unsound binaries and discovered both inaccuracies in the
PDB file, particularly with jump tables and obfuscated code,
and some limitations of our tool. We provide additional
details in Appendix C.

5.2. Weight Inference Evaluation

To evaluate our weight inference algorithm, we select
a random sample of 1, 895 binaries (approximately 20%)
of our datasets SOK, Jiang, and Pangines as our training
set. Our algorithm collects 86, 564 constraints and produces
an optimal weight assignment using Pulp [2]. The optimal
weights satisfy 86, 263 constraints, leaving 301 unsatisfied.
We evaluate the resulting weights in practice by running
Ddisasm-WIS with those weights on the complete dataset.

We compare the results against a baseline of Ddisasm-
WIS with manually optimized weights. Note that Ddisasm-
WIS’s manual weights are the result of more than four
years of continuous development and thus we expect them
to be close to optimal. For each binary, we measure the
number of correctly recovered instructions (true positives),
spurious instructions (false positives) and the number of true
instructions that were not recovered (false negatives) and
use them to compute the overall precision and recall. These
metrics are computed for each dataset, ISA, training and
validation subsets, for both manual and learned weights. The
results can be found in Table 3. In addition, we report the
number of correct binaries (binaries with no false positives
nor false negatives) in each category.

Overall, learned weights achieve similar results as the
manually tuned weights in most categories. We see improve-
ments in the handling of SOK arm32 binaries where the
recall increases from 99.906% to 99.973% (in the validation
set), which also has an important effect on the number of
correct binaries (from 35.77% to 44.06%).

Table 3 also demonstrates how weights generalize to
unseen binaries. Despite training in only 20% of the binaries,
all metrics are comparable on both the training and valida-
tion set, i.e. there is no overfitting, even in the Assemblage
dataset, which was not part of the training set.

SOK’s arm32 results are surprising because Ddisasm-
WIS’s recall in the training set is much lower than in
the validation set (99.188% compared to 99.973%). Upon
closer examination, we noticed this is due to a single

https://github.com/GrammaTech/ddisasm-wis-evaluation
https://github.com/GrammaTech/ddisasm
https://github.com/GrammaTech/ddisasm/commit/415a2be730311c07b6808fa1243d2dfe8a7f15a9

TABLE 2. DDISASM CANDIDATE BLOCK GENERATION EVALUATION.

Dataset ISA # Binaries Failures (%) Sound (%) Unsound (%) Insns Missed Insns (%)
Incorrect
Blocks

SOK x86/x64 3,974 113 (2.84%) 3,854 (96.98%) 7 (0.18%) 179,630,938 22 (0.00001%) 0
SOK arm32 2,561 49 (1.91%) 2,503 (97.74%) 9 (0.35%) 89,081,800 65 (0.00007%) 2
SOK aarch64 1,264 0 (0%) 1,264 (100%) 0 (0%) 45,484,081 0 (0%) 0
Pangine x86/x64 879 61 (6.94%) 816 (92.83%) 2 (0.23%) 104,427,721 0 (0%) 2
Jiang arm32 1,026 0 (0.00%) 1,025 (99.90%) 1 (0.10%) 30,297,775 4 (0.00001%) 0
Assemb x86/x64 85,296 6,119 (7.17%) 78,659 (92.22%) 518 (0.61%) 1,458,731,926 5,396 (0.00037%) 90

TABLE 3. WEIGHT INFERENCE EVALUATION: NUMBER OF CORRECT BINARIES, PRECISION, AND RECALL FOR BOTH THE TRAINING AND

VALIDATION SETS, USING BOTH MANUALLY OPTIMIZED WEIGHTS AND LEARNED WEIGHTS.

Dataset ISA Method
Training Set Validations Set

Binaries Correct (%) Precision Recall # Binaries Correct (%) Precision Recall

SOK x86/x64
Manual

738
687 (93.09%) 100.000% 99.995%

3,236
2,968 (91.72%) 99.991% 99.997%

Learned 694 (94.04%) 100.000% 99.995% 2,993 (92.49%) 99.991% 99.997%

SOK arm32
Manual

534
199 (37.27%) 99.965% 99.120%

2,027
725 (35.77%) 99.954% 99.906%

Learned 244 (45.69%) 99.964% 99.188% 893 (44.06%) 99.952% 99.973%

SOK aarch64
Manual

253
252 (99.60%) 100.000% 100.000%

1,011
1,009 (99.80%) 100.000% 100.000%

Learned 252 (99.60%) 100.000% 100.000% 1,008 (99.70%) 100.000% 100.000%

Pangine x86/x64
Manual

171
163 (95.32%) 100.000% 100.000%

708
658 (92.94%) 100.000% 99.999%

Learned 163 (95.32%) 100.000% 100.000% 645 (91.10%) 100.000% 99.999%

Jiang arm32
Manual

199
148 (74.37%) 99.988% 99.995%

827
635 (76.78%) 99.994% 99.995%

Learned 153 (76.88%) 99.988% 99.996% 637 (77.03%) 99.994% 99.996%

Assemb x86/x64
Manual

85,296
77,186 (90.49%) 99.960% 99.996%

Learned 76,613 (89.82%) 99.960% 99.994%

binary perlbench_base.arm32-gcc81-Os that has
150, 849 false negatives (over 99% of all the false negatives).
After excluding it, the resulting overall recall is 99.993%.

Despite their similar performance, learned weights set
46 (out of 95) heuristics to 0. Four of those are heuristics
reliant on symbols, which produce no matches on stripped
binaries. This leaves a total of 42 heuristics (> 40% of all
heuristics) that can be removed without a performance im-
pact. Fewer heuristics simplify development and code main-
tenance, making the weight inference algorithm a powerful
tool to evaluate heuristics and measure their importance.
For example, Ddisasm-WIS has two heuristics that assign
points when a candidate block is called or jumped to by
another candidate block respectively. When learning optimal
weights, the heuristic that matches jumps gets zero weight
whereas the one that detects calls has a non-zero weight.
This agrees with Priyadarshan et al.’s findings that spurious
(short) jumps are much more common than spurious calls
in x64 [26].

5.3. Comparison to Other Disassemblers

We evaluate Ddisasm-WIS’s disassembly effectiveness
by comparing it to other disassemblers. SOK’s dataset
contains disassembly information for several state-of-the-
art tools, namely Binary Ninja, IDAPro, Ghidra, and Angr.
We include these results together with ours in Table 4. For
Ddisasm-WIS, we use the learned weights from Sect. 5.2. In
addition, we compare Ddisasm-WIS to an older version of
Ddisasm without interval scheduling (Ddisasm-1.6), and to
two recent disassemblers: D-ARM [32] (commit 40b5462)
on the arm32 datasets (Jiang and SOK), and DASSA [26]
on x64.

Ddisasm-WIS obtains the highest recall of all the tools
on all datasets. At the same time, it is second best in
precision for SOKs’ x86/x64 and arm32 datasets. In all
cases, Ddisasm-WIS’s precision is within 0.01% of the
highest precision. Ddisasm-WIS achieves the highest rates
of correct disassembly in all categories, which is a crucial
metric for binary rewriting applications.

Our Ddisasm-WIS version improves over Ddisasm-1.6
in all the arm32 metrics (e.g., 99.99% vs. 99.92% on the
Jiang dataset) except for SOK arm32’s recall, which is lower
due to the outlier discussed in the previous experiment
(perlbench_base.arm32-gcc81-Os). The improve-
ments are more visible when considering the percentage of
correct binaries (binaries with perfect disassembly). How-
ever, Ddisasm-WIS suffers a small performance regression
for x86/x64. Nevertheless, our version has fewer failures in
that dataset as well (0.96% vs. 2.44%).

DASSA’s evaluation reports different metrics, but their
artifact evaluation also collects precision and recall. These
metrics also differ slightly due to how they are computed.
Note that we aggregate all true positives, false positives, and
false negatives across all binaries and compute an overall
precision and recall, whereas they compute precision and
recall for each binary and then compute the mean. Our
approach gives more weight to larger binaries that contain
more instructions rather than averaging over binaries of
very different size. Finally, in DASSA’s evaluation, DASSA
outperforms Ddisasm (the version is not specified) whereas
in our evaluation both Ddisasm-WIS and Ddisasm-1.6 yield
better results than DASSA. The discrepancy is likely due to
DASSA’s evaluation removing exception information from
binaries, which could affect Ddisasm’s accuracy. Exception
information is used (when available) for the candidate gen-

TABLE 4. TOOL COMPARISON: PERCENTAGE OF FAILURES,
CORRECTLY DISASSEMBLED BINARIES, PRECISION, AND RECALL FOR

EACH DATASET AND EACH TOOL.

Dataset
ISA Tool

Fail or
Missing Correct Precision Recall

SOK
x86/x64

Ddisasm-WIS 0.96% 92.8% 99.992% 99.996%
Ddisasm-1.6 2.44% 94.9% 99.993% 99.998%

DASSA *49.72% *33.6% 99.976% 99.948%
Ninja 8.76% 12.6% 99.983% 97.151%
Ida 0.03% 69.1% 99.994% 99.945%

Ghidra 20.56% 43.0% 99.789% 93.635%
Angr 17.89% 60.3% 99.908% 99.984%

SOK
arm32

(thumb)

Ddisasm-WIS 0.00% 37.3% 99.905% 99.968%
Ddisasm-1.6 7.09% 1.9% 99.869% 99.848%

D-ARM 0.00% 0.1% 97.733% 95.382%
Ninja 0.00% 0.8% 98.577% 91.987%
Ida 0.00% 8.9% 99.391% 96.388%

Ghidra 0.00% 1.4% 99.913% 89.046%
Angr 4.14% 0.1% 97.365% 98.682%

SOK
arm32

Ddisasm-WIS 0.08% 51.3% 99.996% 99.705%
Ddisasm-1.6 12.72% 28.4% 99.993% 99.765%

D-ARM 0.00% 0.0% 92.582% 91.927%
Ninja 0.00% 21.7% 99.993% 96.551%
Ida 0.00% 11.5% 99.998% 97.955%

Ghidra 0.00% 1.1% 99.969% 94.681%
Angr 4.37% 15.9% 98.524% 99.313%

SOK
aarch64

Ddisasm-WIS 0.00% 99.7% 100.000% 100.000%
Ddisasm-1.6 0.00% 99.7% 100.000% 100.000%

Ninja 1.19% 2.9% 100.000% 97.274%
Ida 3.16% 0.0% 100.000% 97.172%

Ghidra 1.19% 41.1% 100.000% 97.505%
Angr 1.66% 96.8% 100.000% 100.000%

Jiang

arm32

Ddisasm-WIS 0.00% 77.0% 99.993% 99.996%
Ddisasm-1.6 0.68% 17.6% 99.985% 99.929%

D-ARM 0.00% 1.2% 96.754% 92.249%
*DASSA does not support x86 32bit. It correctly disassembles 67.6% of the x64
binaries.

eration traversals (see Sect. 3.2.1)
Despite our best efforts, we could not reproduce D-

ARM’s reported results [32]. In particular, its authors evalu-
ated D-ARM against the AOSP dataset—a subset of Jiang’s
dataset consisting of 669 Android libraries. Their reported
precision and recall on AOSP are 99.79% and 99.86%. In
contrast, our experiments yield 97.09% and 92.42% for D-
ARM. Note that Ddisasm-WIS achieves 99.992% precision
and 99.996% recall for AOSP, which is well above both the
reported and measured D-ARM rates.

5.4. Runtime Performance

We conduct two sets of runtime measurements to evalu-
ate the performance of Ddisasm-WIS. First, in Section 5.4.1,
we demonstrate the practicality of Ddisasm-WIS’s extended
traversal and conflict resolution algorithm by comparing its
runtime against Ddisasm-1.6. Second, in Section 5.4.2, we
assess the overhead introduced by collecting and solving
constraints for weight inference.

5.4.1. Ddisasm-WIS vs. Ddisasm-1.6. Table 5 shows the
comparison of the total runtimes of Ddisasm-WIS against
Ddisasm-1.6. In all datasets except SOK x64/x64, Ddisasm-
WIS is slightly slower than Ddisasm-1.6 (at most 28%
slower in the worst performing category aarch64). While

TABLE 5. DDISASM-WIS VS. DDISASM-1.6 RUNTIME COMPARISON:
NUMBER OF BINARIES THAT BOTH TOOLS SUCCEEDED ON, TOTAL

RUNTIMES, AND DDISASM-WIS RUNTIME RELATIVE TO DDISASM-1.6.

Dataset # Common Runtime (s) Ratio
ISA Binaries Ddisasm-WIS Ddisasm-1.6 WIS/1.6
SOK

x86/x64 3,868 165,513 191,850 86%
SOK

arm32 (thumb) 1,167 37,702 33,437 112%
SOK

arm32 1,138 42,694 40,535 105%
SOK

aarch64 1,264 21,458 16,735 128%
Jiang

arm32 1,019 20,651 16,512 125%
Pangine

x86/x64 839 137,862 124,103 111%

TABLE 6. CONSTRAINT INFERENCE RUNTIME: NUMBER OF BINARIES,
TOTAL CONTRAINT INFERENCE (CI) RUNTIME, DISASSEMBLY RUNTIME

(D), AND CI RUNTIME RELATIVE TO DISASSEMBLY.

Dataset Runtime (s) Ratio
ISA # Binaries CI D CI / D
SOK

x86/x64 738 4,909 22,542 21%
SOK

arm32 (thumb) 260 1,440 7,205 19%
SOK

arm32 274 13,284 8,509 156%
SOK

aarch64 253 572 3,746 15%
Jiang

arm32 199 2,340 4,661 50%
Pangine

x86/x64 171 5,918 15,701 37%

the comparison does not isolate all the factors that determine
this performance difference, it demonstrates that Ddisasm-
WIS’s improved disassembly algorithm is practical. Given
the improved results of our tool, we believe that this runtime
increase is acceptable.

5.4.2. Weight Inference. The results in Table 6 highlight
the runtime overhead introduced by collecting weight con-
straints, offering insight into the efficiency of the weight-
inference step in our algorithm. In five out of six datasets,
excluding SOK arm32, weight inference completes signifi-
cantly faster than the overall disassembly process, often tak-
ing less than 50% of the time total runtime. The only outlier
is the SOK arm32 dataset, where weight inference takes
longer than disassembly. In this dataset, the disassembly
algorithm creates large candidate data blocks representing
jump tables, which prevents effective interval scheduling
decomposition (see Sect. 4.3.1), thereby harming the con-
straint inference performance. Nonetheless, since weight
inference is a one-time preprocessing step whose results
are leveraged by Ddisasm-WIS, we argue that its overhead
remains acceptable. Pulp solved the LP problem with the
86,263 collected constraints in approximately 10 seconds.

6. Related Work

Our work focuses on static disassembly and, in partic-
ular, on instruction recovery. It extends Ddisasm [15] with
an extended candidate block generation to handle arm32 and
aarch64 binaries, and a novel conflict resolution algorithm.
In contrast to the original Ddisasm, which only considered
overlaps between two blocks at a time, our conflict resolu-
tion algorithm is expressed as a weighted interval scheduling
(WIS) problem that jointly considers all block overlaps.

D-ARM’s [32] is a closely related approach. We note
three important differences. First, D-ARM is tailored for
arm and aarch64 binaries, whereas our approach performs
well for x86, and x64 as well. Second, D-ARM does not
have a candidate generation phase. D-ARM instead con-
siders all individual instructions (superset disassembly) as
candidates. Third, D-ARM’s conflict resolution is encoded
as a maximum weight independent set (MWIS) optimization
problem. While WIS only considers overlaps, MWIS can
enforce control flow dependencies as well. For example, if a
candidate code block A has a call to another candidate code
block B, then A implies B. These dependencies make the
optimization problem NP-Hard, which dictates the adoption
of greedy approximation methods.

As we have argued in Sect. 3, grouping instructions
into blocks is especially important for x86 and x64, be-
cause it reduces the number of block candidates by an
order of magnitude compared to superset instructions. We
believe that our candidate generation phase and control flow-
based heuristics compensate for the lack of dependencies in
the conflict resolution phase. Considering multi-instruction
candidate blocks effectively enforces dependencies among
instructions in the same code block. Our experiments in-
dicate that WIS is sufficient, given an appropriate set of
heuristics. However, further research should be conducted
to understand the tradeoffs of both approaches better.

Priyadarshan et al. [26] recently presented the DASSA
disassembler. DASSA is focused on x64. It computes a
superset of all possible code (akin to our candidate gen-
eration) and also implements a conflict resolution method.
DASSA’s conflict resolution is greedy. Each step considers
a single candidate with the highest score (weight). For each
candidate, DASSA computes a score based on statistical
properties of the data (DASSA refines the probabilistic
analysis of previous works [21]), and several static analysis-
based checks to flag invalid code. Whether a candidate is
selected depends on a combination of both the score and the
checks. In contrast, our approach encodes both statistical
properties and static analysis-based checks into a single
weight. This results in a simpler conflict resolution algo-
rithm. This integration is facilitated by our weight inference
algorithm, which automatically adjusts the relative weights
of the different heuristics. Integrating DASSA’s analyses and
checks into our approach could further improve its accuracy.

Recent works attempt to leverage deep learning for
disassembly, notably XDA [25] and DeepDi [33]. XDA
analyzes raw bytes directly using a specially designed lan-
guage model. DeepDi performs superset disassembly [7],

and embeds instruction using a graph neural network that
captures dependencies among instructions. Both D-ARM
and DASSA’s evaluations compare against and outperform
XDA. DeepDi’s evaluation shows that Ddisasm (the version
is not specified) achieves higher accuracy than DeepDi.

Traditional disassemblers also combine static analyses
and heuristics. Pang et al. [23] provides a detailed overview
for x86/x64 and Jiang et al. [17] perform an extensive
comparative of arm32 disassemblers.

Most static disassemblers [1], [3], [6], [8], [15], [16],
[22], [29] recover additional information, such as control
flow graphs, function boundaries [4], symbolization infor-
mation [11], [30], [31], or even perform decompilation [9].
Disassembly can also be performed dynamically, or through
a combination of static and dynamic techniques [34]. De-
spite our significant progress (see Table 4), binary rewriting
applications have very low tolerance for errors. Thus, multi-
ple approaches have been proposed to instrument programs
without requiring perfect disassembly [7], [10], [12], usually
at the expense of some performance overhead.

7. Conclusion

In this paper we present a novel three-phase disassembly
algorithm: (1) a candidate generation phase produces an
overapproximation of all code blocks; (2) a weight assign-
ment phase assigns a weight to each candidate block; and
(3) a conflict resolution phase resolves overlaps producing
the final set of blocks. Conflict resolution is expressed as a
WIS problem, which has an efficient optimal solution.

We also present a solution to the weight assignment
problem, i.e. how to optimally assign weights to heuristics to
maximize accuracy. Our solution optimizes heuristic weights
based on binaries annotated with ground truth. For each
binary, it collects a set of linear constraints over unknown
heuristic weights that ensure correct disassembly. We maxi-
mize the number of satisfied constraints from all the binaries
by solving a LP problem with soft constraints.

We have implemented our approach on top of Ddis-
asm [15] and performed a large experimental evaluation to
validate it. Our approach supports multiple ISAs (x64, x86,
aarch64, and arm32) and outperforms (in number of correct
binaries and recall) or nearly matches (with less than 0.002%
difference in precision) SOTA disassemblers. Our weight
inference algorithm results in weights that outperform man-
ually tuned weights in several benchmarks, while effectively
reducing the number of heuristics (by setting their weights
to 0) by 40%.

References

[1] Hex-rays: The IDA Pro disassembler and debugger.
https://www.hex-rays.com/products/ida.

[2] Pulp. https://coin-or.github.io/pulp/.

[3] National Security Agency. Ghidra, 2019.
https://www.nsa.gov/resources/everyone/ghidra/.

[4] D. Andriesse, A. Slowinska, and H. Bos. Compiler-agnostic function
detection in binaries. In 2017 IEEE European Symposium on Security

and Privacy (EuroS P), pages 177–189, April 2017.

https://www.hex-rays.com/products/ida
https://coin-or.github.io/pulp/
https://www.nsa.gov/resources/everyone/ghidra/

[5] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska,
and Herbert Bos. An in-depth analysis of disassembly on full-scale
x86/x64 binaries. In The 25th USENIX Security Symposium, pages
583–600, Austin, TX, 2016. USENIX Association.

[6] Cryptic Apps. Hopper. https://www.hopperapp.com/.

[7] Erick Bauman, Zhiqiang Lin, and Kevin W. Hamlen. Superset
disassembly: Statically rewriting x86 binaries without heuristics. In
NDSS, 01 2018.

[8] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J.
Schwartz. BAP: A binary analysis platform. In Ganesh Gopalakr-
ishnan and Shaz Qadeer, editors, Computer Aided Verification, pages
463–469, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[9] Ying Cao, Runze Zhang, Ruigang Liang, and Kai Chen. Evaluating
the effectiveness of decompilers. In Proceedings of the 33rd ACM

SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2024, page 491–502, New York, NY, USA, 2024. Association
for Computing Machinery.

[10] Luca Di Bartolomeo, Hossein Moghaddas, and Mathias Payer. Ar-
more: pushing love back into binaries. In Proceedings of the 32nd

USENIX Conference on Security Symposium, SEC ’23, USA, 2023.
USENIX Association.

[11] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.
Retrowrite: Statically instrumenting cots binaries for fuzzing and
sanitization. In The 41st Symposium on Security and Privacy. IEEE,
2020.

[12] Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury. Binary
rewriting without control flow recovery. In Proceedings of the 41st

ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2020, page 151–163, New York, NY, USA,
2020. Association for Computing Machinery.

[13] Chris Eagle. The IDA Pro Book: The Unofficial Guide to the World’s

Most Popular Disassembler. No Starch Press, 2011.

[14] Daniel Engel, Freek Verbeek, and Binoy Ravindran. On the decid-
ability of disassembling binaries. In Theoretical Aspects of Software

Engineering: 18th International Symposium, TASE 2024, Guiyang,

China, July 29 – August 1, 2024, Proceedings, page 127–145, Berlin,
Heidelberg, 2024. Springer-Verlag.

[15] Antonio Flores-Montoya and Eric Schulte. Datalog disassembly.
In 29th USENIX Security Symposium (USENIX Security 20), pages
1075–1092. USENIX Association, August 2020.

[16] Vector 35 Inc. Binary ninja: a new kind of reversing platform.
https://binary.ninja/.

[17] Muhui Jiang, Qinming Dai, Wenlong Zhang, Rui Chang, Yajin Zhou,
Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren. A comprehensive
study on arm disassembly tools. IEEE Transactions on Software

Engineering, 49(4):1683–1703, 2023.

[18] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley
Longman Publishing Co., Inc., USA, 2005.

[19] Kaiyuan Li, Maverick Woo, and Limin Jia. On the generation of
disassembly ground truth and the evaluation of disassemblers. In
Proceedings of the 2020 ACM Workshop on Forming an Ecosystem

Around Software Transformation, FEAST’20, page 9–14, New York,
NY, USA, 2020. Association for Computing Machinery.

[20] Chang Liu, Rebecca Saul, Yihao Sun, Edward Raff, Maya Fuchs,
Townsend Southard Pantano, James Holt, and Kristopher Micin-
ski. Assemblage: Automatic binary dataset construction for machine
learning. In The Thirty-eight Conference on Neural Information

Processing Systems Datasets and Benchmarks Track, 2024.

[21] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu
Zhang, and Zhiqiang Lin. Probabilistic disassembly. In International

Conference on Software Engineering (ICSE). ACM, 2019.

[22] pancake. radare. https://www.radare.org/r/.

[23] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios
Portokalidis, Bing Mao, and Jun Xu. Sok: All you ever wanted to
know about x86/x64 binary disassembly but were afraid to ask. In
42nd IEEE Symposium on Security and Privacy (SP), 2021.

[24] Chengbin Pang, Tiantai Zhang, Ruotong Yu, Bing Mao, and Jun
Xu. Ground truth for binary disassembly is not easy. In 31st

USENIX Security Symposium (USENIX Security 22), pages 2479–
2495, Boston, MA, August 2022. USENIX Association.

[25] Kexin Pei, Jonas Guan, David Williams King, Junfeng Yang, and
Suman Jana. Xda: Accurate, robust disassembly with transfer learn-
ing. In Proceedings of the 2021 Network and Distributed System

Security Symposium (NDSS), 2021.

[26] Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar. Accurate
disassembly of complex binaries without use of compiler metadata. In
Proceedings of the 28th ACM International Conference on Architec-

tural Support for Programming Languages and Operating Systems,

Volume 4, ASPLOS ’23, page 1–18, New York, NY, USA, 2024.
Association for Computing Machinery.

[27] Nguyen Anh Quynh. Capstone: Next-gen disassembly framework.
Black Hat USA, 2014.

[28] Shuichi Sakai, Mitsunori Togasaki, and Koichi Yamazaki. A note
on greedy algorithms for the maximum weighted independent set
problem. Discrete Applied Mathematics, 126(2):313–322, 2003.

[29] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna.
Sok: (state of) the art of war: Offensive techniques in binary analysis.
In 2016 IEEE Symposium on Security and Privacy (SP), pages 138–
157, May 2016.

[30] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry,
John Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna.
Ramblr: Making reassembly great again. In NDSS, 2017.

[31] Shuai Wang, Pei Wang, and Dinghao Wu. Reassembleable disassem-
bling. In 24th USENIX Security Symposium (USENIX Security 15),
pages 627–642, Washington, D.C., 2015. USENIX Association.

[32] Yapeng Ye, Zhuo Zhang, Qingkai Shi, Yousra Aafer, and Xiangyu
Zhang. D-arm: Disassembling arm binaries by lightweight superset
instruction interpretation and graph modeling. In 2023 IEEE Sympo-

sium on Security and Privacy (SP), pages 2391–2408, 2023.

[33] Sheng Yu, Yu Qu, Xunchao Hu, and Heng Yin. DeepDi: Learning
a relational graph convolutional network model on instructions for
fast and accurate disassembly. In 31st USENIX Security Symposium

(USENIX Security 22), pages 2709–2725, Boston, MA, August 2022.
USENIX Association.

[34] Zhuo Zhang, Wei You, Guanhong Tao, Yousra Aafer, Xuwei Liu,
and X. Zhang. Stochfuzz: Sound and cost-effective fuzzing of
stripped binaries by incremental and stochastic rewriting. 2021 IEEE

Symposium on Security and Privacy (SP), pages 659–676, 2021.

Appendix A.

Proofs

This section contains the proofs for Theorem 1 and
Theorem 2. For convenience, we restate the theorems before
proceeding with the proof.

Theorem 1. If a candidate block set CBlocks does not

present missed instructions nor incorrect code block bound-

aries, then CBlocks is a sound overapproximation.

Proof of Theorem 1. We prove that we can build a subset
Blocks ∈ CBlocks such that

⋃

b∈Blocks
Insns(b) = Code .

Our proof relies of the fact that candidate code blocks do
not share instructions (See Sect. 3.2.1). If CBlocks has no

https://www.hopperapp.com/
https://binary.ninja/
https://www.radare.org/r/

missed instructions, every i ∈ Code belongs to a single
block b ∈ CBlocks and BlockOf (i) (see Definition 3)
yields a single block for each i ∈ Code . Thus, we can
define our final block set Blocks =

⋃

i∈Code
BlockOf (i).

By construction
⋃

b∈Blocks
Insns(b) ⊇ Code .

Next, we prove that
⋃

b∈Blocks
Insns(b) ⊆ Code , which

implies that
⋃

b∈Blocks
Insns(b) = Code and consequently

CBlocks is a sound overapproximation. If CBlocks has
no incorrect code block boundaries, for every block b ∈
CBlocks we have either Insns(b)∩Code = ∅ or Insns(b) ⊆
Code . Since we have defined our set Blocks using BlockOf ,
we know the first condition does not hold. Therefore, for
every b ∈ Blocks we know that Insns(b) ⊆ Code , which
implies

⋃

b∈Blocks
Insns(b) ⊆ Code .

Theorem 2. Let Cs be the set of constraints generated by

Algorithm 2 and let α : H → Z be a weight assignment that

satisfies the constraints α |= Cs , then there is an optimal

schedule S such that α(SW (S)) > α(SW (S′)) for every

non-optimal schedule S′.

Proof of Theorem 2. First, we prove that at the end of the
loop, symopt [n] contains tuples representing all possible
schedules with non-overlapping blocks. The same argument
that ensures the correctness of WIS algorithm (Algorithm 1)
guarantees can be applied here.

We prove it by complete induction over i. Our inductive
invariant is that at each iteration i, symopt [i] contains
tuples for all schedules including blocks from b1 to bi. The
base case (i=0) is trivial with an empty schedule, and the
inductive step i includes all possible schedules with bi (take)
and all the possible schedules without bi (leave).

Since symopt [n] contains all the possible schedules,
bestSched will return an optimal schedule S. Line 10 col-
lects all non-optimal schedules by relying on Lemma 1, and
Line 11 generates a constraint SW (S) > SW (S′) for each
non-optimal schedule. Thus, for each non-optimal schedule
S′ there is a constraint SW (S) > SW (S′) in Cs . Since
α |= Cs it satisfies α |= SW (S) > SW (S′) as well.

Appendix B.

Ground Truth Limitations

During our experiments, we have identified multiple
limitations in the ground truth provided by the different
dataset (see Table 1). In this section, we detail our findings
and how we address them in our experiments.

B.1. SOK ground truth limitations

SOK’s ground truth does not distinguish ARM and
Thumb decode modes, instead it has two separate datasets
for each mode. Unfortunately, we have observed that some
Thumb binaries contain a few ARM functions, usually added
by the linker. SOK’s evaluation tries to exclude functions
added by the linker (we add those to Ignored), but it fails if
the binaries are stripped before collecting the ground truth
10. Binaries can be recompiled to avoid stripped binaries,

10. https://github.com/junxzm1990/x86-sok/issues/32

but that would also require rerunning all the disassemblers
on the newly compiled binaries, since small changes in the
compilation environment could lead to differences in the
generated binaries.

Instead, we reuse the originally provided datasets and we
detect ARM functions in Thumb binaries by checking the
consistency of the reported instruction sizes. If the ground
truth reports an instruction size of 4 at address and the
instruction decoder returns a instruction of size 2 at that
same address using Thumb mode, then that instruction (and
its corresponding function) must be in ARM decode mode.
Note that naively looking for 4 byte instructions is not
enough because some some Thumb instructions are indeed
4 bytes long. Note also that this method might not find all
ARM functions in Thumb binaries, which could introduce
some small errors in the arm32 Thumb evaluation.

During our experiments, we have also identified other
errors in SOK’s ground truth, which we have reported11.
These errors were cause by (1) a failure to correctly handle
duplicated sections during linking, (2) an unsupported in-
struction udf in the compiler instrumentation that recovers
the ground truth. Both issues have been promptly resolved
by the authors, but the datasets have not been re-generated.
We exclude manually excluded the detected cases of (1) and
extended our evaluation scripts to recover the missing udf

from the ground truth.

B.2. Pangine ground truth limitation

This ground truth is limited to regions within well-
defined function boundaries, and thus it is incomplete. We
add the regions outside function boundaries to Ignored .
In addition, we have also found and reported issues with
Panguine’s ground truth12. Some MSVC-compiled binaries
contain jump tables being classified as code. These are
classified as optional true instructions, which indicates a
lower degree of certainty in the ground truth. We followed
the authors’ recommendation and ignored optional true in-
structions in our evaluation scripts.

B.3. Jiang ground truth limitations

Jiang’s arm32 dataset relies on compiler-generated
marker symbols: $a, $t, and $d for ARM, Thumb, and data
respectively for extracting ground truth information.

Unfortunately, marker symbols are not always accurate
on binary regions added by the linker. We account for this
limitation by considering marker symbols only within the
boundaries of function symbols (other regions are added
to Ignored). We have found this restriction to yield more
reliable ground truth at the expense of completeness (larger
parts of the binaries are ignored). In addition, we have also
semi-automatically annotated some of those ignored regions
that contain specific patterns, such as ARM/Thumb inter-
working veneers, that can be matched with high confidence.

11. https://github.com/junxzm1990/x86-sok/issues/31

12. https://github.com/pangine/disasm-benchmark/issues/2

https://github.com/junxzm1990/x86-sok/issues/32
https://github.com/junxzm1990/x86-sok/issues/31
https://github.com/pangine/disasm-benchmark/issues/2

TABLE 7. MANUAL ASSESSMENT OF UNSOUND PE BINARIES

Category Affected Binaries Issue Description Impact on Disassembly

Missing Jump-Table Information SymbolLoadDLL d.dll, ChisMath.exe,
DrawDemo.exe, GetScreenRGB.exe,
osu-memory-demo.exe, threadpool.exe

PDB files lack information about
jump tables, leading to incomplete
or incorrect function boundaries.

Our tool correctly identifies jump
tables, leading to discrepancies
compared to PDB ground truth.

Misinterpreted Padding Bytes MaiSense.dll, iphubclient amxx.dll,
gtest unittest.exe, SysInv32.exe,
ProfilerOBJ.dll, Test.exe

A jmp instruction targets an se-
quence of int 3 instructions,
typically used as padding.

Our tool treats int 3 sequences
as padding rather than executable
code, marking the jmp instruction
targeting them as data as well.

Obfuscated Code hovew-crackme.exe, SPASM.exe Unusual control-flow structures
and inline data embedded within
code segments result in incorrect
PDB information.

PDB files misrepresent function
boundaries, while our tool cor-
rectly handles the obfuscated
code.

Ddisasm-WIS bug psp.exe A minor bug causes a call instruc-
tion target to be computed incor-
rectly, which results in the instruc-
tion invalidation.

Future work will address this case.

Finally, we have completely excluded 7 binaries where we
found incorrect ground truth. These are mostly binaries im-
plementing cryptographic primitives (such as libcrypto)
where developers have encoded instructions as data directly
(resulting in incorrect marker symbols).

B.4. Assemblage ground truth limitations

While PDB files are a useful source of ground truth
for evaluating disassembly, they are not entirely reliable,
particularly in cases involving jump tables and obfuscation.
See Appendix C for more details.

Appendix C.

Manual Assessment of Unsound PE Binaries

Our candidate generation evaluation (Sect. 5.1), results
in a significantly higher ratio of unsound binaries for the
Assemblage PE binaries (0.61% vs. 0.35% for second worst
category). To investigate further, we randomly selected 15
binaries from the 518 unsound binaries (Table 2) and man-
ually inspected them. The results of this analysis can be
found in Table 7. We find three primary causes for binaries
being classified as unsound: missing jump-table information
in PDB files, misinterpretation of padding bytes, and obfus-
cated code 13.

C.1. Missing Jump-Table Information

We found six binaries with missing jump-table informa-
tion in the PDB debug data. Jump tables are commonly used
for indirect branching, typically within the code section of
PE binaries. Our tool successfully reconstructed these jump
tables, correctly identifying function boundaries and indi-
rect branch targets. The discrepancy between our generated
candidates and the PDB ground truth is, therefore, due to a
limitation of the PDB files.

13. Given the limited size of the sample, additional types of issues may
exist, and the relative frequency of each category may differ in the full
dataset.

C.2. Misinterpreted Padding Bytes

MSVC binaries use int 3 (software breakpoint) instruc-
tions as padding (to align function boundaries). While hav-
ing a single int 3 instruction as part of the executable code
is possible, a sequence of consecutive int 3 instructions is
very unlikely to be meant for execution. In other words, se-
quences of int 3 instructions are indeed very common in PE
binaries, but they are never executed. Thus, Ddisasm-WIS
considers sequences of int 3 as invalid. This invalidation is
then propagated backwards to instructions jumping to those
sequences directly during the first disassembly traversal (see
backward traversal in Section 3.2.1). We find instructions
in the PDB ground truth being invalidated because of this
reason in six binaries. We believe these jumps to int 3

sequences might be a case of obfuscation. Unfortunately, the
PDB ground truth does not explicitly clarify whether such
int 3 sequences should be considered executable (since the
PDB ground truth is incomplete), making it challenging to
establish a definitive interpretation.

C.3. Obfuscated Code

In two instances, we found obfuscated code patterns de-
signed to confuse disassembly tools. For example, we found
conditional jumps targeting the middle of multi-byte instruc-
tions or raw byte sequences (not decodable as instructions),
which result in ambiguous control flow and overlapping
instruction boundaries. Other examples included manually
inserted bytes that disrupted typical linear disassembly. In
these cases, the PDB files provided incorrect instruction
boundaries, whereas our tool, leveraging more heuristics,
correctly disassembled the obfuscated code.

C.4. Other Cases

The remaining unsound binary, psp.exe, is caused by
a bug in our tool. We plan to address this bug shortly.

	Introduction
	Static Disassembly Instruction Recovery
	Basic Definitions
	Assumptions

	Disassembly Algorithm
	Overview
	Candidate Generation
	Ddisasm's original algorithm
	Extended Traversal
	Sound Overapproximation

	Block Weight Assignment
	Conflict Resolution

	Heuristic Weight Assignment
	Overview
	Weight Constraints Inference
	Optimized Constraint Inference
	Interval Scheduling Decomposition
	Schedule Subsumption
	Constraint Subsumption
	Partial Schedule Constraints

	Solving Weight Constraints

	Experimental Evaluation
	Candidate Block Generation
	Weight Inference Evaluation
	Comparison to Other Disassemblers
	Runtime Performance
	Ddisasm-WIS vs. Ddisasm-1.6
	Weight Inference

	Related Work
	Conclusion
	References
	Appendix A: Proofs
	Appendix B: Ground Truth Limitations
	SOK ground truth limitations
	Pangine ground truth limitation
	Jiang ground truth limitations
	Assemblage ground truth limitations

	Appendix C: Manual Assessment of Unsound PE Binaries
	Missing Jump-Table Information
	Misinterpreted Padding Bytes
	Obfuscated Code
	Other Cases

