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The increasing density of modern DRAM has heightened its
vulnerability to Rowhammer attacks, which induce bit flips by
repeatedly accessing specific memory rows. This paper presents
an analysis of bit flip patterns generated by advanced Rowham-
mer techniques [1, 2] that bypass existing hardware defenses.
First, we investigate the phenomenon of adjacent bit flips—where
two or more physically neighboring bits are corrupted simulta-
neously—and demonstrate they occur with significantly higher
frequency than previously documented. We also show that if
multiple bits flip within a byte, we can probabilistically model
the likelihood of flipped bits appearing adjacently. We also
demonstrate that bit flips within a row will naturally cluster
together—likely due to the underlying physics of the attack.

We then investigate two fault injection attacks enabled by mul-
tiple adjacent or nearby bit flips. First, we show how these corre-
lated flips enable efficient cryptographic signature correction at-
tacks, demonstrating how such flips could enable ECDSA private
key recovery from OpenSSL implementations where single-bit
approaches would be unfeasible. Second, we introduce a targeted
attack against large language models by exploiting Rowhammer-
induced corruptions in tokenizer dictionaries of GGUF model
files. This attack effectively rewrites safety instructions in system
prompts by swapping safety-critical tokens with benign alterna-
tives, circumventing model guardrails while maintaining normal
functionality in other contexts. Our experimental results across
multiple DRAM configurations reveal that current memory pro-
tection schemes are inadequate against these sophisticated attack
vectors, which can achieve their objectives with precise, minimal
modifications rather than random corruption.

1. Introduction

The miniaturization of DRAM technology has significantly
improved memory density and performance, but has inadver-
tently increased susceptibility to reliability issues, particularly
bit flips. As transistor sizes shrink and operating voltages
decrease, the physical separation between memory cells dimin-
ishes, enhancing the likelihood of electromagnetic interference
between adjacent rows. This physical proximity creates favor-
able conditions for electrical coupling effects that can corrupt
stored data.

Since Kim et al.’s seminal work [3] introducing the Rowham-
mer vulnerability, numerous attack variations have emerged,
including double-sided Rowhammer [4], which exacerbates
charge leakage by simultaneously accessing rows on both
sides of a victim row. Subsequent research has demonstrated
Rowhammer’s versatility across different attack vectors, in-
cluding remote JavaScript execution [5, 6], network-based at-

tacks [7, 8], exploitation in cloud environments [9, 10], and
even collateral attacks on register values [11, 12]
Despite hardware countermeasures like Target Row Re-

fresh (TRR), researchers have continued to bypass these de-
fenses through more sophisticated hammering patterns. TR-
Respass [1] demonstrated that carefully crafted many-sided
hammering patterns could overcome TRR protections by ex-
ploiting the limited number of tracked rows. Building upon
this, BlackSmith [2] introduced frequency-based hammering
patterns that further evolved the attack methodology by vary-
ing the hammering frequency to maximize the effectiveness
against modern DDR4 modules with TRR.

While previous studies have primarily focused on single-bit
flips and their exploitation, the phenomenon of adjacent bit
flips—where two physically adjacent bits are corrupted simul-
taneously—remains underexplored. The probability, patterns,
and security implications of such correlated flips demand thor-
ough investigation, particularly as DRAM densities increase
and cell-to-cell interference becomes more pronounced. Adja-
cent bit flips are especially concerning as they can potentially
bypass error correction codes (ECC) designed to detect and cor-
rect single-bit errors, thereby undermining a common defense
mechanism.
Our research addresses this gap by systematically analyz-

ing adjacent bit flip occurrences using TRRespass and Black-
Smith techniques. We investigate the physical mechanisms
that increase the likelihood of correlated flips and quantify
their probability distributions, demonstrating that there are
likely underlying physical effects that cause bit flips to be clus-
tered at the row level. Furthermore, we explore the security
implications of adjacent and high frequency bit flips in two
critical domains: cryptographic implementations and machine
learning systems.

2. Background

DRAMArchitectureDRAM is structured as a grid of memory
cells, with each cell consisting of a capacitor and an access
transistor. The capacitor stores a bit value (either 1 or 0) while
the transistor controls access to this stored charge. These
cells are organized in arrays, where word lines control rows
of cells and bit lines connect to columns. When accessing
memory, the word line activates, connecting the capacitors
to their respective bit lines. Sense amplifiers detect the small
voltage differences and amplify them to recognizable logic
levels. This architecture efficiently stores data but creates
inherent vulnerabilities due to the physical proximity of cells
and their electrical characteristics.
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Rowhammer Attack Mechanics The Rowhammer vulnera-
bility exploits the physical limitations of DRAM by repeatedly
activating (hammering) specific memory rows to induce bit
flips in adjacent rows. This occurs because each activation in-
troduces electrical disturbance that marginally depletes charge
from nearby cells. While individual activations cause minimal
disturbance, repeated activations within the refresh interval
can accumulate sufficient disturbance to flip bits in victim rows.
In the traditional double-sided Rowhammer attack, an at-

tacker activates two rows (hammer rows) that flank a target
victim row. This configuration maximizes the disturbance ef-
fect on the victim row, as it receives interference from both
sides. Seaborn and Dullien [4] demonstrated that such attacks
could achieve privilege escalation on real systems by deliber-
ately inducing bit flips in page tables.

Modern Rowhammer Techniques TRRespass [1] intro-
duced the concept of many-sided Rowhammer, where attackers
hammer multiple rows simultaneously in patterns designed
to exhaust the TRR tracking capacity (a security mechansim
designed to track and mitigate Rowhammer attacks). By acti-
vating more rows than the TRR can monitor, TRRespass en-
sures some hammer rows evade detection, allowing the attack
to proceed despite the countermeasure. Experimental results
demonstrated TRRespass could induce bit flips in 13 of 42 tested
DDR4 modules from various manufacturers, all of which had
TRR protection.

BlackSmith [2] further refined these techniques by intro-
ducing non-uniform hammering patterns that vary in both
timing and access sequences. Unlike previous approaches that
used fixed-interval activations, BlackSmith employs frequency-
based hammering that optimizes the refresh-to-activation ratio
formaximum effectiveness. This technique exploits the specific
refresh patterns and timing vulnerabilities in TRR implemen-
tations, demonstrating successful bit flips in 40 of 40 tested
DDR4 modules, including those resistant to TRRespass.

Half Double [13] studied Rowhammer in LPDDR4x systems
with on-die ECC, where single-bit errors are automatically
corrected. In these systems, only double (or more) bit flips
within an ECC codeword manifest as observable errors, as
the ECC silently corrects single-bit flips. While Half Double
adapted page table exploits to handle these multi-bit errors,
their work focused on systems where observing multiple flips
is a requirement due to ECC. In contrast, our work analyzes
DDR4 without on-die ECC, where we can observe all bit flips
including single-bit errors. This allows us to study the funda-
mental phenomenon: that when multiple bits flip, they exhibit
strong spatial correlation and cluster adjacently at rates far ex-
ceeding random chance. Further, we demonstrate that logically
adjacent bit flips—those at consecutive bit positions like i and
i + 1—create unique exploitation opportunities. Unlike scat-
tered multi-bit errors that simply bypass ECC, adjacent flips
produce predictable arithmetic relationships (e.g., ∆ = ±3 ·2i)
that can be mathematically exploited in cryptographic attacks,
as we show with ECDSA key recovery where adjacent bit
patterns directly reveal nonce bits.

Adjacent Bit Flips While most Rowhammer research focuses
on individual bit flips, physically adjacent bits can flip simul-
taneously due to their proximity and shared electrical envi-
ronment. This phenomenon, which we refer to as adjacent bit
flips, occurs when disturbance effects strong enough to flip
one bit create conditions favorable for flipping neighboring
bits as well.
We believe adjacent bit flips may manifest through several

physical mechanisms. First, the activation of a word line cre-
ates voltage fluctuations that affectmultiple nearby cells, partic-
ularly those sharing physical boundaries. Second, the sensing
operations during row activation can propagate disturbances
across bit lines. Third, the shared substrate and metal intercon-
nects between adjacent cells provide pathways for electrical
coupling that can synchronize failure modes.
LLM Rowhammer Vulnerabilities LLMs are vulnerable to
Rowhammer attacks due to their large memory footprint dur-
ing inference, static memory allocation patterns, and architec-
tural vulnerabilities. Recent research demonstrates the severity
of these threats: [14] showed that fewer than 25 targeted bit-
flips can jailbreak commercial-scale models to bypass safety
measures without modifying input prompts, while [15] re-
vealed that just three strategic bit-flips in critical parameters
can cause catastrophic model failure, reducing task accuracy
from 67.3% to 0% in billion-parameter LLMs like LLaMA3-8B.
These attacks highlight how minimal memory corruptions
can have devastating consequences for model security and
performance, even in systems designed to resist Rowhammer
attacks.
Threat Model Like previous Rowhammer-based attacks,

we assume the attacker and victim share the same hardware
platform. This setup follows the standard threat models. We do
not assume the attacker has root privileges or physical access.
The only requirement is that the system uses TRR, which can
be bypassed by a many-sided attack.

3. Localized Bit Flips
We define adjacent bit flips as bit flips occurring at consecutive
bit positions within the logical address space of a byte (e.g.,
bits at positions i and i+1). While we acknowledge that logical
adjacency may not correspond to physical adjacency in DRAM
due to data swizzling [16], our analysis focuses on the software-
visible effects that are relevant to exploitation.

Figure 1 shows the absolute number of adjacent bit flips
recorded after profiling ∼100Mb of memory using BlackSmith
fuzzing. The vertical axis is presented on a logarithmic scale.
The results show that single-bit flips were more frequent, oc-
curring 174k times. Two adjacent bit flips were observed 3k
times, three adjacent bit flips appeared only 62 times, and four
adjacent bit flips occurred twice, demonstrating that adjacent
bit flipping is a real phenomenon, and even 4 adjacent bit flips
can be seen after minimal fuzzing.
3.1. Distribution of Bit Flips within a Row
Having profiled substantial regions of memory, we hypothe-
sized that the distribution of all bit flips within a row might not
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Figure 1: Absolute number of adjacent bit flips seen after pro-
filing for 100MB of memory on A3 (see Appendix A) DDR4
memory with BlackSmith [2])

Figure 2: Rowhammer experiment using TRRespass [1] show-
ing a deviation from the expected random distribution of bit
flips across a page

be random. We chose to analyze the data at the byte level (at
least 1 flip occurred within a byte) for two reasons; to simplify
the the statistical analysis and computer hardware is architec-
turally designed around bytes. We devised a statistical model
for the null hypothesis as: the distribution of bit flips is fully
random, and the location of one flip does not impact the chance
of a flip in any other location, and compared our observations
to the predictions of the model. We found that bit flips are
not randomly distributed, but somewhat clustered: bit flips are
more likely to appear closer to other bit flips.
Null Hypothesis Consider a 8192-byte or 65536-bit row of
DRAM known to have n bit flips. If the locations of the bit flips
are independent of each other, we may model the bits in the
row as a series of Bernoulli trials with two outcomes (flip or
no flip), where we estimate the fixed probability of a bit flip to
be p = n

65536 . Thus the probability distribution of the distance
in bits d between a bit flip and the next nearest bit flip is the
geometric distribution (1−p)d−1p for d ∈ N = {1, 2, 3, . . .}
with mean distance 1

p = 65536
n .

Experimental Results Figure 2 compares the expected av-

erage distance (in bytes) between bit flips for a given number
of bit flips in a row to the observed average distance. In the
case of few total flips in particular, we observe that the flips
are significantly closer to each other than the null hypothesis
would anticipate. For greater numbers of flips, we observe a
smaller difference, but with the observed average distance still
less than the predicted average distance.

These data suggest that bit flips are not randomly distributed
throughout rows, but are more likely to occur nearer to other
flips. This phenomenon is likely related to the physical nature
of the Rowhammer vulnerability: the clustering we observe
may be due to unevenly distributed electrical interference
caused by Rowhammer, manufacturing variances affecting
small regions of the chips, or even interference caused by bit
flips themselves.
3.2. Adjacent Bit Flips within a Byte
Experimental Setup To better understand the probability
distribution of adjacent bit flips, we next conducted a statistical
analysis examining the frequency and patterns ofmulti-bit flips.
Our goal was to quantify how often adjacent bits in a byte flip,
compared to the theoretical random distribution.

We developed a systematic framework to analyze bit flip be-
haviors, focusing on 2-bit, 3-bit, and 4-bit flip events. For each
case, we determined the theoretical probability of adjacency
(based on combinatorial analysis) and the observed frequency.
Combinatorial Analysis of Adjacent Bit Flips To formalize
our analysis, let us consider an n-bit sequence (typically n = 8
for a byte) and examine the probability of adjacency in k-bit
flips. We define the following:
• C(n, k) =

(
n
k

)
: Total number of ways k bit flips can be

arranged in a byte of n bits
• A(n, k) = n − k + 1: Number of configurations of a k
adjacent bit flips in a byte of n bits

The theoretical probability of observing k bit flips in a byte is:
Padj(n, k) = A(n,k)

C(n,k) For the case of k = 2, we have C(8, 2) =
28 total combinations. The number of adjacent combinations
is simply the number of adjacent pairs possible in 8 bits, which
is 7 (positions 0-1, 1-2, 2-3, 3-4, 4-5, 5-6, and 6-7). Therefore:

Padj(8, 2) = A(8, 2)
C(8, 2) = 7

28 = 0.25 = 25% (1)

Table 1: Multi-bit flip adjacency rates from experiment tech-
niques described in [1]. For each k-bit category, we show the
sample size (n), observed adjacency percentage per byte, and
theoretical expectation.

k-bits Observed % Theoretical %
2 (n=10,214) 25.6% 25.0%
3 (n=565) 10.6% 10.7%
4 (n=23) 8.7% 7.1%

Observed Results Table 1 presents our experimental findings,
which demonstrate that we can probabilistically model the
likelihood of flipped bits appearing adjacently within a byte
assuming flipped bits are distributed randomly though the
byte. For example, we can see that given 10k bytes where 2
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bits flipped, ∼25% of those flipped bits appeared adjacently,
matching our probabilistic model. For 3 and 4 bit flips within a
byte, both the theoretical and observed frequency of adjacency
are roughly equivalent as well.

4. Impact of Many Bit Flips
This section examines the security implications of adjacent
bit flips in two critical application domains: cryptographic
implementations and machine learning systems. Our experi-
ments reveal instances where as many as 4 adjacent bits flip
simultaneously, creating powerful attack vectors that differ
significantly from traditional single-bit flip scenarios.
4.1. ECDSA Fault Injection
Elliptic Curve Digital Signature Algorithm (ECDSA) is widely
deployed in secure communications protocols, including TLS.
The security of ECDSA relies on the computational difficulty
of the elliptic curve discrete logarithm problem and the unpre-
dictability of the secret nonce used during signature generation.
However, fault attacks targeting implementation vulnerabili-
ties can bypass these mathematical security guarantees.

Our analysis focuses on OpenSSL’s ECDSA implementation,
where we identified several locations vulnerable to adjacent
bit flips. When signing a message, OpenSSL computes the
signature as a pair (r, s) where: s = k−1(z + r · dA) mod n.
Here, k is the secret nonce, z is the message hash, dA is the
private key, and n is the order of the elliptic curve group. The
security of the signature depends critically on the protection
of both dA and k.
System Profiling For a successful attack, we first extensively
profiled both the DRAM modules and OpenSSL’s memory al-
location patterns. The key challenge is aligning the nonce
location with potential adjacent bit flip sites. OpenSSL’s mem-
ory allocation follows specific patterns that we can exploit:
• During server initialization, several signatures are performed
with the nonce allocated at different addresses.

• For the first handshake, the nonce is allocated at yet another
new address.

• Crucially, all subsequent handshakes reuse the samememory
location for the nonce allocation.
This consistent reuse of memory locations after the first

handshake allows reliable targeting of the nonce. By profiling
memory page offsets across 10,000 server restarts, we iden-
tified the most probable locations for nonce allocation, with
concentrations near specific offsets (e.g., 0xd00).
Hammering Technique For DDR4 memory with TRR pro-
tection, we employed multi-sided hammering techniques with
and without uniform row access [1, 2].
Attack Execution and Key Recovery The attack targets the
nonce k after it has been used to compute r = (kP )x but
before calculating s. This creates a scenario where r is correct
but s is faulty due to the corrupted nonce k̄ = k + ∆k.
The critical insight is that when two adjacent bits flip in

the nonce, they create a predictable error pattern ∆k that can
be decoded to reveal specific bits of the original nonce. For

example, if ∆k = +3 · 2i, we can deduce that bits at positions
i and i + 1 in the original nonce were 00 and flipped to 11.
Similarly, ∆k = −3 · 2i indicates that positions i and i + 1
were originally 11 and flipped to 00.
Breaking the Lattice Barrier The security of ECDSA is based
on the difficulty of solving the hidden number problem (HNP),
or a reverse modular exponentiation. Lattice-based approaches
to solving the HNP to break ECDSA use small amounts of data
leaked from many faulty signatures to recover parts of the
hidden number, or the ECDSA key. However, the number of
signatures and the computation time needed can be very great,
and subsequent signatures may leak redundant information.
Under traditional lattice approaches, even leakages of 2 or 3
bits per signature do not make the attack feasible to compute.

However, Albrecht and Heninger [17] showed that by modi-
fying the bounded-distance decoding (BDD) lattice approach to
add a predicate function, cryptographic attacks against ECDSA
become quite feasible—256-bit ECDSA can be broken with un-
der 200 signatures, each leaking only 2 adjacent bits of the
nonce, and mere hours of CPU time. As the number of adja-
cent bits leaked increases, the strength of the attack increases;
with 4 adjacent bits per signature, 384-bit ECDSA can be bro-
ken in a reasonable time frame with barely over 100 signatures.

While we demonstrate the feasibility of this attack through
theoretical analysis, we acknowledge that full empirical vali-
dation remains future work. However, we show in theory that
the injection of adjacent flips with Rowhammer can create the
opportunity for the signature correction scheme to provide the
necessary data for this powerful modified BDD with predicate
algorithm.

4.2. LLM Dictionary Faulting

Building on our understanding of adjacent bit flip vulnerabili-
ties in DRAM and their potential impact on LLMs, we present
a novel attack vector targeting the tokenizer dictionaries of
transformer-based models. Unlike previous approaches that
target model weights, our approach focuses on corrupting the
mapping between tokens and their intended meanings, effec-
tively rewiring the model’s understanding of language at its
foundation.
Tokenizer Attack Surface Modern LLMs employ tokenizers
that segment text into subword units, typically using meth-
ods like Byte-Pair Encoding (BPE) or SentencePiece. These
tokenizers maintain dictionaries that map between token IDs
and their corresponding strings. In quantized models, these
dictionaries are often stored in fixed memory locations as part
of the tokenizer.ggml.tokens section of the model file, which
is loaded into memory during initialization and rarely moved
thereafter.
The tokenizer dictionary presents a particularly attractive

target for several reasons:
• It occupies a relatively small, identifiable memory footprint
compared to model weights

• It has a direct, deterministic relationship between bit patterns
and semantic meanings
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0 1 0 0 1 1 0 0

0 1 0 0 1 1 0 1

Figure 3: A single bit flip in an ASCII-encoded character can
result in a character swap—for example, exchanging ’l’ and ’m’
transforms "lake" into "make" and vice versa. This illustrates
how minimal alterations can compromise security.

• Dictionary corruptions affect all inputs processed by the
model

• While redundancy may mitigate single corruptions in model
weights, token corruptions directly alter input interpretation

Token Swapping Attack
We searched three LLM tokenizers for potential token swaps

by comparing the page offsets of bit flips produced by Black-
Smith with the page offsets of strings in the tokenizers’ dic-
tionary files. We considered a possible token swap to be any
case where a sequence of bit flips applied at their particular
page offset to the dictionary file could cause the ASCII string
of one token to change to the value of another token. Table 2
shows our analysis of this attack model against GPT-2, LLaMA,
and T5; we identified 310k, 78k, and 50k token swaps for each
model, respectively, after comparing them to 60,000 bit flips
found in about 100MB of memory on DIMM A3.
Figure 3 shows how a single bit swap can compromise se-

curity. For example, the ASCII codes of the characters “l” and
“m” differ by only one bit. If a bit in the ASCII representation
of “l” and “m” is swapped, words such as "make" and "lake"
can be transformed into each other through a single bit flip
each. Therefore, the large number of potential token swaps
provides attackers with significant opportunities to alter to-
kens, increasing the risk of generating text that the model was
not intended to produce.
Figure 4 shows how a targeted Rowhammer attack can by-

pass an AI model’s safety protections by corrupting key words
in its system prompt. In this case, the word "make" (associated
with refusing harmful requests) was altered to "lake", removing
the model’s ability to correctly refuse a dangerous query. As
a result, when the user asked for help to "lake a bomb," the
AI, failing to recognize the harm, responded with assistance
instead of refusal.
Table 2: Total number of potential token swaps after profiling
100MB of memory in TRR enabled DDR4 DRAM with [2]

Model Total Tokens Potential Token Swaps
GPT2 128k 184k
LLaMA 32k 50k
T5 32k 28k

Impact of Adjacent Bit Flips on Token Complexity
While single bit flips can create simple character substitu-
tions as shown in Figure 3, adjacent bit flips expand the at-

Figure 4: Example of how guardrails can be broken by faulting
the vocabulary - requiringmany bit flips to find the right token
swap (using an uncensored GGUF version of Gemma Instruct
Uncensored)

tack surface by enabling more complex token transforma-
tions. Table 3 presents examples of token swaps discovered
after profiling 100MB of memory on DRAM A3 using [1].
These adjacent bit flip patterns enable semantically meaning-
ful swaps such as "firearm" to "forearm" and "junction" to
"function"—transformations that require coordinated multi-bit
changes and demonstrate how localized bit flips can create
sophisticated vocabulary corruptions beyond simple single-
flip substitutions. This expanded capability increases the at-
tack surface, as hundreds of additional unique token swaps
become feasible when adjacent bit flips are considered, pro-
viding attackers with greater flexibility in crafting targeted
manipulations of model behavior.
Table 3: Examples of complex token swaps enabled by adjacent
bit flips after profiling 100MB of memory on DRAM A3 using
[1]

Original Token Swapped Token
firearm forearm
junction function
dry Try
loyd load
scared soared
*enter *inter

4.3. Conclusion
This paper demonstrated that modern Rowhammer attacks
produce localized effects that have been previously underex-
plored. First, we discovered that modern Rowhammer methods
generate many adjacent bit flips which we can probabilistically
model. We also showed that bytes containing a flip tend to
cluster together in the same row. We used this to break crypto-
graphic systems, stealing ECDSA private keys from OpenSSL
with fewer mistakes than older methods. The second attack
targeted large language models by corrupting the tokenizer file.
This allows attackers to modify safety instructions in system
prompts without affecting the model’s normal behavior.
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A. Testing Different Rowhammer Tools
We tested both TRRespass [1] and BlackSmith [2] and com-
pared bit flip adjacency across multiple different DRAMs. The
results of this study can be seen in Table 5. Note that this study

was to demonstrate that the bit adjacency affect was present
on multiple DIMMs; ∼1000 fault attempts generally represents
∼20Mb of scanned memory which is why the number of faults
is less than in Table 1.

B. Test Setup
In this study, a variety of DDR4 DRAM modules from differ-
ent manufacturers were used to ensure a diverse experiment.
Table 4 shows that we used Corsair Vengeance LED (model
CMU64GX4M4C3200C16), Corsair Vengeance LPX (model
CMK32GX4M2B3200C16), and a G.SKILL Ripjaws V module
(model F4-3200C16D-16GVKB). Eachmemory stickwas labeled
individually to enable precise tracking during experiments.

Table 4: List of DRAMmodules used in the experiments.

DRAM # Brand Model Number Size
A3, A4 Corsair CMU64GX4M4C3200C16 16GB
A7 Corsair CMK32GX4M2B3200C16 16GB
A8 G.SKILL F4-3600C16D-16GVKC 8GB

C. Lattice Attacks on the Hidden Number Prob-
lem (HNP)

Boneh and Venkatesan [18] introduced the HNP in order to
study the bit security of the Diffie-Hellman scheme. For a se-
cret d and public modulus n we are given samples ki = tid
(mod n) for 0 ≤ ki < n for uniformly and randomly chosen in-
tegers ti ∈ Z∗

n. Boneh and Venkatesan showed how to recover
the secret integer d in polynomial time using lattice-based al-
gorithms, if the attacker learns sufficiently many samples from
the most significant ℓ bits of ti. This problem can be formu-
lated as a variant of the Closest Vector Problem (CVP) called
Bounded Distance Decoding (BDD). BDD works by finding
the closest vector in a lattice according to some target point t.
This close vector can be found through lattice reduction, and
using this close vector the secret parameter is recovered. The
constraints of solving the secret lies in the uniqueness of the
vector.
Formulating Biased ECDSA Samples as HNP If infor-
mation on nonces is leaked, e.g. through a side-channel, one
may formulate the ECDSA signature key recovery problem
as a HNP. Here we closely follow the notation given in [17].
Assume we are given a signature sample s = k−1(H(M) +
dr) mod n where (r, s) is the signature, k is the biased nonce,
H(M) denotes the message hash, d is the secret key, and
r = (kP )x, i.e. the x coordinate of the random point kP .
Reformulating the signature s we obtain

k − s−1rd − s−1H(m) = 0 mod n

Assume we are given m such signature samples. Relabelling
a = −s−1r, and t = s−1H(m), we end up with a system of
m equations with m+1 unknowns ki and d. We can eliminate
the unknown d by simply taking a sample, e.g. a0 + k0 = t0d
and by scaling with an appropriate multiple, i.e. t−1

0 ti and
subtracting it from each sample: (ai + ki) − t−1

0 ti(a0 + k0) =
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Table 5: Using [1,2] in fuzzing mode, monitoring for adjacent
bit flips (1 being a single bit flip without any adjacent bit flips)
after up to ~1000 fault attempts of various aggressor row counts

DRAM # Uniform Non-Uniform
Access Pattern Access Pattern
2 3 2 3

A3 211 1 9 0
A4 190 1 0 0
A7 0 0 734 8
A8 0 0 0 0

tid − t−1
0 tit0d (mod n). Hence, our updated parameters be-

come a′
i = ai − t−1

0 tia0 (mod n), and t′
i = tit

−1
0

Assume the nonces are bounded: ki < K < n. We can
now define a lattice by reformulating m signature samples:
ki + ti = aid mod n as follows

Λ =



n
n

n
. . .

n
t′
1 t′

2 t′
3 . . . t′

m−1 1
a′

1 a′
2 a′

3 . . . a′
m−1 K


The rows of Λ form a lattice in which by construction k =
(k1, k2, . . . , km, K) is a short vector. Finding k, we can recover
the secret signing key d = −t−1

i (ki + bi) mod n.
The Lattice Barrier The basic form of the attack is ef-
fective as long as a BDD solver can recover the target vec-
tor from Λ. The BDD solver is expected to succeed as long
as ||k||2 =

√
m + 1K is less than the Gaussian Heuris-

tic gh(Λ) ≈
√

dimΛ/(2πe)Vol(Λ)1/dimΛ. Here Vol(Λ) =
nm−1K . Hence,

gh(Λ) ≈
√

(m + 1)/(2πe)Vol(Λ)1/(m+1)

=
√

(m + 1)/(2πe)(nm−1K)1/(m+1)

When the leakage (or nonce bias) is high the condition will
hold and given sufficient samples the BDD solver will recover
the nonce vector. However, when the leakage is limited to a
single bit then the condition becomes hard to satisfy and lattice
based techniques are expected to fail with high probability,
given that the secret vector is no longer significantly shorter
than the other lattice vectors [19]. This view motivated a hard
limit, the so-called “lattice barrier” that seems impossible to
overcome for single bit leakage [20]. This belief extends to
2-bit biases, and even 3-bit biased HNPs are considered hard
to tackle regardless of the number of samples.
BDDwithPredicate Albrecht andHeninger [17] introduced
several optimizations to bridge the lattice barrier. First they
note that the upper bound norm estimate on the secret vector
is too conservative and instead they use the expected norm
of a uniformly distributed vector. The second observation of
they make is that the lattice barrier can be overcome. Even
if ||k|| ≥ gh(Λ), then it is possible to recover k by spending
additional computation time. To this end, the authors introduce
the unique-SVP with predicate problem we are seeking for a
short vector v, that also satisfies a predicate function f(v) = 1.
The authors proposed two algorithms to solve the unique-
SVP with predicate problem: one based on enumeration and
one based on sieving. The algorithms were implemented by
modifying the fpLLL and G6k libraries. Running extensive
experiments they were able to show that indeed one can use
efficient lattice based techniques to target cases with fewer
than 4-bit nonce bias, and most notably, the two bit nonce bias
for 256-bits is within reach.
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