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Abstract—This paper presents our simulation of cyber-attacks
and detection strategies on the traffic control system in Daytona
Beach, FL. using Raspberry Pi virtual machines and the OP-
NSense firewall, along with traffic dynamics from SUMO and
exploitation via the Metasploit framework. We try to answer
the research questions: are we able to identify cyber attacks
by only analyzing traffic flow patterns. In this research, the
cyber attacks are focused particularly when lights are randomly
turned all green or red at busy intersections by adversarial
attackers. Despite challenges stemming from imbalanced data
and overlapping traffic patterns, our best model shows 85%
accuracy when detecting intrusions purely using traffic flow
statistics. Key indicators for successful detection included oc-
cupancy, jam length, and halting durations. All implementation
details and source code are publicly available on GitHub at:
https://github.com/U1overground/Cybersummer

I. INTRODUCTION

As traffic control systems increasingly integrate automated
and interconnected technologies, the risk of cyberattacks tar-
geting both traffic flow and public safety has substantially
increased threatening operational continuity and passenger
safety. Traffic management systems, especially traffic lights,
are prime targets for adversarial actors aiming to disrupt
urban mobility and impose significant pressure on urban
transportation flow [2]. By targeting traffic lights and similar
control systems, attackers could easily disrupt emergency
response times, delay public transportation schedules, and
impact the daily commutes of thousands of citizens, leading
to both economic losses and potential safety hazards [3].
Consequently, securing traffic management infrastructure has
become crucial in modern urban planning, as any compromise
can have cascading effects on the operational resilience, safety,
and overall functionality of a city.

The protection of urban traffic management systems against
cyber threats requires a realistic model of targeted traffic
systems, a.k.a. a digital twin [?]. This model would simu-
late both the physical infrastructure of the traffic flow and
the cyber-physical systems that control and monitor it. By
creating an integrated simulation environment, transportation
planners and cybersecurity teams could test various scenarios,
evaluate resilience under various cyber-attack conditions, and
optimize response strategies. However, from the perspective

of transportation cybersecurity, no integral simulation frame-
work is readily available. Moreover, from the perspective of
transportation practioners, raw data from network layers are
not always available, making it harder for investigation and
diagnosis against cyber attacks.

In this paper, we propose a detailed network model of the
traffic system in Daytona Beach, FL. This model captures
the interdependence between traffic lights due to proximity,
simulating the cascading effects that arise when a single
traffic light is compromised, such as delays and disruptions
in nearby lights. Each traffic light is represented by a virtual
machine connected via an internal network, enabling realistic
interactions both between lights and with the main simulation
system. This setup allows us to simulate hacking actions and
assess their impact on data collection and traffic flow. To
determine the operational status of each light, we apply neural
networks and statistical machine learning algorithms to assess
the likelihood of being compromised based solely on traffic
data can provide a secondary layer of defense, enhancing the
robustness of the detection system. The contribution of this
paper is as follows:

• We provide a joint simulation framework for both cyber-
attacks and the response to the traffic system.

• We investigate whether traffic data alone can be used to
detect certain cyber attacks targeting traffic lights using
both statistical and deep learning approaches.

• We found that the Maxim Halting Duration and Jam
Length are two most critical metric for identifying cyber-
attacks.

II. RELATED WORK

Transportation systems are increasingly targeted in cyberse-
curity due to vulnerabilities that threaten critical infrastructure
and public safety. Interconnected traffic control systems are
particularly at risk because their networked structure and
integration with external devices and sensors offer multiple
attack vectors [4]. The rising use of automated traffic man-
agement amplifies security challenges, especially in complex
urban environments, making these systems attractive targets
for maximum disruption [5], [6]. Thus, there is an urgent need
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for resilient cyber-defense frameworks tailored to transporta-
tion infrastructures, where disruptions can cause significant
financial losses and safety risks [7].

From a Cyber-Physical Systems (CPS) perspective,
transportation-related cyber-attacks include Denial of Service
(DoS) attacks flooding networks [8], data manipulation al-
tering sensor information [9], replay attacks resubmitting
old valid data [10], command injection manipulating system
instructions [11], and man-in-the-middle (MitM) attacks inter-
cepting communications between sensors and controllers [12].
These attacks exploit vulnerabilities inherent in CPS, high-
lighting the necessity for integrated cyber-physical security
measures.

Detecting such cyber-attacks requires anomaly detection
methods capable of analyzing both cyber and physical data.
Machine learning techniques, including Random Forests, neu-
ral networks, and ensemble models, effectively identify com-
plex anomalies in network traffic, sensor data, and command
sequences [13], [14]. Given the real-time operational demands
of CPS, detection frameworks typically employ immediate
analytics for prompt alerts [15]. Additionally, hybrid methods
combining rule-based and deep learning approaches address
challenges of high-dimensional data and rare attack occur-
rences [16], [17].

Emerging methods also indirectly detect cyber-attacks by
analyzing traffic flow patterns, noting anomalies like unusual
vehicle occupancy or queue lengths that may signal compro-
mised systems [18]. However, effectiveness varies depending
on traffic complexity and attack subtlety [19].

While cyber-attack and traffic simulation frameworks in-
dividually assess vulnerabilities and traffic dynamics respec-
tively, their integration remains limited. Cyber frameworks
simulate threats like phishing and malware to evaluate security
postures [?], while traffic simulators analyze mobility impacts
of disruptions [?]. This paper addresses this gap by integrating
these simulations, investigating distinctive traffic indicators
at high-traffic intersections through a case study in Daytona
Beach, Florida, to enhance security measures for modern
traffic signaling systems.

III. METHODOLOGY

We focus on simulating the cyber-attacks and defense strate-
gies in the traffic control system of Daytona Beach, FL. We
collected the base map tiles, location of traffic lights, locations
of cellular towers where traffic light controllers are assumed
use to connect to the Internet. We also retrieved the Annual
Averaged Day Traffic Volumes of major roads for more precise
modeling. After we finish the initial modeling, the abstract
network topology is given in Figure 1

The architecture of the simulation framework is shown in
Figure 2. To make the simulation as realistic as possible, the
following key technologies are employed:

• Infrastructure Simulation: Raspberry PI Virtual Machines
are used to seamlessly simulate the hardware and software
environment of traffic control devices. We believe that

Fig. 1. Abstract network topology of traffic controllers in Daytona Beach,
FL
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Fig. 2. Architecture of the simulation framework

the code in such scenario is practically deployable. Ad-
ditionally, we use the OPNSense (https://opnsense.org/),
an open-source firewall, to create a dedicate and isolated
virtual network to execute real cyber-attacks.

• Traffic Dynamic Simulation: Each Raspberry PI VM sim-
ulates one traffic light controller and connects remotely
to SUMO 1 simulator via the TraCI 2 interface. It is
assumed that each traffic light controller only controls one
intersection. We assume that each traffic light controller
updates its phase pattern every 10 seconds.

• Exploitation Simulation: With the help of infrastruc-
ture simulation, we can directly use the Metasploit 3

framework and OpenVAS 4 to simulate cyber-attack and
defense events.

A. Statistical Methods Used for Classification

Various machine learning algorithms were implemented and
evaluated to predict the occurrence of hacks in the system
based on sensor data. These algorithms included logistic
regression, random forest, multilayer perceptron, k-nearest
neighbors, and decision trees. The data were generated to
simulate four distinct types of hack, together with a control
simulation representing scenarios where no hack occurred. For
the purpose of binary classification, all instances of hacked
data were consolidated into a single class. This allowed for the
training of binary classifiers capable of distinguishing between
hacked and non-hacked states.

1 SUMO: https://eclipse.dev/sumo/
2 TraCI: https://sumo.dlr.de/docs/TraCI.html
3 Metasploit: https://www.metasploit.com/
4 OpenVAS: https://www.openvas.org/



Traffic statistics data were collected over 10s intervals
during the simulations. To ensure consistency and improve
model performance, the numeric data generated from SUMO
were normalized before being used to train the models. These
models were selected for their ability to capture linear and
polynomial relationships between inputs and outputs. Further-
more, their interpretability makes them particularly suitable for
detailed analysis and understanding of the underlying patterns
in the simulated data. All numerical values are scaled before
being fitted to the logistic regression model, and all categorical
data are one-hot encoded for training.

B. Convolutional Neural Network for Traffic Data Classifica-
tion

We employed a convolutional neural network (CNN) to
classify traffic data and detect hacking incidents, testing input
matrices of 9x23 (5s), 18x23 (10s), and 36x23 (20s) to identify
the optimal temporal resolution.

1) Data Preparation: The dataset was preprocessed for
CNN input as follows. First, irrelevant columns (target, begin,
end, and ID) were removed. Specifically, begin and end
columns were excluded due to overly high feature importance
caused by their direct association with hacking intervals and
events, introducing bias not representative of real-world con-
ditions.

Remaining features were normalized using MinMaxScaler
to a [0,1] range. Data was segmented into matrices of
three configurations—9x23 (5s), 18x23 (10s), and 36x23
(20s)—with rows as sensor data snapshots and columns as
23 traffic features.

Labels were converted to binary form (1: normal traffic, 0:
hacked traffic), aligned at intervals matching each matrix size.
Finally, datasets were split into training and testing sets (80-20
split) and transformed into PyTorch tensors for CNN training.

2) CNN Architecture: The CNN architecture (CNN2D)
used in this study is shown in Figure 3. CNN2D processes two-
dimensional inputs of sizes 9x23 (5s), 18x23 (10s), and 36x23
(20s), enabling analysis of how varying observation durations
influence the detection of hacking events. The single-channel
input is treated analogously to grayscale images, representing
raw traffic data.

CNN2D consistently consists of two convolutional layers
(64 and 128 filters, 3x3 kernels), each followed by a 2x2
max-pooling layer to reduce spatial dimensions. The output
is then flattened, with dimensions calculated dynamically to
accommodate different input sizes.

The fully connected layers include one hidden layer (64 neu-
rons) and a single-neuron output layer with sigmoid activation
for binary classification. This architecture provides flexibility
and sufficient capacity to distinguish between normal and
hacked traffic.

The CNN model was trained using Binary Cross-Entropy
Loss and optimized with Adam (learning rate = 0.001) for 10
epochs with mini-batches of size 32. Data was shuffled each
epoch for better generalization. We evaluated performance

Fig. 3. Architecture of the Convolutional Neural Network (CNN)

Normal
Attack

Fig. 4. Data distribution of the simulated attack and normal scenarios. We
used Principal Component Analysis (PCA) to project the original data to 2D
space with 90% of variance explained.

using three input sizes (9×23, 18×23, and 36×23), calculat-
ing accuracy, precision, recall, and F1-score, and generating
confusion matrices to visualize classification performance.

Additionally, we tested a three-channel input configuration
that combined the raw traffic matrix with corresponding mean
and standard deviation matrices (computed from 10-second
intervals of normal data). This provided statistical context,
helping the CNN more effectively detect abnormal patterns.
The first convolutional layer was adjusted to handle three-
channel inputs, while the rest of the architecture (two con-
volutional layers with 64 and 128 filters, 2×2 max-pooling
layers, and fully connected layers) remained unchanged. This
enhancement allowed the model to process richer input repre-
sentations across all tested input dimensions. However, such
modification does not improve the network performance as
expected.

IV. RESULTS AND DISCUSSION

We simulated the attack scenario that traffic lights are turned
all green or all red randomly in the busiest intersection of
Daytona Beach for one hour. Various traffic flow statistics are
collected every 10 seconds, and these collected statistics form
the initial dataset for an attack scenario. The distribution of
the data w.r.t. different categories are shown in Figure 4.

As depicted, inferring cyber-attacks from traffic patterns
could be challenging owing to two main factors: a) The dataset
if highly imbalanced as the chance of observing a cyber-attack
is rare and the collected dataset are highly imbalanced even
after Synthetic Minority Over-sampling Technique (SMOTE)
algorithm is applied to re-balance the dataset. b) As in Fig-



ure 4, the data tuples representing attack scenarios are mixed
almost uniformly with the normal scenarios in the 2D space
generated by PCA, indicating the need of complicated feature
engineering approaches.

A. Statistical Methods and Explanations

To investigate the efficacy of traditional machine learning
algorithms in detecting hacked traffic lights, we trained and
evaluated six prominent models including Logistic Regression,
Random Forest, SVM and etc. Each model was tuned using
a feature set that captured various aspects of traffic flow,
including average speed, queue length, and signal timing char-
acteristics. Table I summarizes the key performance metrics for
each model on the test dataset including accuracy, precision,
recall, and F1-score, offering a clear comparison of their
classification capabilities.

TABLE I
PERFORMANCE METRICS COMPARISON OF STATISTICAL METHODS

Models Accuracy Precision Recall F1-Score

SVM-SVC 0.704 0.68 0.70 0.62
Logistic Regression 0.684 0.60 0.68 0.58
Random Forest 0.757 0.73 0.75 0.74
KNN 0.710 0.70 0.71 0.70
Decision Tree 0.720 0.71 0.72 0.71
MLP 0.699 0.67 0.70 0.68

From Table I, we observe that Random Forest achieves the
highest overall performance with an accuracy of 0.757, preci-
sion of 0.73, recall of 0.75, F1-score of 0.74. This suggests that
ensemble-based methods capture complex relationships in the
data more effectively than the other models tested. Decision
Tree and KNN exhibit moderately strong metrics, indicating
that both a hierarchical splitting strategy and instance-based
classification capture meaningful patterns in detecting hacked
traffic signals.

In contrast, Logistic Regression and MLP yield compara-
tively lower performance. Logistic Regression, for instance,
may be constrained by its linear decision boundary, which
could be a limiting factor if important relationships in the
dataset are highly nonlinear. The MLP’s results suggest it may
require further hyperparameter tuning or additional training
data to fully exploit its nonlinear modeling capacity.

Notably, recall is a key metric in this application, since
failing to detect a hacked signal (i.e., a false negative) can carry
significant consequences for traffic safety. Random Forest’s
strong recall (0.75) implies a relatively lower risk of missing
compromised signals.

Across all models, congestion-related features (Figure 5),
especially maxHaltingDuration and jamLengthInMetersSum
tend to produce the largest accuracy drops, indicating that
extreme standstill durations and significant traffic jams are
strong indicators of hacked conditions.

Figure 6 provides an occlusion sensitivity overview for each
of the four models, illustrating how removing one feature at a
time impacts classification accuracy. Logistic regression places

(a)

(b)

Fig. 5. Two Most Important Features in response to intrusions in the Traffic
Dataset

the greatest emphasis on total jam length and overall halting
duration, whereas random forest relies heavily on average
occupancy and average halting time. KNN is most affected
by the longest halting time and total jam length, while MLP
similarly prioritizes maximum halting duration and cumulative
halting intervals.

Overall, any measure that captures unusual or prolonged
standstills (maxHaltingDuration and jamLengthInMetersSum)
emerges as a critical factor across all algorithms, suggesting
that persistent congestion aligns closely with hacked behavior
(Figure 5). Among these approaches, Random Forest shows
the most balanced reliance on multiple signals and achieves
the highest predictive accuracy, thus standing out as the most
robust model for detecting hacked traffic signals.

B. Convolution Neural Networks

Although our statistical methods reaches an accuracy of
around 0.75, the complexity of detecting hacked traffic sig-
nals suggest that a more sophisticated approach could offer
additional improvements. CNNs are particularly well suited



(a) Logistic Regression (b) Random Forest

(c) KNN (d) MLP

Fig. 6. Occlusion Sensitivity Analysis for Different Models

to learning complex patterns directly from large datasets,
especially those with strong temporal or spatial components.
So in this subsection, we compare its performance against the
statistical methods discussed earlier.

As illustrated in Figure 7, using a 5-second window (9×23
input size) leads to a relatively high number of incorrect clas-
sifications, particularly where “abnormal” signals are labeled
as “normal.” This suggests that such a short time frame may
not capture enough context for reliably identifying hacked
conditions. Increasing the window to 10 seconds (18×23)
substantially reduces both false negatives and false positives,
resulting in an improved accuracy of 81.48%. Extending
the window further to 20 seconds (36×23) moderates some
misclassifications but lowers the accuracy slightly to 78.41%,
likely reflecting that longer time spans may introduce un-
necessary complexity or dilute the immediate indicators of
hacking activity. Therefore, a 10s window appears to keep
the balance and provide sufficient detail to detect sudden
anomalies without overwhelming the model.

In the previous subsection, we noted that Random Forest of-
fered the strongest performance among the statistical models,
reaching about 0.75 accuracy. By contrast, our CNN surpasses
this mark when using a 10-second input window, achieving
an accuracy of 0.81 (see Figure 7). While shorter (5-second)

or longer (20-second) windows yield slightly lower results,
this mid-range frame appears to capture enough temporal
information to enhance detection of hacked signals. Overall,
these findings underscore the CNN’s advantage in extracting
richer patterns from the traffic data and improving upon the
best statistical method.

V. CONCLUSION

In conclusion, our study indicates that Random Forest
outperformed other statistical approaches across precision,
recall, F1-score, and accuracy. However, the CNN achieved
superior results due to its advanced capability in capturing
complex traffic behaviors. Despite these promising outcomes,
our detection method relies on indirect evidence of cyber-
attacks from traffic anomalies rather than directly monitor-
ing the traffic-light infrastructure. A robust future framework
should combine anomaly detection with direct hardware or
network port monitoring. Moving forward, we will enhance
realism by expanding each traffic controller’s connection to
multiple cellular towers, improving network robustness. To
address the overhead associated with virtual machines, we
will containerize our simulation environment using Docker
for greater computational efficiency. Lastly, recognizing the
limitations of supervised statistical methods, we plan to ex-
plore deep learning—particularly unsupervised techniques—to



Fig. 7. Confusion Matrix of CNN with Various Input Sizes

effectively detect evolving and complex cyber-attacks in real-
time scenarios.
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