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LLM WATERMARKING USING MIXTURES AND

STATISTICAL-TO-COMPUTATIONAL GAPS

PEDRO ABDALLA AND ROMAN VERSHYNIN

Abstract. Given a text, can we determine whether it was generated by a
large language model (LLM) or by a human? A widely studied approach to
this problem is watermarking. We propose an undetectable and elementary
watermarking scheme in the closed setting. Also, in the harder open setting,
where the adversary has access to most of the model, we propose an unremov-
able watermarking scheme.

1. Introduction

Large Language Models (LLMs) have emerged as a powerful technology for gen-
erating human-like text [3, 18]. On one side, an LLM performs well if it produces
text that closely resembles human writing. On the other side, malicious use of
high-performance LLMs also bring undesirable consequences such as the spread of
misinformation [17], misuse in education [13, 18], and data pollution [15, 16].

In this context, there is an urge to develop methods to distinguish human and
AI generated text to mitigate those outcomes. One prominent technique is the
so-called watermarking approach in which the goal is to embed a detectable signal
in the text generated by the LLM.

Before describing watermarking in more details, we recall the concept of tok-
enization. In a nutshell, a word consists in small pieces of “sub-words” known as
tokens. A LLM outputs each token sequentially by computing a probability dis-
tribution over a fixed set of possible tokens (vocabulary) and sampling the next
token from it. The distribution of the next token varies from token to token as it
depends on the previous tokens sampled, while the vocabulary remains fixed during
the process of text generation.

The most common approach to watermark a text is to watermark each token
by planting a hidden structure into its probability distribution. In this sense, it
is natural to impose some requirements on which properties a good watermarking
should have. For example, it is natural to require that the watermarking scheme
does not deteriorate the quality of the text or that it cannot be easily removed by
someone with malicious intentions, an adversary.

In what follows, we describe the requirements for our watermarking scheme. To
this end, we shall make a distinction between two different settings: The closed
setting and the open source setting. We first describe the closed setting. In this
case, one would like to generate a watermarking satisfying three requirements

• Undetectability: Any polynomial-time algorithm based solely on the text
generated by the LLM fails to detect any change in the probability distri-
butions used to generate the tokens.
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• Completeness: It is possible to detect the watermarked model if the
algorithm has access to extra piece of information known as “secret key”.
• Soundness: Any text generated independently of the secret key has neg-

ligible chance of being detected as watermarked.

We postpone the mathematical framework of those requirements to the next section.
Now, let us provide some intuition behind those requirements. The first requirement
is useful to preserve the quality of the text generated and prevents malicious users
(adversaries) to manipulate the text to remove the watermarking scheme. The
second requirement is the core idea of watermark to distinguish texts generated by
AI and humans which clearly requires a “secret key”, otherwise would contradict
the “undetectability” requirement. Finally, the last requirement is of fundamental
importance as, for example, it prevents false accusations of AI misuse (see for
example [7]).

A harder task is to watermark the text in the so-called open source setting. This
is motivated by the recent explosion of AI open source models, where the user has
access to the model parameters and the associated code [5, 19, 23]. Since now the
adversary has much more power, we replace the “undetectability” requirement by
the weaker “unremovability” requirement:

• Unremovability: Any adversary that does not have knowledge about the
secret key cannot remove the watermarking scheme unless it deteriorates
the quality of the text.

Clearly, one has to impose some conditions on what the adversary knows, otherwise
he could train a new model on its own, making watermarking impossible. Besides,
the adversary goal is to remove the watermark and use the text for malicious pur-
poses, so the quality of the text cannot be deteriorated too much.

In this work, we allow the adversary to arbitrarily modify the inputs of the LLM
and also allow him to have knowledge of each token distribution used for sampling
(after the watermarking scheme was planted).

1.1. Related Work. Several watermarking schemes were proposed [2, 14, 22] for
the closed setting without any formal guarantee. Perhaps, the first watermarking
scheme with provable guarantees is from [9], where the authors proposed to split
the vocabulary into a green list and red list. The probabilities corresponding to
the tokens in the green list are slightly increased while the ones in the red list are
slightly decrease. The watermarking can be detected by checking the frequency of
tokens in the green list versus tokens in the red list. Therefore, the downside of
this approach is that the “undetectability” requirement is not fulfilled.

Another line of work [1,6,10,12] is dedicated to the following idea: Let u be a ran-
dom variable distributed uniformly over the interval [0, 1] and p = (p(1), . . . , p(d))
be a probability distribution over a vocabulary of size d. We can sample the next
token according to p by sampling from u first and then observing that for any
k ∈ {1, . . . , d}

P

{

u ∈
[
k−1∑

i=1

p(i),

k∑

i=1

p(i)

]}

= p(k).

The watermarking schemes exploit correlation between the tokens and the corre-
sponding (uniform) random variables u’s used to sample the tokens. Despite this
approach has some guarantees, the major drawback is that the detection algorithm
is quite convoluted relying on a complicated optimization because it is hard to
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capture the planted correlation. In addition to this, to achieve the “undetectabil-
ity” requirement for the whole text, the approaches in the literature rely on some
cryptographic assumptions.

To the best of our knowledge, the only result for the open source setting is
from [5]. The authors proposed to perturb each logit in the softmax rule (see
equation 2.1) by a vector sampled from a multivariate Gaussian distribution and
exploits the correlation between the text and such vector. The authors provided
some theoretical evidence (partially rigorous) for completeness and unremovability
under strong assumptions on the text.1

1.2. Main Contributions. Our main contributions are new connections between
watermarking and robust statistics to derive more efficient watermarking schemes.
Our first main result is Theorem 3.2, where we propose an elementary watermark-
ing scheme for the closed setting satisfying all the requirements (undetectability,
completeness and soundness) under mild assumptions on the distribution of the
text. We also argue that the assumptions are necessary in some sense.

In a nutshell, our watermarking scheme proceeds as follows: In the first step it
randomly constructs partitions of the vocabulary set into green and red tokens that
change at each time a new token is sampled. Similarly to [9], the probabilities of
the green tokens are shifted upwards, and the ones for the red tokens, downwards.
However, we make some key changes to this shifting scheme, which allows it to
achieve undetectability.

Our second main result Theorem 4.3 lies in the realm of the open source setting.
By leveraging novel connections to the theory of statistical-to-computational gaps
in robust statistics, we proposed a watermarking scheme that is both “sound” and
“complete”, along with mathematically rigorous guarantees. This watermark is
also “unremovable”: any algorithm that attempts to remove it must (indirectly)
solve a computationally hard problem – the sparse mean estimation under Huber’s
contamination model (see [8] for a comprehensive introduction).

This version of our algorithm also perturbs the logits by Gaussian vectors, sim-
ilarly to [5]. However, instead of using the same perturbation for each token, we
use independent perturbations.

Our Gaussian random perturbations are drawn from a mixture of non-centered
Gaussians – a distribution that is hard to distinguish from a centered Gaussian.
Thus, the adversary who attempts to remove it faces impossibility results from the
robust statistics literature borrowed from Brennan and Bresler [4]. This is a novel
approach to study unremovability in watermarking problems.

1.3. Roadmap. The rest of this manuscript is organized as follows. In Section 2,
we formally state the watermarking problem in the framework of hypothesis testing.
Section 3 is dedicated to the main results for watermarking in the closed setting
and Section 4 is dedicated to the main result for watermarking in the open source
setting. The appendix is dedicated to the proof of technical results.

1For example, [5] assumes that the token distribution behaves as an uniform distribution over
a certain subset and also that the adversary makes changes respecting some normalization of the
soft-max function which are hard to verify.
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2. The Hypothesis Testing Formulation

Let T be our vocabulary of d tokens, which we can identify with [d] := {1, . . . , d}
without loss of generality. A text is a sequence of random variables xi taking values
in [d]. At each step, the LLM computes logits L = (ℓ(1), . . . , ℓ(d)) and samples the
next token x ∈ [d] according to the softmax rule

(2.1) p(i) := P{x = i} = softmax(ℓ(1), . . . , ℓ(d)) :=
eℓ(i)

eℓ(1) + · · ·+ eℓ(d)
.

A watermarking scheme consists of two parts:

• The sampling algorithm at each step tweaks the LLM’s output probabil-
ities from p = (p(1), . . . , p(d)) to a new (watermarked) distribution q =
(q(1), . . . , q(d)), using a “secret key”.
• The detection algorithm takes the whole text x1, . . . , xN and the same se-

cret key, and outputs true/false depending on whether the text was water-
marked.

The sampling algorithm handles undetectability by making sure that q looks
like p. The detection algorithm handles soundness and completeness by solving the
following hypothesis testing problem:

Detection Algorithm Hypothesis Testing:

• H0 : The text x1, . . . , xN is independent from the watermarking scheme.
• Ha : The distribution of the text x1, . . . , xN was sampled from the water-

marked distribution.

The core challenge in the design of a watermarking scheme is that we need to
balance the trade-off between undetectability and completeness without using any
prior knowledge about the text. If we simply do not change the LLM’s distribution,
then the scheme is undetectable but not complete. Similarly, if we make some
obvious change to the LLM’s distribution, the scheme is complete but detectable.

Remark 2.1 (Closed vs. Open Source Setting). We just covered the closed water-
marking setting. In the open setting, the definition of watermarking as well as the
“completeness” and “soundness” requirements stay the same. But the adversary
now has more information than just the text. So instead of “undetectability”, we
require “unremovability”.

We allow the adversary to modify anything they want about the LLM – the input,
the parameters, even its its architecture. They can also modify the distributions
qx1

, . . . , qxN used to generate the watermarked text x1, . . . , xN – but the adversary
is not given access to the secret key.

The goal of the adversary is to approximate the distributions px1
, . . . , pxN . The

“unremovability” requirement prevents the adversary from achieving this in poly-
nomial time.

3. Watermarking Scheme – Closed Setting

Now, let’s formally describe the watermarking scheme in the closed setting. It
works for any discrete process on a finite state space, but we will stick to the LLM
setting to keep things concrete.
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Let N be the length of the text to be generated2 and d be the size of the token
vocabulary. Without loss of generality we assume that d is even.3 Next, let r
be a Rademacher random variable (±1 with equal probabilities) and consider the
alternating signs vector ∆ := (r,−r, r,−r, . . . , r) of length d. The secret key consists
on i.i.d. copies ∆1, . . . , ∆N of the random vector ∆, one for each token in the text
x1, . . . , xN to be watermarked.

For simplicity of notation, we drop the index j while describing the j-th step
of the sampling algorithm. At each new step, the LLM computes the probability
distribution of the next token x, namely p = (p(1), . . . , p(d)). Now the sampling
algorithm watermarks this distribution by increasing the probabilities p(i) for the
tokens i where ∆(i) > 0 and decreasing them where ∆(i) < 0.

To do that, we first assume that p(1) ≥ · · · ≥ p(d). Define for each i ∈ [d]:

(3.1) εi =

{

p(i), i is even

p(i + 1), i is odd,

so that these numbers are pairwise equal: ε1 = ε2, ε3 = ε4, . . . , εd−1 = εd. Next,
we compute the watermarked distribution by setting for every i ∈ [d]:

(3.2) q(i) = p(i) + εi∆(i).

In the general case, we first compute a non-increasing rearrangement of p, perturb
it as before, and rearrange back.

Now let’s check that this watermarking scheme is valid (i.e. q is actually a
probability distribution) and undetectable.

Proposition 3.1 (Validity and undetectability). For any probability distribution
p over [d], the watermarked distribution q computed in (3.2) is indeed a probability
distribution over [d], and the watermarking satisfies the undetectability requirement.

Proof. Sine ∆ alternates signs and ε1, . . . , εd are pairwise equal, we have

d∑

i=1

εi∆(i) = ∆(1)
(

(ε1 − ε2)
︸ ︷︷ ︸

=0

+ (ε3 − ε4)
︸ ︷︷ ︸

=0

+ . . . + (εd−1 − εd)
︸ ︷︷ ︸

=0

)

= 0.

It follows that
d∑

i=1

q(i) =

d∑

i=1

p(i) +

d∑

i=1

εi∆(i) = 1.

So, to check that q defines a probability distribution, it remains to show that it has
nonnegative entries. But this follows from our construction: q(i) ≥ p(i)− p(i) = 0
for even i, and q(i) ≥ p(i)− p(i + 1) ≥ 0 for odd i.

Now let’s check undetectability. For every i ∈ [d], the probability that x = i
under q is

Pq{x = i} = (p(i) + εi)P{∆(i) = 1}+ (p(i)− εi)P{∆(i) = 0}

=
1

2
(p(i) + εi) +

1

2
(p(i)− εi) = p(i).

2Of course, the exact value of N is unknown but we can always work with the maximum
number of tokens allowed by the LLM.

3In the case that d is odd, we simply add a spurious token
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Because at each step j = 1, . . . , N we sample an independent copy of ∆, the dis-
tribution of the text x1, . . . , xN sampled from the watermarked distributions q and
the unwatermarked distributions p remains the same. �

3.1. Watermarking Detection – Closed setting. We now describe how our
detection algorithm works. The core idea is that whenever the perturbation ∆(x)
is positive, it increases the chance of the token x to appear in the text. Thus, it is
more likely to observe the tokens in the text that correspond to the positive entries
of ∆.

So, our algorithm just counts the fraction of tokens xj in the text that have
positive ∆j(xj), and tests if it significantly exceeds 1/2:

Algorithm 1 Watermark Detection

Input: The text x1, . . . , xN . The secret key: ∆1, . . . , ∆N . Tolerance δ.
Output: True or False.

Z ← 1
N

∑N
j=1 1{∆j(xj)=1}.

if Z ≥ 1/2(1 +
√

3 log(1/δ)/N) then

return: True

end if

return: False

Now, we state that the watermarking we just described is undetectable, sound,
and complete:

Theorem 3.2 (Watermarking in Closed Setting). The watermarking scheme de-
scribed above satisfies the following properties:

(1) It is undetectable.

Moreover, for any δ ∈ (0, 1), if N ≥ 3 log(1/δ), then:

(2) It is sound with probability at least 1− δ.
(3) Let p∗

j denote the probability of the most likely token in the vocabulary at
step j = 1, . . . , N . If, for some γ > 1,

(3.3) 1 +
1

N

N∑

i=1

(1− p∗
j ) ≥ γ

(

1 +

√

3 log(1/δ)

N

)

,

then the watermarking scheme is complete with probability at least 1 −
e−cγN , where cγ := (1− γ)/8.

The result follows by taking t = γ/2 and using (4.3).

Remark 3.3 (Minimal entropy allows watermarking). The assumption (3.3) on the
distributions of the tokens is nearly necessary. If p∗

j gets too close to 1, it means that
the token is almost deterministic, so watermarking it is impossible. The assumption
(3.3) ensures that at least some fraction of the text is non-deterministic, making
watermarking possible in principle.

Proof. We already proved undetectability in Proposition 3.1.
Soundness: Suppose we are under the null hypothesis H0 that the text x1, . . . , xN

is independent of the secret key ∆1, . . . , ∆N . Then the test Z defined in Algorithm
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1 has binomial distribution (N, 1/2). By Chernoff’s inequality, for every t > 0 we
have

P{Z ≥ 1/2(1 + t)} ≤ e−t2N/3,

which is at most δ for t =
√

3 log(1/δ)/N .
Completeness: Assume that the text is watermarked. Thus, at each fixed step,

a random token x is picked from the distribution q defined in (3.2). Without loss
of generality, assume that p(1) ≥ p(2) ≥ · · · ≥ p(d). Then,

P{∆(x) = 1} = E1{∆(x)=1} = E

d∑

i=1

1{∆(i)=1}1{x=i}

= E

[
d∑

i=1

1{∆(i)=1} E
[
1{x=i} |∆

]

]

= E

[
d∑

i=1

1{∆(i)=1} P{x = i |∆}
]

= E

d∑

i=1

1{∆(i)=1}
(
p(i) + ε(i)

)

(by (3.2), since only the terms with ∆(i) = 1 contribute to the sum)

=
d∑

i=1

P{∆(i) = 1}
(
p(i) + ε(i)

)
=

1

2

d∑

i=1

(
p(i) + ε(i)

)

(since each ∆(i) has Rademacher distribution)

=
1

2

d∑

i=1

p(i) +
1

2

d∑

i=1

ε(i)

=
1

2
+

1

2

(

p(2) + p(2)
︸︷︷︸

≥p(3)

+p(4) + p(4)
︸︷︷︸

≥p(5)

+ · · ·+ p(d)
)

(by construction (3.1) and the monotonicity assumption)

≥ 1

2
+

1

2
(1− p(1)).

Next, set Z0 := 0 and notice that

Zk := Zk−1 + 1{∆k(xk)=1} − E1{∆k(xk)=1|x1,...,xk−1},

is a martingale satisfying that |Z(k)−Z(k−1)| ≤ 1 almost surely. Thus, by combining
the Azuma-Hoeffding’s inequality

P

{

Z ≥ 1

2

(

1 +
1

N

N∑

i=1

(1− p∗
j )

)

− t

}

≥ 1− e−t2N/2,

with the assumption (3.3), the result follows for t = (γ − 1)/2. �
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4. Watermarking Scheme - Open Source Setting

Unfortunately, in the open source setting, there is no guarantee that an adversary
cannot destroy our watermarking scheme. So we propose a completely different
approach in this setting.

We randomly perturb the logits in (2.1), similarly to [5]. However, the pertur-
bation vector in [5] was sampled from a multivariate Gaussian distribution (the
same at each step), while we propose to draw perturbation vectors from a random
Gaussian mixture, which changes independently at each step.

Let’s describe the construction of the perturbation vector ∆ ∈ R
d in detail.

First, pick a k-sparse subset S ⊂ [d] uniformly at random, and compute the vector

µ = k−1/2
1S

supported on S. Let r be a Rademacher random variable and G ∼ N(0, I). For a
fixed ε > 0, define the perturbation vector

(4.1) ∆ :=

{

ε(G + µ), if r = 1

ε(G− µ), if r = −1.

The role of the tuning parameter ε is to control the tradeoff between detectability
of the watermark and the quality of the text. The secret key is the collection of
vectors G1, . . . , GN used to generate the i.i.d. copies ∆1, . . . , ∆N of ∆ at each step
according to (4.1).

At each new step, the LLM computes the logits ℓ(1), . . . , ℓ(d), and our water-
marking algorithm samples the new token according to the watermarked softmax
rule given by

(4.2) q(i) :=
eℓ(i)+∆(i)

eℓ(1)+∆(1) + · · ·+ eℓ(d)+∆(d)
,

which is just a perturbed version of (2.1). We allow the adversary to have knowledge
of the distribution q.

Intuitively, in order to remove the watermarking scheme, the adversary needs
to guess the values of the perturbation vectors ∆1, . . . , ∆N . This requires the
adversary to learn the mean µ accurately.

But the mixture distribution is chosen exactly for the purpose of making the
adversary’s task computationally hard. Indeed, estimating the mean µ based on
the samples ∆1, . . . , ∆N is a well-known computationally hard problem in robust
statistics, called sparse mean estimation under Huber’s contamination noise.

The choice of the mixture distribution allow us to exploit the following hypothesis
testing version of the sparse mean estimation problem.

Sparse Mean Hypothesis Testing:

• H0 : ∆1, . . . , ∆N was sampled from N(0, ε2I).
• H1 : ∆1, . . . , ∆N was sampled from the mixture (4.1).

Clearly, if it is impossible to distinguish H0 and Ha in the sparse mean hypothesis
testing, then it is not possible to estimate accurately the mean µ (or −µ) based on
∆1, . . . , ∆N .

Perhaps surprisingly, Brennan and Bresler [4] showed that under a well-known
conjecture in theoretical computer science, the k-BPC conjecture, solving the sparse
mean estimation problem can be hard:
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Theorem 4.1 (Brennan and Bresler [4]). In the sparsity regime k ≪
√

d, no
polynomial-time algorithm on N can solve (4) with less than N = Ω̃(k2) samples,
assuming the k-BPC conjecture is true. On the other hand, there exists a compu-
tationally infeasible algorithm that solves (4) with k = Θ(k log d) samples.

The gap between k and k2 (hiding log factors) is an example of statistical-to-
computational gaps, a topic extensively studied in theoretical computer science
literature (see [11] and the references therein).

Impossibility results in machine learning, statistics, and computer science, which
result in statistical-to-computational gaps, are usually interpreted as “negative”
statements. Here, our perspective is different: we leverage a statistical-to-computational
gap to our advantage – to safeguard our watermarking from adversarial attacks.

We now prove the main fact about unremovability:

Proposition 4.2. Assume that dδ ≪ N1+δ ≪ d for some fixed δ > 0. Let
k = N (1+δ)/2. Then, at each step, any Gaussian distribution the adversary can
learn in polynomial time has TV distance at least 0.4 from the distribution of the
watermarked logits ℓ(i) + ∆(i) in (4.2).

Proof. The best the adversary can hope for is to predict ∆adv ∼ N(µadv, ε2I), for
some µadv satisfying ‖µ − µadv‖2 ≥ 1/2. (Indeed, if ‖µadv − µ‖2 < 1/2, then the
adversary would solve the sparse mean estimation hypothesis testing which is not
possible in polynomial time thanks to Theorem 4.1. Indeed, to learn the mean µ
with higher accuracy one would need more than Θ̃(k2)≫ N samples.)

Notice that the total variation distance between the ∆adv and ∆ (or equivalently
−µ) is at least Φ(−1/4) > 0.4, where Φ(·) is the cumulative density function of a
standard multivariate Gaussian. �

The reason why we need to assume the regime dδ ≪ N1+δ ≪ d is to fulfill the
hypothesis of the Theorem 4.1 due to the log factors in Theorem 4.1.

Also note that the choice of total variation distance is not essential, we just re-
quire a distance between Gaussian distributions that is bounded away from zero if
their means are 1/2-far apart in Euclidean distance. For example, similar guaran-
tees holds for KL-divergence or 2-Wassertein distance.

4.1. Watermark Detection - Open Source Setting. We describe our water-
marking detection algorithm. The idea is similar to the one we used in the closed
setting: if the text is independent from the watermark, then Gi(xi) are distributed
as standard Gaussians and therefore the empirical mean concentrates around 0. On
the other hand, if the text is generated by the watermarking scheme then we have
a bias towards the positive entries of G1, . . . , GN and consequently the empirical
mean should deviate from zero.

We now describe the detection algorithm for the open source setting:

Let c0 be the absolute constant in [20, Proposition 2.7.1 from (b) to (e)]. Our main
result for the open source setting is the following theorem:

Theorem 4.3 (Main Result for the Open Source Setting). Let c0 as above. The
watermarking scheme described the rule (4.2) with ε ≤ 1/2 and the detection Algo-
rithm 2 satisfies the following properties:

(1) It is unremovable.

Moreover, for any δ ∈ (0, 1),
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Algorithm 2 Watermark Detection for the Open Source Setting

Input: The text x1, . . . , xN . The key: G1, . . . , GN and ε. Tolerance δ.
Output: True or False.

Z ← 1
N

∑N
j=1 Gj(xj).

if Z ≥ ε
√

2 log(1/δ)/N then

return: True

end if

return: False

(2) The watermarking scheme is sound with probability at least 1− δ.
(3) Let p∗

j denote the probability of the most likely token in the vocabulary at
step j = 1, . . . , N . If, for some γ > 0,

(4.3)
ε2

1200

1

N

N∑

j=1

(1− p∗
j ) ≥ ε

√

2 log(1/δ)

N
+ γ.

Then, with probability at least 1 − e−γ2N/672c2

0
ε2

, the watermark scheme is
complete.

We remark that the assumption (4.3) is analogous to assumption (3.3) and it is
somewhat necessary as explained in the Remark 3.3.

We made effort to make all constants explicit, but we opt for a more simplified
analysis rather than optimizing the value of the constants. Finally, the assumption
on ε ≤ 1/2 is for technical convenient and could be replace by any absolute constant
if necessary.

Before we proceed to the prove, we require some preliminary results. The proofs
of the preliminary results are postponed to the Appendix. Recall that the softmax
functions (2.1) and (4.2).

Proposition 4.4. Let G = (g1, . . . , gd) ∼ N(0, ε2I), for some ε ≤ 1/2 and x ∈ [d]
be a token sampled according to the watermarked softmax rule (4.2). Set p∗ to be
the non-increasing rearrangement of the unwatermarked probability distribution p
(2.1) of the token x. Then

EG(x) ≥ ε2

88e
√

8π
(1− p∗(1)).

Lemma 4.5. Let G = (g1, . . . , gd) ∼ N(0, ε2I), for some ε ≤ 1/2 and x ∈ [d] be a
token sampled according to the watermarked softmax rule (4.2). Then the random

variable G(x) is sub-exponential with ‖G(x)‖ψ1
≤ 2.8

√
10ε and ‖G(x)−EG(x)‖ψ1

≤
8.4
√

10ε.

We leave the proofs to the Appendix. To state our main result about the open
source setting, let cB be the absolute constant in the sub-exponential Bernstein’s
inequality [20, Theorem 2.8.1].

Proof. We already proved the unremovability requirement in Proposition 4.2.
Soundness: Notice that under the null hypothesis, x1, . . . , xN are independent

from G1, . . . , GN , therefore the test Z defined in Algorithm 2 is the distributed as
Z ∼ N(0, ε2/N). By the standard estimate for the Gaussian tail,

P{Z ≥ εt} ≤ e−t2N/2,
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which is at most δ for t =
√

2 log(1/δ)/N .
Completness: Assume that the text is watermarked. Set Z0 := 0 and notice that

Zk := Zk−1 + Gk(xk)− E{Gk(xk)|x1, . . . , xk−1},

is a martingale. By Lemma 4.5, the increments

Yk := [Zk − Zk−1]|x1, . . . , xk−1,

are sub-exponential. In addition to this, [20, Proposition 2.7.1] implies that there
exists a constant c0 > 0 for which all the sub-exponential random variables Yk
satisfy

Eeλ|Yk| ≤ eλ
2c2

0
‖Yk‖2

ψ1 for all |λ| ≤ 1

c0‖Yk‖ψ1

.

It follows from the sub-exponential version of the Azuma-Hoeffding’s inequality [21,
Theorem 2.3] and Proposition 4.4 that

P

{

Z ≥ ε2

88e
√

8π

1

N

N∑

j=1

(1− p∗
j )− t

}

≥ 1− e−t2N/2c2

0
84ε2

.

The result follows from t = γ/2 combined with the assumption (4.3).
�

5. Appendix

5.1. Proof of Proposition 4.4.

Proof. To start, we focus on the term

E

[

gk
e∆(k)+ℓ(k)

eℓ(1)+∆(1) + · · ·+ eℓ(d)+∆(d)

]

≥ e−1/
√
k
E

[

gk
egk

eℓ(1)+g1−ℓ(k) + · · ·+ eℓ(d)+gd−ℓ(k)

]

.

Clearly, e−1/
√
k ≥ e−1 as k ≥ 1. Next, denote by Ej the expectation with respect

to the randomness of gj only. By the iterated law of expectation, we compute the
expectation term in the right-hand side by

E1,...,k−1,k+1,...,d

[

Ek

[

gk
egk

eℓ(1)+g1−ℓ(k) + . . . + eℓ(d)+gd−ℓ(k)

]]

,

and by independence we may treat
∑

i6=k eℓ(i)−ℓ(k)+gi as a constant for the inner

expectation. Thus, let us define αk :=
∑

i6=k eℓ(i)−ℓ(k)+gi and write

Ek

[

gk
egk

αk + egk

]

=
1

2
Ek

[

|gk|
e|gk|

αk + e|gk| − |gk|
e−|gk|

αk + e−|gk|

]

=
αk
2
Ek

[

|gk|
(

e|gk| − e−|gk|

α2
k + αk(e|gk| + e−|gk|) + 1

)]

.

Next, notice that the function f : [0,∞)→ R

f(x) :=
ex − e−x

α2
k + αk(ex + e−x) + 1

,
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is increasing and non-negative. Invoking the FKG inequality, we have that

Ek

[

gk
egk

αk + egk

]

≥ εαk√
2π

Ek

[
e|gk| − e−|gk|

α2
k + αk(e|gk| + e−|gk|) + 1

]

≥ εαk√
2π

(
eεc − e−εc

α2
k + αk(eεc + e−εc) + 1

)

P{|gk| ≥ εc}.

By the standard tail estimate for Gaussians, for the choice of c = 1/2, it follows that
P{|gk| ≥ ε/2} ≥ 1/2. Recall that ε ≤ 1/2 which implies that eε/2 + e−ε/2 ≤ 2.1,
thus

α2
k + αk(eε/2 + e−ε/2) + 1 ≤ 2.06

2

(
α2
k + 2αk + 1

)
≤ 1.05

(
α2
k + 2αk + 1

)
,

and

Ekgk

[
egk

αk + egk

]

≥ εαk√
8π

(
eε/2 − e−ε/2

α2
k + αk(eε/2 + e−ε/2) + 1

)

≥ ε
eε/2 − e−ε/2

1.05
√

8π

(
αk

α2
k + 2αk + 1

)

≥ ε2

1.05
√

8π

(
αk

α2
k + 2αk + 1

)

=
ε2

1.05
√

8π

αk
(αk + 1)2

.

It remains to estimate (from below)

(5.1)
ε2

1.05
√

8π

d∑

k=1

E1,...,k−1,k+1,...,d

[
αk

(αk + 1)2

]

.

Or equivalently (up to the multiplicative constant in front),

d∑

k=1

E1,...,k−1,k+1,...,d

[
1

(αk + 1)
− 1

(αk + 1)2

]

.

Recalling that αk =
∑

i6=k eℓ(i)−ℓ(k)+gi , suppose that there is a non-empty event E
for which both conditions below hold simultaneously
(5.2)
∑

i6=k
eℓ(i)−ℓ(k)+gi ≤ 4.55

∑

i6=k
eℓ(i)−ℓ(k) and

∑

i6=k
eℓ(i)−ℓ(k)+gi ≥ 1

4

∑

i6=k
eℓ(i)−ℓ(k).

By the second estimate in (5.2), we have that

1

αk
=

eℓ(k)

∑

i6=k eℓ(i)+gi
≤ 4

eℓ(k)

∑

i6=k eℓ(i)
=

4p(k)

1− p(k)
,

and then
1

(1 + αk)2
≤ 1

(1 + αk)(1 + (1− p(k))/4p(k))
.

Consequently,

1

1 + αk
− 1

(1 + αk)2
≥
(

1

1 + αk

)
1− p(k)

4p(k) + 1− p(k)
≥
(

1

1 + αk

)
1− p∗(1)

4
.
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Finally, notice that the first estimate in (5.2) implies that

d∑

k=1

1

1 + αk
=

d∑

k=1

eℓ(k)

eℓ(k) + 4.55
∑

i6=k eℓ(i)

≥ 1

4.55

d∑

k=1

eℓ(k)

eℓ(k) +
∑

i6=k eℓ(i)
=

1

4.55
≥ 0.2.

Since (5.1) is non-negative, we have that

d∑

k=1

E1,...,k−1,k+1,...,d

[
αk

(αk + 1)2

]

≥ 0.05(1− p∗(1))P{E}

All it remains is to prove that P{E} is bounded away from zero. To this end, notice
that by Markov’s inequality

P{αk ≤ 4Eαk} ≥
3

4
.

Next, notice that for every i 6= k,

eℓ(i)
∑

i6=k eℓ(i)
egi ≥ eℓ(i)

∑

i6=k eℓ(i)
1gi≥0 =: ai1gi≥0.

The random variable Y :=
∑

i6=k ai1gi≥0 is the sum of independent non-negative

random variables Yi, where Yi ∈ [0, ai]. Notice that
∑

i6=k ai = 1, thus we split into

two cases. If there exists an ai ≥ 1/4 then with probability 1/2, Y ≥ 1/4. On the
other hand, if ai ≤ 1/4 for all i 6= k then by Hoeffding’s inequality

P

{

Y ≥ 1

2
− t

}

≥ 1− e−32t2 .

Setting t = 1/4, we obtain that

P

{

Y ≥ 1

4

}

≥ 1− e−2.

We conclude that P(E) ≥ min{1/2 − e−2, 3/4 − 1/2} = 1/4, which finishes the
proof. �

5.2. Proof of Lemma 4.5.

Proof. Since ‖ · ‖ψ1
is a norm, we have that

‖G(x)− EG(x)‖ψ1
≤ ‖G(x)‖ψ1

+ ‖EG(x)‖ψ1
= ‖G(x)‖ψ1

+ |EG(x)| ≤ 3‖G(x)‖ψ1
,

where the last step follows from
∣
∣
∣
∣

1

‖G(x)‖ψ1

EG(x)

∣
∣
∣
∣
≤
∣
∣
∣
∣
1 +

1

‖G(x)‖ψ1

EG(x)

∣
∣
∣
∣
≤ Ee|G(x)|/‖G(x)‖ψ1 ≤ 2.

The proof boils down to showing that for some well-chosen τ (small as possible)

Ee|G(x)|/τ ≤ e1/
√
k

d∑

k=1

E

[

egk/τ
egk

eℓ(1)−ℓ(k)+g1 + . . . + eℓ(d)−ℓ(k)+gd

]

≤ 2,
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which implies that ‖G(x)‖ψ1
≤ τ . We proceed similarly as in Proposition 4.4. Let

αk :=
∑

i6=k eℓ(i)−ℓ(k)+gi and notice that by Cauchy-Schwarz inequality,

d∑

k=1

Ek

[

egk/τ
egk

eℓ(1)−ℓ(k)+g1 + . . . + eℓ(d)−ℓ(k)+gd

]

≤
d∑

i=1

(Eke2gk/τ )1/2

(

Ek

[
e2gk

(αk + egk)2

])1/2

.

We claim that

(

Ek

[
egk

(αk + egk)2

])1/2

≤ 2.2Ek

[
eℓ(k)+gk

eℓ(1)+g1 + . . . + eℓ(d)+gd

]

.

If the claim is true then by the law of iterated expectation

Ee|G(x)|/τ ≤ 2.2e(E2g/τ )1/2
E

[ d∑

k=1

eℓ(k)+gk

eℓ(1)+g1 + . . . + eℓ(d)+gd

]

≤ 6eε
2/τ2

.

Choosing τ ≥
√

10ε, we reach the estimate Ee|G(x)|/τ ≤ 6.7. We would like to
replace the constant 6.7 by 2 in the right-hand side. To this end, notice that for
the constant a = log 6.7/ log 2 > 1, the function f(x) = x1/a is concave and then
Jensen inequality implies that

Ee|G(x)|/aτ = E
[
(e|G(x)|/τ)1/a

]
≤
(

Ee|G(x)|/τ
)1/a

≤ (6.7)1/a = 2.

Thus setting τ = 2.8
√

10ε concludes the proof. We now proceed to prove the claim.
At one hand,

E

[
egk

αk + egk

]

=
1

2
E

[
e−|gk|

αk + e−|gk|

]

+
1

2

[
e|gk|

αk + e|gk|

]

≥ 1

αk + 1

(
1

2
Ee−|gk| +

1

2

)

≥ 1

αk + 1

(
0.95

2
e−2ε +

1

2

)

(as P{|gk| ≥ 2ε} ≥ 0.95 )

≥ 0.67

αk + 1
(as ε ≤ 1/2).

(5.3)
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On the other hand,

E

[
e2gk

(αk + egk)2

]

=
1

2

(

E

[
e2|gk|

(αk + e|gk|)2

]

+ E

[
e−2|gk|

(αk + e−|gk|)2

])

≤ 1

2

(

2e2ε2 1

(αk + 1)2
+ E

[
e−2|gk|

(αk + e−|gk|)2

])

=
1

2

(

2e2ε2 1

(αk + 1)2
+ E

[
1

(αke|gk| + 1)2

])

=

(

e2ε2 1

(αk + 1)2
+ E

[
1

2(αke|gk| + 1)2

])

=
1

(αk + 1)2

(

e2ε2

+
1

2

)

≤ 1

(αk + 1)2
(
√

e +
1

2
) (as ε ≤ 1/2).

(5.4)

Putting together (5.4) and (5.3) and the fact that ε < 1/2, we obtain that

(

E

[
e2gk

(αk + egk)2

])1/2

≤ 2.18E

[
egk

αk + egk

]

= 2.18E

[
eℓ(k)+gk

eℓ(1)+g1 + . . . + eℓ(d)+gd

]

.

�
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