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Abstract—Federated Learning (FL) enables collaborative
model training across distributed clients while preserving data
privacy, yet it faces significant challenges in communication effi-
ciency and vulnerability to poisoning attacks. While sparsification
techniques mitigate communication overhead by transmitting
only critical model parameters, they inadvertently amplify se-
curity risks: adversarial clients can exploit sparse updates to
evade detection and degrade model performance. Existing defense
mechanisms, designed for standard FL communication scenarios,
are ineffective in addressing these vulnerabilities within sparsified
FL. To bridge this gap, we propose FLARE, a novel federated
learning framework that integrates sparse index mask inspection
and model update sign similarity analysis to detect and mitigate
poisoning attacks in sparsified FL. Extensive experiments across
multiple datasets and adversarial scenarios demonstrate that
FLARE significantly outperforms existing defense strategies,
effectively securing sparsified FL against poisoning attacks while
maintaining communication efficiency.

Index Terms—Federated Learning, Poisoning Attacks, Robust-
ness, Sparsification, Communicaiton Efficiency

I. INTRODUCTION

Federated Learning (FL) [1] has emerged as a transforma-
tive paradigm for decentralized machine learning, enabling
multiple clients to collaboratively train a shared global model
while retaining their raw data locally. By maintaining data
localized, FL enhances privacy and minimizes the risk of
data leakage, making it highly applicable to privacy-sensitive
domains such as healthcare, finance, and distributed IoT net-
works [2]–[4]. Despite these advantages, the iterative nature
of FL necessitates frequent transmission of model parameters
between clients and the central server, leading to substantial
communication overhead [5]. This limitation is especially pro-
nounced in resource-constrained environments, where band-
width limitations and network instability can severely impact
the scalability and practicality of the system.

To address the communication challenges in FL, researchers
have proposed various communication-efficient techniques
[6]–[8], among which sparsification has emerged as a par-
ticularly effective approach. By transmitting only the most
significant model updates, sparsification substantially reduces
communication costs while maintaining model convergence.
Existing sparsification methods, such as Top-k sparsification

[9], have demonstrated considerable success in improving the
efficiency of FL. However, these methods predominantly fo-
cus on minimizing communication overhead and accelerating
convergence, often overlooking the security implications of
sparsified communication. Due to the decentralized nature of
FL, the system may remain highly susceptible to poisoning
attacks, where adversarial clients inject malicious updates to
degrade the global model’s performance. This vulnerability
is further amplified in sparsified FL, as the reduction in
communicated parameters makes adversarial manipulations
harder to detect and mitigate. To the best of our knowledge, the
security risks introduced by sparsification in communication-
efficient FL remain an underexplored area of research.

In contrast to standard FL, where robust aggregation meth-
ods such as Median [10], Trimmed Mean [10], and Krum
[11] have demonstrated effectiveness in mitigating poisoning
attacks, sparsified FL introduces distinct challenges. The se-
lective transmission of updates can obscure malicious modifi-
cations, enabling adversarial clients to evade detection while
exerting significant influence over the global model. These
vulnerabilities highlight an urgent need for the development
of defense mechanisms specifically tailored for sparsified
FL, ensuring that communication efficiency achieved through
sparsification does not compromise the system’s robustness
against adversarial threats.

In this work, we systematically investigate the vulnerabili-
ties of FL under poisoning attacks in the context of sparsified
communication-efficient FL. Our analysis demonstrates that
existing defense mechanisms, originally designed for standard
FL, become ineffective when applied to sparsified FL. These
findings highlight the pressing need for security-aware sparsi-
fication techniques to ensure the robustness of FL systems.

To address this critical challenge, we propose FLARE,
a novel federated learning framework specifically designed
to achieve robust aggregation while maintaining sparsified
communication efficiency. FLARE incorporates sparse index
mask inspection combined with model update sign similarity
analysis to detect and mitigate poisoning attacks in sparsified
communication-efficient FL. By bridging the gap between
communication efficiency and security in FL, this work estab-
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lishes a foundation for the development of robust sparsification
strategies, ensuring that FL remains both communication-
efficient and resilient in adversarial environments. Through
extensive experiments conducted on diverse datasets and under
various attack scenarios, we demonstrate that FLARE effec-
tively secures sparsified FL against poisoning attacks while
preserving its communication efficiency.

Our key contributions are summarized as follows:
• We systematically analyze the security vulnerabilities of

sparsified FL under poisoning attacks and demonstrate
that existing defense mechanisms, originally designed for
standard FL, are ineffective in sparsified settings.

• We propose FLARE, a novel FL framework tailored for
achieving robust aggregation against poisoning attacks
while maintaining sparsified communication efficiency,
which integrates sparse index mask inspection and model
update sign similarity analysis to detect and mitigate
adversarial behaviors.

• We conduct extensive empirical evaluations on multiple
datasets and across diverse adversarial scenarios. The
results demonstrate that FLARE outperforms existing
defense mechanisms, effectively safeguarding sparsified
FL against various poisoning attacks while maintaining
communication efficiency.

II. RELATED WORK
A. Communication-Efficient FL

Enhancing communication efficiency is critical for improv-
ing overall performance of FL systems. The substantial volume
of data exchanged between clients and servers imposes signif-
icant challenges, including increased latency, computational
overhead, and excessive bandwidth consumption, which can
hinder the system’s real-time capabilities. To address these is-
sues, techniques such as sparsification [12], [13], quantization
[6], [14], and asynchronous communication [7], [15], [16] have
been proposed. These methods effectively reduce communi-
cation overhead, enabling FL systems to operate efficiently
in resource-constrained environments while preserving model
performance.

Sparsification methods have shown greater promise com-
pared to alternative techniques, as quantization is not suitable
for large-scale models or low-bandwidth network environ-
ments [17], and the staleness issue introduced by asynchronous
aggregation can affect model convergence [16]. Sparsification
aims to reduce communication overhead by selecting only
a subset of important gradients or model parameters for
transmission during each training round, while less significant
information is either ignored or compressed. Aji et al. [18]
proposed a method that selects the top-k components with
the highest absolute values from the gradients and designates
the remaining components as residuals. Subsequent studies
[5] have demonstrated that Top-k sparsification is less sen-
sitive to the impact of non-IID data in FL. In the context
of peer-to-peer federated learning(P2PFL), Wang et al. [13]
introduced a momentum-based Top-k sparsification method,
termed SparSFA, to further enhance communication efficiency.

B. Model Poisoning Attacks and Defense Strategies in FL

The distributed architecture of FL makes it particularly
vulnerable to poisoning attacks, where adversarial clients
manipulate local updates to compromise the performance
of the global model. Several types of untargeted poisoning
attacks have been proposed in the literature. Label flip at-
tack [19] manipulates local training data by flipping class
labels, thereby injecting mislabeled samples that degrade the
model’s generalization. Gaussian noise attack [19] generates
model updates by adding random noise, leading to instability
and reduced convergence quality. Inner product manipulation
[20] strategically crafts adversarial updates to maximize the
inner product with benign gradients, thereby amplifying their
negative impact on model convergence. Scaling attacks [21]
introduce malicious updates that are disproportionately scaled,
either by inflating or deflating gradient magnitudes, which
disrupts the federated aggregation process and significantly
impairs the effectiveness of the global model. These attacks
demonstrate the vulnerability of FL to malicious participants,
highlighting the need for robust defense mechanisms to miti-
gate their effects.

To mitigate the impact of poisoning attacks in FL, various
defense strategies have been proposed. These strategies can be
broadly categorized into robust aggregation rules and anomaly
detection techniques. Robust aggregation methods, such as
Median [10] and Trimmed Mean [10], aim to improve the
resilience of the global model by mitigating the impact of
malicious updates during the aggregation process. Median
aggregation selects the component-wise median of all client
updates, making it robust to outliers and adversarial manipu-
lations. Trimmed Mean excludes a fraction of the largest and
smallest update values before computing the mean, effectively
mitigating the impact of extreme deviations introduced by
adversaries. Anomaly detection techniques take a different ap-
proach by identifying and filtering out malicious clients before
aggregation. In addition, Krum [11], a widely used anomaly
detection-based method, selects a single client update that is
closest to its neighbors in Euclidean space, assuming that the
majority of clients are honest. By prioritizing updates that
exhibit consistency with the majority, Krum effectively reduces
the impact of outliers. However, these defense methods were
primarily designed for standard FL and have not yet addressed
attacker detection in sparse training scenarios.

III. FORMULATION AND SECURITY MODEL

A. Formulation

The overall goal of FL is to collaboratively train a model
on a group of clients and minimize the global loss. Assume
that there are N clients in the FL environment setting, the
input space X and the target space Y represent the input
features and output targets of the model respectively. Each
client i has a local dataset Di = {(xi,j , yi,j)}ni

j=1, where
ni is the number of samples. The global objective function
f(w) on the server is defined as min

w
f(w) =

∑N
i=1 pifi(w),

where fi is the objective function of client i and pi is the



aggregate weight of client i. The aggregate weight is typically
set 1

N or proportional to the size of the local dataset held
by the client. Then, the local objective function value of
the client i is obtained through local data Di, formulate as
fi(w) = 1

ni

∑ni

j=1 ℓ(Fi(xi,j;w), yi,j), where ℓ denotes loss
function, Fi denotes the model function of client i and (xi,j ,
yi,j) ∈ Di denotes data samples. At the same time, each client
applies stochastic gradient descent to update its local model
parameters with a fixed mini-batch size m in one or more
iterations, formalized as wt+1

i = wt
i − η∇fi(w), where η is

the local model learning rate of client i. Subsequently, the
local model parameters wt+1

i are communicated back to the
server for aggregation.

B. Security Model

In the FLARE framework, we consider a Byzantine threat
model in which the proportion of adversarial participating
clients is assumed to remain below 50% of the total clients.
Each adversarial client is capable of launching poisoning
attacks, aiming to manipulate the global model aggregation
process by transmitting falsified model parameters during the
FL process. This can be achieved either by directly manipulat-
ing the local model or by indirectly falsifying the local training
samples. Consistent with the threat assumptions of existing
poisoning attack studies, we assume that attackers do not have
direct access to the local model updates or raw training data
of benign participants. Furthermore, in this work, the primary
adversarial objective is to conduct untargeted attacks designed
to degrade the overall performance of the global model. It is
important to note that privacy leakage threats, such as those
caused by privacy inference attacks or gradient leakage attacks,
are beyond the scope of this paper.

IV. DESIGN DETAILS OF FLARE

A. Overview of FLARE

Existing sparsified communication efficiency approaches
have been observed to obscure malicious modifications in
poisoning attack scenarios, enabling adversarial clients to
evade detection (demonstrated and discussed in Section V-C).
Consequently, existing defense mechanisms, originally de-
signed for standard FL, become ineffective when applied
to communication-efficient FL frameworks. These findings
underscore the urgent need for security-aware sparsification
techniques to ensure both robustness and communication effi-
ciency in FL systems. To address this challenge, the goal of the
proposed FLARE framework is to enhance robustness against
untargeted poisoning attacks in the context of sparsified,
communication-efficient FL.

As illustrated in Fig. 1, FLARE is built on a common
communication-efficient FL paradigm, where each client com-
municates with the server by transmitting only the most
important model parameters using sparsification techniques.
Specifically, each client performs local training on its data,
applies top-k sparsification, and uploads the sparse model
parameters along with a sparse index mask to the server. The
server then aggregates the received sparse model updates to

form the global model based on the sparse index mask. This
sparsified model aggregation approach significantly reduces
communication overhead, as only a fraction of the model
parameters are exchanged.

To further enhance the robustness of FLARE against poi-
soning attacks—whether through injecting incorrect model
parameters or manipulating the sparsification process—two
key components are designed at the server side: sparse index
mask inspection and model update sign similarity analysis.
Specifically, the sparse index mask inspection module filters
out clients whose model updates are inconsistent with the
majority by measuring the overlap in parameter selections
across clients using the Jaccard similarity metric. The model
update sign similarity analysis module, another critical com-
ponent of FLARE, detects adversarial behavior patterns by
grouping clients with similar update directions (i.e., the signs
of parameter differences) using cosine similarity and applying
density-based clustering to identify malicious clients. Clients
identified as potentially malicious are excluded from the subse-
quent sparsified communication-efficient aggregation process,
ensuring that only benign clients contribute to the final global
model.

In the following sections, we first introduce the robust-
ness enhancement mechanism designed in FLARE, which
addresses the challenges posed by poisoning attacks in
sparsification-based communication within FL scenarios. This
mechanism defends against potential poisoning attacks while
maintaining communication efficiency. Subsequently, we inte-
grate the proposed defense strategy into the standard sparsified,
communication-efficient FL paradigm.

B. Robustness Enhancement Design

To mitigate poisoning attacks in sparse communication
scenarios, we propose two key components: Sparse Index
Mask Inspection and Model Update Sign Similarity Analysis.
These components are collaboratively designed to identify and
filter out potential poisoning clients during the FL training
process. The first component verifies whether the index mask
of uploaded parameters adheres to expected patterns, ensuring
the integrity of sparsified updates. The second component
detects adversarial behaviors by analyzing the similarity of
model update directions, identifying patterns indicative of
potential attacks. We detail these components below.

1) Sparse Index Mask Inspection: Typical sparsified
communication-efficient frameworks typically rely on sparse
index masks. To further investigate their properties, we ana-
lyzed the structural characteristics of these masks and exam-
ined their consistency across clients. As shown in Fig. 2, our
empirical analysis reveals that, even under non-IID training
settings, a significant degree of overlap exists among the masks
generated by different clients. Leveraging this observation, we
propose a filtering mechanism to eliminate potential adversar-
ial clients whose sparse index masks exhibit low overlap with
others or form isolated groups of similarity. Typically, clients
with highly distinct sparse index masks introduce a significant
degree of uncertainty in detecting poisoning attacks, thereby
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Fig. 1. An illustration of the FLARE training process, incorporating client-side top-k sparsification and server-side robust and sparsified aggregation.

Fig. 2. The heatmap of the Jaccard similarity between the sparse index masks
of different clients on the CIFAR-10 dataset under the non-IID setting.

hindering the establishment of a robust defense. By filtering
out these outliers, our approach enhances the reliability of
attack detection and ensures a more consistent aggregation
process.

Specifically, we compute the Jaccard similarity between
the sparse index masks of different clients. Formally, for
each client i, let Mi represent its sparse index mask, which
contains the indices of the selected model parameters after top-
k sparsification. The Jaccard similarity between two clients i
and j is defined as:

J(Mi,Mj) =
|Mi ∩Mj |
|Mi ∪Mj |

(1)

where |Mi ∩Mj | represents the number of common selected
indices between the two clients, and |Mi ∪Mj | represents the
total number of unique selected indices.

For each client, we compute its Jaccard score as the average

Jaccard similarity with all other clients, defined as:

JSCORE(i) =
1

m− 1

∑
j ̸=i

J(Mi,Mj) (2)

where m is the total number of participating clients. The
Jaccard score quantifies the similarity of a client’s sparse index
mask to those of the other clients in the system.

To identify anomalous clients, we define a threshold for
filtering as follows:

JTHRESHOLD =
JMAX + JMIN

2
· β (3)

Here, Jmax and Jmin represent the highest and lowest Jaccard
scores among all clients, respectively, and β is a manually
tuned hyperparameter, with a default value of 0.6. Any client
with a Jaccard score below this threshold is classified as an
outlier and is excluded from the global model aggregation
process.

2) Model Update Sign Similarity Analysis: Motivated by
recent works [24], we also leverage similarity measurements
among clients as a fundamental strategy to mitigate poison-
ing attacks. To evaluate the effectiveness of this approach,
we simulate four types of poisoning attacks in a sparsified
communication scenario and analyze the similarity of model
update signs among clients.

As illustrated in Fig. 3, the first eight clients represent
malicious adversaries, while the remaining twelve are benign
clients. The results demonstrate that the sign similarity among
malicious clients is significantly higher than that among benign
clients in the sparsified communication scenario. Furthermore,
the similarity between malicious and benign clients remains
low, further emphasizing the distinct update patterns intro-
duced by adversarial attacks. It is important to note that, due to
the nature of sparsification, the sign similarity between any two
clients can only be computed over the overlapping regions of
their sparse index masks. In short, our observations reveal that



Fig. 3. The Heatmap of sign cosine similarity among clients on the CIFAR-
10 dataset under the non-IID setting. The first 8 clients are adversaries, while
the remaining 12 are benign clients.

the success of poisoning attacks typically relies on controlling
multiple adversarial clients and injecting relatively consistent
perturbations into the model updates.

Building upon these insights, we design a Model Update
Sign Similarity Analysis module to cluster potential malicious
clients for detection. The process begins by computing the
model parameter differences between the sparse model param-
eters uploaded by each client and the global model from the
previous round, as ∆wi = wi−wG. These differences are then
converted into their corresponding sign directions, defined as:

Sign(∆wi) =

{
1, if ∆wi > 0,

−1, if ∆wi < 0,
(4)

where wi represents the model parameters from client i, and
wG denotes the global model parameters from the previous
aggregation round. It is important to note that parameters
for which no client participated in the aggregation during
the previous round are excluded from the similarity calcu-
lation. This exclusion arises because the server lacks the
corresponding model parameters for these positions, as they
are determined solely by the local models of the clients, which
are independently set by each client.

Next, we compute the pairwise cosine similarity of model
update signs between clients, considering only the overlapping
portions of their sparse index masks. This restriction ensures
that the comparison is performed on the same model elements
between clients, thereby making the similarity measurement
meaningful. The cosine similarity, cos(θi,j), is defined as
follows:

cos(θi,j) =
⟨Sign(∆wi),Sign(∆wj)⟩
∥Sign(∆wi)∥ · ∥Sign(∆wj)∥

, (5)

where ⟨·, ·⟩ denotes the dot product, and ∥ · ∥ represents the
Euclidean norm.

Subsequently, the cosine similarity is transformed into a dis-
tance metric using 1− cos(θi,j), which quantifies the distance
between the updates of two clients. The resulting distance
matrix is then utilized as input to a clustering algorithm.
Specifically, we employ the DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) algorithm [25] within
our framework. To determine the optimal value of ϵ, which
defines the scan radius for core points in DBSCAN, we utilize
the K-nearest neighbors (KNN) method. In this approach, ϵ
is set as the average distance to the n-th nearest neighbor,
where n = N · γ. Here, N represents the total number of
clients, and γ is a hyperparameter that controls the sensitivity
of the clustering process. In practice, we set γ = 0.2 to
balance sensitivity to adversarial clients and false positives.
Additionally, the minimum number of points required to form
a core point in DBSCAN is set to N · γ, ensuring that
each cluster contains a sufficient number of clients. This
clustering process enables the effective grouping of clients
based on similar attack patterns, while clients exhibiting sig-
nificantly different update behaviors are identified as outliers.
The resulting clusters facilitate the detection and exclusion
of malicious clients from the global aggregation process.
Consequently, only benign clients are included in the final
global model aggregation, thereby enhancing the robustness
of the framework.

Algorithm 1: Poisoning Client Filtering
Input: Sparse model W = {W1, . . . ,Wm}, sparse

index masks M = {M1, . . . ,Mm} of m clients
C; filtering threshold β and clustering
sensitivity γ.

Output: Identified benign clients CBENIGN.
1 function poison filtering(C,W,M, β, γ)
2 Initialize CBENIGN ← C ;
3 foreach client i in C do
4 JSCORE(i)← 1

m−1

∑
j ̸=i J(Mi,Mj);

5 Set filtering threshold JTHRESHOLD = JMAX+JMIN

2 ∗ β;
6 foreach client i in C do
7 if JSCORE(i) < JTHRESHOLD then
8 Exclude client i from CBENIGN

9 foreach remaining client i in CBENIGN do
10 Convert ∆wi to sign direction by Equation 4
11 Compute cosine similarity cos(θi,j) by Equation 5;
12 Compute distance matrix D = 1− cos(θi,j);
13 Compute neighbor count n = m ∗ γ;
14 Set ϵ as average distance to n-th nearest neighbor;
15 Apply DBSCAN clustering on D with n, ϵ;
16 Exclude grouped clients from CBENIGN;
17 return CBENIGN

3) Algorithm Overview: Algorithm 1 implements the poi-
soning mitigation mechanism of FLARE. The process begins
with an analysis of the structural consistency of sparse index



masks using the Jaccard similarity metric. For each given
client i, its Jaccard score, JSCORE(i), is computed using Equa-
tion 2. A threshold JTHRESHOLD, determined by Equation 3, is
then applied to filter out clients with JSCORE(i) < JTHRESHOLD,
effectively removing outliers that exhibit abnormal sparsifi-
cation patterns. For the remaining clients, parameter updates
are transformed into binary sign directions via Equation 4, em-
phasizing update polarity rather than magnitude. Subsequently,
the pairwise directional similarity cos(θi,j) is calculated using
Equation 5. The resulting distance matrix, 1 − cos(θi,j), is
utilized as input to the DBSCAN clustering algorithm with
adaptive parameters. Specifically, ϵ is set as the average
distance to the n-th nearest neighbor, where n = m · γ.
Clients grouped into dense clusters by DBSCAN are identified
as coordinated attackers and excluded from the set of benign
clients.

C. Sparsified Communication-Efficient Robust Aggregation

Model sparsification has emerged as a promising technique
for improving communication efficiency in FL by reducing
the number of transmitted model parameters during training
[5], [26]. In the traditional top-k sparsification setting, as
proposed by Aji and Heafield [18], only the most significant
model parameters are selected and transmitted at the scalar
level, while the remaining parameters are set to zero. Inspired
by the recent work of Yan et al. [12], FLARE employs a
pack-level top-k sparsification approach. Unlike scalar-level
sparsification, this method groups model parameters into small
structured packs before applying the sparsification process.
By operating at the pack level, this approach preserves the
structured information within each group, providing a more
efficient and cohesive representation of the model updates.

In the sparsified, communication-efficient aggregation pro-
cess of FLARE, each client first flattens its local model param-
eters and organizes them into structured groups for efficient
packing and transmission. Based on the specified sparsification
ratio and the characteristics of its local model, the client
computes a sparse index mask to identify which parameter
packs will be retained. Specifically, the client determines a
sparsification threshold and assigns a mask value of 1 to
packs whose aggregated values exceed this threshold. The
final transmission to the server includes two components:
the sparsified model parameters and a sparse index mask,
represented with 1-bit per entry, indicating the retained packs.
This structured sparsification approach effectively preserves
critical information while significantly reducing communica-
tion overhead.

Algorithm 2 outlines the sparsified aggregation framework
designed for communication-efficient FL. When the server
receives sparsified model parameters {W1, ...,Wm} and their
sparse index masks {M1, ...,Mm} from m clients, it first
resolves sparse index misalignment by identifying contributing
clients Si = {j|Mj(Pi) = 1} for each packet Pi. This
alignment ensures structural consistency across clients’ het-
erogeneous sparse representations.

Algorithm 2: Sparsified Robust Model Aggregation
Input: Sparse model W = {W1, . . . ,Wm}, sparse

index masks M = {M1, . . . ,Mm}, and local
dataset sizes {|D1|, . . . , |Dm|} of m clients C;
filtering threshold β, clustering sensitivity γ.

Output: Aggregated model WG.
1 CBENIGN ← poisoning filtering(C,W,M, β, γ) ;
2 foreach parameter pack Pi in global model do
3 Si ← ∅ ;
4 foreach client j in CBENIGN do
5 if Mj(Pi) = 1 then
6 Add client j to Si ;
7 APi

=
∑

j∈Si

|Dj |∑m
k=1 |Dk| ;

8 Initialize aggregated model parameter wagg
i = 0 ;

9 foreach client j ∈ Si do
10 Wj(Pi)←Wj(Pi) ∗ |Dj |∑m

k=1 |Dk| ;
11 Normalize Wj(Pi)←Wj(Pi)/APi

;
12 wagg

i + = Wj(Pi) ;
13 Set WG(Pi) = wagg

i ;
14 return WG

The aggregation weight for client j is dynamically assigned
as |Dj |∑m

k=1 |Dk| , proportional to its local dataset size |Dj |. For
each Pi, the server calculates the total aggregation weight
APi

=
∑

j∈Si

|Dj |∑m
k=1 |Dk| to quantify cumulative contribu-

tions. Each model parameter Wj(Pi) undergoes two sequen-
tial transformations: first scaled by its client-specific weight
Wj(Pi) ← Wj(Pi) ∗ |Dj |∑m

k=1 |Dk| then normalized by APi via
Wj(Pi) ← Wj(Pi)/APi

to eliminate dimensional variance
caused by differing contributor counts. The aggregated param-
eter wagg

i =
∑

j∈Si
Wj(Pi) is computed through weighted

summation.
It is important to note that for model parameter packets with

Si = ∅ (unselected by any client), resulting in a value of 0 for
those packs in the aggregation. To prevent gradient vanishing,
clients subsequently populate these vacant Pi packs using their
local parameters before the next training round. This ensures
that the global model has non-zero values for all parameters,
facilitating smooth gradient propagation and avoiding the
problem of inactive parameters during backpropagation.

V. EXPERIMENTAL EVALUATIONS

A. Implementation and Default Setting

Our proposed FLARE1 is implemented using PFLlib [27],
an open-source federated learning (FL) framework.

In the following experiments, unless stated otherwise, the
default FL training setup includes 20 clients, all participating
in each training round and performing one local training
epoch. The attacker ratio is set to 0.4, with poisoning attacks
starting at the 10th round and continuing until training ends.

1The code for FLARE will be made publicly available on GitHub upon the
final decision of this paper.



Fig. 4. Comparison of defense effectiveness across various approaches, evaluated on FashionMNIST, CIFAR-10, and CIFAR-100 under Label Flip Attack
(LFA), Gaussian Noise Attack (GNA), Inner Product Manipulation (IPM), and Scaling Attack in an IID SETTING. The default attacker ratio is fixed at 0.4,
and the top-k sparsification rate is set to 0.5. Top-1 accuracy is used as the evaluation metric for FashionMNIST and CIFAR-10, while top-5 accuracy is
adopted for CIFAR-100.

The batch size is 64, and the Adam optimizer is used with a
learning rate of 0.005.

Furthermore, we evaluate FLARE under two typical data
partitioning settings in FL: IID and Non-IID. In the IID
partitioning setting, the dataset is evenly distributed among
clients, with each client receiving an equal proportion of
samples from every class, ensuring a uniform data distribution.
In contrast, the Non-IID partitioning setting simulates statisti-
cal heterogeneity by employing a Dirichlet distribution-based
partitioning method [28]. Specifically, a Dirichlet distribution
with a concentration parameter α is used to allocate data to
clients, where α controls the degree of data heterogeneity. For
our experiments, we set α = 1 to achieve a moderate level of
data heterogeneity among clients.

B. Datasets and Baselines

To evaluate the effectiveness and performance of FLARE,
we conduct several experiments, consistent with the method-
ologies employed in existing related works. Specifically, we
train a ResNet-20 model [29] using FLARE and compare it
against related baselines on three public datasets: FashionM-
NIST [30], which comprises 70,000 grayscale images across
10 fashion categories; CIFAR-10 [31], which contains 60,000
color images from 10 object categories; and CIFAR-100 [31],
which includes 60,000 color images distributed across 100
object categories. FLARE is compared with the following
related baselines in this paper, as discussed in Section II:

• FedAVG [32]: A widely used aggregation method that
computes a weighted average of model updates from
multiple clients to generate a global model. The weights
are based on each client’s data size.

• Multi-KRUM [11]: Calculates the Euclidean distance



Fig. 5. Comparison of defense effectiveness across various approaches, evaluated on FashionMNIST, CIFAR-10, and CIFAR-100 under Label Flip Attack
(LFA), Gaussian Noise Attack (GNA), Inner Product Manipulation (IPM), and Scaling Attack in a NON-IID SETTING. The attacker ratio is fixed at 0.4,
and the top-k sparsification rate is set to 0.5. Top-1 accuracy is used as the evaluation metric for FashionMNIST and CIFAR-10, while top-5 accuracy is
adopted for CIFAR-100.

between each client update and all others. For each
update, the nearest m − n − 1 distances are summed to
compute a Kr score. The k updates with the smallest Kr

scores form the set of honest updates (H), which is then
aggregated using FedAVG.

• Median [10]: Independently calculates the median value
for each model update across all client updates and uses
it as the global model update.

• Trimmed Mean [10]: Sorts client updates and removes
the largest and smallest k%. The mean of the remaining
values is used as the global model update. In our exper-
iments, k is set to 10 by default.

• FedSign [24]: Identifies malicious clients by measuring
cosine similarity between their signature vectors and
calculating attack density. Clients with an attack density
below average are considered honest, and their updates
are aggregated using FedAVG.

• Robust-DPFL [33]: Computes a detection score for
each client by averaging its model parameters. Detection
scores are clustered into two groups using K-means,
and only updates from the cluster with higher average
detection scores are aggregated.

To evaluate FLARE’s resilience to poisoning attacks, we
conducted experiments on both IID and non-IID datasets under
four common poisoning attack scenarios: Label Flip Attack
(LFA) [19], Gaussian Noise Attack (GNA) [19], Inner Product
Manipulation (IPM) [20], and Scaling Attack [21].

• LFA: The attacker changes the original label l of a
training sample to M−l−1, where M is the total number
of labels (i.e., categories) in the dataset. The attacker then
performs local training on this modified dataset.

• GNA: Using the mean and variance of local model, the
attacker generates a Gaussian noise model matching the
size of the local model and uploads it to the server.



• IPM: The attacker manipulates the inner product between
true gradients and robust aggregated gradients to be
negative, disrupting global model convergence.

• Scaling: The attacker amplifies local model updates by a
large factor before uploading them to the server.

Fig. 6. Comparison of defense effectiveness across different attack ratios,
evaluated on CIFAR-100 under LFA, GNA, IPM, and Scaling attacks. The
top-k ratio is set to 0.5.

Fig. 7. Comparison of defense effectiveness across different top-k ratios,
evaluated on CIFAR-100 under LFA, GNA, IPM attack, and scaling attack.
The attacker ratio is set to 0.4.

C. Poisoning Attacks in Sparsified FL

As illustrated in Fig. 4 and Fig. 5, we demonstrate the failure
of most existing defense strategies against poisoning attacks in
the context of sparsified communication-efficient FL. Different

types of poisoning attacks commence at the 10th training
epoch (marked by the red dashed line), and their impact
on common sparsified aggregation is evident. Specifically,
FedAvg fails to maintain stability, particularly under Scaling
and Inner Product Manipulation (IPM) attacks, where the test
accuracy drops drastically after the attack begins.

It is noteworthy that under adversarial perturbations intro-
duced by various poisoning attacks, existing conventional and
state-of-the-art (SOTA) defense mechanisms, such as Multi-
KRUM, Median, and Trimmed Mean, exhibit only limited
resilience. Furthermore, their effectiveness is highly contingent
upon the specific dataset and type of attack. For instance,
while Multi-KRUM demonstrates robustness against scaling
attacks on datasets such as FashionMNIST and CIFAR-10,
it fails catastrophically under GNA attack and IPM attack
on CIFAR-100. Similarly, Trimmed Mean is effective against
LFA attack on CIFAR-10 but suffers substantial performance
degradation under IPM and scaling attacks. Even recently
proposed defense strategies, such as FedSIGN and Robust-
DPFL, exhibit only partial robustness, struggling to withstand
high-intensity attacks on more complex datasets like CIFAR-
100. These findings underscore the limitations of existing
defense mechanisms in addressing sophisticated adversarial
strategies.

D. Model Performance and Defense Effectiveness of FLARE

To evaluate our proposed FLARE, we compare the model
performance and effectiveness of FLARE with those of base-
line methods. As shown in Fig. 4 and Fig. 5, FLARE maintains
high test accuracy and stability even after the attack is intro-
duced, outperforming other defenses in multiple adversarial
settings. Specifically, Scaling and Inner Product Manipulation
(IPM) attacks cause many baseline methods to collapse en-
tirely, while FLARE remains robust, preserving high accuracy.
These results indicate the effectiveness of FLARE against
various poisoning attacks in adversarial federated learning
environments.

E. Impact of Attacker Ratio in FLARE

To further investigate the impact of the attack ratio on
FLARE, we evaluated the defense effectiveness of various
attack strategies under different attack ratios (0.2, 0.3, and
0.4) on the CIFAR-100 dataset. It is important to note that,
in our Threat Assumption, the attacker ratio will not exceed
50%. As shown in Figure 6, the results indicate that the
defense methods are effective across all attack ratios, with no
significant changes in performance. The test accuracy remains
relatively stable regardless of the increase in attack ratio,
demonstrating that our proposed defenses can effectively resist
model poisoning attacks at various levels.

F. Impact of Top-k Sparsification Ratio in FLARE

To investigate how the top-k sparsification ratio affects
FLARE under various attack strategies, we conducted ex-
periments at different sparsification levels on the CIFAR-
100 dataset. Specifically, the top-k sparsification ratio was



set between 0.4 and 0.6 in our experiments. As shown in
Figure 7, the final convergence results indicate that the attacker
has no significant impact on our proposed FLARE across all
sparsification ratios. FLARE demonstrates strong resilience
against four types of model poisoning attacks. However, lower
sparsification ratios may lead to unstable attacker detection.

VI. CONCLUSION

In this work, we investigated the security vulnerabilities
of federated learning in sparsification based communication-
efficient scenarios under poisoning attacks and demonstrated
the limitations of existing defense mechanisms in addressing
these threats. To overcome these challenges, we proposed
FLARE, a robust defense framework to effectively detect and
mitigate adversarial clients. Through extensive experiments,
we demonstrated that FLARE significantly enhances the ro-
bustness of FL in sparsification scenarios while preserving
communication efficiency. These findings underscore the im-
portance of developing security-aware sparsification strategies,
providing a foundation for future research on strengthening the
security of communication-efficient FL systems.
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