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Abstract—The rapid rise of video diffusion models has enabled
the generation of highly realistic and temporally coherent videos,
raising critical concerns about content authenticity, provenance,
and misuse. Existing watermarking approaches—whether passive,
post-hoc, or adapted from image-based techniques—often struggle
to withstand video-specific manipulations such as frame insertion,
dropping, or reordering, and typically degrade visual quality. In
this work, we introduce VIDSTAMP, a watermarking framework
that embeds per-frame or per-segment messages directly into the
latent space of temporally-aware video diffusion models. By fine-
tuning the model’s decoder through a two-stage pipeline—first
on static image datasets to promote spatial message separation,
and then on synthesized video sequences to restore temporal
consistency—VIDSTAMP learns to embed high-capacity, flexi-
ble watermarks with minimal perceptual impact. Leveraging
architectural components such as 3D convolutions and temporal
attention, our method imposes no additional inference cost
and offers better perceptual quality than prior methods, while
maintaining comparable robustness against common distortions
and tampering. VIDSTAMP embeds 768 bits per video (48 bits
per frame) with a bit accuracy of 95.0%, achieves a log P-value
of −166.65 (lower is better), and maintains a video quality score
of 0.836, comparable to unwatermarked outputs (0.838) and
surpassing prior methods in capacity-quality tradeoffs. Code:
https://github.com/SPIN-UMass/VidStamp

I. INTRODUCTION

The rapid advancement of AI-generated content—particularly
video—has introduced unprecedented challenges to digital
media integrity, security, and trust. Recent generative models
are capable of synthesizing highly realistic video content
from static images or natural language prompts [1], [2], [3],
raising concerns about their potential misuse in misinformation,
impersonation, and tampering. The growing accessibility of
such tools poses a significant threat to content authenticity
and highlights the urgent need for robust mechanisms that
can ensure generative model accountability, enable provenance
tracking, and support tamper detection. In this context, water-
marking of AI-generated media has emerged as a promising
strategy for content authentication and tamper evidence [4],
[5].

Generative diffusion models, especially latent diffusion
models (LDMs), have revolutionized high-fidelity content
synthesis by learning to reverse a noise process in a compressed
latent space [6]. While diffusion-based text-to-image models
like Stable Diffusion [7] have already demonstrated remarkable
realism and scalability, recent efforts have extended this
framework to the video domain by incorporating temporally-
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Fig. 1: VIDSTAMP framework overview. Our method embeds
watermark messages directly into the latent space of a video
diffusion model during generation. Each frame (or segment) is
assigned a message that is recoverable via a pretrained extractor.
This enables forensic verification, tamper detection, and source
attribution without any post-processing.

aware modules such as 3D convolutions and temporal attention
into the decoder [8], [9]. These advancements enable the
generation of temporally coherent videos that are nearly indis-
tinguishable from real-world footage. However, the growing
power and accessibility of such models also call for integrated
watermarking solutions that can operate within the generation
pipeline itself—ensuring authenticity without introducing post-
processing steps or perceptual degradation.

Existing approaches to watermarking generative content
either operate in a passive forensic manner or add external
watermarks post-generation. Passive detectors—which attempt
to identify artifacts or inconsistencies in generated content—are
increasingly ineffective against modern diffusion models as
they produce highly realistic outputs with minimal statistical
traces [10], [11]. Meanwhile, post-hoc watermarking, where
a signal is embedded into media after generation, is often
brittle and vulnerable to simple removal techniques, particularly
when the watermarking algorithm is publicly known [12].
Recent work in the image domain, such as Stable Signature [5],
demonstrates that training the generative model itself to embed
an imperceptible signature during content synthesis offers a
promising direction for watermarking. These methods embed
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the watermark directly into the latent decoder, enabling re-
silient and cost-free watermarking during generation. However,
extending such techniques to the video domain introduces new
challenges—naı̈vely applying image-based watermarking frame-
by-frame fails to capture temporal dependencies and cannot
protect against video-specific attacks like frame dropping,
swapping, or insertion.

In this paper, we introduce VIDSTAMP, a novel framework
for robust and efficient watermarking in latent video diffusion
models. An overview of our proposed watermarking framework,
VIDSTAMP, is shown in Figure1. Our method leverages
the temporally-aware architecture of modern video diffusion
decoders to embed a sequence of hidden messages—either
per-frame or per-segment—directly into the generated video.
We adopt a two-stage fine-tuning strategy: first, the decoder
is fine-tuned on a curated image dataset (e.g., COCO [13])
to learn the initial watermarking behavior; then, it is fine-
tuned again on videos generated by the same model, to embed
temporally consistent and uniquely traceable watermarks. This
approach introduces no additional computational cost during
video generation, allows flexible capacity control (each frame
or group of frames may carry distinct messages), and supports
practical use cases such as long-form video authentication and
temporal tamper localization.

To evaluate the practicality and effectiveness of our water-
marking method, we implemented VIDSTAMP on top of the
Stable Video Diffusion (SVD) [1] framework using a two-
stage decoder fine-tuning process. Our model embeds 768 bits
per video (48 bits per frame) with an average bit accuracy
of 95.0%, while preserving video quality nearly identical to
unwatermarked outputs (average perceptual score: 0.836 vs.
0.838). Compared to state-of-the-art baselines, VIDSTAMP
delivers a significantly stronger trade-off between capacity,
quality, and detectability: it outperforms RivaGAN [14],
VideoSeal[15], and VideoShield[16] in log P-value, a statistical
metric that measures how unlikely it is for the extracted
watermark to be correct by chance alone. This makes it
especially useful when comparing watermark robustness across
methods with different capacities. VIDSTAMP achieves a log P-
value of −166.65, which indicates high statistical confidence in
watermark presence even under distortion. Furthermore, unlike
post-hoc watermarking methods, VIDSTAMP introduces no
additional inference overhead, and uniquely supports frame-
level tamper localization, attaining over 95% localization
accuracy across various manipulation types including frame
insertion, deletion, and reordering. These results demonstrate
that VIDSTAMP offers both high-fidelity watermarking and
robust forensic functionality, making it a practical solution for
real-world video provenance and integrity verification.
In summary, this paper makes the following contributions:

• A temporally-aware watermarking framework for
video diffusion models: We present VIDSTAMP, a method
that fine-tunes the decoder of a latent video diffusion
model to embed per-frame or segment-level watermarks
directly during generation. While our method does not
modify the decoder architecture, it leverages the inherent

temporally-aware components (e.g., 3D convolutions and
temporal attention) already present in video diffusion
decoders to enable tamper localization and ownership
verification with no additional inference-time overhead.
Additionally, segment-wise embedding offers flexible
control over watermark capacity.

• A two-stage decoder fine-tuning pipeline: Our approach
first fine-tunes the decoder on static images to promote
spatial watermark separability, then adapts it to video
synthesis to ensure temporal consistency. This training
strategy enables high-capacity watermark embedding (768
bits per video) with strong robustness under distortion.

• State-of-the-art performance in quality, robustness, and
tamper localization: VIDSTAMP achieves comparable
or superior performance to prior baselines (RivaGAN,
VideoSeal, VideoShield), while embedding significantly
more bits and maintaining high video quality. It also
supports frame-level tamper localization with over 95%
accuracy under various manipulation types.

II. PRELIMINARIES

A. Video Diffusion Models and Temporality

Recent advancements in generative modeling have extended
diffusion models to video synthesis, enabling temporally
coherent outputs. Ho et al. introduced video diffusion models
by extending the standard image diffusion architecture to the
spatio-temporal domain, training a 3D U-Net denoiser on both
image and video data to improve fidelity and stability [8].
To generate longer or higher-resolution videos, they proposed
hierarchical sampling techniques, achieving promising results
in text-conditional video generation. Subsequent works have
focused on latent video diffusion to enhance efficiency and
scalability. He et al. [9] proposed generating videos in a low-
dimensional 3D latent space, significantly reducing computation
compared to pixel-space diffusion. Their Latent Video Diffusion
Model employs a hierarchical approach that can produce videos
with thousands of frames, using conditional latent perturbation
and guidance to mitigate error accumulation over long durations.
Similarly, Blattmann et al. [1] transformed a pre-trained image
diffusion model (Stable Diffusion) into a video generator by
adding temporal layers to the latent diffusion model. By fine-
tuning the decoder with 3D convolutions and temporal attention,
they achieved high-resolution text-to-video synthesis while
maintaining consistency across frames.

B. Watermarking in Generative Models

Watermarking techniques for generative models have evolved
across modalities, with early work in text embedding mes-
sages through lexical substitution, syntactic manipulation, or
stylometry [17], [18], [19]. More recently, decoding-based
approaches like Kirchenbauer et al.’s statistical watermark skew
token probabilities during generation, leaving imperceptible yet
detectable traces [20], while neural methods like the Adversarial
Watermarking Transformer encode bit strings through learned
paraphrasing [4]. Sentence-level approaches such as SimMark
[21] further leverage semantic similarity patterns to embed
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watermarks without modifying generation logits, improving
robustness to paraphrasing attacks.

In the image domain, early learning-based watermarking
systems such as HiDDeN trained encoder–decoder CNNs to
embed robust messages directly into images while resisting
typical perturbations like cropping or JPEG compression [22].
A major shift came with model-integrated watermarking in
generative diffusion models—particularly the Stable Signature,
which fine-tunes a latent diffusion model’s decoder to em-
bed persistent identifiers within the generation process itself
[5]. These in-model watermarks offer clear advantages: zero
inference overhead, imperceptibility, and strong robustness
even under heavy transformation. Follow-up methods like
Tree-Ring Watermarks further improve resilience by seeding
watermark signals in the input noise, ensuring they propagate
naturally through the diffusion process [23]. Overall, integrated
watermarking provides stronger tamper resistance and detec-
tion reliability than post-hoc methods, which, while easier
to deploy, are more vulnerable to removal or degradation.
Extending these ideas to video generation introduces new
challenges—particularly maintaining temporal consistency—an
issue our work addresses by leveraging temporally-aware
modules in latent video diffusion decoders.

C. Passive vs. Active Watermarking

Detection techniques for AI-generated content typically fall
into two categories: passive forensics and active watermarking.
Passive methods attempt to detect statistical or visual artifacts
left by generative models. Early efforts focused on GANs, iden-
tifying frequency domain inconsistencies or unnatural textures
[11], [10]. However, diffusion models have largely eliminated
such artifacts, rendering many forensic detectors ineffective
against modern image and video generation [12]. In response,
active watermarking has emerged as a more reliable strategy,
embedding identifiers directly during generation [5], [23].
Post-hoc approaches apply a watermark after synthesis—such
as through DCT, spatial overlays, or neural encoding—but
they are often brittle and easily removed if the embedding
strategy is known [10], [12]. For example, Li et al. demonstrate
that simple removal attacks can strip watermarks without
visible degradation [12], while classical reviews highlight
the vulnerability of post-generation schemes to estimation-
based removal [10]. In contrast, model-integrated methods like
Stable Signature [5], Tree-Ring Watermarks [23], and token-
based biasing for language models [20] embed signals during
generation, making them more robust to adversarial tampering.
Some recent works even propose theoretically undetectable
watermarks by leveraging structured noise or optimal transport
[24], [25]. As diffusion models continue to improve, these
integrated methods offer stronger guarantees of persistence and
provenance than passive or post-hoc approaches.

D. Video Watermarking Techniques

Classical video watermarking has been studied for decades,
yielding a spectrum of spatial-domain and transform-domain
techniques. Spatial methods directly embed payload bits by

modifying pixel intensities or colors in each frame, achieving
high embedding capacity and simplicity at the cost of fragility
against processing and compression [26], [27]. In contrast,
transform-domain schemes hide information in frequency
coefficients, leveraging the human visual system to preserve
perceptual quality while improving robustness to compression
and filtering [27], [28]. Many early approaches combine these
strategies with error-correction coding and redundancy to
resist desynchronization attacks: for instance, repeating or
interleaving the watermark across frames can guard against
frame dropping or temporal cropping, and applying cyclic
error-correcting codes helps the decoder recover from bit
errors introduced by noisy channels or re-encoding [28]. Such
designs allowed watermarks to survive common operations like
recompression, scaling, and transcoding. More recent learning-
based methods employ deep neural networks to automatically
optimize the imperceptible embedding of watermarks. These
approaches typically train an encoder–decoder convolutional
network to hide and extract a bit-string, often inserting a differ-
entiable “distortion layer” (simulating compression, scaling, or
frame loss) during training to enhance robustness. For example,
Luo et al. [29] train a multiscale video watermarking model that
spreads the payload across spatial and temporal dimensions and
employs adversarial discriminators to enforce invisibility and
resilience. Such deep models significantly improve robustness
against complex distortions while maintaining visual quality,
although ensuring temporal consistency when applied frame-
by-frame remains challenging.

The rise of GAN and diffusion-based video generators has
spurred watermarking techniques tailored for AI-generated
content. Zhang et al.’s RivaGAN [14] is an early deep water-
marking architecture for video that introduces an adversarial
training setup with an attacker network attempting to erase
the watermark and a critic ensuring visual fidelity. Through
an attention-based encoder–decoder, RivaGAN identifies per-
ceptually significant regions to embed a robust invisible mark,
achieving strong baseline robustness to compression and scaling
attacks. However, as a post-processing method, it operates out-
side the generative model and does not explicitly address cross-
frame coherence in long AI-generated videos. More recent
frameworks have improved on this. VideoSeal by Fernandez et
al. [15] combines a trained neural embedder and extractor with
a multi-stage training regimen: an initial image-domain pre-
training, followed by video-domain fine-tuning with simulated
video codecs and geometric transformations applied between
the encoder and decoder to harden the watermark. VideoSeal
also introduces temporal watermark propagation, wherein the
watermark is carried over across frames without needing to
embed it independently in each frame, thereby enhancing
efficiency and temporal consistency. This yields state-of-the-art
robustness under mixed distortions (e.g., recompression plus
cropping) for high-definition videos. Nonetheless, VideoSeal
remains an external module applied after video generation. In
parallel, Hu et al. propose VideoShield [16], which integrates
watermarking into the diffusion sampling process for text-to-
video models without requiring model retraining. VideoShield
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Fig. 2: VIDSTAMP training pipeline. During training, a fixed set of messages is embedded into video frames through the
decoder of a latent video diffusion model. The decoder is fine-tuned to maximize both message accuracy and perceptual quality,
using a pretrained extractor for supervision. Message loss and perceptual loss are computed per frame to guide robust and
imperceptible watermark learning.

maps the hidden message bits to a set of “template” noise
perturbations that are injected at each denoising step, so that the
generated frames inherently contain a recoverable watermark;
a reverse diffusion (e.g., DDIM inversion) is used to extract
the watermark from the video, and the method can pinpoint
tampered frames by checking consistency of the template bits
across time. This approach achieves robust extraction and
even enables spatial/temporal tamper localization in diffusion-
generated videos, all with negligible impact on perceptual
quality.

While VideoShield offers a lightweight and inference-time-
compatible solution, it relies on external perturbations and
inversion steps. In contrast, our proposed VIDSTAMP method
embeds watermarks directly into the latent decoding process
of the generative model. This tight integration ensures that
the watermark is temporally coherent across frames and
intrinsically bound to the content, offering greater flexibility
in bit placement and message structure, higher capacity,
and consistent robustness—without the need for post-hoc
perturbation or inversion. By leveraging the model’s existing
temporal modules, VIDSTAMP maintains high visual fidelity
while enabling reliable ownership verification and frame-level
tamper detection.

III. METHODOLOGY

A. Overview

Inspired by the Stable Signature approach for image diffusion
models[5] – which showed that fine-tuning the generative
model’s decoder can embed a persistent invisible watermark
into all outputs – we extend this idea to video generation.
Figure1 illustrates the overall architecture of our system. The
key insight is that modern latent video diffusion models employ
temporally-aware decoders (e.g., 3D convolutions and temporal
attention layers [30]), enabling the generative process itself to
carry a watermark across time. By leveraging these temporal
layers, we embed watermarks during generation, allowing each
frame to carry a unique identifier and enabling distinct per-
frame message decoding. This frame-specific encoding permits
precise verification per frame, which facilitates localization
of any temporal tampering in the video [16]. For watermark
extraction, we utilize a pre-trained decoder network from the
HiDDeN deep watermarking framework [22] to recover the
embedded message from each generated frame.

B. Two Stage Finetuning

Our training framework, illustrated in the Figure 2, begins
with a sequence of frames as the input data, which are
passed through a variational autoencoder (VAE) to obtain
latent representations Z. These latents are decoded frame-by-
frame using a temporally-aware decoder—equipped with 3D
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convolutions and temporal attention—to generate video frames
containing imperceptible embedded messages. Each frame is
assigned a fixed message (bit-string), and a pretrained message
extractor—adapted from the HiDDeN architecture—is used to
recover the message from each generated frame. The extraction
is supervised using a binary cross-entropy (BCE) loss:

Lmsg = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (1)

where yi and ŷi denote the ground truth and predicted
bits, respectively. In parallel, we compute a Watson-VGG
perceptual loss [31] on a frame-by-frame basis to maintain
the semantic integrity and visual quality of the generated
outputs. This perceptual loss, denoted Lperc, compares deep
feature activations between the original and reconstructed
frames, emphasizing human-perceptible discrepancies. The final
training objective is a weighted sum of the message loss and
perceptual loss:

Ltotal = λw · Lmsg + λi · Lperc (2)

where λw and λi are tunable hyperparameters that control
the trade-off between bit accuracy and visual quality. During
training, only the decoder is updated, while the encoder
and message extractor remain frozen. This setup enables the
decoder to learn effective message embedding strategies without
compromising on generation fidelity.

Our training pipeline adopts a two-stage fine-tuning approach
to equip the video diffusion model’s decoder with the ability
to embed robust, temporally-aware watermarks without de-
grading generation quality. In the first stage, we fine-tune the
decoder using COCO [13] image datasets. We treat a batch
of independent images as a pseudo-video, where each image
serves as a distinct frame. This strategy allows the decoder to
perceive each frame as an independent unit, promoting diversity
in learned representations across positions. Consequently, the
model learns to associate distinct spatial features with different
message embeddings, facilitating per-frame message separation.
This stage is essential for initializing the decoder’s ability to
distinguish and encode frame-specific watermarks.

However, training solely on images can lead to suboptimal
video quality, since the decoder lacks exposure to temporal
dynamics and inter-frame coherence. Therefore, in the second
stage, we fine-tune the decoder using synthesized videos
generated from the same diffusion model. This phase reinforces
temporal consistency while preserving the model’s ability to
embed diverse frame-level messages. It also adapts the decoder
to the statistical distribution of video data, improving fidelity
and motion coherence in generated outputs. The dual-phase
training balances frame-level watermark capacity with video-
level coherence, enabling the model to embed traceable, tamper-
localizable watermarks in temporally coherent output videos.

C. Temporal Tamper Localization

To detect and localize frame-level tampering in watermarked
videos, we propose a simple yet effective decoding-based

algorithm that leverages the frame-wise embedded watermark
messages. Given a set of known template messages correspond-
ing to the original frame positions, we compare each decoded
frame message in the potentially tampered video against all
template keys using Hamming similarity. This allows us to
identify which original frame each tampered frame most likely
matches—or to flag it as an insertion if no match surpasses a
similarity threshold.

The algorithm operates as follows: for each frame in the
tampered video, we compute the similarity between its decoded
message and each of the original reference keys (used during
generation). If the best match has a similarity score below
a predefined threshold, the frame is classified as an inserted
(unauthentic) frame. Otherwise, the frame is assigned to the
most similar original key. The predicted sequence is then
compared against the ground-truth frame mapping to calculate
localization accuracy.

This procedure enables identification of common temporal
attacks such as frame insertion, deletion, and reordering. Our
method can generalize to different key counts and message
lengths, offering flexibility in watermarking granularity and
tamper detection sensitivity. The full algorithm is presented in
Algorithm 1.

Algorithm 1 Temporal Tamper Localization

Require: Template keys T ∈ RM×d, Tampered keys K ∈ RN×d,
True sequence S ∈ ZN , Threshold τ

Ensure: Tamper localization accuracy
1: P ← empty list ▷ Predicted frame sequence
2: for i = 1 to N do
3: ki ← K[i] ▷ Current decoded key
4: Compute Hamming similarity sim between ki and all T [j]
5: j∗ ← argmaxj sim[j]
6: if sim[j∗] < τ then
7: P.append(−1) ▷ Inserted frame
8: else
9: P.append(j∗) ▷ Best-matching original index

10: end if
11: end for
12: accuracy ← 1

N

∑N
i=1 ⊮[P [i] = S[i]]

13: return accuracy

D. Segment-wise Embedding

While per-frame watermarking offers high granularity and
precise tamper localization, it can be sensitive to frame-level
distortions and imposes high message embedding and extraction
overhead. To balance capacity and efficiency, we introduce a
segment-wise embedding strategy, as illustrated in Figure 3.
Instead of assigning a unique message to each frame, we divide
the video into fixed-length segments of k frames, and embed
the same message across each segment.

This approach provides greater flexibility in controlling the
total number of embedded bits, which is particularly advanta-
geous when dealing with longer videos. By reducing the number
of unique message blocks relative to the total frame count,
segment-wise embedding avoids unnecessary capacity that
might otherwise increase susceptibility to quality degradation
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Fig. 3: Segment-wise message embedding in VIDSTAMP.
In addition to per-frame embedding, VIDSTAMP supports
embedding watermark messages into fixed-length segments
of k consecutive frames. The same message is repeated across
each segment. Segment-wise embedding provides better control
over the total bit capacity and simplifies message extraction in
long-form videos.

or overfitting. Furthermore, segment-level embedding aligns
naturally with the temporal modeling behavior of latent video
diffusion decoders, which utilize 3D convolutions and attention
mechanisms across contiguous frame windows. As a result,
our method achieves stronger temporal consistency, simplified
extraction, and scalable watermark management, making it
well-suited for high-resolution or long-form generative video
content.

IV. EXPERIMENTAL SETUP

A. Models and Baseline Methods

For our experiments, we build upon the Stable Video
Diffusion (SVD) [1] framework, a popular open-source image-
to-video latent video generation model, which generates
temporally coherent videos conditioned on a single image
input. The model is configured to generate 16 frames per video
at a frame rate of 16 frames per second (fps). While the decoder
is fine-tuned at a spatial resolution of 256×256, inference is
performed at 512×512 resolution to evaluate robustness and
generalization under higher-fidelity outputs.

In our main experiments, we embed a fixed-length 48-bit
message into each of the 16 frames, resulting in a total payload
of 768 bits per video. Embedding is performed directly through
fine-tuning the decoder, following our two-stage training
pipeline. This allows the model to learn to encode unique
messages at the frame level while maintaining perceptual and

temporal quality. The resulting watermarks can be reliably
extracted on a per-frame basis and used for applications such
as ownership verification or temporal tamper localization.

Given the scarcity of end-to-end watermarking methods
tailored for video generation, and the limitations of adapting
image watermarking methods to the video domain, we compare
VIDSTAMP with three representative and open-source baselines:

• RivaGAN [14]: A post-hoc watermarking method for
video data. We generate videos using the original SVD
model and then apply RivaGAN to embed the watermark
after generation.

• VideoSeal [15]: Another post-hoc method that embeds
watermark signals in the pixel space of pre-generated
videos. We use the authors’ released code and apply it to
videos produced by SVD.

• VideoShield [16]: A generation-integrated watermarking
approach based on video diffusion. We generate videos
using the authors’ full pipeline, which embeds watermarks
during the sampling process.

These baselines allow us to compare VIDSTAMP against
both post-processing and integrated watermarking strategies,
evaluating differences in capacity, quality preservation, and
robustness.

B. Metrics

We evaluate VIDSTAMP using both watermark accuracy
metrics and video quality metrics, to capture a comprehensive
view of performance.

• Bit Accuracy. Bit accuracy measures the proportion
of correctly extracted bits from the watermarked video
relative to the original message. Given the original bitstring
m ∈ {0, 1}n and the extracted bitstring m̂i, the bit
accuracy is computed as:

Bit Accuracy =
1

n

n∑
i=1

⊮[mi = m̂i] (3)

This metric reflects how reliably the model can embed
and recover watermark messages across video frames or
segments.

• Log P-Value. Following VideoSeal [15], we also report the
log P-value, which better reflects the statistical confidence
in watermark detectability. Unlike bit accuracy, which
may not capture the full capability of the watermark
under varying capacities, the log P-value accounts for the
probability of false positives, making it a more suitable
metric when comparing models with different watermark
capacities.
Given a watermark length of L, and an observed bit
accuracy a, the log P-value is defined as:

logP = log10

 L∑
k=⌈aL⌉

(
L

k

)
(0.5)L

 (4)

This metric corresponds to the probability of achieving
the observed bit accuracy or higher by random guessing.
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A lower log P-value indicates a stronger, more detectable
watermark. We use this metric as our primary benchmark
for watermark evaluation, as it normalizes across varying
capacities and bit lengths.

• Video Quality Metrics. To evaluate whether watermark
embedding affects the perceptual quality of the generated
videos, we adopt a suite of standard video quality metrics
inspired by VideoShield[16] and measured using the
VBench [32] evaluation toolkit:
– Subject Consistency: Measures whether the appearance

of key subjects (e.g., people, animals, objects) remains
consistent throughout the video. This is computed using
DINO [33] feature similarity across frames. Higher
values indicate less visual drift and better temporal
identity preservation.

– Background Consistency: Evaluates the temporal co-
herence of background scenes by comparing CLIP-
based [34] features across frames. This captures whether
the background remains stable and realistic over time,
without sudden changes or artifacts.

– Motion Smoothness: Assesses how physically plausible
and continuous the motion is across frames. VBench
uses priors from a video frame interpolation model
[35] to evaluate whether the motion adheres to real-
world dynamics. Lower jitter and abrupt movement
yield higher scores.

– Aesthetic Quality: Reflects the visual appeal of indi-
vidual video frames. It is computed using the LAION
aesthetic predictor [36], which considers aspects such as
color harmony, composition, and artistic quality. Higher
scores correspond to more aesthetically pleasing frames.

– Imaging Quality: Measures technical image fidelity,
such as absence of noise, blur, or artifacts. This is
evaluated using the MUSIQ [37] model trained on the
SPAQ [38] dataset. It captures whether the video frames
resemble high-quality photographs in terms of clarity
and exposure.

C. Datasets

We use two datasets in our training pipeline, corresponding
to the two-stage fine-tuning process described in Section III.

For the first stage of fine-tuning—focused on learning
spatially distinct message embeddings—we use the COCO
dataset [13], a widely used benchmark for image understanding
and generation. Each image is treated as an independent frame
in a pseudo-video batch, allowing the decoder to learn to embed
different messages into visually diverse content without relying
on temporal cues.

For the second stage, which adapts the model to temporal
coherence and video distribution, we use the VBench [32]
test prompt set, which consists of 800 prompts spanning eight
semantic categories: animal, architecture, food, human, lifestyle,
plant, scenery, vehicles.

To align with the input format required by our image-to-
video Stable Video Diffusion (SVD) model, we first generate
conditioning images for each prompt using Stable Diffusion

2.1 [7]. These images are then used as inputs to produce video
samples with SVD.

Out of the 800 prompts:
• 640 prompts (80%) are used to generate videos for the

second stage of decoder fine-tuning.
• The remaining 160 prompts (20%) are reserved as an

evaluation set. Videos generated from these prompts
are used for testing watermark extraction accuracy, log
P-value, and video quality, as well as for comparing
VIDSTAMP against existing watermarking baselines such
as RivaGAN, VideoSeal, and VideoShield.

This dataset split allows us to both train the decoder on a
diverse range of video content and fairly assess performance
across a broad set of semantically varied categories.

V. EXPERIMENTAL RESULTS

A. Main Results

Video Quality Preservation. Table I presents a detailed com-
parison of VIDSTAMP against prior watermarking approaches
across both embedding performance and video quality.
In terms of video quality, VIDSTAMP demonstrates the
strongest balance between fidelity and watermark integration.
It achieves an average quality score of 0.836, nearly identical
to the unwatermarked output from Stable Video Diffusion
(0.838), and comparable to or better than all competing methods.
Notably, VIDSTAMP scores the highest or ties for best in
Aesthetic Quality and Imaging Quality, indicating that our
training-time integration approach effectively preserves both
spatial and temporal coherence.

Unlike post-processing watermarking methods such as
RivaGAN and VideoSeal, which apply watermark signals after
video generation and may degrade quality, VIDSTAMP embeds
watermarks during the generation process itself by fine-tuning
the decoder. This not only ensures better perceptual consistency
but also introduces no additional computational overhead at
inference time, as the watermark is inherently generated along
with the video frames.

Embedding Capacity and Bit Accuracy. In terms of bit
accuracy, VIDSTAMP achieves a high value of 0.950. While
this is marginally lower than VideoShield and VideoSeal, it is
important to note that bit accuracy alone is insufficient for fair
comparison across models with different capacities. VIDSTAMP
embeds 768 bits per video (48 bits in each of 16 frames),
which is significantly higher than other methods. Therefore,
comparing bit accuracy without accounting for message length
can misrepresent true performance.

Statistical Detectability (Log P-Value). To address this,
we follow VideoSeal and report the log P-value, a metric that
jointly considers both bit accuracy and bit length, offering a
more reliable measure of watermark detectability. According
to this metric, VIDSTAMP achieves a log P-value of −166.65,
substantially lower (i.e., better) than VideoShield (−149.0),
VideoSeal (−26.9), and RivaGAN (−9.6). This indicates that
VIDSTAMP provides more statistically verifiable watermarks
despite embedding significantly more information per video.
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TABLE I: Comparison of watermarking methods across embedding performance and video quality. VIDSTAMP embeds 768
bits per video (48 bits/frame × 16 frames), offering significantly higher capacity than prior work. The table reports bit accuracy,
log P-value (lower is better), and five VBench-based quality metrics. The last row reports the output quality of the underlying
Stable Video Diffusion model without watermarking, serving as a perceptual upper bound.

Video Quality ↑
Method Bit Length ↑ Bit Accuracy ↑ log10(p) ↓ Subject consistency Background consistency Motion smoothness Aesthetic quality Imaging quality Avg

VIDSTAMP 768 0.950 -166.65 0.959 0.955 0.961 0.606 0.699 0.836
VideoShield 512 0.995 -149.0 0.964 0.960 0.963 0.587 0.699 0.835
VideoSeal 96 0.979 -26.9 0.961 0.956 0.967 0.561 0.672 0.823
RivaGan 32 0.970 -9.6 0.960 0.953 0.964 0.598 0.690 0.833

W/O − − − 0.961 0.957 0.964 0.610 0.697 0.838

Fig. 4: Visual comparison between watermarked and non-watermarked outputs. The first row shows frames generated by
VIDSTAMP with embedded watermark messages. The second row shows the same frames generated without watermarking. The
third row depicts the absolute pixel-wise difference between the two. The differences are visually negligible and imperceptible to
the human eye. Most modifications are localized along object edges, where the model embeds message bits without introducing
perceptible artifacts.

Summary. In summary, VIDSTAMP achieves state-of-the-art
performance in perceptual quality, embeds significantly higher-
capacity watermarks, and offers efficient inference without
post-processing overhead, making it a highly practical and
effective solution for watermarking in generative video models.

Visual Impact of Watermarking. In addition to quantitative
evaluation, we also visualize the visual impact of our water-
marking approach in Figure 4, which shows sample frames
from a generated video. The first row contains frames produced
by VIDSTAMP with embedded watermarks, while the second
row shows frames generated by the original Stable Video
Diffusion model without watermarking. The third row presents
the absolute pixel-wise difference between the two outputs.
As evident in the visualizations, the difference between the
watermarked and non-watermarked frames is imperceptible to
the human eye; most changes are subtle and localized.

Interestingly, the model appears to embed the watermark
by modulating pixel values along the edges and contours of
prominent objects in the scene. This behavior is likely due to the
higher spatial frequency content in these regions, which allows
information to be encoded without disrupting perceptual quality.
The near-invisibility of the changes—even under frame-wise
differencing—highlights the effectiveness of our perceptual
loss formulation and confirms that VIDSTAMP successfully
embeds information without introducing observable artifacts.

B. Robustness

To evaluate the robustness of VIDSTAMP under realistic
conditions, we apply eleven common video distortions, con-
sistent with prior works such as VideoSeal and VideoShield.
These include: resize, JPEG compression, cropping, rotation
(25° and 90°), brightness adjustment, contrast shift, saturation,
sharpness, Gaussian noise, and MPEG4 compression. These
transformations represent a broad range of potential signal
degradations in real-world media pipelines, covering both
geometric and photometric changes.

Figure 5 reports the bit accuracy of each method under
individual distortions. We observe that while each approach
excels under certain types of distortion (e.g., VideoShield
under JPEG, VIDSTAMP under crop and contrast), no method
dominates across all transformations. Importantly, VIDSTAMP
performs comparably to the state-of-the-art in terms of bit
accuracy across most distortion types, despite embedding
significantly more bits per video (768 bits vs. 512 or fewer
for baselines). This shows that VIDSTAMP maintains strong
resilience even at high watermark capacities.

To provide a fairer evaluation that accounts for both bit
accuracy and embedding capacity, we follow VideoSeal and
report log P-values under distortion in Table II. This metric
reflects the statistical confidence of message recoverability,
making it especially valuable when comparing models with
different bit lengths. Results show that while no method
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TABLE II: Log P-value (log10 P ) comparison under 11 common video distortions. Lower values indicate better robustness and
higher confidence in watermark recoverability. This metric considers both bit accuracy and embedding capacity. Bolded values
indicate the best-performing method for each distortion.

Method Resize JPEG Crop Rotation(25) Rotation(90) Brightness Contrast Saturation Sharpness Gaussian Noise MPEG4

VIDSTAMP -9.95 -17.76 -153.24 -8.94 -0.12 -13.06 -195.14 -169.23 -171.86 -58.41 -94.71
VideoShield -0.29 -103.25 -83.21 -0.29 -0.29 -69.88 -144.67 -142.66 -142.66 -111.82 -99.80
VideoSeal -26.91 -0.62 -5.84 -4.56 -0.34 -0.34 -18.79 -23.73 -26.91 -11.70 -14.89
RivaGan -5.89 -2.46 -3.57 -2.98 -2.46 -1.99 -1.60 -1.60 -1.26 -0.97 -0.97

Resize

JPEG

Crop

Rotation(25)

Rotation(90)

BrightnessContrast

Saturation

Sharpness

Gaussian Noise

MPEG4

0.2

0.4

0.6

0.8

1.0

Stable Video Diffusion - Bit Accuracy Robustness
VideoShield
VideoSeal
RivaGan
VidStamp

Fig. 5: Bit accuracy under 11 video distortions. Each
method shows strengths under specific distortions; for instance,
VideoShield performs well under JPEG compression, while
VIDSTAMP achieves high accuracy under crop and contrast
adjustments. Overall, VIDSTAMP delivers performance com-
parable to or better than other methods, despite embedding
significantly more bits per video.

outperforms all others under every single distortion, VIDSTAMP
achieves the best overall log P-value performance, with the
lowest (i.e., best) score in 5 out of the 11 distortion types,
including more challenging conditions like crop, contrast,
rotation, saturation, and sharpness. This confirms that our
approach is not only capacity-efficient but also robust across
diverse real-world transformations.

C. Tamper Localization

To assess VIDSTAMP ’s ability to detect and localize
temporal tampering, we simulate three canonical attack types
commonly encountered in video manipulation:

• Frame Drop: One randomly selected frame is removed
from the sequence, simulating packet loss or targeted
deletion.

• Frame Insert: A synthetic noise frame is inserted at a
random position, mimicking content injection or overlay
attacks.

• Frame Swap: Two frames are randomly swapped to disrupt
the temporal order without modifying visual content.

We also evaluate all pairwise and three-way combinations of
these manipulations to reflect real-world adversarial conditions.
Our approach leverages frame-level watermark messages em-
bedded during generation. At test time, each decoded message
is compared against a set of known template keys using
Hamming similarity. If the maximum similarity for a frame
falls below a given threshold, the frame is flagged as inserted;
otherwise, it is assigned to the best-matching original key. This
enables not only detection of whether a frame was tampered
with but also where in the sequence the manipulation occurred.

We evaluated VIDSTAMP across a range of similarity
thresholds from 0.7 to 0.9, as shown in Table III. While higher
thresholds are stricter and more conservative, we find that a
threshold of 0.8 offers the best overall balance—achieving
over 95% localization accuracy across all tampering types and
their combinations. Specifically, VIDSTAMP achieved 0.962 for
frame ”insertion”, 0.960 for ”swap + insertion”, and 0.960 for
”swap + insert + drop” combinations at this threshold, which
are the best performance across all thresholds.

These results underscore the effectiveness of our temporally-
aware watermarking scheme in enabling precise frame-level
tamper localization, even under compound attacks.

VI. ABLATION STUDY

A. Impact of different segment sizes on segment-wise embed-
ding

We investigate the effect of varying segment sizes K in
segment-wise embedding, where the same watermark message
is embedded across K consecutive frames. This strategy
reduces the number of unique messages embedded in each
video and allows greater control over the total watermark
capacity, which can be useful for longer or high-resolution
videos.

Capacity Considerations. Larger segment sizes reduce
the total number of unique messages per video, effectively
decreasing watermark capacity. As a result, log P-value (which
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TABLE III: Tamper Localization Accuracy at Varying Thresholds. Accuracy for detecting frame-level manipulations (Swap,
Insert, Drop, and combinations) under different similarity thresholds. A threshold of 0.8 provides the best overall accuracy
across all attack types.

Accuracy ↑
Threshold Swap Insert Drop Swap & Insert Swap & Drop Insert & Drop Swap & Insert & Drop

0.9 0.855 0.864 0.851 0.864 0.855 0.861 0.862
0.85 0.936 0.940 0.936 0.939 0.936 0.939 0.941
0.8 0.959 0.962 0.959 0.960 0.960 0.962 0.959

0.75 0.980 0.924 0.980 0.922 0.980 0.920 0.919
0.7 0.989 0.931 0.989 0.931 0.988 0.927 0.927

TABLE IV: Bit Accuracy Across Segment Sizes Under Distortion. Bit accuracy for different segment sizes K under 11 common
video distortions. While performance varies slightly across distortions, all segment sizes yield comparable robustness, with no
single value consistently outperforming others.

Segment Size (K) Resize JPEG Crop Rotation(25) Rotation(90) Brightness Contrast Saturation Sharpness Gaussian Noise MPEG4

1 0.614 0.656 0.935 0.608 0.488 0.633 0.976 0.953 0.955 0.783 0.855
2 0.593 0.640 0.909 0.602 0.489 0.615 0.957 0.931 0.938 0.737 0.819
4 0.595 0.636 0.944 0.608 0.495 0.620 0.983 0.963 0.969 0.773 0.824
8 0.574 0.609 0.956 0.599 0.485 0.634 0.990 0.968 0.980 0.771 0.832

16 0.575 0.583 0.945 0.583 0.470 0.622 0.989 0.968 0.980 0.751 0.808
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Fig. 6: Bit accuracy increases slightly as segment size K grows,
due to message repetition across frames improving extraction
reliability. However, larger K also reduces total watermark
capacity.

accounts for both accuracy and bit length) becomes less
meaningful when comparing different K values. For this reason,
bit accuracy is the only fair metric for evaluating segment-wise
embedding performance, as P-value will naturally worsen with
reduced capacity, even if accuracy remains high.

Bit Accuracy Trends. As shown in Figure 6, bit accuracy
slightly increases as the segment length K grows. This is likely
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Fig. 7: Video Quality vs. Segment Length. Video quality
remains stable across different segment sizes K. All per-
ceptual metrics—subject and background consistency, motion
smoothness, aesthetic and imaging quality—show minimal
variation, indicating negligible visual impact from segment-
wise embedding.

due to message redundancy across frames, which helps the
extractor recover messages more reliably.

Video Quality Stability. As illustrated in Figure 7, percep-
tual quality remains largely stable across all segment sizes.
All five VBench metrics — subject consistency, background
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consistency, motion smoothness, aesthetic quality, and imaging
quality — show minimal variation. This indicates that segment-
wise embedding does not noticeably degrade visual quality,
regardless of the segment size.

Robustness Across Distortions. Table IV summarizes the
bit accuracy under 11 common distortions for different K
values. While certain segment sizes (e.g., K = 4, K = 8)
perform better under specific distortions, no setting consistently
outperforms the others. This suggests that robustness is largely
consistent across all values of K, and the optimal choice may
vary slightly depending on the expected distortion type.

Segment-wise embedding introduces flexible control over
watermark capacity without compromising accuracy, perceptual
quality, or robustness. For practical use, moderate segment
lengths (e.g., K = 4 or K = 8) offer a strong balance between
efficiency and performance.

B. Impact of More Aggressive Tamper Localization Attacks
To further evaluate the robustness of VIDSTAMP’s temporal

tamper localization capabilities, we simulate increasingly
aggressive attack scenarios by scaling the intensity of three
canonical manipulations: frame swapping, frame dropping,
and frame insertion. While previous experiments tested single-
instance manipulations, this ablation examines the system’s
tolerance under heavier tampering.

a) Swap Pairs: In this scenario, we randomly select
and swap N pairs of frames within each video. As shown
in Figure 8, localization accuracy remains consistently high
as the number of swaps increases from 1 to 8. This result
demonstrates VIDSTAMP’s robustness to moderate-to-severe
temporal reordering.

b) Drop Indices: We next evaluate performance under
increasing numbers of dropped frames. As seen in Figure 9,
localization accuracy degrades only slightly, even when up to
10 frames are missing. This suggests that the frame-message
matching remains reliable despite partial sequence loss.

c) Insertions: Lastly, we assess robustness to frame inser-
tions by injecting randomly generated noise frames at random
positions. Since the inserted frames are entirely unstructured
noise and bear no resemblance to authentic watermarked
content, our frame-wise message matching algorithm is able to
detect them with very high accuracy. As shown in Figure 10,
detection accuracy remains high even when up to 10 synthetic
frames are added. Interestingly, we observe a slight increase in
overall localization accuracy as the number of inserted noise
frames grows. This is because the inserted frames are highly
dissimilar to any of the template keys and are thus reliably
flagged as tampered, effectively boosting overall detection
performance.

d) Combined Attacks: In this experiment, we simultane-
ously apply all three types of tampering—frame swaps, frame
drops, and insertions—by randomly selecting frames for each
manipulation type and increasing their total number together. As
shown in Figure 11, localization accuracy remains consistently
high and exhibits a slight upward trend as the number of
combined manipulations increases. This outcome aligns with

1 2 3 4 5 6 7 8
Number of Swap Pairs

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Fig. 8: Tamper Localization Accuracy vs. Number of Frame
Swaps. Localization accuracy remains high even as the number
of swapped frame pairs increases, showing VIDSTAMP ’s
robustness to temporal reordering.
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Fig. 9: Tamper Localization Accuracy vs. Number of Dropped
Frames. VIDSTAMP maintains strong localization performance
despite the removal of multiple frames, demonstrating tolerance
to frame loss.

our earlier observations: Figures 8, 9, and 10 demonstrate that
swap and drop attacks cause only a marginal decline in accuracy
as they intensify, while insertion attacks using random noise
frames actually lead to higher localization accuracy due to their
detectability. As a result, when all three attack types are applied
together, the increasing presence of easily identifiable inserted
frames dominates the trend, yielding an overall increase in
detection accuracy.

Overall, these results indicate that VIDSTAMP remains effective
under aggressive temporal tampering. Even when multiple
manipulations are applied, the method consistently localizes
frame-level alterations with high precision, supporting its
applicability in real-world adversarial scenarios.
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Fig. 10: Tamper Localization Accuracy vs. Number of In-
serted Frames. Even with up to 10 random noise insertions,
VIDSTAMP accurately detects tampered frames, confirming its
resilience to synthetic content injection
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Fig. 11: Tamper Localization Accuracy vs. Number of Com-
bined Attacks. Localization accuracy under simultaneous
application of frame swaps, drops, and insertions. As the
number of combined manipulations increases, accuracy remains
high and exhibits a slight upward trend. This result reflects
the cumulative behavior observed in Figures 8, 9, 10 where
swap and drop manipulations have minimal effect on accuracy,
and insertions using random noise frames are consistently and
easily detected—leading to an overall increase in detection
performance as attack intensity grows.

VII. LIMITATIONS

While VIDSTAMP demonstrates compelling performance
across video quality, watermark capacity, and robustness under
a range of distortions, several limitations remain that warrant
further exploration in future work.

First, the method requires direct access to and modification
of the decoder within the video diffusion model. This design
choice allows for deep integration of watermark information
into the latent decoding process, enabling high capacity and
temporal consistency. However, it also constrains the method’s
applicability, especially in scenarios where the model is only
accessible through black-box APIs—as is often the case with
proprietary or commercial video generation platforms. In such
settings, the lack of access to internal weights and architecture
prevents fine-tuning and limits VIDSTAMP ’s deployment.

Second, the training pipeline involves a two-stage fine-
tuning process that first adapts the decoder on a curated image
dataset and then on video outputs from the same model. While
this strategy significantly improves watermark stability and
traceability, it requires a large collection of prompts and videos
to achieve optimal generalization. As a result, the computational
cost of training VIDSTAMP is higher than that of post-hoc
watermarking techniques, which can embed watermarks directly
into generated content without modifying model parameters.
This may pose scalability concerns in low-resource or time-
sensitive environments.

Third, although our method is designed to embed imper-
ceptible changes that are resistant to common video corrup-
tions, it has not yet been thoroughly tested against targeted
removal attacks. Sophisticated adversarial strategies—such
as gradient-based perturbations that suppress the embedded
bits, GAN-based video re-synthesis that re-generates similar
content without the original watermark, or filtering pipelines
specifically tuned to remove structured artifacts—may challenge
the integrity of the watermark. Addressing these advanced threat
models will require further enhancements, such as integrating
adversarial training techniques or adopting error-correcting
codes within the watermark embedding process to provide
redundancy and resilience.

In summary, while VIDSTAMP presents a practical and
effective solution for embedding watermarks into video gen-
eration pipelines with strong tamper localization capabilities,
its reliance on model access, training complexity, and current
vulnerability to adaptive removal attacks mark important areas
for future development.

VIII. CONCLUSION

In this work, we introduced VIDSTAMP, a temporally-aware
watermarking framework designed for latent video diffusion
models. By fine-tuning the decoder through a two-stage training
process, VIDSTAMP embeds robust, high-capacity watermark
messages directly into the generative process, enabling frame-
or segment-level message recovery with minimal perceptual
impact.

Our method achieves strong performance across multiple
dimensions. It delivers high watermark accuracy while embed-
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ding significantly more bits than prior methods, maintains video
quality that is nearly indistinguishable from non-watermarked
outputs, and remains robust against a wide range of distortions
and temporal tampering attacks. Furthermore, VIDSTAMP
enables precise tamper localization by leveraging frame-level
message matching, even under aggressive manipulations such
as frame drops, insertions, and swaps.

Through extensive experiments, we show that VIDSTAMP
outperforms or matches state-of-the-art methods across qual-
ity, capacity, and robustness metrics, all without requiring
additional inference-time overhead. Our approach provides a
practical and scalable solution for authenticating AI-generated
video, supporting downstream tasks such as forensic verifica-
tion, provenance tracing, and content integrity auditing.

Future work will explore integration with adversarial training
for removal resistance, and extending our approach to other
modalities such as multi-view video or long-form generation.
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