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Abstract

This article describes the disclosure avoidance algorithm that the U.S. Census Bureau used
to protect the 2020 Census Supplemental Demographic and Housing Characteristics File (S-
DHC). The tabulations contain statistics of counts of U.S. persons living in certain types of
households, including averages. The article describes the PHSafe algorithm, which is based
on adding noise drawn from a discrete Gaussian distribution to the statistics of interest. We
prove that the algorithm satisfies a well-studied variant of differential privacy, called zero-
concentrated differential privacy. We then describe how the algorithm was implemented on
Tumult Analytics and briefly outline the parameterization and tuning of the algorithm.
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1 Introduction

The U.S. Census Bureau (Census Bureau) conducts a census of the U.S. population every 10 years.
The 2020 Census is the most recent such undertaking. As part of the 2020 Census, the Census
Bureau manages the collection, processing, and publication of census data to the U.S. people.
While handling these data, the Census Bureau is obligated to preserve the confidentiality of census
respondents. To achieve this goal, the Census Bureau utilizes a Disclosure Avoidance System
(DAS) that incorporates privacy algorithms into the data processing and dissemination procedures
of the 2020 Census. For the 2020 Census, the DAS was rebuilt to improve its privacy protection
mechanisms. The 2020 DAS adheres to a privacy framework known as differential privacy. This
framework admits many different variants or instances of privacy definitions. The most well-
known instance of the framework is called “pure” differential privacy. However, in this paper,
we assume that the term “differential privacy” refers to the variant known as zero-concentrated
differential privacy, unless otherwise specified. Data publication mechanisms that fit the definition
of any instance of the differential privacy framework achieve mathematically provable guarantees
about the privacy loss incurred by data publication.

The DAS leverages a slate of differential privacy mechanisms to protect the Census Bureau’s
various data products for the 2020 Census. These data products include the 2020 Census Redis-
tricting Data (P.L. 94-171) Summary File, Demographic and Housing Characteristics File (DHC),
Demographic Profile, Detailed Demographic and Housing Characteristics File A (Detailed DHC-
A), Detailed Demographic and Housing Characteristics File B (Detailed DHC-B), and Supplemen-
tal Demographic and Housing Characteristics File (S-DHC). Since each data product has its own
challenges regarding confidentiality protection, the DAS customizes its privacy algorithms to op-
timize protection and accuracy on a product-by-product basis. Some closely related data products
use the same algorithm.

The focus of this paper is PHSafe, an algorithm designed specifically to provide differential
privacy guarantees for the production and release of the S-DHC.

There are three main goals of this article:

1. Describe the PHSafe algorithm and how it meets the requirements of the S-DHC.

2. Prove the privacy properties of the PHSafe algorithm.

3. Describe the parameters in the PHSafe algorithm and how they impact privacy-accuracy
trade-offs.

The paper is organized as follows. Section 2 covers a full description of the data product and
privacy release problem. Section 3 provides a pseudocode description of PHSafe that details how
privacy protection is applied to create the S-DHC tabular summaries. Sections 4 and 5 provide
relevant background material on the differential privacy framework and explain how PHSafe ad-
heres to the framework, respectively. In Section 6, we discuss the differences between our pseu-
docode abstraction and the programmed codebase of the algorithm. Finally, Section 7 describes
the parameters in PHSafe that impact the privacy-accuracy trade-offs of the algorithm.

2 Problem Setup

The S-DHC includes counts of people in the United States and Puerto Rico living in certain types
of households, including averages. It includes eight published tables–six of which are repeated
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by major race and ethnicity. A common feature in most of these tabulations is that statistics are
generated after joining person characteristics (e.g., age) with properties of the households they
live in (e.g., family type of the household). In this section, we define relevant concepts, outline the
statistics to be released, and then formulate the differentially private algorithm design problem.

2.1 Geography

A geographic summary level is a set of geographic areas with nonoverlapping boundaries, such
as the set of all states. The S-DHC contains statistics for two geographic summary levels:

• Nation

• State or State equivalent

Washington, D.C. is an example of a State equivalent. However, we tend to omit the “or State
equivalent” qualifier in the remainder of this document. Throughout this paper, we adopt the
convention of capitalizing levels and using lowercase for entities within a level (e.g., the state of
Maine is included in the State summary level).

2.2 Race and Ethnicity

Every person is associated with one or more major race categories: White, Black or African Amer-
ican, American Indian or Alaska Native, Asian, Native Hawaiian or Other Pacific Islander, and
Some Other Race. Every person also has a binary ethnicity indicator (Hispanic or Latino, Not
Hispanic or Latino).

In the collected 2020 Census data, every household has exactly one person that is designated
as its householder. Every household is associated with the major races and ethnicity of its house-
holder.

Six of the S-DHC tables are repeated by the following race and ethnicity iterations:

(*) Total population

(A) White alone

(B) Black or African American alone

(C) American Indian and Alaska Native alone

(D) Asian alone

(E) Native Hawaiian and Other Pacific Islander alone

(F) Some Other Race alone

(G) Two or more major races

(H) Hispanic or Latino

(I) White alone, not Hispanic or Latino

These iterations give rise to three distinct iteration levels for which the S-DHC statistics may
be released.
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• Unattributed: These statistics represent the total population; they are not constrained by ei-
ther race or ethnicity. This level only has one iteration, denoted as the * iteration in the above
list.

• A-G: These statistics are categorized by exactly one of the major race iterations denoted by
A, B, C, D, E, F, or G. No constraint is placed on ethnicity.

• H-I: These statistics are categorized by either the H iteration or the I iteration. H is con-
strained by ethnicity and I is constrained both race and ethnicity.

Depending on the specific statistic, the iterations may be applied to either individuals or house-
holds (i.e., to the householder). For example, one statistic may count the number of people living
in households who are under 18 years old and White alone, while another statistic may count
the number of people under 18 years old that are living in a household where the race of the
householder is White alone.

Regardless of whether the iteration is applied to each individual or to the household, the cat-
egories within a level are mutually exclusive. For example, in the A-G level, an individual or
household cannot simultaneously be classified as White alone (A) and Black or African American
alone (B). However, individuals or households can be classified in multiple iterations across lev-
els. For example, an individual or household can be classified as Unattributed (*), Asian alone (D),
and Hispanic or Latino (H).

2.3 Population Groups

A population group is a pair (g, c), where g is a geographic entity (e.g., the state of Wisconsin or
the nation) and c is a race or ethnicity iteration (e.g., Asian alone). Population groups are divided
into population group levels. We often identify a population group level by specifying a (geography
level, characteristic iteration level) pair. Each population group level is a set of population groups,
where the population group’s geographic entity belongs to the specified geography level and its
characteristic iteration belongs to the specified characteristic iteration level. More formally, the
S-DHC requires the publication of statistics for the following population group levels:

• (Nation, Unattributed) ≡ {(g, c) : g is the nation, c is the * iteration}

• (Nation, A-G) ≡ {(g, c) : g is the nation, c ∈ {A,B,C,D,E, F,G}}

• (Nation, H-I) ≡ {(g, c) : g is the nation), c ∈ {H, I}}

• (State, Unattributed) ≡ {(g, c) : g is a state, c is the * iteration}

• (State, A-G) ≡ {(g, c) : g is a state, c ∈ {A,B,C,D,E, F,G}}

• (State, H-I) ≡ {(g, c) : g is a state, c ∈ {H, I}}

A person or household is associated with at most one population group in the set that com-
prises a population group level. For example, a household in Texas may be associated with H
or I but not both, since a householder cannot be both Hispanic or Latino and not Hispanic or
Latino. Assuming the householder is Hispanic or Latino, the household would be associated with
the (Texas, H) population group in the (State, H-I) population group level. It is also possible for
a household to be associated with neither H nor I if, for example, the householder was Native
Hawaiian and Other Pacific Islander alone and not Hispanic or Latino.
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One person or household may belong to population groups across multiple population group
levels. For example, a Californian household with a Native Hawaiian and Other Pacific Islander
alone, not Hispanic or Latino householder would be associated with the (nation, *), (nation, E),
(CA, *), and (CA, E) population groups within the levels (Nation, Unattributed), (Nation, A-G),
(State, Unattributed), and (State, A-G), respectively.

2.4 Supplemental Demographic and Housing Characteristics File

The S-DHC aims to tabulate statistics by population groups. The goal is to release the following
eight tables:

(PH1): Average Household Size by Age (Table 1).

(PH2): Household Type for the Population in Households (Table 2).

(PH3): Household Type by Relationship for the Population Under 18 Years (Table 3).

(PH4): Population in Families by Age (Table 4).

(PH5): Average Family Size by Age (Table 5).

(PH6): Family Type and Age for Own Children Under 18 Years (Table 6).

(PH7): Total Population in Occupied Housing Units by Tenure (Table 7).

(PH8): Average Household Size of Occupied Housing Units by Tenure (Table 8).

PH1, PH3, PH4, PH5, PH7 and PH8 are released for all population group levels whereas PH2
and PH6 are only released for (Nation, Unattributed) and (State, Unattributed). PH3 iterates by
the race and ethnicity of each person, whereas PH1, PH4, PH5, PH7 and PH8 iterate by the race
and ethnicity of the householder (or household).

Each table has a basis, a set of fine-grained, disaggregated table cells from which the remaining
cells can be generated. In the below table shells, the dark text indicates which cells form the table’s
basis, while the light text shows the aggregated table cells. For a given table, every in-universe
person can be assigned to exactly one category of the table’s basis. For example, with PH4, every
person in a family is exclusively either under 18 years or 18 years and over.

PH1: Average Household Size by Age
Universe: Households.
Total:

Under 18 years
18 years and over

Table 1: This table contains average household size by age.

6



PH2: Household Type for the Population in Households
Universe: Population in households.
Total:

In married couple household:
Opposite-sex married couple
Same-sex married couple

In cohabiting couple family:
Opposite-sex cohabiting couple
Same-sex cohabiting couple

Male householder, no spouse or partner present:
Living alone
Living with others

Female householder, no spouse or partner present:
Living alone
Living with others

Table 2: This table contains household population counts based on the marital and cohabitation
status of the householder.

PH3: Household Type by Relationship for the Population Under 18 Years
Universe: Population in households under 18 years.
Total:

Householder, spouse, unmarried partner, or nonrelative
Own child:

In married couple family
In cohabiting couple family
In male householder, no spouse or partner present family
In female householder, no spouse or partner present family

Other relatives:
Grandchild
Other relatives

Table 3: This table contains counts for children under 18 years based on their household type.

PH4: Population in Families by Age
Universe: Population in families.
Total:

Under 18 years
18 years and over

Table 4: This table contains population in families by age.
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PH5: Average Family Size by Age
Universe: Families.
Total:

Under 18 years
18 years and over

Table 5: This table contains average family size by age.

PH6: Family Type and Age for Own Children Under 18 Years
Universe: Own Children Under 18 Years.
Total:

In married couple household:
Under 4 years
4 and 5 years
6 to 11 years
12 and 17 years

In cohabiting couple family:
Under 4 years old
4 and 5 years
6 to 11 years
12 and 17 years

Male householder, no spouse or partner present family:
Under 4 years
4 and 5 years
6 to 11 years
12 and 17 years

Female householder, no spouse or partner present family:
Under 4 years
4 and 5 years
6 to 11 years
12 and 17 years

Table 6: This table contains counts of own children under 18 years by family type and age of
children.

PH7: Total Population in Occupied Housing Units by Tenure
Universe: Population in Occupied Housing Units
Total:

Owned with a mortgage or a loan
Owned free and clear
Renter occupied

Table 7: This table contains household population counts based on the tenure status of the occu-
pied housing unit.

8



PH8: Average Household Size of Occupied Housing Units by Tenure
Universe: Occupied Housing Units
Total:

Owner occupied
Renter occupied

Table 8: This table contains average household size based on the tenure status of the occupied
housing unit. The PH8 total does not use light text because the indented cells are not expected to
add up to the total.

We end this section with some comments on the average tables PH1, PH5, and PH8. The PH1
table shows a hierarchical structure, with the age breakouts nested below the total. This accu-
rately implies the nested averages add up to the total average–a consequence of each cell in PH1
sharing the same denominator, the total number of households. The PH5 table is similar. The
nested averages add up to the total average because every cell uses the total number of families
as a denominator. The PH8 table does not share this similarity. Despite displaying a hierarchical
structure, the table behaves non-hierarchically because each cell uses a different denominator (to-
tal number of occupied housing units vs. total number of owner occupied housing units vs. total
number of renter occupied housing units), which results in the total average not equaling the sum
of the owner occupied average and the renter occupied average.

2.5 Privacy Release Problem

The Census Bureau is required to abide by the regulations of Title 13 when managing the col-
lection, storage, and release of statistics about persons and households in the United States [1].
Furthermore, legacy statistical disclosure limitation techniques fail to uphold the Census Bureau’s
privacy standards since they are vulnerable to attacks that can reconstruct sensitive records from
aggregate statistics [2]. Hence, the Census Bureau decided to release many of the 2020 Census
data products, including the S-DHC, using algorithms that satisfy modern privacy definitions like
differential privacy [3].

In this paper, we describe PHSafe, a differentially private algorithm for releasing the statistics
that make up the S-DHC. PHSafe was designed to satisfy the following criteria:

• Privacy: The algorithm must satisfy zCDP with respect to arbitrary changes of any person’s
record values. This requires a careful accounting of privacy loss, as changing the values of
one person’s record, including which household they belong to, can change the properties of
at most two households, and consequently manifest a large change in the output statistics.

• Population Groups: The algorithm must release statistics for a predefined set of race and eth-
nicity iterations and the Nation and State geography levels.

• Static tabulations: As shown previously, tables are arranged with a hierarchical table cell
structure. PHSafe directly estimates the most detailed level of disjoint table cells (i.e., the
table basis) for a table. For example, for table PH4, PHSafe takes noisy measurements of the
age breakouts but not the total.

• Averages and Statistical Postprocessing: The PHSafe algorithm must output independent noisy
measurements of the numerators and denominators associated with the average tabulations.
A separate statistical postprocessing model combines these to produce the average tables.
Statistical postprocessing is out of scope for this paper.
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• Accuracy: The algorithm must satisfy pre-determined accuracy targets, defined in terms of
the 90% margins of error (MOE) on the output counts. The margins of error capture error due
to noise infusion within PHSafe but do not capture other sources of error, whether internal
or external to PHSafe. Examples of other error sources include truncation within PHSafe
and undercounting in the 2020 Census data collection procedures. Accuracy targets vary for
different tables and population group levels. The desired targets are outlined in Table 10.

• Integrality: The output statistics must be integers.

• Minimal Consistency: For the most part, the PHSafe differential privacy algorithm is not re-
quired to ensure consistency.1 That is, different counts output by the algorithm need not be
consistent with each other. One example of an expected inconsistency would be the number
of people in households in the United States not equaling the sum of the number of people
in households across all states. Another example would be different estimates of the same
statistic appearing in different tables. For example, the population in households in PH2 is
not expected to equal the population in households in PH7.

• Negativity and Statistical Postprocessing: The output of the PHSafe algorithm may contain
negative counts. The previously mentioned statistical postprocessing model ensures non-
negativity of counts and averages.

In the rest of the paper, we describe the PHSafe differential privacy algorithm, discuss im-
plementation and parameter tuning, and analyze bounds on the privacy loss achievable while
satisfying the constraints mentioned above.

3 PHSafe Algorithm

PHSafe is a privacy algorithm for releasing tabulations pertaining to the population in households
from the 2020 Census, iterated by major race and ethnicity at the Nation and State geography lev-
els. This section covers a simplified abstraction of the PHSafe algorithm. Additional implementa-
tion details are discussed in Section 6. In this section, we describe the algorithm as applied to the
United States. Puerto Rico is discussed in Section 6.6. The algorithm acts on a selection of private
dataframes derived from the 2020 Census.

3.1 Input Data Description

The input dataframes for PHSafe are sourced from the Census Edited File (CEF). The CEF contains
person and household attributes stored in a relational database. Person records are linkable to
household records via a Master Address File ID (MAFID) join key. Many of the attributes available
in the CEF do not factor into the S-DHC tabulations. Therefore, we assume a reduced-form data
extraction as inputs to the PHSafe algorithm. These inputs are detailed below.

3.1.1 Person Dataframe

The first input is a dataframe, denoted person df, containing one row for each person in the United
States. Each row consists of the following attributes: StateID, MAFID, Age, RaceEth, and Relation-
ship.

1Special handling of the average tables results in some consistency between PH4 and PH5, as well as between PH7
and PH8. This is discussed in more detail in Section 3.
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StateID is a single attribute that geolocates a person record to a unique state. We note that all
records in the United States are vacuously included in the nation geographic entity.

MAFID is a foreign key that links a person record to a household record.

Age is an integer which represents the age (in years) of the person.

RaceEth is a single attribute that encodes up to six major race categories and a binary ethnicity
indicator of the person. That is, one person’s RaceEth attribute may indicate the person has one
race (e.g., White alone) and is Hispanic or Latino while another person’s RaceEth attribute indi-
cates the person has two races (e.g., White and Black or African American) and is Not Hispanic or
Latino.

Relationship: An attribute that represents the person’s relationship to the householder for their
associated household. Examples include opposite-sex spouse, grandchild, or nonrelative.

3.1.2 Housing Unit Dataframe (Unit Dataframe)

The second input dataframe, called unit df, contains one row for each occupied housing unit in
the United States.2 Each row in the unit dataframe consists of the following attributes: StateID,
MAFID, HouseholderRaceEth, Tenure, HouseholdType.

StateID is a single attribute that geolocates the household record to its unique state. We note that
all records are vacuously included in the nation geographic entity.

MAFID is a primary key that uniquely identifies the household.

HouseholderRaceEth encodes the race and ethnicity of the householder in a similar manner as
the RaceEth attribute in the person dataframe.

Tenure encodes the occupied housing unit’s tenure status as either owned with a mortgage,
owned free and clear, or rented.

HouseholdType defines the household’s composition, capturing key relationships between the
householder and other members of the household. Examples include opposite-sex married couple
family, same-sex cohabiting couple family, and male householder living alone.

3.2 The Algorithm Description

We present an abstraction of the PHSafe implementation. Notation is outlined in Table 9. PHSafe
is the privacy algorithm for releasing population in household statistics from the 2020 Census for
the S-DHC tables (PH1, PH2, PH3, PH4, PH5, PH6, PH7, and PH8) iterated by race and ethnicity
as applicable. In our abstraction, PHSafe is executed on each table separately, with some special
consideration for the average tables.

Tables PH1, PH5, and PH8 are average tables. PHSafe does not directly release averages, but
rather reports noisy numerator and denominator count estimates independently. We denote these

2Vacant housing units exist in the CEF, but they do not factor into the S-DHC, so we assume an input extraction that
only contains occupied housing units.
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by appending the suffixes num and denom (e.g., PH1 num and PH1 denom). We note that PH4
is identical to PH5 num. To avoid redundancy, PHSafe only estimates PH4 and omits PH5 num
from its processing. Furthermore, we observe that PH8 num and PH8 denom do have hierarchical
table structures, despite PH8 behaving non-hierarchically. For PH8 num, the population in owner
occupied units and the population in renter occupied units does sum to the total population in
occupied housing units. For PH8 denom, the number of owner occupied units and the number
of renter occupied units sums to the total count of occupied housing units. Next, we note that
PH8 num is derivable from PH7, since the population in owner occupied units equals the sum of
the populations in owned with a mortgage or a loan units and owned free and clear units. With
this in mind, PHSafe opts to not directly estimate PH8 num, but rather to derive its estimates from
PH7. PH8 denom is directly estimated.

Thus, we assume the PHSafe mechanism requires nine independent runs to generate the S-
DHC: PH1 num, PH1 denom, PH2, PH3, PH4, PH5 denom, PH6, PH7, and PH8 denom.

The algorithm acts on the pair of private dataframes (person df, unit df) to produce its output
for population groups. Each table defines a set of hierarchical data cells such as “total”, “married
couple household”, or “own child” with respect to a table universe, the entities being tabulated.
For example, the table universe for PH3 is the population under 18 years in households. The
PHSafe algorithm only produces estimates for the basis of a table, meaning that records can be
partitioned into disjoint categories that add up to the table universe total. PHSafe varies from
table to table but conceptually it takes one of two forms:

1. For PH1 num, PH2, PH3, PH4, PH6, and PH7, PHSafe uses a filter-join-transform-measure
query structure, described below in detail. The query involves a data transformation and a
noisy measurement. Algorithm 1 presents the pseudocode.

2. For PH1 denom, PH5 denom, and PH8 denom, PHSafe uses a filter-transform-measure query
structure. Algorithm 2 presents the pseudocode.

In the first form (shown as Algorithm 1), the goal is to count people in categories distinguished
by household and person attributes. We use the table PH1 num as an example. PH1 num counts
the population in households by voting age. These counts are produced for the Nation and State
geography levels. The table is also iterated by the race and ethnicity of the householder for all
iteration levels described in Section 2. The filter-join-transform-measure structure is applied to all
population group levels for table PH1 num. For each population group level, there are four steps:

Filter: The person df and unit df are filtered to remove out-of-universe records. The universe of
table PH1 num is the population in households. Given the inputs described in Section 3.1,
no records are removed in the case of PH1 num. However, for tables like PH3, the filter
would remove people 18 years or over.

Join: The person df and unit df are inner joined on MAFID. The join internally enforces a trun-
cation threshold that limits the number of people within a household to an input threshold
(refer to Algorithm 3 for details of the join).

Transform: Records in the joined dataframe are mapped to at most one population group within the
current level. For example, for table PH1 num, if the level is (State, A-G), each person in
a household is mapped to its associated population group based on the state they reside
in and the major race iteration (White alone, Black or African American alone, etc.) of the
householder. Next, the person is mapped to exactly one basis table cell based on the criteria
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specified within the table specifications. For PH1 num, the basis table cells are either “under
18 years old” or “18 years and older.”

Measure: A noisy measurement count (Algorithm 5) is generated for each combination of population
group and basis table cell.

The second form (Algorithm 2) is similar to the first with a few exceptions. The measurement
is a count of occupied housing units in categories distinguished by household attributes alone, so
only the unit df is used. Thus, the join operator is not needed.

Notation Description

ω The number of population group levels.
Pi Population group level i.
ρi The privacy-loss budget allocated to population group level i.
gi A 1-stable mapping of records to the population group in Pi to which the

record belongs.
f A 1-stable mapping of records to a set of table basis cells. This mapping varies

by table.
τ The truncation threshold.

Table 9: A summary of the notation used in Section 3

Algorithm 1 The main PHSafe algorithm for PH1 num, PH2, PH3, PH4, PH6, PH7

Input: person df: Private dataframe with attributes [StateID, MAFID, Age, RaceEth, Relation-
ship] and one row for each person in the United States.

Input: unit df: Private dataframe with attributes [StateID, MAFID, HouseholderRaceEth, Tenure,
HouseholdType] and one row for each occupied housing unit in the United States.

Input: {ρi}i∈[1,ω]: Privacy parameters for each population group level i ∈ [1, ω].
Input: τ : Truncation threshold

1: procedure PHSAFE(person df , unit df , {ρi}, τ )
2: person df ← person df.filter(PERSON CONDITION) ▷ condition differs by table
3: unit df ← unit df.filter(UNIT CONDITION) ▷ condition differs by table
4: //Add attributes from unit df to rows from person df as shown in Algorithm 3.
5: df ← person df.truncate and join(unit df,MAFID, τ)
6: for i ∈ [1, ω] do
7: dfi ← df .map(gi) ▷ Map each row to the appropriate population group
8: V ← [ ]
9: for P ∈ Pi do

10: vi ← VECTORIZEPOPULATIONGROUP(dfi, P ,f ) ▷ Count vector for population
group

11: V .append(vi) ▷ Append to the vector of all counts
12: end for
13: VECTORDISCRETEGAUSSIAN(V , ρi, (2τ + 2))
14: end for
15: end procedure

13



Algorithm 2 The main PHSafe algorithm for PH1 denom, PH5 denom, PH8 denom

Input: Unit df: Private dataframe with attributes [StateID, MAFID, HouseholderRaceEth, Tenure,
HouseholdType] and one row for each occupied housing unit in the United States.

Input: {ρi}i∈[1,ω]: Privacy parameters for each population group level i ∈ [1, ω].
1: procedure PHSAFE(unit df , {ρi})
2: unit df ← unit df.filter(UNIT CONDITION) ▷ condition differs by table
3: for i ∈ [1, ω] do
4: dfi ← unit df .map(gi) ▷ Map each row to the appropriate population group
5: V ← [ ]
6: for P ∈ Pi do
7: vi ← VECTORIZEPOPULATIONGROUP(dfi, P ,f ) ▷ Count vector for population

group
8: V .append(vi) ▷ Append to the vector of all counts
9: end for

10: VECTORDISCRETEGAUSSIAN(V , ρi, 2)
11: end for
12: end procedure

Algorithm 3 Truncate and join operator

Input: left df : A dataframe with attribute A.
Input: right df : Another dataframe with attribute A.
Input: A: An attribute that serves as the join key between two dataframes.
Input: τ : A truncation threshold

1: procedure LEFT DF.TRUNCATE AND JOIN(right df,A, τ )
2: for a ∈ domain(A) do ▷ The domain of A is taken from left df
3: R ← {row ∈ left df |row[A] = a}
4: left df ← left df.drop(R)
5: if |R| > τ then
6: // In particular, we order records first by a hash function (to avoid bias that would result

from ordering by record attributes) and second by record attributes (in the unlikely scenario that two
records share the same hash).

7: R ← the first τ elements ofR according to a predefined ordering over all records.
8: end if
9: left df ← left df.append(R)

10: end for
11: for a ∈ domain(A) do ▷ The domain for A is taken from right df
12: R ← {row ∈ right df |row[A] = a}
13: if |R| > 1 then
14: right df ← right df.drop(R)
15: end if
16: end for
17: return: left df.join(right df, on=A) ▷ Inner join
18: end procedure
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Algorithm 4 Subroutine of PHSafe which maps each row to the appropriate data cell and returns
a vector of counts.
Input: df : A private dataframe. This dataframe should only contain the records in the population

group P .
Input: P : The population group.
Input: f : A function that maps each row to the appropriate data cell.

1: procedure VECTORIZEPOPULATIONGROUP(df, P, f )
2: //Produce a Vector of Counts for Population Group P
3: v ← df.map(f ).groupby(PopGroup, Basis).count()
4: Return v
5: end procedure

Algorithm 5 The base discrete Gaussian mechanism.

Input: V : An n dimensional vector of integers.
Input: ρ: A privacy-loss parameter.
Input: ∆: Stability factor

1: procedure VECTORDISCRETEGAUSSIAN(V, ρ, ∆)
2: y ← N n

Z

(
∆2

2ρ

)
▷ Defined in Section 4

3: return V + y
4: end procedure

4 Privacy Preliminaries

In this section, we give necessary background on zCDP, including its formal definition and rele-
vant privacy properties.

4.1 Privacy definitions

Definition 1 (Neighboring Databases). Let x, x′ be databases represented as multisets of tuples.
We say that x and x′ are neighbors if their symmetric difference is 1.

Definition 2 (Bounded-Neighboring Databases). Let x, x′ be databases represented as multisets
of tuples. We say that x and x′ are bounded neighbors if they differ by arbitrarily changing at most
one tuple.

We sometimes refer to neighboring databases as “unbounded neighbors” to differentiate be-
tween Definitions 1 and 2. We explicitly specify “bounded” when applicable and otherwise as-
sume “neighbors” refers to Definition 1.

We now define zCDP, which bounds the Rényi divergence between the distributions of a mech-
anism run on neighboring databases.

Definition 3. The Rényi divergence of order α between distribution P and distribution Q, denoted
Dα(P∥Q), is defined as

Dα(P∥Q) =
1

α− 1
log

(
E

x∼P

[(
P (x)

Q(x)

)α−1
])

(1)
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When α =∞,

D∞(P∥Q) = sup
x∈supp(Q)

log

(
P (x)

Q(x)

)
(2)

Definition 4 (zCDP [4]). An algorithm M : X → Y satisfies ρ-zCDP if for all neighboring x, x′ ∈ X
and for all α ∈ (1,∞),

Dα(M(x)∥M(x′)) ≤ ρα. (3)

We also define bounded zCDP, which considers bounded-neighboring databases instead of
unbounded-neighboring databases.

Definition 5. (Bounded zCDP [4]) An algorithm M : X → Y satisfies bounded ρ-zCDP if for all
bounded neighbors x, x′ ∈ X and for all α ∈ (1,∞),

Dα(M(x)∥M(x′)) ≤ ρα. (4)

4.2 Transformation stability

A transformation is a mapping from one dataset to another.

Definition 6 ([5]). A c-stable transformation T : X → Y is a transformation such that:

|T (x)⊖ T (x′)| ≤ c · (|x⊖ x′|)

where ⊖ is the symmetric difference.

Lemma 1 ([6]). Let T : X → Y be a b-stable transformation and G : Y → Z be a c-stable transformation.
Then G ◦ T : X → Z is a b · c-stable transformation.

Lemma 2. Let T : X → Y be a b-stable transformation. Let M : Y → Z be a ρ-zCDP mechanism. Then
M ◦ T : X → Z is a b2 · ρ-zCDP mechanism.

Proof. If x and x′ differ by one record, then T (x) and T (x′) differ by at most b records under b-stable
transformation T . The result follows from the group privacy guarantee of zCDP [4].

4.3 Base Mechanisms

Definition 7 (L2 Sensitivity). Given a vector function q : X → Zn, the L2 sensitivity of q is
supx≈x′ ∥q(x) − q(x′)∥2 where x ≈ x′ denotes x and x′ are neighboring databases and ∥ · ∥2 is
the Euclidean norm.

Like neighboring databases, there is an equivalent notion of bounded sensitivity.

Definition 8 (Bounded L2 Sensitivity). Given a vector function q : X → Zn, the bounded L2
sensitivity of q is supx≈x′ ∥q(x)− q(x′)∥2 where x ≈ x′ denotes x and x′ are bounded neighboring
databases and ∥ · ∥2 is the Euclidean norm.

Definition 9. The discrete Gaussian distribution NZ(σ
2) centered at 0 is

∀x ∈ Z, Pr[X = x] =
e−x

2/2σ2∑
y∈Z e

−y2/2σ2 . (5)

We can also consider the multidimensional discrete Gaussian distribution,N n
Z (σ

2) which is an
n length vector where each item in the vector is an independent sample from the discrete Gaussian
distribution.

Lemma 3. [7] Let q : X → Rn. Let s be such that ∥q(x) − q(x′)∥2 ≤ s for all neighboring x, x′. Let
∆ > 0. Then VECTORDISCRETEGAUSSIAN(q(x), ρ,∆) from Algorithm 5 satisfies s2ρ/∆2-zCDP as a
function of x.
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4.4 Privacy Properties

4.4.1 Composition

One of the most useful and important properties of privacy definitions is their behavior under
composition. In this section, we state sequential composition results for zCDP.

Lemma 4. (Sequential composition of zCDP [4]) Let M1 : X → Y and M2 : X → Z be mechanisms
satisfying ρ1-zCDP and ρ2-zCDP respectively. Let M3(x) = (M1(x),M2(x)). Then M3 satisfies (ρ1+ρ2)-
zCDP.

4.4.2 Postprocessing

Another useful property is that zCDP is closed under postprocessing, meaning that the privacy
guarantee cannot be weakened by manipulating the outputs of a zCDP mechanism without refer-
ence to the protected inputs.

Lemma 5. (Postprocessing for zCDP [4]) Let M : X → Y and f : Y → Z be randomized algorithms.
Suppose M satisfies ρ-zCDP. Then f ◦M : X → Z satisfies ρ-zCDP.

5 Privacy Analysis

PHSafe measures privacy loss with respect to neighboring databases which differ in one person
record. Under unbounded zCDP, this difference is the presence/absence (symmetric difference of
1) of one person record. Under bounded zCDP, this difference is an arbitrary change in a single
person record.

Although PHSafe computations involve two separate dataframes, to avoid separate neighbor-
ing concepts (person vs. household), we imagine a model where both tables are produced by
a transformation of an underlying single dataset called the base person dataframe. This hypo-
thetical base person dataframe contains all necessary information to derive the person and unit
dataframes described as inputs to the algorithm. The values of the person dataframe can be de-
rived as a function of a single person record, resulting in a 1-stable transformation on the base
person dataframe. The unit dataframe is produced by a function of multiple records, all of which
share the same MAFID. This function is 2-stable because adding/removing one person can result
in the original household being removed and another household replacing it.

5.1 Stability

We now analyze the stability of the truncate and join step specified in Algorithm 3.

Lemma 6. Algorithm 3 is a (2τ + 2)-stable transformation.

Proof. Let P and P ′ be neighboring person dataframes that differ in the presence or absence of one
person. Let U and U ′ denote the corresponding unit dataframes. Let

J = P.truncate and join(U,MAFID, τ)

J ′ = P ′.truncate and join(U ′,MAFID, τ)

where the join occurs on the MAFID attribute. We show that |J⊖J ′| ≤ (2τ +2)(|P ⊖P ′|) = 2τ +2.
Note, the truncate and join operator truncates each relation independently prior to the join.
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First, we consider how adding or removing a record in the base person dataframe changes the
two truncate and join operands post-truncation (in terms of symmetric difference). For the person
dataframe, the truncation method in line 7 takes the first τ records of each household according
to a predefined ordering over the universe of records. This truncation is known to be 2-stable [8]
since the addition of one record can result in the new record being included in the truncated set
and another record being removed. That is, the post-truncation person dataframe differs by at
most 2 records prior to the join. For the unit dataframe, the truncation method in line 14 drops
all records with non-unique MAFIDs. With respect to adding or removing a unit record from the
unit dataframe, this is a 1-stable transformation. However, the unit view itself has stability 2 with
respect to adding or removing a record in the base person dataframe. For example, removing
a person record from a household can change the household type (e.g., from a married couple
family to nonfamily) resulting in a symmetric difference of 2 for neighboring datasets. Hence, the
post-truncation unit dataframe differs by at most 2 records when adding or removing a record
from the base person dataframe.

Next, we consider the join. Due to truncation, the max multiplicity of the MAFIDs of the
person and unit dataframes is bounded by τ and 1, respectively. Likewise, the stability of the
truncated person and unit dataframe are both 2. The total stability of the view, J , is bounded
by the MAFID multiplicity of the person dataframe times the stability of the unit dataframe plus
the MAFID multiplicity of the unit dataframe times the stability of the person dataframe. This
together results in a total change of at most 2τ + 2.

5.2 PHSafe

Person (P) Unit 
(U)

stability = 1 stability = 2

Top-k
Trunc on MAFID

threshold = 𝝉

Drop-all
Trunc on MAFID

threshold = 1

P_trunc

stability = 2
Multiplicity of 
MAFID <= 𝝉

U_trunc

stability = 2
Multiplicity of 
MAFID <= 1

Join on MAFID

J

stability = 2𝝉 + 2

Truncate 
and 
Join

Figure 1: Stability of the J view.
The person dataframe and unit
dataframe are derived from the base
person dataframe via a stability 1
and 2 transformation, respectively.

Recall that, depending on the table in question, the PHSafe
algorithm takes one of two forms: Algorithm 1 or Algo-
rithm 2. Here, we show how the privacy loss of each of
these algorithms is derived. These values are with respect
to unbounded zCDP, the conversion to bounded zCDP can
be found in Section 5.3.

Theorem 1. Algorithm 1 satisfies ρ =
∑

i∈[1,ω] ρi-zCDP, where
ω is the number of population group levels.

Proof. Let P and P ′ be neighboring databases, i.e., they dif-
fer in the presence or absence of one person. Let U and
U ′ denote the corresponding unit dataframes. We want to
show that for all α ∈ (1,∞),

Dα(M(P,U)∥M(P ′, U ′)) ≤ α · ρ.

where M is Algorithm 1.
We can decompose the algorithm M into a transforma-

tion function T followed by a sequential composition of ω
zCDP mechanisms M1, . . . ,Mω that take as input the joined
dataframes output by T and output the statistics for popu-
lation group level i.

Let J and J ′ be the result of transformation T on (P,U)
and (P ′, U ′), respectively. Since the mappings, f and gi
are 1-stable transformations, the L2 distance in the query
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defined in Lines 7-12 is 1. It follows that for all i ∈
[1, ω], Dα(Mi(J)∥Mi(J

′)) ≤ α · ρi/(2τ + 2)2 by Lemma 3. Then, by sequential composition, we
have Dα({Mi(J)}i∥{Mi(J

′)}i) ≤ α ·
∑

i ρi/(2τ + 2)2. Finally, since the stability of T is 2τ + 2 (per
Lemma 6) we get:

Dα

(
({Mi}i ◦ T )(P,U)∥({Mi}i ◦ T )(P ′, U ′)

)
≤ α ·

∑
i

ρi = α · ρ.

For completeness, we also give privacy guarantees for Algorithm 2. The proof is straightfor-
ward, as this algorithm does not involve a join operator.

Theorem 2. Algorithm 2 is ρ =
∑

i∈[1,ω] ρi-zCDP, where ω is the number of population group levels.

Proof. Let P and P ′ be neighboring databases that differ in the presence or absence of one person.
Let U and U ′ denote the corresponding unit dataframes. We want to show that for all α ∈ (1,∞),

Dα(M(U)∥M(U ′)) ≤ α · ρ/2.

where M is Algorithm 2.
Since the unit view has a stability of 2, the result then follows.
We can decompose the algorithm M into a transformation function T followed by a sequential

composition of ω zCDP mechanisms M1, . . . ,Mω that take as input the transformed unit data
frames output by T and output the statistics for population group level i.

Let J and J ′ be the result of transformations T on U and U ′, respectively. Since the mappings, f
and gi are 1-stable transformations, the L2 distance in the query defined in Lines 4-9 is 1. It follows
that for all i ∈ [1, ω], Dα(Mi(J)∥Mi(J

′)) ≤ α · ρi/2 by Lemma 3. Then, by sequential composition,
we have Dα({Mi(J)}i∥{Mi(J

′)}i) ≤ α ·
∑

i ρi/2. Finally, since T is a filter, its stability is 1 so we
get:

Dα({Mi}i ◦ T (U)∥{Mi}i ◦ T (U ′)) ≤ α ·
∑
i

ρi/2.

5.3 Converting to Bounded Differential Privacy

Here, we convert the previous privacy guarantees from unbounded zCDP to bounded zCDP.
While all unbounded ρ-zCDP mechanisms also satisfy bounded 4ρ-zCDP, we demonstrate here
that Algorithm 1 and Algorithm 2 instead satisfy bounded 2ρ-zCDP.

Theorem 3. Algorithm 1 satisfies bounded ρ =
∑

i∈[1,ω] 2ρi-zCDP.

Proof. Let P and P ′ be bounded neighboring databases, i.e., they differ in an arbitrary change in
one person’s record. Let U and U ′ denote the corresponding unit dataframes. We want to show
that for all α ∈ (1,∞),

Dα(M(P,U)∥M(P ′, U ′)) ≤ α · 2ρ

where M is Algorithm 1.
When analyzing under bounded zCDP, it is sufficient to consider the deletion of a single in-

dividual’s record and the addition of another arbitrary record. We can decompose the algorithm
M into a transformation function T followed by a sequential composition of ω zCDP mechanisms

19



M1, . . . ,Mω that take as input the joined dataframes output by T and output the statistics for
population group level i.

By Lemma 6, Algorithm 3 is a (2τ + 2)-stable transformation. Let J and J ′ be the result of
transformations T on (P,U) and (P ′, U ′), respectively. Since Algorithm 3 is a (2τ + 2)-stable
transformation and the mappings f and gi are 1-stable transformations, the composition of all
the transformations is (2τ + 2)-stable. Therefore, the maximum difference in the query defined in
Lines 7-12 for a single cell due to adding a record is an increase by (2τ+2). Likewise, for removing
a record, the maximum difference in the query defined in Lines 7-12 is a decrease in a single cell
by (2τ + 2). This results in a maximum L2 distance of

√
2(2τ + 2)2 =

√
2(2τ + 2).

It follows that, given a privacy-loss parameter of ρi
(2τ+2)2

, for all i ∈ [1, ω], we haveDα(Mi(J)∥Mi(J
′)) ≤

α · 2ρi by Lemma 3. Then, by sequential composition, we have Dα({Mi(J)}i∥{Mi(J
′)}i) ≤ α ·∑

i 2ρi = α · 2ρ.

For completeness, we also give privacy guarantees for Algorithm 2. The proof is straightfor-
ward, as this algorithm does not involve a join operator.

Theorem 4. Algorithm 2 satisfies bounded ρ =
∑

i∈[1,ω] 2ρi-zCDP.

Proof. Let P and P ′ be bounded neighboring databases that differ in an arbitrary change in one
person’s record. Let U and U ′ denote the corresponding unit dataframes. We want to show that
for all α ∈ (1,∞),

Dα(M(U)∥M(U ′)) ≤ α · 2ρ.

where M is Algorithm 2.
When analyzing under bounded zCDP it is sufficient to consider the deletion of a single in-

dividual’s record and the addition of another arbitrary record. We can decompose the algorithm
M into a transformation function T followed by a sequential composition of ω zCDP mechanisms
M1, . . . ,Mω that take as input the transformed unit data frames output by T and output the statis-
tics for population group level i.

Let J and J ′ be the result of transformations T on U and U ′, respectively. Since the unit
dataframe is a 2-stable transformation and the mappings f and gi are 1-stable transformations,
the composition of all the transformations is 2-stable. Therefore, the maximum difference in the
query defined in Lines 4-9 for a single population group due to adding a record is an increase
by 2. Likewise, for removing a record, the maximum difference in the query defined in Lines 4-
9 is a decrease in a single population group by 2. This results in a maximum L2 distance of√
2(2)2 =

√
2(2).

It follows that, given a privacy parameter of ρi
4 , for all i ∈ [1, ω], we have Dα(Mi(J)∥Mi(J

′)) ≤
α · 2ρi by Lemma 3. Then, by sequential composition, we have Dα({Mi(J)}i∥{Mi(J

′)}i) ≤ α ·∑
i 2ρi = α · 2ρ.

6 Implementation of PHSafe

The PHSafe algorithm pseudocode from this paper and the implementation of PHSafe differ in
some details. This section highlights a selection of implementation differences, focusing on the
aspects relevant to the privacy analysis of PHSafe. In particular, we argue why each of these
differences do not materially impact the proven privacy-loss budgets from Section 5.
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6.1 Input Validation

PHSafe validates its inputs to ensure that they conform to expected schema specifications and that
they are internally consistent. Input validation is necessary for successful deployment of large-
scale systems like the 2020 DAS. However, this validation process does not fit into the differential
privacy framework. For instance, input validation errors may necessitate edits to the confidential
input data or require a re-run of the program. Such activities are not captured by the privacy
guarantees of the algorithm. We view the privacy risks associated with input validation as negli-
gible since the PHSafe program is being deployed by a trusted curator, the Census Bureau. Hence,
potential risks of input validation fall outside the assumed operational threat model and have no
material impact on the privacy loss incurred by a successful production run of the algorithm.

6.2 Tumult Analytics

PHSafe is implemented using Tumult Analytics [9], a Python library for writing and executing
differentially private queries. Tumult Analytics automates stability and noise scale calculations,
avoiding potential pitfalls with manually calibrating the noise distributions. All access to the
private data is managed through a Tumult Analytics Session, which tracks and limits the total
privacy loss of computations on the sensitive data. The Session initializes all transformations
and measurements performed on the private data. PHSafe constructs a Session with:

• The total privacy-loss budget for all queries made on the private dataset.

• The private datasets of person and unit records.

• The privacy definition for the program (e.g., zCDP).

• Each private dataset’s neighboring definition. The person dataset defines neighbors with re-
spect to the addition/removal of any single record from the dataset. The household dataset
defines neighbors with respect to the addition/removal of two records from the dataset.
These setting reflect the use of unbounded neighbors within the PHSafe code implementa-
tion.

The pseudocode of PHSafe describes an algorithm that is re-run for each table it produces.
The PHSafe program encodes the processing of all tables into a single run so that all processes can
be contained within a single Session. This distinction does not change the privacy analysis of
PHSafe.

6.2.1 Private Joins

Algorithm 3, the truncate and join operator, is implemented as a Tumult Analytics join private
operation. Truncation strategies for both the left (persons) and right (units) dataframes are speci-
fied as part of the join private operation.

The join private in PHSafe uses Tumult Analytics’ DropExcess(τ) strategy for the left
dataframe. This strategy keeps τ records for each join key and drops the rest, as described in the
pseudocode. To determine which records are kept, the records are ordered by a hash of the record
value3.

The join private uses the DropNonUnique strategy for the right dataframe, which has the
behavior described in Algorithm 3 – it drops any records with non-unique join values. This is

3Additional steps are taken to ensure identical records are hashed to different values.
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expected to be a no-op in practice (all units have unique IDs), and it ensures the tightest possible
stability analysis in this scenario, as described in Section 5.1.

6.3 Preprocessing

The pseudocode for PHSafe assumed simplified input schemas compared to the actual inputs
of the PHSafe implementation. The PHSafe implementation involves several preprocessing data
transformations. However, these transformations do not change the stability analysis of the as-
sumed input dataframes of the pseudocode. For example, the pseudocode excluded the group
quarters population from its input data but, in reality, this exclusion requires a filter transforma-
tion on the 2020 CEF. Because filter transformations have a stability of one, the privacy analysis
from Section 5 is unchanged.

6.4 Postprocessing

6.4.1 PH5 and PH8 Numerator Calculations

As previously discussed, PH5 num and PH8 num are not directly estimated as part of the differ-
ential privacy routine of PHSafe. They are created from the estimates PHSafe produces for PH4
and PH7, respectively. Under differential privacy, these activities are categorized as postprocess-
ing and, therefore, do not incur additional privacy loss.

6.4.2 Statistical Postprocessing

The output of the PHSafe program is passed through a statistical postprocessing algorithm before
being handed off to the Decennial Tabulation System. The statistical postprocessing algorithm’s
goals are to ensure certain demographic reasonableness of the S-DHC and provide credible inter-
vals. As part of this effort, statistical postprocessing ensures nonnegativity of counts and aver-
ages. In addition, it ensures both the numerator and denominator do not yield negative or infinite
(extremely large) ratios. Finally, it provides credible intervals – or the 90% probability that the
enumerated value is between the lower and upper end points of the interval. Credible intervals
encompass the noise infused by disclosure avoidance; they do not provide estimates of expected
error introduced by truncation or non-disclosure avoidance error (e.g., coverage error). Because
the statistical postprocessing effort does not utilize the 2020 CEF, it fits the assumptions of the
differential privacy postprocessing theorem. Therefore, it does not change the privacy analysis of
the PHSafe algorithm.

6.5 Variance tracking

In addition to noisy count estimates for population groups, the PHSafe implementation also out-
puts the variance of the noise distributions used to generate each estimate. One benefit of differen-
tial privacy as a disclosure avoidance technique is the ability to release properties such as variance
without compromising the privacy guarantees. Knowing the variance and type of distribution
(discrete Gaussian) is crucial to the success of statistical postprocessing.

6.6 Puerto Rico

As a matter of Census Bureau policy, the privacy-loss accounting for Puerto Rico is handled sepa-
rately from the privacy loss of the United States. Hence, the Puerto Rico data records are processed
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in a separate execution of the PHSafe algorithm. One notable difference with PHSafe’s processing
of Puerto Rico is the lack of a Nation geography level and corresponding population group levels.
Otherwise, PHSafe follows the same steps for Puerto Rico as it does for the United States.

7 Parameters and Tuning

Throughout this paper, we have referenced a number of parameters required by PHSafe. Pa-
rameters are tunable inputs that are necessary to fully determine the nature of the program (e.g.,
the noise scale employed in VECTORDISCRETEGAUSSIAN, the privacy-loss budgets for popula-
tion group levels, and truncation thresholds). Parameter specification is a matter of policy. The
Census Bureau’s Data Stewardship Executive Policy (DSEP) committee approved all production
parameters for the S-DHC. Parameter selection necessitates trade-offs, as many of these parame-
ters are dependent on each other. To illustrate, we consider a fundamental relationship between
the privacy-loss parameters and their corresponding margins of error with discrete Gaussian noise
distributions.

7.1 Error bounds

PHSafe was designed to have predictable error due to noise infusion. Truncation in PHSafe intro-
duces an additional source of error that is not predictable. Nonetheless, the Census Bureau uses
margins of error to set accuracy targets for the noise infusion component of PHSafe.

Definition 10. The 90% MOE is half the width of the 90% confidence interval.

Since we only consider 90% MOEs in this paper, we often write MOE without the 90% qualifier.
We begin by stating a portion of Proposition 25 from [7].

Proposition 1 (Proposition 25 in [7]). For all m ∈ Z with m ≥ 1, and for all σ ∈ R with σ > 0,
Pr[X ≥ m]X←NZ(σ2) ≤ Pr[X ≥ m− 1]X←N (σ2).

That is, discrete Gaussian distributions have tighter tails than their corresponding continu-
ous Gaussian distributions. The following corollary reinterprets the tail bounds for real-valued
numbers.

Corollary 1. For all m,σ ∈ R with x ≥ 1 and σ > 0, Pr[X > x]X←NZ(σ2) ≤ Pr[X > ⌊x⌋]X←N (σ2).

Figure 2 of [7] provides an intuitive visualization of these tail bounds. Using the continuous
Gaussian to upper bound MOE in the discrete Gaussian, it follows that the discrete Gaussian has
X ∈ [−⌊1.64σ⌋, ⌊1.64σ⌋] with probability of at least 90%. That is, MOE ≤ ⌊1.64σ⌋.

Recall that σ2 = ∆2

2ρ in Algorithm 5. Combining these two equations and solving for ρ, yields
the following result.

Corollary 2. For any ∆ > 0, the base discrete Gaussian mechanism run with (ρ = 1.3448∆2

⌊MOE⌋2 ,∆) has 90%
margins of error of at most MOE in each vector component.

For any table using Algorithm 1, a basis table cell in population group level i has an MOE of⌊
1.64

√
(2τ+2)2

2ρi

⌋
.

For any table using Algorithm 2, a basis table cell in population group level i has an MOE of⌊
1.64

√
2
ρi

⌋
.
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7.2 Parameter Identification, Trade-offs, and Outcomes

Before delving into specific parameters, we give an overview of some of the methods involved
in navigating the general trade-offs associated with setting parameters. Firstly, parameters tend
to impact some combination of these three aspects: data confidentiality, data accuracy, and data
availability. Data availability refers to the volume of tabular statistics released. Data confidential-
ity reflects privacy as measured by the privacy-loss budgets of the algorithm. For our purposes,
data accuracy is measured by margins of error on the tabular statistics. For example, excluding
population group level i would reduce data availability but improve privacy, since the privacy-
loss budget ρi is no longer necessary for each table. To aid in the understanding of these trade-offs,
we relied on a combination of tangible tools and theoretical analyses.

We created an analysis tool, PHExplore, to provide hands-on experience exploring these trade-
offs. We provide a brief summary of this tool in the following section. Then, we highlight specific
parameters and the critical decisions made by the DSEP committee based on recommendations
from subject-matter expert or DAS scientists. Several of the subject-matter expert recommenda-
tions were influenced by interaction with the PHExplore tool.

7.3 Parameter Tuning Using the PHExplore

PHExplore is an easy-to-use interactive decision support tool implemented in the Microsoft Ex-
cel program and developed to facilitate conversations between subject-matter experts, disclosure
avoidance scientists, and ultimately, the DSEP committee.

The tool allowed users to interactively specify:

• The set of geography levels and iteration levels that constitute the universe of population
groups for which statistics are tabulated.

• The truncation thresholds that limit the maximum number of people per household.

• Privacy-loss budgets.

Based on these parameters, the tool computed the expected MOEs of the algorithm. The computa-
tions were performed using analytical formulae for expected error of noise mechanisms employed
in the PHSafe algorithm.

In the next section, we describe some of the key parameters considered and the decision pro-
cess used to set these parameters.

7.3.1 Parameter Selection

Population group levels: As a reminder, a population group level is defined by a geographic
summary level, such as Nation or State, and an iteration level (i.e., Unattributed, A-G, or H-I).
PHExplore helped subject-matter experts grasp the impact that adding or removing levels would
have on the privacy-loss budget, but they had to weigh that against the value of having publish-
able statistics at each given level. They also gathered feedback from data users on these topics.
Given privacy-loss budget constraints, they ultimately settled on the levels referenced in Table 10.
MOE, ρ, and truncation: PHExplore provided an interface for adjusting privacy loss and trun-
cation thresholds to observe the impact on expected MOE as derived in Section 7.1. The Census
Bureau selected the MOEs and corresponding ρs and truncation thresholds as displayed in Table
10 for the production run of PHSafe on the 2020 Census data.
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8 Conclusion

In this paper, we presented the PHSafe algorithm, a differentially private algorithm for producing
the S-DHC for the Census Bureau. We covered several key aspects of the algorithm. First, we
provided a technical pseudocode description of the algorithm. Then, we covered the privacy
properties of the algorithm. Next, we discussed the differences between the pseudocode and the
implementation of the algorithm with Tumult Analytics. We also covered PHExplore’s role in
parameter tuning and the key algorithmic parameters set by Census Bureau policy.
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Data Analysis. In Ugur Çetintemel, Stanley B. Zdonik, Donald Kossmann, and Nesime Tat-
bul, editors, Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, pages 19–30. ACM, 2009.

[6] Marco Gaboardi, Michael Hay, and Salil Vadhan. A Programming Framework for OpenDP.
2020.

[7] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The Discrete Gaussian for Dif-
ferential Privacy. CoRR, abs/2004.00010, 2020.

[8] Hamid Ebadi, Thibaud Antignac, and David Sands. Sampling and Partitioning for Differential
Privacy. In 2016 14th Annual Conference on Privacy, Security and Trust (PST), pages 664–673,
2016.

[9] Skye Berghel, Philip Bohannon, Damien Desfontaines, Charles Estes, Sam Haney, Luke Hart-
man, Michael Hay, Ashwin Machanavajjhala, Tom Magerlein, Gerome Miklau, Amritha Pai,
William Sexton, and Ruchit Shrestha. Tumult Analytics: A Robust, Easy-to-use, Scalable, and
Expressive Framework for Differential Privacy. https://arxiv.org/abs/2212.04133,
2022.

25

https://www.law.cornell.edu/uscode/text/13
https://apnews.com/article/aba8e57c145047b5bab11b62baaa7f7a
https://apnews.com/article/aba8e57c145047b5bab11b62baaa7f7a
https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/memo-series/2020-memo-2019_25.html
https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/memo-series/2020-memo-2019_25.html
https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/memo-series/2020-memo-2019_25.html
https://arxiv.org/abs/2212.04133


Table Truncation Threshold Population Group Level MOE Target Unbounded Privacy Loss Bounded Privacy Loss

PH1 num 10

(Nation, Unattributed) 500 0.002619 0.005238
(Nation, A-G) 500 0.002619 0.005238
(Nation, H-I) 500 0.002619 0.005238

(State, Unattributed) 200 0.016371 0.032742
(State, A-G) 68 0.141622 0.283244
(State, H-I) 200 0.016371 0.032742

PH1 denom NA

(Nation, Unattributed) 500 0.000022 0.000044
(Nation, A-G) 500 0.000022 0.000044
(Nation, H-I) 500 0.000022 0.000044

(State, Unattributed) 200 0.000135 0.00027
(State, A-G) 68 0.00117 0.00234
(State, H-I) 200 0.000135 0.00027

PH2 10
(Nation, Unattributed) 500 0.002619 0.005238
(State, Unattributed) 200 0.016371 0.032742

PH3 6

(Nation, Unattributed) 500 0.001061 0.002122
(Nation, A-G) 500 0.001061 0.002122
(Nation, H-I) 500 0.001061 0.002122

(State, Unattributed) 200 0.006630 0.01326
(State, A-G) 20 0.662976 1.325952
(State, H-I) 200 0.006630 0.01326

PH4 10

(Nation, Unattributed) 500 0.002619 0.005238
(Nation, A-G) 500 0.002619 0.005238
(Nation, H-I) 500 0.002619 0.005238

(State, Unattributed) 200 0.016371 0.032742
(State, A-G) 68 0.141622 0.283244
(State, H-I) 200 0.016371 0.032742

PH5 denom NA

(Nation, Unattributed) 500 0.000022 0.000044
(Nation, A-G) 500 0.000022 0.000044
(Nation, H-I) 500 0.000022 0.000044

(State, Unattributed) 200 0.000135 0.00027
(State, A-G) 68 0.00117 0.00234
(State, H-I) 200 0.000135 0.00027

PH6 6
(Nation, Unattributed) 500 0.001061 0.002122
(State, Unattributed) 200 0.006630 0.01326

PH7 10

(Nation, Unattributed) 500 0.002619 0.005238
(Nation, A-G) 500 0.002619 0.005238
(Nation, H-I) 500 0.002619 0.005238

(State, Unattributed) 200 0.016371 0.032742
(State, A-G) 68 0.141622 0.283244
(State, H-I) 200 0.016371 0.032742

PH8 denom NA

(Nation, Unattributed) 500 0.000022 0.000044
(Nation, A-G) 500 0.000022 0.000044
(Nation, H-I) 500 0.000022 0.000044

(State, Unattributed) 200 0.000135 0.00027
(State, A-G) 68 0.00117 0.00234
(State, H-I) 200 0.000135 0.00027

Table 10: MOE targets for the statistics released at different population group levels, along with
the corresponding privacy loss (unbounded and bounded ρ-zCDP for discrete Gaussian). Due
to the total population of the United States being published without noise, the bounded privacy-
loss budgets in this table were stressed by Census Bureau staff in internal conversations and for
presentation to DSEP, for purposes of interpreting the privacy guarantee.

26


	Introduction
	Problem Setup
	Geography
	Race and Ethnicity
	Population Groups
	Supplemental Demographic and Housing Characteristics File
	Privacy Release Problem

	PHSafe Algorithm
	Input Data Description
	Person Dataframe
	Housing Unit Dataframe (Unit Dataframe)

	The Algorithm Description

	Privacy Preliminaries
	Privacy definitions
	Transformation stability
	Base Mechanisms
	Privacy Properties
	Composition
	Postprocessing


	Privacy Analysis
	Stability
	PHSafe
	Converting to Bounded Differential Privacy

	Implementation of PHSafe
	Input Validation
	Tumult Analytics
	Private Joins

	Preprocessing
	Postprocessing
	PH5 and PH8 Numerator Calculations
	Statistical Postprocessing

	Variance tracking
	Puerto Rico

	Parameters and Tuning
	Error bounds
	Parameter Identification, Trade-offs, and Outcomes
	Parameter Tuning Using the PHExplore
	Parameter Selection


	Conclusion

