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Abstract—Hierarchical Federated Learning (HFL) has recently
emerged as a promising solution for intelligent decision-making in
vehicular networks, helping to address challenges such as limited
communication resources, high vehicle mobility, and data het-
erogeneity. However, HFL remains vulnerable to adversarial and
unreliable vehicles, whose misleading updates can significantly
compromise the integrity and convergence of the global model. To
address these challenges, we propose a novel defense framework
that integrates dynamic vehicle selection with robust anomaly
detection within a cluster-based HFL architecture, specifically
designed to counter Gaussian noise and gradient ascent attacks.
The framework performs a comprehensive reliability assessment
for each vehicle by evaluating historical accuracy, contribution
frequency, and anomaly records. Anomaly detection combines Z-
score and cosine similarity analyses on model updates to identify
both statistical outliers and directional deviations in model
updates. To further refine detection, an adaptive thresholding
mechanism is incorporated into the cosine similarity metric,
dynamically adjusting the threshold based on the historical
accuracy of each vehicle to enforce stricter standards for consis-
tently high-performing vehicles. In addition, a weighted gradient
averaging mechanism is implemented, which assigns higher
weights to gradient updates from more trustworthy vehicles. To
defend against coordinated attacks, a cross-cluster consistency
check is applied to identify collaborative attacks in which multiple
compromised clusters coordinate misleading updates. Together,
these mechanisms form a multi-level defense strategy to filter
out malicious contributions effectively. Simulation results show
that the proposed algorithm significantly reduces convergence
time compared to benchmark methods across both 1-hop and
3-hop topologies. Under combined noise and gradient ascent
attacks in the 1-hop scenario, the proposed algorithm reduces
convergence time by 17.1% compared to cosine-similarity and
Z-score defenses, and by 8.7% over the combined Z-score and
cosine strategy. In the 3-hop setting under the same attacks,
our proposed algorithm still leads with a 15.6% reduction
against Z-score-only methods and a 7.1% improvement over the
combined defense. These results demonstrate that the proposed
framework consistently delivers superior resilience, accelerating
convergence by up to 17% even under intense adversarial
conditions.

Index Terms—Hierarchical federated learning, vehicular net-
works, anomaly detection, dynamic client selection

I. INTRODUCTION

VEHICULAR Ad hoc Networks (VANETs) are increas-
ingly adopting machine learning (ML) algorithms to im-

prove safety and efficiency in transportation systems. These al-
gorithms use sensor data from LIDAR, RADAR, and vehicle-
mounted cameras to enable intelligent decision-making. They
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support applications such as location-based services, traffic
flow prediction and control, and autonomous driving. Tradi-
tionally, centralized ML methods train neural networks using
large datasets collected from vehicle edge devices. In contrast,
federated learning (FL) moves model training to the edge, re-
ducing transmission overhead, and preserving user privacy. In
FL, edge devices send parameter gradients to a central server
instead of raw data. The server aggregates these gradients
to update the global model, which is then redistributed to
the devices for continued training. This process is repeated
iteratively until the model converges [1].

In recent years, Hierarchical Federated Learning (HFL)
has emerged as a promising approach to address the chal-
lenges of deploying FL in vehicular networks. In HFL, a
central cloud server coordinates global model training with
the assistance of edge servers that act as intermediaries for
model aggregation. This hierarchical approach helps mitigate
issues related to limited communication resources, vehicular
mobility, and data heterogeneity [2], [3]. By enabling vehicles
to transmit local model updates to nearby edge servers instead
of directly to the cloud, HFL reduces communication overhead
and expands coverage. It is also more effective in manag-
ing the dynamic nature of vehicular mobility and the non-
independent and identically distributed (non-IID) data across
different edge servers. Several studies have demonstrated the
practical benefits of HFL: [4] demonstrates that HFL can
leverage vehicular mobility to accelerate convergence in the
presence of data heterogeneity, as higher speeds enable more
diverse data exchange and faster data fusion across nodes; [5]
proposes a semi-asynchronous HFL framework for Cooper-
ative Intelligent Transportation Systems (C-ITS), improving
communication efficiency in the presence of heterogeneous
road vehicles; and [6] introduces a Cluster-based HFL (Cb-
HFL) approach that uses multi-hop clustering and customized
metrics to address both mobility and non-IID data, achieving
significant improvements in accuracy and convergence time
while maintaining an acceptable level of packet overhead.
Despite these advances, security vulnerabilities, especially
against adversarial attacks, remain largely unresolved. One
of the most critical threats is model poisoning, where ad-
versaries manipulate local model updates sent from vehicles
to edge servers or the cloud. The decentralized nature of FL
and absence of strict monitoring of individual client updates
provide an ideal setting for adversaries to execute such attacks
undetected. Since FL assumes that most client updates are
benign, the aggregation process is highly vulnerable to slight
adversarial modifications, which can accumulate over time and
severely disrupt global model convergence [7]–[9].
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Several defense strategies have been proposed to address
security threats in FL. Among them, anomaly detection mech-
anisms have been developed to distinguish between malicious
and benign model behavior in response to model poisoning at-
tack [10]–[13]. [10] introduces a differential privacy-exploited
stealthy model poisoning (DeSMP) attack and proposes a
reinforcement learning (RL)–based defense mechanism that
dynamically adjusts privacy levels according to statistical
metrics derived from client updates. Similarly, [11] presents
a client-based defense mechanism called White Blood Cell
for FL (FL-WBC), which identifies vulnerable regions in the
parameter space during local training and actively perturbs
them to neutralize the effect of poisoning. [12] proposes
filtering out anomalous models by assessing the similarity in
historical update patterns. Complementing anomaly detection,
dynamic client selection has been proposed as an additional
layer of defense to enhance the robustness of FL systems.
This approach optimizes the selection of participating vehi-
cles in each training round based on the output of anomaly
detection algorithms. [13] proposes a method that monitors
the update history of each client and statistically evaluates its
performance using Z-Score. Clients whose updates fall below
a predefined performance threshold are eliminated from the
aggregation process. [14] introduces a Credit-Based Client
Selection (CBCS) method, ranking clients based on the ac-
curacy of their past contributions. Clients with higher credit
scores are preferred, while low-scoring clients are scrutinized
or eliminated. In [15], CosDefense uses cosine similarity to
compare local updates with the global model, flagging and ex-
cluding clients whose updates deviate significantly, indicating
potential malicious behavior. While eliminating persistently
malicious participants through client elimination can reduce
their adverse influence, it also presents challenges, particularly
in non-IID settings. Due to the inherent heterogeneity of
client data distributions, even benign clients may sometimes
produce updates that are mistakenly classified as malicious,
which reduces participation rates and compromises both per-
formance and fairness. Moreover, existing defense approaches
are not designed to exploit the hierarchical structure of FL
in dynamic vehicular environments. Implementing dual-layer
anomaly detection adds additional computational overhead
and increases the likelihood of misclassification, especially
given the mobility and variability of vehicular clients. Dy-
namic client selection in HFL remains underexplored, and its
integration with anomaly detection has not been adequately
investigated.

This paper proposes a novel framework that integrates
dynamic client selection with statistical anomaly detection to
effectively defend against model poisoning attacks in an HFL
structure deployed over cluster-based VANETs. The approach
is designed to enhance both the robustness and reliability
of the global model in adversarial and dynamic vehicular
environments. The key original contributions of this work are
as follows:

• We propose a robust framework that defends against
model poisoning attacks by integrating two statistical
evaluation methods within an HFL structure for vehicular

networks. Cosine similarity is used to measure the align-
ment between individual vehicle updates and the global
model direction, while Z-score analysis measures devi-
ation in update norms from the collective average. This
dual approach enables accurate differentiation between
benign and malicious updates.

• We develop a novel dynamic client selection algorithm
integrated with statistical anomaly detection to enhance
the security of HFL in vehicular networks. Vehicles are
clustered and assigned reliability scores based on three
key metrics: historical accuracy, contribution frequency,
and anomaly records. Historical accuracy prioritizes vehi-
cles consistently demonstrating reliable cooperation dur-
ing the FL process. The contribution frequency is used to
identify vehicles with strong communication links and ro-
bust hardware. Meanwhile, anomaly records help pinpoint
vehicles that exhibit minimal or no abnormal behavior.
High-scoring vehicles are selected for participation, while
those with suspicious behavior are temporarily excluded
and later reassessed.

• We propose an adaptive thresholding mechanism that
continuously fine-tunes detection criteria based on the
latest updated statistics. Instead of relying on fixed thresh-
olds, our approach leverages real-time feedback from
historical accuracy metrics to dynamically adjust the
cosine similarity threshold. This adaptive strategy ensures
that our dynamic client selection and filtering processes
remain robust against unforeseen attack patterns.

• We introduce a novel cross-cluster consistency check
mechanism to further improve the integrity of the FL
process in vehicular networks. By comparing aggregated
updates across different clusters, the method effectively
identifies anomalous clusters that may not be detected at
the individual client level.

• We introduce a reliability-based weighted gradient aver-
aging strategy to enhance model aggregation. Vehicles
with higher reliability scores are given greater influence
during global model updates, thereby reducing the impact
of untrustworthy updates.

• We demonstrate through extensive simulations that our
proposed framework significantly outperforms previously
proposed cosine similarity and Z-score-based attacker
detection algorithms in terms of convergence time and
resilience under diverse attack scenarios.

The subsequent sections of this paper are structured as
follows. Section II provides the system model. Section III
introduces the proposed secure HFL using anomaly detection
and dynamic client selection algorithms. Section IV presents a
comprehensive performance evaluation of the proposed algo-
rithm compared to existing methods, across varying network
sizes and transmission ranges. Finally, Section VI presents
concluding remarks and future research directions.
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II. SYSTEM MODEL

A. Cluster-Based Hierarchical Federating Learning Network
Model

The network comprises a fleet of vehicles, each equipped
with dual communication interfaces that support both vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure or vehicle-to-
network (V2I/V2N) communications. These interfaces comply
with standards such as IEEE 802.11p for Dedicated Short-
Range Communication (DSRC) [16], IEEE 802.11bd for Wire-
less Access in Vehicular Environments (WAVE) [17], LTE-
based Device-to-Device (D2D) [18], and 5G New Radio V2X
(NR V2X) [19].

In this dynamic vehicular environment, vehicles form clus-
ters using a clustering algorithm designed to balance data
diversity and mobility. This ensures stable cluster head selec-
tion and robust model convergence, even under non-IID data
distributions [6]. Within each cluster, vehicles take on one of
two roles: Cluster Member (CM) or Cluster Head (CH). These
roles adapt in real time to changes in network conditions.
For example, if the performance of a CH is degraded due
to high mobility or poor communication quality, a new CH is
elected based on communication stability and computational
capacity. This mechanism ensures that clusters remain adaptive
and resilient to topology changes and vehicle dynamics.

The system employs hierarchical federated learning with a
multi-tiered aggregation structure to optimize communication
and training efficiency. Each CM acts as a client that generates
model updates based on its local non-IID data. These updates,
typically in the form of gradients, are transmitted to their
respective CHs, which serve as intermediary aggregators. CHs
collect and aggregate updates from the CMs within their clus-
ter and forward the results to the Evolved Packet Core (EPC).
The EPC acts as the central aggregation entity, responsible for
performing global model aggregation across all clusters. The
updated global model is then disseminated back to CHs and
subsequently to CMs. This hierarchical structure significantly
reduces the communication overhead at the EPC by limiting
direct transmissions, while also improving the efficiency and
speed of model convergence.

Each vehicle maintains a Vehicle Information Base (VIB),
a dynamic data repository containing key operational pa-
rameters, including direction, location, velocity, cluster role,
and local model updates. The VIB is updated upon op-
erational changes or in response to events like receiving
a “HELLO PACKET ” or a model update request. The
“HELLO PACKET ” contains parameters such as vehicle
direction, position, speed, current cluster affiliation, the con-
necting node to the cluster, cosine similarity of the FL model
parameters, and relative velocity compared to surrounding
vehicles. This information supports accurate clustering and
ensures effective CH selection and model aggregation.

B. Attack Model

We consider two types of model poisoning attacks: Gaussian
noise and gradient ascent attacks. These attacks pose serious
challenges to HFL in vehicular networks due to the highly
dynamic nature of these environments. Vehicles frequently

join and leave clusters, giving adversaries repeated opportu-
nities to inject Gaussian noise, either through environmental
disturbances or intentional manipulation, and to manipulate
gradient updates to compromise system performance [20].
The hierarchical structure of HFL, where CHs aggregate
updates from CMs before relaying them to the EPC, adds an
additional layer of vulnerability. This additional aggregation
step provides adversaries with more opportunities to inject ma-
licious updates. Moreover, the use of wireless communication
channels exposes the system to eavesdropping and tampering,
facilitating gradient ascent attacks that guide global models
away from optimal solutions [21]. Furthermore, because ve-
hicles generate non-IID data under diverse driving conditions,
the effects of adversarial modifications are often unevenly
distributed, with some clusters more severely impacted than
others, compromising model integrity [22].

1) Gaussian Noise Attack: In Gaussian noise attacks, adver-
sarial vehicles add random noise to their local updates before
sending them to the CH or EPC. This is a form of Byzantine
attack, where the adversarial update gadv from a malicious
vehicle is given by

gadv = gbenign +N (m,σ2I), (1)

where gbenign is the genuine gradient update computed on
the vehicle’s local data, N (m,σ2I) represents Gaussian noise
with mean m and variance σ2, and I is the identity matrix.
σ2 controls the intensity of the noise injected.

By introducing Gaussian noise, adversarial vehicles aim to
disrupt the learning process by making the aggregated gradi-
ents less representative of the true underlying data distribution.
This random noise can cause the global model to converge
slowly or even diverge, leading to degraded performance.
Gaussian attacks are dangerous because the added noise
resembles natural variations in gradient updates, making it
challenging to detect using simple anomaly detection methods
that rely on statistical deviations. The randomness of the noise
can mask the malicious intent, especially in networks with high
variability among client updates.

2) Gradient Ascent Attack: Gradient ascent attack is a more
aggressive and targeted adversarial strategy where malicious
vehicles deliberately manipulate model updates. Unlike benign
gradient descent updates, which aim to minimize the loss func-
tion, gradient ascent attacks involve adversaries intentionally
maximizing the loss function to steer global model parameters
away from their optimal values [22].

The malicious update gadv in a gradient ascent attack is
designed to reverse the intended optimization direction. Let
the benign update be given by

gbenign = −η∇L(θ), (2)

where ∇L(θ) is the gradient of the loss function with respect
to model parameters θ and η > 0 is the learning rate or scaling
factor. To reverse this update, the adversarial client sends:

gadv = gbenign + 2η∇L(θ) = η∇L(θ). (3)

This formulation clearly shows that the adversarial update is
directed along ∇L(θ), thereby maximizing the loss function.
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The gradient ascent attack is particularly effective because
it directly counteracts the beneficial updates from honest
vehicles. Even a small proportion of adversarial vehicles can
have a disproportionately large negative impact on the global
model. To counteract this, CHs need to detect and exclude
these malicious vehicles from aggregation in HFL.

III. SECURE HFL USING ANOMALY DETECTION AND
DYNAMIC CLIENT SELECTION

We propose a robust approach for dynamic client selection
and anomaly detection within a cluster-based HFL framework
for vehicular networks. This method is designed to defend
against both Gaussian noise and gradient ascent attacks. To
detect Gaussian noise attacks, we apply Z-score analysis on
the norms of model updates. In typical scenarios, benign
updates have norms that cluster around a mean value. When
Gaussian noise is introduced, the update norms often deviate
significantly from this mean, resulting in Z-scores that exceed
a predefined threshold. Such updates are flagged as poten-
tially malicious. To counter gradient ascent attacks, we use
cosine similarity to assess the directional alignment between
individual vehicle updates and the overall expected model
direction. In a standard setting, benign updates are well aligned
with the consensus update direction. In contrast, a low cosine
similarity indicates that the update is misaligned, suggesting
an adversarial attempt to intentionally steer the local or global
model away from its intended direction by maximizing the loss
function. By combining these two detection methods, we can
identify both abnormal magnitudes and directional inconsis-
tencies in updates, key signs of malicious behavior. To further
improve detection accuracy, these statistical techniques are
combined with vehicle reliability metrics, including historical
accuracy, contribution frequency, and anomaly history. These
reliability scores guide dynamic client selection, ensuring that
only trustworthy and high-quality updates are included in the
global model aggregation.

A. Detection Criteria

1) Z-score: Z-score is used to identify outliers or anoma-
lous behaviors by calculating how many standard deviations
the gradient norm of a vehicle deviates from the mean of all
vehicle gradient norms. Specifically, for each vehicle, the Z-
score of its gradient norm is calculated to assess whether it
significantly deviates from the collective average. This statisti-
cal approach allows us to detect vehicles whose updates might
be corrupted due to faulty sensors, data errors, or malicious
intent, such as in Gaussian attacks, where random noise is
added to disrupt the learning process. By filtering out these
extreme values, the Z-score helps maintain the quality of the
aggregated model and prevents performance degradation [23].

For each CM k at iteration i, the Z-score Z Scoresk,i is
calculated as:

Z Scoresk,i =
Normsk,i −Mean Normi

Std Normi
, (4)

where
Normsk,i = ∥gk,i∥

is the ℓ2-norm of the gradient update gk,i from vehicle k
at iteration i. Here, Mean Normi and Std Normi denote
the mean and standard deviation of the gradient norms across
vehicles at iteration i, respectively. These statistical measures
capture the overall distribution of gradient norms, enabling
the identification of outlier vehicles whose updates deviate
significantly from the average.

For each CH k at iteration i, the Z-score Z Scoresk,i is
computed in a manner similar to that used for CM. However,
the definition of the norm Normk,i is adjusted to accommo-
date the CH’s role in the aggregation process. Specifically, the
norm for a CH is defined as the Euclidean distance between
the CH’s local aggregated update θCH,i and the global model
θglobal,i as follows:

NormsCH,i = ∥θCH,i − θglobal,i∥. (5)

This formulation allows the Z-score to effectively measure
deviations in the aggregated updates relative to the global
model. By assessing this deviation, the system can identify
abnormal aggregation behavior, which may result from com-
promised updates contributed by malicious CMs or malicious
manipulation by the CH itself.

2) Cosine Similarity: Cosine similarity is used to assess the
directional consistency of the gradient update of each vehicle
relative to the mean gradient of all vehicles by measuring the
cosine of the angle between them. A low cosine similarity
indicates that the vehicle’s update is inconsistent with the
collective behavior, potentially signaling adversarial actions
like gradient ascent attacks, where clients intentionally push
the model parameters away from optimal values. By focusing
on the direction rather than the magnitude of the gradients,
cosine similarity helps detect such anomalies even when the
gradient norms appear normal, adding an additional layer of
defense against sophisticated attacks.

For each CM k at iteration i, the cosine similarity
Cos Simk,i is computed as:

Cos Simk,i =
gk,i ·Mean gradi

∥gk,i∥·∥Mean gradi∥
, (6)

where gk,i is the gradient update from CM k at iteration i,
Mean gradi = 1

N

∑N
j=1 gj,i is the average gradient vector

of all CMs within the cluster at iteration i and N is the
number of valid CMs in a cluster after Z-score filtering. This
calculation measures how closely each CM’s gradient aligns
with the collective learning direction of the cluster.

For CHs, cosine similarity evaluates the temporal consis-
tency of the CH’s aggregated model updates relative to the
global model. By comparing the direction of consecutive ag-
gregated updates, we detect anomalies at the aggregation level
that may result from malicious activities or significant CH
behavior deviations. Specifically, for each CH j at iteration i,
cosine similarity is calculated between the current aggregated
update θj,i and the previous aggregated update θj,i−1 relative
to the previous iteration global model θglobal,i−1 as follows:

Cos Simj,i =

(θj,i − θglobal,i−1) · (θj,i−1 − θglobal,i−1)

∥θj,i − θglobal,i−1∥·∥θj,i−1 − θglobal,i−1∥
. (7)
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This cosine similarity measures the consistency of the CH’s
updates over time, ensuring that the direction of model ad-
justments remains stable and aligned with the global learning
objectives.

To further enhance security, the EPC performs a cross-
cluster consistency check using cosine similarity to detect
collaborative attacks, where multiple compromised CHs may
coordinate to submit malicious or misleading updates. If
several CHs submit similar updates that are inconsistent with
the rest of the clusters, it could indicate a coordinated attack
to skew the global model. In such cases, flagging these CHs
ensures that the aggregated updates from CHs align with the
overall learning objective and helps detect any anomalies or
malicious activities at the cluster level. Specifically, after the
EPC receives the aggregated model updates θi from each CH
at iteration i, it performs a consistency check by computing the
cosine similarity between the updates of different clusters. The
cross-cluster cosine similarity Cos Simp,q,i between clusters
p and q is calculated as:

Cos Simp,q,i =

(θp,i − θglobal,i−1) · (θq,i − θglobal,i−1)

∥θp,i − θglobal,i−1∥×∥θq,i − θglobal,i−1∥
, (8)

where θp,i and θq,i are the model updates from CHs of clusters
p and q at iteration i, respectively, and θglobal,i−1 is the global
model from the previous iteration.

To quantify the overall consistency of a cluster’s update with
the rest of the network, we calculate the average cross-cluster
cosine similarity Cos Simp,i for cluster p as:

Cos Simp,i =
1

C − 1

C∑
q=1
q ̸=p

Cos Simp,q,i, (9)

where C is the total number of clusters. By computing this
average, we assess how well the update of the cluster p aligns
with the updates of the other clusters in the same iteration.
This mechanism ensures that the clusters that contribute to
the global model align with the overall learning objective,
improving the robustness and reliability of the FL.

3) Reliability Metrics: We integrate the outputs of Z-score
and cosine similarity-based anomaly detection into a set of
reliability metrics to evaluate and prioritize vehicles based
on their historical performance. The first metric, Historical
Accuracy, assesses the long-term performance of each vehicle
by measuring the average accuracy of its local model over
multiple communication rounds using a validation dataset.
The second metric, Contribution Frequency, measures how
consistently a vehicle’s updates have been accepted into the
aggregation process based on Z-score and cosine similarity
assessments, while also accounting for packet losses due to
channel quality, which may prevent a vehicle from contribut-
ing at various learning stages and thereby lower its overall
frequency of contribution. The third metric, Anomaly Record,
tracks the number of times a vehicle’s updates have been
flagged as anomalous due to significant deviations detected
by Z-score or misalignment identified by cosine similarity.
By integrating these reliability metrics with the statistical

evaluations from Z-score and cosine similarity, our approach
enhances the robustness of anomaly detection and improves
the overall reliability of the federated learning process.

Historical accuracy reflects the average performance of the
local model of a vehicle in multiple communication rounds.
This metric is calculated by the EPC and all CHs using
the accuracy of the model on a validation dataset during
each round [24]. Accuracy is defined as the percentage of
correct predictions made by the model when tested on unseen
validation samples. Higher historical accuracy indicates that
the vehicle consistently contributes high-quality updates to the
global model. The historical accuracy of vehicle k at round i
is computed as:

Historical Accuracyk,i = Total Accuracyk,i/i =

(1/i) ∗
i∑

n=1

(Accuracy of Contributionk,n), (10)

where i represents the ith communication round con-
sidered as a single FL iteration within the FL pro-
cedure, Total Accuracyk,i represents the sum of all
Accuracy of Contributionk,n values across all com-
munication rounds up to the current round i, and
Accuracy of Contributionk,n is the accuracy of vehicle k
at round n, evaluated by the CH or EPC as:

Accuracy of Contributionk,n =(∑Nval
j=1 δj

Nval

)
× 100%. (11)

where Dval = {(xj , yj)}Nval
j=1 is the validation dataset, xj is the

input data, yj is the true label for the j-th sample, Nval is the
number of samples in the validation dataset,

δj = I[ŷj = yj ] =

{
1, if ŷj = yj ,

0, if ŷj ̸= yj ,
(12)

ŷj = θk,n(xj) is the predicted label for the j-th sample by
using the vehicle’s updated model θk,n. By calculating the
number of correct predictions, we obtain an accurate measure
of the vehicle’s model performance on unseen data.

Contribution frequency measures how regularly a vehicle
participates in FL rounds. A higher frequency implies that
the vehicle is consistently active and dependable. This metric,
however, is affected not only by the vehicle’s willingness
to participate but also by its channel quality. Poor channel
conditions may lead to failed or delayed transmissions, reduc-
ing the effective contribution frequency. In contrast, vehicles
with stable and strong communication links are more likely to
contribute updates consistently, reinforcing their reliability as
participants in the FL process. The contribution frequency of
vehicle k is calculated by

Contribution Freqk,i = Total Contributionsk,i/i, (13)

where Total Contributionsk,i represents the number of con-
tributions made by vehicle k across all communication rounds
up to the current round i in the FL process.
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Anomaly record tracks the frequency of a vehicle’s contribu-
tions being flagged as anomalous through Z-score and cosine
similarity analyses. A high anomaly record suggests that the
vehicle may be compromised or unreliable, and thus should
be assigned a lower reliability score to protect the integrity
of the learning process. The anomaly record of vehicle k at
round i is calculated by

Anomaly Recordk,i =

Total Anomalous Contributionsk,i/i, (14)

where Total Anomalous Contributionsk,i refers to the to-
tal number of times the contributions of vehicle k have been
flagged as anomalous across all communication rounds up to
the current round i.

The final reliability score for each vehicle is determined by
a weighted sum of the three metrics as given below:

Reliability Scorek,i =

(Accuracy Weight×Historical Accuracyk,i)+

(Frequency Weight× Contribution Freqk,i)−
(Anomaly Weight×Anomaly Recordk,i) (15)

Assigning specific weights to these metrics allows for a
flexible and context-sensitive evaluation of each vehicle’s
contributions in FL. This weighting system can be customized
to emphasize particular aspects of reliability based on the
specific needs and goals of the FL application. As the network
evolves, the reliability score is dynamically updated, ensuring
that the selection process remains adaptive to changes in
vehicle behavior and network conditions. Vehicles with higher
reliability scores are prioritized for participation in model
training rounds, thereby enhancing the overall robustness and
accuracy of the global model. Vehicles identified as anoma-
lous through Z-score and cosine similarity checks have their
anomaly records updated, affecting their reliability scores. This
feedback mechanism ensures that the system remains respon-
sive to changes in vehicle behavior, reducing the impact of
unreliable or malicious vehicles while promoting contributions
from those who consistently provide valuable data.

4) Adaptive Thresholding Mechanism: We introduce an
adaptive thresholding mechanism for the cosine similarity
metric to enhance the robustness of our anomaly detection
process. This mechanism dynamically adjusts the cosine sim-
ilarity threshold based on each vehicle’s historical accuracy,
ensuring that vehicles with consistently high performance are
held to stricter standards. High-performing CMs might become
less careful over time, leading to a gradual decline in update
quality. Without adaptive thresholding, these vehicles may
continue to pass the anomaly detection checks despite a drop
in performance, as the static thresholds do not adjust to their
historical contribution levels. The adaptive cosine similarity
threshold Cosine Sim Thresholdadaptive,k for vehicle k is
defined as:

Cosine Sim Thresholdadaptive,k =

Cosine Sim Thresholdadaptive,k − δ, (16)

where δ is a small positive adjustment parameter control-
ling the degree of threshold tightening. When a vehicle’s
Historical Accuracyk,i exceeds High Threshold Up and
the cosine similarity threshold is above the floor thresh-
old High Threshold Down, the threshold is reduced by
δ. This adjustment continues until the threshold reaches
High Threshold Down, at which point further reduction
stops. This adjustment imposes stricter anomaly detection
criteria on high-performing vehicles, ensuring that even minor
deviations from their typical update patterns are detected.

5) Weighted Gradient Averaging: We implement a
weighted gradient averaging mechanism to enhance the ro-
bustness and effectiveness of the model aggregation process
in FL. This method assigns weights to each CM’s gradient
updates based on their computed reliability scores, ensuring
that more reliable participants have a greater influence on the
global model. Specifically, after the anomaly detection and
reliability score adjustment steps, the aggregated gradient Gi

is computed as a weighted average of the accepted gradients:

Gi =

∑N
k=1 Reliability Scorek,i × gk,i∑N

k=1 Reliability Scorek,i
, (17)

where N represents the number of CMs in the cluster under
that CH, Reliability Scorek,i and gk,i denote the reliability
score and gradient of the kth CM during the i communication
round, respectively. It then updates its model parameters using
a gradient descent step:

θCH,i = θCH,i−1 − η Gi, (18)

where θCH,i−1 represents the CH’s model parameters carried
over from the previous round. This approach effectively ampli-
fies the positive impact of trustworthy CMs while diminishing
the influence of those with lower reliability. The normalization
by the sum of reliability scores ensures that the aggregated
gradient maintains an appropriate scale.

At the cluster level, a similar weighted averaging is per-
formed when aggregating the updates from CHs at the EPC.
The global model parameters θglobal,i at iteration i are updated
using the weighted average of the CHs’ model parameters
θCH,i:

θglobal,i =

∑C
CH=1 Reliability ScoreCH,i × θCH,i∑C

p=1 Reliability ScoreCH,i

, (19)

where Reliability ScoreCH,i is the reliability score of CH
after any adjustments due to cross-cluster consistency checks
or anomaly penalty factors, θCH,i is the local update from
CH at iteration i and C is the number of clusters. This
weighted averaging process enhances the overall robustness
and effectiveness of the FL by prioritizing contributions from
trustworthy clusters.

B. Dynamic Anomaly Detection and Reliability-based Client
Selection (DARCS) Algorithm

In the proposed HFL framework for vehicular networks, the
CHs and the EPC have distinct responsibilities, each supported
by dedicated algorithms. CHs serve as intermediaries between
CMs and the EPC. They manage communication within
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their clusters, perform local model aggregations, and execute
anomaly detection mechanisms tailored to their respective
clusters. The CH algorithm focuses on dynamic client selection
and anomaly detection at the CM level, using individual
vehicle reliability scores. On the other hand, the EPC serves
as the central coordinator of the entire network. It aggregates
model updates from all CHs to refine the global model and per-
forms higher-level anomaly detection, including cross-cluster
consistency checks and reliability evaluations of CHs based on
aggregated metrics. Unlike CHs, the EPC algorithm operates
at the cluster level and processes aggregated rather than
individual vehicle updates. By employing different algorithms
proposed for the specific functions and data accessibility of the
CHs and EPC, this hierarchical approach effectively mitigates
risks posed by malicious actors and unreliable data sources at
different levels of the network hierarchy.

Algorithm 1 operates within the Cluster-based HFL frame-
work and incorporates mechanisms to enhance robustness
against unreliable or adversarial gradient updates from CMs at
the CH. The primary challenge is efficiently aggregating these
local updates while ensuring malicious contributions do not
compromise the overall model convergence. The CH initializes
the reliability scores for each CM based on the data in the
VIB (Lines 1-2). At the beginning of each communication
round, the algorithm assesses the participation eligibility of
each CM. If a CM’s Block F lagCM is set to TRUE and the
block duration is less than the predefined Unblock T ime,
it indicates that the CM has been previously identified as
malicious and is still within its blocking period. In this
case, the Unblock T ime is incremented, and the CH skips
further processing for this CM, proceeding to the next. If
the condition is not met—meaning the CM is either not
blocked, or the blocking duration has expired—the algorithm
resets the Block F lagCM to FALSE, allowing the CM to
participate in the current round, and the CH receives the
update gCM,i from the CM (Lines 3-7). In the subsequent
stage, all CMs that have passed the blocking check are
considered eligible. These eligible CMs are then sorted in
descending order based on their reliability scores, and the
top SELECTED CLIENT PERCENTAGE are desig-
nated as Selected Clients. This selection process prioritizes
the most reliable CMs for participation in the current training
round, enhancing the overall model quality (Lines 8-9).

Next, Z-scores are calculated for the gradient norms of
each CM, indicating how far a particular CM’s gradient
is from the mean in terms of standard deviations (Line
11). If the absolute value of Z ScoresCM,i is less than
the Z Score Threshold, the algorithm computes the co-
sine similarity between each valid CM gradient and the
mean gradient to further ensure robustness (lines 12-13).
In contrast, if the absolute value of Z ScoreCM,i exceeds
Z Score Threshold, it indicates an outlier or anomalous
behavior. In this case, the algorithm sets the Block F lagCM

to TRUE, initializes the block duration timer to zero, incre-
ments the Total Anomalous ContributionsCM,i counter,
and proceeds to skip this CM, moving on to the next CM
in the cluster (Lines 14-17).

If the absolute difference between Cos SimCM in

Algorithm 1: Dynamic Anomaly Detection and
Reliability-based Client Selection (DARCS) Algorithm
at the CH

1 foreach CM ∈ V IB do
2 Initialize Reliability ScoreCM,i based on VIB;
3 if Block F lagCM = TRUE and

block durationCM < Unblock T ime then
4 Increment block durationCM ;
5 Continue to next CM ;

6 else
7 Reset Block F lagCM to FALSE;

8 Sort all CM with Block F lagCM = FALSE by
Reliability ScoreCM,i in descending order;

9 Select top
SELECTED CLIENT PERCENTAGE of
vehicles as Selected Clients;

10 foreach CM ∈ Selected Clients do
11 Compute Z ScoresCM,i by using (4);
12 if |Z ScoreCM,i|< Z Score Threshold then
13 Compute Cos SimCM,i by using (6);

14 else
15 Set Block F lagCM = TRUE and

block durationCM = 0;
16 Increment

Total Anomalous ContributionsCM,i;
17 Continue to next CM ;

18 if |Cos SimCM,i−1 − Cos SimCM,i|>
Cosine Sim Thresholdadaptive,CM then

19 Reset CM parameters using MemoryCM,i−1

20 else
21 Increment Total ContributionsCM,i;
22 Calculate Accuracy of ContributionCM,i;
23 Compute Historical AccuracyCM,i by

using (10), Contribution FreqCM,i by
using (13), Anomaly RecordCM,i by
using (14);

24 Update Reliability ScoreCM,i by using (15);
25 Record updated metrics in VIB;

26 if Historical AccuracyCM,i ≥
High Threshold Up and
Cosine Sim Thresholdadaptive,CM >
High Threshold Down then

27 Adjust Cosine Sim Thresholdadaptive,CM

by using (16);

28 Compute model update θCH,i by using (17) and (18);
29 foreach CM ∈ V IB do
30 Record all parameters in MemoryCM,i;

31 Send updated model parameters θCH,i to all CMs and
EPC;
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the current and previous communication rounds exceeds
Cosine Sim Thresholdadaptive,i, it indicates a substantial
change that may serve as a potential sign of malicious intent,
where a CM introduces significant deviations to disrupt the
learning process. Upon detecting this anomaly, the CM’s pa-
rameters are reset using MemoryCM,i−1, which contains the
stored model parameters from the previous round. A memory
mechanism replicates the most recent CM structure, ensuring
that previous CM parameters remain accessible within the
system. This approach prevents abrupt omissions of a CM
based solely on cosine similarity differences, which could
otherwise disrupt the learning process (Lines 18-19).

After filtering out unreliable CMs based on cosine
similarity, the algorithm updates the contribution
records for the remaining valid CMs. It calculates
the Accuracy of ContributionCM,i, updates
the Total AccuracyCM,i, and computes the
Historical AccuracyCM,i. It also computes the
Contribution FreqCM,i and Anomaly RecordCM,i

to assess each CM’s reliability over time. The
Reliability ScoreCM,i is updated using these metrics,
incorporating weights for accuracy, frequency, and anomaly
records. This score reflects the CM’s trustworthiness and
influences its future participation and impact on the model
aggregation (Lines 20-24). Subsequently, these updates are
added to the VIB for further decision-making and calculation
(Line 25).

The next step applies adaptive thresholding by adjusting
the cosine similarity threshold for the high-performing CMs.
This mechanism dynamically adjusts the cosine similarity
threshold based on each CM’s historical accuracy, ensuring
that CMs with consistently high performance are held to
stricter standards. Specifically, if a CM’s historical accuracy
surpasses a predefined High Threshold Up, it indicates that
the CM has consistently contributed reliable updates over
time. The algorithm tightens the cosine similarity threshold for
these high-performing CMs using (16) until it is not less than
a predefined parameter High Threshold Down to ensure
sustained high-performance (Lines 26-27). The CH aggregates
the accepted updates from CMs using weighted averaging
based on reliability scores (Line 28). The current parameters
of each CM are then stored in a memory buffer denoted as
MemoryCM,i. Finally, the CH sends the average aggregated
update θCH,i to the EPC and receives the global model update
in return. It distributes the updated model parameters to all
CMs in the cluster, completing the training round (Lines 29-
31).

Algorithm 2 operates within the same framework and
improves robustness against unreliable or adversarial model
updates from CHs at the EPC. The primary challenge is to
efficiently aggregate these cluster-level updates while ensuring
that malicious contributions do not compromise the conver-
gence of the global model. Initially, the algorithm iterates over
each CH in the VIB and manages blocked CHs the same way
as Algorithm 1 (Lines 1–6). It then calculates NormsCH,i,
to quantify the deviation of each CH from the global model,
updating the mean and standard deviation of these norms to
build a statistical profile of the updates of the CHs. Using this

Algorithm 2: Dynamic Anomaly Detection and
Reliability-based Client Selection (DARCS) Algorithm
at the EPC

1 foreach CH ∈ V IB do
2 if Block F lagCH = TRUE and

block durationCH < Unblock T ime then
3 Increment block durationCH ;
4 Continue to next CH;

5 else
6 Reset Block F lagCH to FALSE;

7 Compute NormsCH,i by using (5);
8 Compute Z ScoreCH,i by using (4);
9 if |Z ScoreCH,i|< Z Score Threshold then

10 Compute Cos SimCH,i by using (7);

11 else
12 Set Block F lagCH = TRUE and

block durationCH = 0;
13 Increment

Total Anomalous ContributionsCH,i;
14 Continue to next CH;

15 if |Cos SimCH,i−1 − Cos SimCH,i|>
Cosine Sim Thresholdadaptive,CH then

16 Reset CH parameters using MemoryCH,i−1

17 else
18 foreach pair of CHs (p, q) where p ̸= q do
19 Compute Cos Simp,q,i by using (8);

20 foreach p do
21 Compute Cos Simp,i by using (9);
22 if Cos Simp,i <

Cosine Sim Thresholdcross then
23 Set Block F lagCH = TRUE and

block durationCH = 0;
24 Increment

Total Anomalous ContributionsCH,i;
25 Continue to next CH;

26 else
27 Increment Total ContributionsCH,i;
28 Calculate Accuracy of ContributionCH,i;
29 Compute Historical AccuracyCH,i by

using (10), Contribution FreqCH,i by
using (13), Anomaly RecordCH,i by
using (14);

30 Update Reliability ScoreCH,i by using (15);
31 Record updated metrics in VIB;

32 if Historical AccuracyCH,i ≥
High Threshold Up and
Cosine Sim Thresholdadaptive,CH >
High Threshold Down then

33 Adjust Cosine Sim Thresholdadaptive,CH

by using (16);

34 Aggregate the accepted model parameters from CHs;
35 Compute global model update θglobal,i by using (19);
36 foreach CH ∈ V IB do
37 Record all parameters in MemoryCH,i;

38 Send updated global model parameters θglobal,i to all
CHs;
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profile, the algorithm computes Z scores for each CH model
update (Lines 7–8) to identify outliers and track anomaly
records (Line 9). For CHs passing the Z-score check, the
cosine similarity between each CH’s update and the global
model parameters is computed (Line 10). If a CH shows a
significant deviation in cosine similarity between consecutive
rounds, the algorithm reverts the parameters of that CH to the
most recent trusted state, mirroring Algorithm 1 but with a
specific index for CH vehicles (Lines 15-16).

The algorithm then performs a cross-cluster consistency
check to ensure consistent aggregated updates from differ-
ent CHs. For each pair of CHs, the cross-cluster cosine
similarity is computed to measure the directional alignment
between their updates. For each CH, it calculates the average
cross-cluster cosine similarity with all other CHs. If a CH’s
average cross-cluster cosine similarity is below the prede-
fined threshold Cosine Sim Thresholdcross, it indicates
that the CH’s update is inconsistent with those from other
clusters, possibly due to anomalies or adversarial behavior.
In such cases, the algorithm sets the Block F lagCH to
TRUE, resets the block durationCH to zero, increments the
Total Anomalous ContributionsCH,i counter, and skips
processing this CH (Lines 17-25). After filtering out unreliable
CHs via these Z-score and cosine similarity evaluations, the
algorithm updates the contribution records of each remaining
CH following the same procedure as Algorithm 1 (Lines
26–31). Next, adaptive thresholding is applied by adjusting
the cosine similarity threshold for high-performing CHs. If
a CH’s Historical AccuracyCH,i surpasses a predefined
High Threshold Up, it indicates consistently high perfor-
mance (Lines 32-33).

The EPC then aggregates the accepted model parameters
from the remaining CHs to update the global model. The
aggregation is performed using weighted averaging based
on the CHs’ reliability scores, ensuring that more reliable
CHs have a more significant influence on the global model
update. This weighted aggregation promotes the contributions
of trustworthy CHs while mitigating the impact of less reliable
ones, enhancing the overall performance and convergence of
the global model (Lines 34-35). The subsequent step focuses
on saving the current parameters of each CH into a designated
memory buffer, referred to as MemoryCH,i (Lines 36-37).

Finally, the EPC sends the updated global model parameters
back to all CHs for distribution to their respective CMs,
completing the training round. This dissemination ensures all
participants have the latest model parameters, enabling them to
continue the local training and updating process in subsequent
rounds (Line 38).

IV. PERFORMANCE EVALUATION

The simulations evaluate the effectiveness of the proposed
Dynamic Anomaly Detection and Reliability-based Client Se-
lection (DARCS) algorithm when integrated with the Cluster-
based HFL (CbHFL) framework presented in [6]. Our ap-
proach builds on CbHFL’s dynamic clustering mechanism,
which adapts to highly mobile vehicular environments and
enables multi-hop transmission of local updates to CHs. We

compare the performance of the DARCS-enhanced CbHFL
framework against four benchmark approaches. The first
benchmark is the original CbHFL framework without any
attacks. In this benchmark, vehicles are grouped into CMs
and CHs, while the EPC acts as the central server for global
model aggregation. This baseline serves as a reference for
an effective HFL environment in a non-IID, highly dynamic
vehicular setting. The second benchmark is a cosine similarity-
based attacker detection algorithm (CosDefense) [15], adapted
for CbHFL. It identifies malicious vehicles by computing
cosine similarity scores between the global model’s last-
layer weights and local updates, excluding vehicles with
significant deviations from the average. The third benchmark
is Z-Score Detection [13], also adapted for CbHFL, which
detects outliers based on Z-score analysis and removes updates
that exceed a predefined threshold. The fourth benchmark
combines cosine similarity and Z-score methods but does not
incorporate reliability scores, adaptive thresholding, or cross-
cluster consistency checks. This variant helps to isolate and
evaluate the impact of additional mechanisms proposed in
DARCS.

A. Simulation Setup

The simulations utilize Python, with vehicle mobility gen-
erated by Simulation of Urban Mobility (SUMO) and data
streaming via KAFKA. This setup creates a realistic vehicular
network scenario for FL. SUMO models individual driver
behaviors and traffic dynamics, while KAFKA is utilized to
transmit packets and model parameters, enabling communica-
tion among vehicles. FL models are built using PyTorch.

The simulation environment replicates a one km² area with
two-lane roads, where vehicle movements are modeled using a
Poisson process. Vehicles have speeds ranging from 10 m/s to
35 m/s, capturing a variety of mobility patterns. IEEE 802.11p
is employed for vehicle-to-vehicle communication, while 5G
NR is used for vehicle-to-infrastructure communication. For
vehicle-to-vehicle links, the Winner+ B1 propagation model
is applied as described in [25]. For vehicle-to-infrastructure
communication, the Friis propagation model estimates signal
attenuation and propagation characteristics between vehicles
and 5G NR base stations, following [26]. FL training uses
the MNIST dataset with stochastic gradient descent (SGD),
under a non-IID data distribution across vehicles. The main
evaluation metrics are model accuracy, indicating the predic-
tive performance of the model [24], and convergence time,
representing the number of communication rounds required
to achieve model stability. Convergence is defined using a
threshold ϵ, where learning is considered complete if the
improvement in model performance falls below ϵ over three
consecutive rounds [27].

A comprehensive set of simulations is conducted to
evaluate the contribution of each component of the proposed
algorithm under three scenarios: (i) 25 vehicles with a 100-
meter transmission range, (ii) 25 vehicles with a 500-meter
transmission range, and (iii) 50 vehicles with a 100-meter
transmission range. In each case, 20% of the vehicles
are designated as attackers, employing harsh fake additive
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Gaussian noise (mean = 2, variance = 0.3), gradient ascent
attacks, or a combination of both. The evaluation models a
worst-case scenario where malicious vehicles begin attacking
from the first communication round and continue without
interruption. Both a single-hop configuration, allowing direct
CM–CH communication, and a 3-hop setup, involving
data relaying through intermediate CMs, are considered to
assess performance under different network topologies. Key
parameter settings for this scenario include a vehicle selection
ratio of 75% per training round, an unblock time fixed at
5 rounds, and specific thresholds: a Z Score Threshold
of 3, an Cosine Sim Thresholdadaptive,k of 0.90,
High Threshold Up of 95%, High Threshold Down
of 0.2, an Adjustment Factor (δ) of 0.05, and a
Cosine Sim Thresholdcross of 0.9. The weighting of
each parameter towards the reliability score is equal.

B. Performance Evaluation of Proposed Algorithm

In this section, we evaluate the impact of incorporating
adaptive thresholding and cross-cluster consistency checks into
the proposed algorithm. The goal is to demonstrate their
effectiveness and highlight the necessity of integrating both
components. The analysis focuses on a scenario with 25
vehicles operating at a 100-meter transmission range in a
single-hop configuration. By comparing the performance of
the algorithm with and without these features, we provide
a detailed assessment of their contributions to the overall
robustness and security of the framework.

Figure 1 illustrates the impact of adaptive thresholding on
the performance of the proposed algorithm for various types of
attacks: high noise, gradient ascent, and a combination of both.
Under Gaussian noise attack, static thresholding exhibits an ac-
curacy drop of roughly 5% from the 95% baseline, while adap-
tive thresholding shows a less significant decrease of around
1%. The sharp dip under static thresholding, reaching as low as
75%, is completely mitigated by adaptive thresholding. Under
gradient ascent attacks, static thresholding results in a loss of
approximately 6%, whereas adaptive thresholding restricts the
decline to nearly 2%. Even in the most severe combined noise
and gradient ascent scenario, static thresholding causes a drop
of almost 7%, while adaptive thresholding confines the loss
to approximately 3%. These results clearly demonstrate that
static thresholds allow performance degradation of up to 7%,
whereas adaptive thresholding, by leveraging each vehicle’s
historical reliability, limits accuracy loss to within 1–3% of
the baseline, thereby preserving overall system stability under
all attack types.

Figure 2 demonstrates the impact of the cross-cluster con-
sistency check on the performance of the proposed algorithm,
evaluated under the same scenarios and attack conditions.
Incorporating the cross-cluster consistency check enhances
system resilience by identifying deviations from the mean
average cosine similarity across clusters. If a CH or a cluster’s
weighted average exhibits malicious behavior significantly
deviating from the global model, this anomaly is immediately
detected and mitigated by excluding the malicious entity. As
illustrated in the figure, under Gaussian noise attack, omitting

(a)

(b)

(c)

Figure 1: Comparison of accuracy at the EPC with and
without adaptive thresholding. a) Noise attack with Mean= 2,
Variance= 0.3, b) Gradient ascent attack, c) Noise and gradient
ascent attack.

the cross-cluster consistency check results in an accuracy drop
of roughly 6% from the 95% baseline, while incorporating the
consistency check limits the decrease to about 3%. Without
the check, the deepest accuracy dip, reaching 80%, is entirely
smoothed out by the consistency check. Under gradient ascent
attacks, performance without the consistency check declines
by around 5%, whereas including the check reduces the drop
to about 2%. In the combined noise and gradient ascent
scenario, the no-check configuration leads to a degradation
of nearly 7%, while the consistency check confines the loss
to approximately 3%. These results demonstrate that, without
cross-cluster consistency checks, the system is unable to detect
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(a)

(b)

(c)

Figure 2: Comparison of accuracy at the EPC with and without
cross-cluster consistency check. a) Noise attack with Mean= 2,
Variance= 0.3, b) Gradient ascent attack, c) Noise and gradient
ascent attack.

coordinated malicious updates, leading up to 7% accuracy
loss. In contrast, verifying inter-cluster alignment through the
consistency check limits the degradation to within 2–3% of the
baseline, preserving system stability across all attack types.

C. Performance Comparison of Proposed Algorithm with
Benchmark Algorithms

Figure 3 shows the accuracy at the EPC under various attack
scenarios in a 1-hop communication setup with 25 vehicles
and a 100-meter transmission range. The baseline performance
of CbHFL without any attacks achieves approximately 95%

(a)

(b)

(c)

Figure 3: Comparison of accuracy at the EPC with benchmark
algorithms for 25 vehicles, 100-meter transmission range,
and 1-hop communication: a) Noise attack with Mean= 2,
Variance= 0.3, b) Gradient ascent attack, c) Noise and gradient
ascent attack.

accuracy, representing the ideal state. Under severe adver-
sarial conditions—particularly when high Gaussian noise is
combined with gradient ascent attacks—benchmark methods
experience substantial performance degradation, resulting in
significant accuracy fluctuations and system instability. Under
pure Gaussian noise, the Z score only approach exhibits a drop
in accuracy of approximately 12% from the baseline, while
the cosine similarity only method shows a slight decrease
of around 10%. Even when these defenses are combined,
the aggregated accuracy remains about 8% lower than the
ideal. Under gradient ascent attacks, the cosine similarity
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Table I: Convergence time under varying attack types, number of vehicles, transmission ranges, and convergence threshold ϵ
for 1-hop communication.

25 Vehicles, Tx Range = 100 Meters

CbHFL
Without Attacks

CbHFL +
Cosine Similarity Defense

CbHFL +
Z-Score Defense

CbHFL +
Cosine Similarity +

Z-Score Defense

CbHFL +
DARCS

Noise Attack with
Mean = 2,
Var = 0.3

ϵ = 0.01 61 72 76 69 63
ϵ = 0.005 65 75 ∞ 74 68
ϵ = 0.001 73 ∞ ∞ ∞ 74

Gradient Ascent Attack
ϵ = 0.01 53 68 74 57 55
ϵ = 0.005 58 73 ∞ 68 61
ϵ = 0.001 69 74 ∞ 74 72

Noise + Gradient Ascent Attack
ϵ = 0.01 62 74 ∞ 70 65
ϵ = 0.005 70 ∞ ∞ 74 73
ϵ = 0.001 74 ∞ ∞ ∞ 74

25 Vehicles, Tx Range = 500 Meters
Noise Attack with

Mean = 2,
Var = 0.3

ϵ = 0.01 59 66 71 67 59
ϵ = 0.005 58 70 ∞ 68 63
ϵ = 0.001 65 ∞ ∞ ∞ 68

Gradient Ascent Attack
ϵ = 0.01 47 62 68 52 49
ϵ = 0.005 55 67 75 62 58
ϵ = 0.001 64 70 ∞ 69 69

Noise + Gradient Ascent Attack
ϵ = 0.01 58 68 70 65 61
ϵ = 0.005 66 73 ∞ 71 66
ϵ = 0.001 69 ∞ ∞ 74 69

50 Vehicles, Tx Range = 100 Meters
Noise Attack with

Mean = 2,
Var = 0.3

ϵ = 0.01 68 80 81 75 71
ϵ = 0.005 73 81 ∞ 82 75
ϵ = 0.001 77 ∞ ∞ ∞ 80

Gradient Ascent Attack
ϵ = 0.01 59 75 80 63 59
ϵ = 0.005 62 75 ∞ 74 66
ϵ = 0.001 72 81 ∞ 78 77

Noise + Gradient Ascent Attack
ϵ = 0.01 68 77 ∞ 76 71
ϵ = 0.005 73 ∞ ∞ 81 77
ϵ = 0.001 77 ∞ ∞ ∞ 78

method outperforms the Z-score approach, with accuracy
reductions of approximately 10% versus 15%, respectively.
When both attack types are compounded, benchmark meth-
ods incur losses ranging from 12% (cosine similarity) to as
much as 17% (Z-score). In contrast, our proposed algorithm
(CbHFL+DARCS) consistently maintains performance very
close to the baseline, with only a minimal drop of approx-
imately 2–3% even under the most challenging conditions.
Across all attack types, DARCS delivers the highest resilience,
followed by the combined Z-score and cosine similarity de-
fense, followed by the cosine similarity-only method, with
Z-score-only performing worst. Under pure Gaussian noise,
our proposed algorithm best mitigates random perturbations,
while Z-score-only suffers the greatest degradation. In the
gradient ascent scenario, DARCS again leads, the combined
defense comes second, and Z-score-only remains the weakest.
When attacks are compounded, DARCS still holds within 3%
of the baseline, the combined defense offers partial mitigation,
and Z-score-only incurs the most severe drop. Moreover,
similar trends are observed in a 3-hop environment, though
performance degradation in benchmark techniques is even
more pronounced due to reduced inter-cluster diversity in
larger clusters. Overall, these results clearly demonstrate that
while conventional benchmark techniques provide only partial
protection, our DARCS algorithm delivers superior robustness
and stability, achieving performance within just 2–3% of the
baseline, thus offering a highly reliable solution for dynamic
vehicular HFL environments.

Table I compares the convergence times of the proposed
algorithm with benchmark methods under various attack sce-
narios, number of vehicles, transmission ranges, and ϵ values
in a 1-hop communication setup. The proposed algorithm con-
sistently achieves significantly faster convergence compared to
the benchmarks, aligning with the trends observed in Figure
3. Under high noise levels and combined noise and gradient
ascent attacks, benchmark methods fail to converge at lower ϵ
values. In contrast, the proposed algorithm reliably converges
in rounds remarkably close to those observed in attack-free
scenarios. Furthermore, the proposed algorithm maintains sta-
ble convergence times irrespective of attack intensity or con-
ditions. As the number of vehicles increases, the convergence
time of the proposed algorithm remains comparable to that
of the attack-free scenario. Similarly, in cases where attacks
become more distributed due to increased transmission ranges,
the algorithm continues to deliver efficient convergence. These
results emphasize the effectiveness of the proposed algorithm,
which achieves a performance profile remarkably close to that
of a no-attack environment, even under diverse and challenging
adversarial scenarios.

Table II provides an analysis of convergence times for the
proposed algorithm versus benchmark approaches, evaluated
under different attack models, vehicle densities, transmission
distances, and ϵ settings within a 3-hop network configuration.
In the 1-hop configuration, vehicles are organized into many
small clusters, which enables highly sensitive cross-cluster
consistency checks for anomaly detection but provides limited
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Table II: Convergence time under varying attack types, number of vehicles, transmission ranges, and convergence threshold ϵ
for 3-hop communication.

25 Vehicles, Tx Range = 100 Meters

CbHFL
Without Attacks

CbHFL +
Cosine Similarity Defense

CbHFL +
Z-Score Defense

CbHFL +
Cosine Similarity +

Z-Score Defense

CbHFL +
DARCS

Noise Attack with
Mean = 2,
Var = 0.3

ϵ = 0.01 60 70 75 68 60
ϵ = 0.005 62 73 ∞ 70 66
ϵ = 0.001 69 ∞ ∞ ∞ 72

Gradient Ascent Attack
ϵ = 0.01 51 66 71 54 51
ϵ = 0.005 56 69 ∞ 66 60
ϵ = 0.001 66 71 ∞ 74 71

Noise + Gradient Ascent Attack
ϵ = 0.01 59 70 ∞ 67 63
ϵ = 0.005 69 ∞ ∞ 73 69
ϵ = 0.001 71 ∞ ∞ ∞ 72

25 Vehicles, Tx Range = 500 Meters
Noise Attack with

Mean = 2,
Var = 0.3

ϵ = 0.01 58 62 71 62 59
ϵ = 0.005 56 68 ∞ 66 59
ϵ = 0.001 67 71 ∞ 70 67

Gradient Ascent Attack
ϵ = 0.01 46 60 65 49 48
ϵ = 0.005 48 65 68 62 54
ϵ = 0.001 62 66 ∞ 68 64

Noise + Gradient Ascent Attack
ϵ = 0.01 53 65 69 61 57
ϵ = 0.005 64 70 ∞ 66 65
ϵ = 0.001 66 74 ∞ 72 69

50 Vehicles, Tx Range = 100 Meters
Noise Attack with

Mean = 2,
Var = 0.3

ϵ = 0.01 64 76 77 70 65
ϵ = 0.005 67 77 ∞ 75 69
ϵ = 0.001 76 ∞ ∞ ∞ 76

Gradient Ascent Attack
ϵ = 0.01 57 71 75 60 59
ϵ = 0.005 61 75 ∞ 70 62
ϵ = 0.001 71 77 ∞ 75 73

Noise + Gradient Ascent Attack
ϵ = 0.01 66 78 ∞ 72 66
ϵ = 0.005 71 ∞ ∞ 78 74
ϵ = 0.001 77 ∞ ∞ ∞ 75

aggregation-driven noise suppression. In contrast, the 3-hop
hierarchy consolidates vehicles into larger clusters and in-
troduces an additional layer of hierarchical aggregation. This
multi-tier structure enhances weighted averaging across both
spatial and hierarchical dimensions, thereby more effectively
diluting random perturbations and attenuating the impact of
adversarial gradient manipulations. Consequently, convergence
in the 3-hop topology is marginally faster than in the 1-hop
case across all attack scenarios. The larger cluster size re-
duces variance in the aggregated updates, accelerating conver-
gence under Gaussian noise, while the hierarchical consistency
checks inherent to the 3-hop design mitigate gradient ascent
attacks by cross-validating updates at multiple aggregation
levels. Benchmark methods based solely on Z-score or cosine
similarity cannot fully exploit these advantages and thus ex-
hibit slower convergence. Overall, DARCS+CbHFL leverages
robust statistical filtering and hierarchical consensus to achieve
rapid and stable convergence in adversarial settings. The 3-hop
architecture not only preserves sensitivity to anomalies but also
significantly enhances resilience through better noise dilution
and redundant validation pathways.

V. CONCLUSION

In this paper, we present a novel framework to improve
both the security and integrity of HFL within VANETs. The
framework integrates dynamic client selection with robust
anomaly detection, ensuring that only the most trustworthy
vehicles participate in the learning process. Trustworthiness

is evaluated through a composite reliability score based on
historical accuracy, contribution frequency, and past anomaly
records. To strengthen resilience against evolving threats,
adaptive thresholding dynamically adjusts detection sensitiv-
ity, while cross-cluster consistency checks validate update
integrity across clusters, effectively mitigating risks from co-
ordinated malicious behaviors. A reliability-based weighted
gradient averaging strategy further improves global model
robustness by assigning greater influence to consistently high-
performing vehicles. Malicious contributions are detected and
isolated using a combination of cosine similarity and Z-
score analysis. Through comprehensive simulations across
various attack scenarios, including fake noise, gradient ascent,
and their combination, DARCS consistently outperforms all
benchmark defenses, achieving up to a 17% reduction in
convergence time and limiting accuracy loss to within 2–3%
of the ideal attack-free baseline across both 1-hop and 3-hop
topologies. These gains demonstrate the contribution of each
component: adaptive thresholding improves performance by
4–6%, while cross-cluster consistency checks add a further
3–5%. By effectively isolating malicious participants and
preserving model integrity, DARCS provides a robust, scalable
solution for dynamic VANET environments. Future work will
focus on enhancing privacy protections and extending the
framework to guard against malicious exploitation of model
parameters.
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