
ar
X

iv
:2

50
5.

01
13

9v
1

 [
cs

.C
R

]
 2

 M
ay

 2
02

5

Active Sybil Attack and Efficient Defense Strategy
in IPFS DHT

Victor Henrique de Moura Netto, Thibault Cholez and Claudia-Lavinia Ignat
Université de Lorraine, CNRS, Inria, LORIA

Nancy, France
{victor-henrique.de-moura-netto, thibault.cholez, claudia.ignat}@inria.fr

Abstract—The InterPlanetary File System (IPFS) is a decen-
tralized peer-to-peer (P2P) storage that relies on Kademlia, a
Distributed Hash Table (DHT) structure commonly used in P2P
systems for its proved scalability. However, DHTs are known to
be vulnerable to Sybil attacks, in which a single entity controls
multiple malicious nodes. Recent studies have shown that IPFS is
affected by a passive content eclipse attack, leveraging Sybils, in
which adversarial nodes hide received indexed information from
other peers, making the content appear unavailable. Fortunately,
the latest mitigation strategy coupling an attack detection based
on statistical tests and a wider publication strategy upon detection
was able to circumvent it.

In this work, we present a new active attack, with malicious
nodes responding with semantically correct but intentionally false
data, exploiting both an optimized placement of Sybils to stay
below the detection threshold and an early trigger of the content
discovery termination in Kubo, the main IPFS implementation.
Our attack achieves to completely eclipse content on the latest
Kubo release. When evaluated against the most recent known
mitigation, it successfully denies access to the target content in
approximately 80% of lookup attempts.

To address this vulnerability, we propose a new mitigation called
SR-DHT-Store, which enables efficient, Sybil-resistant content
publication without relying on attack detection but instead on a
systematic and precise use of region-based queries, defined by a
dynamically computed XOR distance to the target ID. SR-DHT-
Store can be combined with other defense mechanisms resulting in
a defense strategy that completely mitigates both passive and active
Sybil attacks at a lower overhead, while allowing an incremental
deployment.

I. INTRODUCTION

Since the early 2000s, peer-to-peer (P2P) networks have
been known to be vulnerable to Sybil Attacks [1], in which
an attacker instantiates many fake peers under their control
to disrupt the network’s operations. Structured P2P networks
based on Distributed Hash Tables (DHTs), such as Kademlia
[2], are particularly threatened as each peer is responsible for
indexing a range of content space according to its position in
the DHT. This vulnerability leads to localized attacks, where
an attacker forges node IDs to insert multiple Sybils into a
specific region of the DHT, gaining control over the indexing
mechanism and denying access to targeted content [3], [4].
To counter such threats, several defense mechanisms have
been proposed [5], [6], typically relying on evaluating the
distribution of the peers around an ID using statistical tests of
relative entropy, to detect anomalies indicative of Sybil activity.
Additionally, they may modify the lookup strategy to either

avoid suspicious nodes or reduce their influence by diluting
their weight in the search process.

In recent years, the InterPlanetary File System (IPFS) [7]
has emerged as an attempt to build the storage layer for the
decentralized World Wide Web (WWW). IPFS is a suite of
protocols designed for data exchange, built on the principles of
content addressing and peer-to-peer networking. Data is never
directly uploaded to the network, only references pointing to
the providers of the content, who are contacted directly for
data exchange. The primary implementation of IPFS is Kubo
[8] (formerly known as go-ipfs), written in Go. IPFS is used
in a variety of applications, including Berty [9], a peer-to-peer
messaging app that operates without central servers; DTube
[10], a decentralized video-sharing platform; and Filecoin [11],
a cryptocurrency-based decentralized file storage network. The
core networking functionality of IPFS has been extracted into
a separate project called libp2p [12], an open-source, modular
framework for building P2P applications.

Recent studies [6], [13] have shown that the main IPFS
client has so far neglected to implement security mechanisms
against Sybil attacks, and was consequently highly affected by
a basic Sybil attack scenario. In such attack, an attacker can
eclipse content from the network by precisely inserting Sybil
nodes with forged IDs. To address this issue, the authors of
[6] proposed a detection and mitigation strategy that reduces
the impact of Sybil nodes. Their approach involves extending
the set of peers that receive publication records by performing
region-based queries, based on their common prefix length
(CPL) with the CID, thereby defeating content censorship
attempts.

In this paper, we propose a new attacker model that optimizes
both the number and position of Sybils while remaining below
the detection threshold of the proposed countermeasure. As a
result, we show that the majority of publication records can
still be intercepted by Sybils without triggering the defense
mechanism. We exploit this vulnerability by introducing active
behavior in Sybils, which now advertise fake records to trigger
early termination in IPFS’s lookup process, leading to an
attack success rate of 80%. In response, we propose a new
Sybil-resistant strategy for storing data in the DHT. This
approach relies on an efficient way for calculating the XOR
distance where the peers responsible for a record should be
located, combined with a systematic use of region-based queries
that we have optimized to significantly reduce overhead. Our

mailto:victor-henrique.de-moura-netto@inria.fr
mailto:thibault.cholez@inria.fr
claudia.ignat
https://arxiv.org/abs/2505.01139v1

mechanism called SR-DHT-Store, when used in combination
with other mechanisms such as disjoint lookup paths [14], fully
mitigates the active attack and defines a new best practice for
securely publishing data in a DHT.

To summarize, our main contributions are the following:
• a combinatorial optimization algorithm for inserting Sybil

nodes while remaining undetected against [5] or [6];
• an active attacker model that exploits a vulnerability to

prematurely abort the content lookup process;
• an efficient method for estimating the proper distance of

peers responsible for content, based on the XOR metric
rather than the CPL;

• a systematic use of region-based queries with a reduced
overhead;

• an evaluation of combined defense mechanisms against
Sybil attacks with our proposed mitigation strategy.

The remainder of the paper is organized as follows. Section II
and Section III present the technical background on IPFS and
related work on Sybil attacks and defense mechanisms for
DHTs, with a specific focus within the context of IPFS. Section
IV presents and evaluates our active Sybil attack scenario
and its results. Our Sybil-resistant publication strategy for the
DHT, SR-DHT-Store, is described and evaluated in Section V.
Finally, in Section VI, we further enhance DHT resilience by
combining our proposed publication strategy with additional
mechanisms, in particular S/Kademlia, before concluding the
paper in Section VII.

II. BACKGROUND ON IPFS

In this section, we provide a comprehensive overview of
the key concepts necessary to understand this work. We begin
by introducing peer and content identifiers, followed by a
discussion of the principles of the DHT. As a core component
of IPFS, we then examine the DHT’s internal structures, such
as the Routing Table (RT), along with the mechanisms used
for content addressing and retrieval.

A. Identifiers

Each piece of content in the network is assigned a unique
identifier, known as a Content Identifier (CID), derived from
the hash of the file’s contents. This hash is computed from
a Merkle Directed Acyclic Graph (MerkleDAG) [15], which
splits the content into fixed-size segments, called chunks, and
organizes them into a tree-like structure. The root of this tree,
is obtained from the hash of all the chunks and serves as the
CID for the content. As a result, any modification to the content
produces an entirely different CID, allowing recipients to verify
the authenticity and integrity of the data by recalculating the
hash of the received content. The root hash is encoded using
the Multiformats standard [16], producing a self-describing,
future-proof value that supports multiple hashing algorithms,
encoding schemes, and serialization formats.

Peers are identified by Peer Identifiers (PID), which are
derived from the hash of a locally generated public keys. This
PID is formatted similarly to CIDs, using the Multiformats
standard. To establish a secure connection, peers exchange

self-signed certificates that include their public key, along with
a signature generated using their respective private key, as
an extension to the certificate. This ensures the authenticity
of both the source and destination peers while establishing a
reliable connection for secure data exchange.

B. DHT

Nodes and content become accessible once they are inserted
into the DHT, which operates within a 256-bit key space.
This distributed hash table contains pairs of keys and values,
distributed along multiple nodes in the network. The keys
are the SHA-2 hash of a CID or PID, ensuring a fixed-size,
comparable value regardless of their original format. There are
two main elements inserted into this DHT: provider records
(PR) and peer records.

When providing content to the network, a provider record,
containing the pair {key: provided CID, value: provider PID},
is distributed to selected peers. These peers store this record
in their local hash tables, which are periodically cleaned to
avoid retaining references to unused content due to network
churn. By default, to ensure the continuous availability of the
content, the provider must periodically announce the record, a
process known as content pinning [17].

After identifying the content provider from an obtained PR,
the node must retrieve the provider’s IP address to initiate
the content exchange. This is done by searching for the
corresponding peer record, which maps {key: PID, value:
multiaddresses}. The values of those pairs are multiaddresses
[18], a standardized format used to represent a peer’s contact
information, including all supported protocols, IP addresses,
and open ports.

To searching and providing records in the DHT, nodes
perform a DHT lookup, an iterative process to find the k
closest nodes to a target identifier. Initially, the α closest nodes
to the target on its routing table are queried in parallel for the
closest nodes they know to the identifier. All responses are
stored in a shared data structure, ordered by distance, and used
in subsequent lookup iterations. The process continues until
the closest β nodes found have already been queried and have
successfully responded. IPFS follows the Kademlia protocol
specifications [2], using the XOR metric to measure distance
between identifiers, and the parameters: k = 20, α = 10, and
β = 3 [19].

C. Routing Table

When joining the public network, a bootstrap process begins
by contacting one of the official IPFS bootstrap nodes. They
serve as entry points for populating the node’s routing table
and announcing their presence to the network. The RT consists
of i-buckets, where i ∈ {0,255}, each capable of storing up
to k nodes that share exactly i leading common bits with the
node’s own identifier. In this paper, i is also referred to as the
common prefix length (CPL) relative to another identifier.

To keep all buckets updated, the routing table is refreshed
every ten minutes, as well as immediately after the bootstrap
process. During each refresh, the node removes peers that are

2

unreachable, offline, or have not proven useful within a defined
time window [20]. Each bucket i ∈ {0,255} is updated by
performing a lookup toward a randomly generated identifier
that shares exactly i common prefix bits with the node’s PID.
Peers discovered during this process are organized into the
appropriate buckets, based on the CPL they share with the
node’s PID. In practice, IPFS performs this operation only for
the first 0≤ i≤ 15 buckets. This update is then followed by a
lookup toward the node’s own PID to refresh the remaining
i≥ 16 buckets.

D. Content Addressing and Retrieval

To make content available on the network, provider records
are distributed to the k nodes closest to the precomputed CID.
These nodes are obtained through a DHT lookup, and each
of the k nodes is contacted individually to receive the record,
becoming resolvers for the content. This process is illustrated
in Figure 1(a).

IR PI I ICC C CC C
CID

2. PUT ProviderRecord(Provider) * k

1. DHT lookup (CID)

1'. Lookup results
 closer peers to target

keyspace

CC C CC C
CID

IR PI I I

(I)ntermediate Peers(R)equester (C)losest Legitimate Peers (P)rovider

1'. Results
closer peers

to target

3. Can I have the target CID?

keyspace

= k Closest

2. Legitime lookup result
ProviderRecord(Provider)

1. GET DHT lookup (CID)

(a) Content Provide

(b) Content Retrieval

4. Content

Fig. 1: Content provide/retrieval in IPFS DHT. This example
assumes k = 6.

Content retrieval in IPFS is divided into three main steps.
First, each peer in the Swarm is individually queried for the
requested content, checking whether they have a copy of the
desired content. If none of the connected peers possesses the
content, the process falls to the DHT. The retrieval DHT lookup
is slightly modified compared to a standard Kademlia lookup:
it opportunistically requests both the provider record of the
content and the k closest peers known to each queried node.
The lookup continues until a valid provider is found, and
the content is retrieved, or until ten provider records have
been collected, a termination further exploited in this paper

to perform an active attack. All data exchanges in IPFS are
made using Bitswap [21]. This retrieval process is illustrated
in Figure 1(b).

III. RELATED WORK

In open and fully distributed P2P networks such as IPFS,
there is no centralized authority, no privileged peers, and no
mechanism to verify the association between a peer identifier
and a specific user or device. This lack of centralization enables
a single entity to assume multiple malicious identities, known
as Sybils [1]. By strategically positioning these Sybil nodes,
an attacker can gain control over the distributed network and
carry out either passive or active attacks, by eclipsing content
or nodes from the network. In this section, we review past
Sybil-based attacks and corresponding countermeasures applied
to Kademlia DHT and IPFS.

A. DHT Attacks

Eclipse attacks, first described by Singh et al. [22], aim to
isolate a target node or content from the network by surrounding
it with malicious peers, effectively hiding it from the rest of
the system. In this section, we focus on studies that explore
two main strategies for executing this attack: manipulating the
routing table and disrupting internal DHT operations.

Initially focusing on routing table manipulation, Wang et
al. [23] implemented a targeted routing attack against the
Kad network, which is based on the Kademlia DHT. They
introduced a method for hijacking existing connections in a
peer’s routing table by impersonating legitimate nodes. By
querying victims and mapping their routing tables, the attacker
sends spoofed messages to update the contact information of
the nodes listed in the RT. As a result, the victim becomes
dependent on malicious nodes to communicate with the rest
of the network. This attack exploits Kad’s lack of identifier
verification during peer exchanges, an issue addressed in IPFS.

Another variation of the eclipse attack involves exploiting
the interval structure of the DHT. Steiner et al. [3] describe
an attack in which adversaries eclipse content by inserting
malicious nodes near the target identifier using the XOR metric.
Since these malicious nodes become the only resolvers for
the content, they can control how they respond to queries,
effectively dictating access to the targeted data. Cholez et
al. [4] demonstrated that controlling content retrieval can be
achieved using just k Sybil nodes by efficiently eclipsing each
of the k file records sent during a publication. Wang et al. [23]
proposed a more active strategy, where attackers respond to
lookup requests with an excessive number of bogus keywords.
This triggers early termination due to a keyword match limit,
preventing legitimate queries from completing. In the work of
Kohnen et al. [24], attackers respond to lookup requests with
Sybil identities that are only slightly closer to the target than
the current best-known nodes. This causes the lookup process
to make minimal progress and continue indefinitely until it
times out, at which point the content is considered unreachable.

3

B. IPFS Attacks

Beyond IPFS’ vulnerabilities inherited from Kademlia, we
provide in this subsection an overview of the attacks that have
been documented specifically against the IPFS network.

Network Partitioning. The first documented attack on IPFS
was presented by Prünster et al. [25]. The authors described a
method to eclipse a victim node by fully populating its routing
table with Sybil nodes, making it dependent on malicious peers
to contact the rest of the network. During DHT lookups, the
victim sends queries to the closest nodes it knows from to the
target identifier, now all Sybils, allowing the attacker to drop
or filter requests. Once eclipsed, the victim’s only remaining
connections to the legitimate network are through its peer
Swarm.

They evaluated two strategies: a naı̈ve approach and a more
effective one. In the naı̈ve approach, the attackers continuously
ping the victim’s first log2(n) buckets until all reliable entries
in the victim’s routing table are dropped and replaced with
Sybil nodes. In the more effective technique, Sybil nodes gain
priority over honest peers by sending unsolicited data to inflate
their usefulness scores. As a result, the victim’s connection
manager evicts legitimate peers in favor of the seemingly more
useful malicious nodes.

Although this peer eclipse attack proved effective, it was
mitigated in the go-ipfs (formerly Kubo) 0.7 update [26], as
further explained in Section III-C.

Content Eclipse. The content eclipse attack was demon-
strated by Sridhar et al. [6] and Cholez et al. [13]. The attacker
begins by brute-forcing at least k peer identifiers to generate
and instantiate nodes that are closer to the target content than
any legitimate peer. During the next republication interval,
the provider node unknowingly sends the provider record
exclusively to these malicious nodes, which are now the k
closest peers to the content. When the Sybils are queried during
a DHT lookup, they respond with empty results, claiming no
knowledge of the received records. Once the expiration time
is reached for the reliable nodes that had previously stored the
records, before the Sybil nodes were instantiated, the content
becomes eclipsed. This attack is illustrated in Figure 2. For
simplicity, the DHT lookup performed by the provider to locate
the k closest nodes has been omitted from the figure.

In Kubo, provider records are republished at an interval of
tr = 22 hours and expire after a duration of te = 48 hours. While
generating appropriate PeerIDs is computationally intensive due
to the large 256-bit keyspace, both studies demonstrated that
it is computationally feasible. Cholez et al. [13] showed that
generating 20 Sybil PeerIDs sufficiently close to any target CID
would take less than 1.5 hours on a standard 8-core desktop
machine.

C. IPFS Defense Mechanisms

Over the years, various strategies have been proposed to
mitigate Sybil attacks. Douceur [1] argues that no distributed
system can be fully resistant to Sybil attacks without relying on
a centralized certificate authority. However, in a decentralized,
open-source protocol like IPFS, a certificate authority is

1. PUT ProviderRecord(Provider) * k

3. Passive Sybil lookup results
no provider record, only closer peers

(I)ntermediate
Peers(R)equester (C)losest Legitimate

Peers (P)rovider(S)ybil Peers
(≥ k)

2. GET DHT lookup (CID)

2'. Lookup results
closer peers to target

CID
IR PI I I

CID
CC C SS S SS S CC C

keyspace

= k Closest

Fig. 2: Content eclipse attack in IPFS DHT. This example
assumes k = 6.

incompatible. As a result, implementing mitigation strategies
is essential to minimizing the impact of Sybil nodes on the
network. This subsection presents proposed methods to detect
and mitigate Sybil attacks and concludes with an overview of
the defenses currently integrated into Kubo.

S/Kademlia. According to the original IPFS paper [7],
the protocol should implement two key recommendations
from S/Kademlia [14] to improve DHT robustness: identity
generation from key pairs and disjoint lookup paths. The first
ensures that each node derives its identifier from a local key
pair, which is used for identity and message authentication.
The second proposes that lookups must be performed along
separate, non-overlapping paths, storing responses in isolated
queues to reduce the impact of adversarial peers during routing.

However, as explained by Cholez et al. [13], Kubo does not
enforce the disjoint lookup paths. While it performs parallel
queries during lookups, all discovered nodes and provider
records are aggregated into a single structure, making the
process more vulnerable to Sybil attacks. This limitation is
further analyzed in our work.

Attack Detection using the K-L Divergence. Cholez et
al. [5] propose a Sybil attack detection mechanism based
on analyzing the distribution of the k closest nodes to a
given target. In a reliable network, nodes are expected to
be randomly positioned, resulting in a uniform distribution
of identifiers across the DHT space. By estimating the total
number of nodes in the network, it is possible to compute the
expected model distribution of the k closest nodes to a given
identifier. However, when malicious nodes are strategically
positioned to occupy all k closest positions, the observed
distribution deviates from the expected random distribution. To
quantify this deviation, the authors use the Kullback-Leibler
(K-L) divergence, which measures the discrepancy between two
probability distributions: the expected model distribution and
the observed real distribution. The minimum value of the K-L
divergence is DKL = 0, which indicates no difference between
the distributions, increasing as the discrepancy between the
distributions grows.

Sridhar et al. [6] implemented this attack detection method,

4

however introducing a variable network size N. To calculate
their model distribution, they estimate the probability that a
randomly selected closest peer j has a CPL exactly equal to x.
This probability distribution, p(x), is then compared with the
empirical distribution q(x), which is obtained from the actual
k closest nodes to the target content. Both distributions are
compared using the K-L divergence equation, as follows:

DKL ≜ ∑
x∈X

q(x) ln
(

q(x)
p(x)

)
(1)

Through experiments on the IPFS network, they established
a threshold value of 0.94. If the discrepancy between the
observed and expected distributions exceeds this threshold, the
distribution is classified as an attack. The authors prioritized
minimizing false negatives to increase the likelihood of
detecting an attack when defining this constant, at the cost of
introducing some overhead. Their threshold is calibrated for a
false positive rate of 4.4% and a false negative rate of 0.81%.

Region-Based Queries. Sridhar et al. [6] additionally
proposed a mitigation strategy to be applied upon attack
detection. Their approach is based on the assumption that the k
closest reliable nodes cannot be removed from the network by
an adversary. To reach these reliable nodes, they introduce the
concept of region-based queries. Using the previously estimated
network size from the attack detection phase, they calculate the
CPL at which the k-th closest reliable node would be positioned
in a truly random distribution of identifiers within the network
space. Lookups are then performed until all nodes that share at
least this CPL with the target are identified, afterward sending
PRs to each of them. As a result, regardless of the number of
Sybils deployed, approximately k = 20 reliable nodes receives
the provider record, significantly increasing the likelihood of a
requester successfully retrieving the content. This mitigation
strategy is illustrated in Figure 3.

IR

1. PUT ProviderRecord(Provider) * (> k)

PI I I

2. GET DHT lookup (CID)

2'. Lookup results
closer peers

to target

CID

keyspace

CC C SS S SS S CC C

= Mitigation Region
3. Legitime lookup result
ProviderRecord(CID)

(I)ntermediate
Peers(R)equester (C)losest Legitimate

Peers (P)rovider(S)ybil Peers

= k Closest

Fig. 3: Region-based query mitigation strategy. This example
assumes k = 6.

The k-th closest reliable node in a random distribution should
contain a CPL of minCPL = ⌈log2(

N
k)⌉, delimiting the region

containing a theoretical region of k reliable nodes. Their search
algorithm begins with an initial DHT lookup to identify the k
closest nodes to the target CID. The k-th closest node returned
from the lookup shares a given CPL with the target, meaning
that all other returned nodes share at least the same CPL

with the target CID. In the subsequent iteration, a random
identifier with CPL+1 with the target is generated, to locate
nodes farther from the target through additional lookups. This
process is repeated until the CPL of the k-th closest node is
less than minCPL, ensuring that all nodes within the minCPL
region have been successfully identified.

At the time of writing, this mitigation has not been im-
plemented in IPFS to address content eclipse attacks. In the
following sections of the paper, we occasionally use the term
“region-based queries” to refer collectively to both the attack
detection mechanism and this associated mitigation strategy.

Kubo Constraints. The go-ipfs 0.7 release [26] addressed
the Prunster et al. attack [25]. In this version, IPFS introduced
a mechanism that ensures active connections in the routing
table are pruned only during idle periods, preserving long-lived,
stable peers. Additionally, a diversity filter was implemented
[27], limiting the addition of peers from the same /16 IPv4
subnetwork to a maximum of three in the routing table, and
no more than two per bucket. However, this restriction applies
only to the routing table and does not affect the lookup process,
which remains vulnerable to encountering multiple peers with
the same IP address, as highlighted in [13].

A more recent addition in version 0.34.0 of go-libp2p [28]
introduces a limitation of a maximum of eight concurrent
connections per /16 subnetwork. This restriction prevents a
peer from maintaining an excessive number of connections
within the peer Swarm, complementing the existing diversity
filter, which already imposes stricter limits on entries in the
routing table.

While the passive content eclipse attack is likely to be
mitigated in IPFS, no study has yet evaluated the network’s
resilience to an active content eclipse attack. An active attack
involves malicious nodes actively responding to requests with
semantically correct but falsified data. The following section
investigates the impact of such attack on the IPFS network, with
a particular focus on defeating the latest defense mechanism
proposed for mitigating Sybil-based content censorship in IPFS
[6].

IV. ACTIVE SYBIL ATTACK ON IPFS

This section begins by introducing an active attacker model
that targets the IPFS network by exploiting a premature
termination condition in the current DHT lookup process. The
model is then adapted to specifically exploit the attack detection
and region-based query mechanisms proposed in the most
recent defense strategy for the network [6]. Finally, we analyze
the cost associated with executing the attack and evaluate its
effectiveness.

A. Attacker Model

Our attack exploits an early termination mechanism by
responding to lookup requests with a falsified list of provider
records when queried about the targeted content. During a DHT
lookup for a content’s provider record, the query is designed to
stop once a predefined maximum number of records is retrieved.
In Kubo, this limit is set to ten records, which can be exploited

5

by a single or multiple malicious nodes positioned along the
lookup path. Those nodes can respond with semantically correct
but false records, causing the lookup to terminate prematurely.

The active approach achieves the same success rate as a
passive attack when at least k malicious nodes are instantiated
around the target, as all k provider records are exclusively
sent to these adversarial nodes. As previously demonstrated,
when k Sybil nodes surround the target, the content can be
completely eclipsed from the DHT. However, by exploiting the
premature termination of the DHT lookup process, the attacker
can reduce the number of Sybil nodes required to execute the
attack. If the adversary’s nodes consistently manage to be the
first contacted during the victim’s lookup, the content can be
effectively eclipsed from the network with as few as n ≤ k
malicious peers.

Since no mitigation has been implemented against the passive
attack in the current Kubo version 0.33.0, presenting results
using the active approach on this last release is uninformative,
as the attack will always succeed. Therefore, our work focuses
on implementing1 the active attack against the most effective
mitigation proposed for IPFS to counter content eclipse: the
attack detection and region-based queries et al. [6].

Termination Exploit. The lookup process, implemented
in the function findProvidersAsyncRoutine2, declared in
the file routing.go, includes a call to runLookupWithFol-

lowup, defined in query.go, which contains three distinct
search termination conditions. One of these terminations is
an anonymous function passed as a parameter to the variable
stopFn, at line 351 of routing.go, and shown in Listing 1. In
this function, psSize represents the current number of provider
records found during the lookup, while count denotes the
maximum number of accepted records, which is set to ten
in Kubo. If the number of retrieved records exceeds count,
the lookup process is terminated. This specific termination is
referred to as an external stop. Once triggered, it initiates a
continuous lookup process that is repeated every minute until
the request is either successfully completed or canceled.

1 func () boo l {
2 r e t u r n ! f i n d A l l && p s S i z e () >= c o u n t
3 } ,

Listing 1: The function stopFn exploited in IPFS to achieve
early termination of the DHT lookup.

Malicious nodes can respond to queries with records contain-
ing randomly generated identifiers and IP addresses. Since the
peer cannot establish contact with these nodes using the fake
addresses, it attempts to discover their potential new contact
information by performing additional DHT lookups.

Strategy. Our strategy against their mitigation involves
strategically inserting the maximum number of Sybil nodes

1https://github.com/vicnetto/active-sybil-attack-and-efficient-defense-strat
egy-in-ipfs-dht.

2https://github.com/libp2p/go-libp2p-kad-dht/blob/e676e51718b8fca0d962
82523967f8632534f0bd

while maintaining the appearance of a randomly generated peer
distribution. The attacker begins by computing the expected
model distribution, similarly to the attack detection mechanism,
assuming an ideal scenario where all identifiers are randomly
distributed across the DHT. Next, the attacker retrieves the
k closest nodes to the target content and calculates the K-L
divergence between the observed and model distributions. In
the absence of a false attack detection, the resulting divergence
should remain below the established detection threshold. We
exploit the margin left in the threshold, which is needed to
maintain the false positive rate at an acceptable level, for
inserting Sybil nodes in optimal positions without raising
suspicion. The attack strategy is illustrated in Figure 4.

IR

1. PUT ProviderRecord(Provider) * k

PI I I

3. Active Sybil lookup result
ten semantically correct but false PRs

2. GET DHT lookup (CID)

2'. Lookup results
closer peers to target

CID
CSC C C

keyspace

CC SS S

= k Closest

(I)ntermediate
Peers(R)equester (C)losest Legitimate

Peers (P)rovider(S)ybil Peers
(≤ k)

Fig. 4: Active attack against the proposed mitigation. This
example assumes k = 6.

Average DKL. Around a non-attacked content, the distribu-
tion of the k closest nodes in the network should resemble
the model distribution, resulting in a low DKL < threshold. To
assess this, we computed the DKL of the k closest distribution of
100 random identifiers. The model distribution was generated
using the network size estimation provided by go-libp2p-kad-

dht3, computed prior to each test lookup. This approach avoids
relying on a potentially biased network size throughout our
experiments. As shown in Figure 5, the majority of DKL values
fall below the threshold defined by Sridhar et al., with 83%
of the samples below DKL = 0.7. This highlights opportunities
for strategically placing Sybil nodes in optimal positions while
still staying below the detection threshold. On the other hand,
it highlights the false positives, which account for 11% of the
lookups.

Optimizing Sybil Placement. To determine the optimal
positioning of Sybil nodes while minimizing the risk of attack
detection, we formulate the problem as a correlated combinato-
rial optimization, similar to the knapsack problem [29]. In this
problem, adding a malicious node to the distribution increases
the score or profit p j, while also increasing the distribution’s
DKL, which corresponds to the weight w j of the solution. Our
algorithm begins by identifying the k closest nodes to the target
CID and organizing them into an array that tracks the current

3https://github.com/libp2p/go-libp2p-kad-dht/blob/0af416971f51f07a60af
b16851f030deea29ce2b/netsize/netsize.go

6

https://github.com/vicnetto/active-sybil-attack-and-efficient-defense-strategy-in-ipfs-dht
https://github.com/vicnetto/active-sybil-attack-and-efficient-defense-strategy-in-ipfs-dht
https://github.com/libp2p/go-libp2p-kad-dht/blob/e676e51718b8fca0d96282523967f8632534f0bd
https://github.com/libp2p/go-libp2p-kad-dht/blob/e676e51718b8fca0d96282523967f8632534f0bd
https://github.com/libp2p/go-libp2p-kad-dht/blob/0af416971f51f07a60afb16851f030deea29ce2b/netsize/netsize.go
https://github.com/libp2p/go-libp2p-kad-dht/blob/0af416971f51f07a60afb16851f030deea29ce2b/netsize/netsize.go

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.94
DKL

0
3
6
9

12
15
18
21
24
27
30

Oc
cu

rre
nc

es
 [%

]
threshold = 0.94

Fig. 5: DKL Distribution over 100 Random DHT Requests.

number of peers per CPL. Using an estimated network size,
we then compute the DKL of the current distribution.

Our algorithm is illustrated in Algorithm 1. It contains
three parameters: the results, which are empty at the start;
the current nodes per CPL; and the current analyzed CPL. This
last parameter starts at the CPL where instantiating at least
one Sybil node would not immediately trigger attack detection
due to its closeness to the target.

For each CPL in the distribution, there are k+1 possible
node configurations, ranging from 0 (no nodes) to k (all k
closest nodes). If nreliable reliable nodes are already present
at a given CPL, the valid range for Sybil insertion becomes
0≤ nsybil ≤ k−nreliable. Each value within the range of nsybil
is individually tested by updating the current distribution using
the updateKClosestWithSybils function, which attempts to
remove the nsybil farthest nodes to make space for this quantity
of Sybil nodes. If successful, the function returns the updated
distribution, and otherwise, it returns nothing. By evaluating the
return of this function, we recalculate the DKL value to verify
that the updated distribution still remains below the detection
threshold. If the condition is met, the algorithm recursively
proceeds to CPL− 1, until reaching CPL = 0. At this point,
the result is added to the result set for evaluation.

In the attack detection mechanism proposed by Sridhar et
al., the comparison is based on the number of nodes per
CPL between the model and the observed distribution, without
considering the actual proximity of nodes within each CPL
according to the XOR distance. However, nodes with the same
number of shared prefix bits can still differ significantly in their
distance to the target. To exploit this limitation, we introduce
a finer level of granularity in our attack strategy by ensuring
that optimized Sybil nodes are always positioned closer to the
target than reliable nodes that share the same CPL. As a result,
any reliable nodes located in the farthest CPLs are removed
from the set of the k closest nodes, as we can substitute them
with closer Sybil nodes that share the same common prefix
length, while maintaining the same DKL value and avoiding
detection.

Score. Based on our observations, each valid distribution
should be evaluated according to the following three objectives
to determine its suitability as an optimal attack distribution: (i)

Algorithm 1 Recursive function to optimize the Sybil place-
ment in the k closest nodes from a target content.

Require: results - Stores valid distributions found
Require: nodesPerCpl - Current k closest on the distribution
Require: currentCpl - Current CPL

1: procedure OPTIMIZE SYBIL PLACEMENT(results,
nodesPerCpl,currentCpl)

2: nodesInCpl← nodesPerCpl[currentCpl]
3: for i = nodesInCpl to 20 do
4: sybils← i−nodesInCpl
5: updatedNodesPerCpl←

updateKClosestWithSybils(nodesPerCpl,sybils)
6: if updatedNodesPerCpl == null or

isKLOverThreshold(updatedNodesPerCpl) then
7: break ▷ Invalid distribution.
8: end if
9: if currentCpl−1 < 0 then ▷ Termination.

10: results.add(updatedNodesPerCpl)
11: continue
12: end if
13: OPTIMIZE SYBIL PLACEMENT(results,

updatedNodesPerCpl,currentCpl−1)
14: end for
15: end procedure

maximize the number of Sybil nodes; (ii) position the Sybil
nodes as close as possible to the target; and (iii) ensure that
the closest node to the target is a Sybil. These objectives lead
to our scoring function:

score =
255

∑
cpl=0

s(cpl) · cpl. (2)

We iterate through all CPLs in the solution, multiplying
the number of Sybil nodes in each CPL, obtained using the
s function, by their CPL. The function s compares the initial
distribution to the resulting one, identifying the number of
additional malicious nodes inserted at each CPL. In case of a
score tie, the tie-breaking criterion is the distribution with the
lowest DKL.

Since the network size estimation can vary between nodes,
the model distribution and consequently the DKL value can
also change. To avoid discrepancies between the attacker’s and
provider’s estimations, we enforce a maximum DKL ≤ 0.85.
This threshold accounts for an approximate 10% margin of
error in the network size estimation. When the provider
underestimates the network size, the attack becomes easier
to detect, as the model distribution tolerates fewer close nodes.
To evaluate the impact of this variance on detection, we
compared an attack generated with DKL≈ 0.85 using an average
estimation from a 24-hour test period, nsaverage = 13239, against
a detection performed using different network size estimations.
When tested with the lowest recorded network size from that
period nslowest = 12347, the attack remained undetected. These
results are illustrated in Figure 6.

7

10000 11000 12000 13000 14000 15000
Network Size Estimation

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10
D

KL nsminimum = (12347, 0.915)

nsaverage
 = (13239, 0.850)

90% × nsaverage = (12043, 0.940)

threshold = 0.94

Fig. 6: Impact of network size estimation on an attacked
distribution of DKL = 0.85.

B. Cost Analysis

The bandwidth and computing resources needed to instantiate
the Sybil nodes are not considered significant, as a publicly
accessible IP address and a stable internet connection are
sufficient to carry out the attack. The primary cost of executing
the active attack is the computational effort required to brute-
force Sybil identifiers. While resource-intensive, this process
can be completed in a relatively short time.

Brute-force Identifiers. To obtain the malicious nodes,
we brute-force identifiers by generating Ed25519 [30] key
pairs. The expected number of attempts required to generate
a single identifier within a specific CPL is given by 2CPL+1.
Consequently, the time required to generate a node at a given
CPL can be expressed as:

t(CPL) = tEd25519 ·2CPL+1. (3)

The constant tEd25519 represents the time required to generate
an Ed25519 key pair using our implementation. On a machine
equipped with a 13th Gen Intel i7-13700H processor, tEd25519 is
approximately 1.35 µs. Consequently, generating a node with
CPL = 25 to the target CID would take approximately 1 minute
and 30 seconds. While this CPL is considered exceptionally
close to the target for a network of size nsaverage, and was not
observed in any of our test distributions, such proximity could
still be brute-forced in a relatively short time.

C. Experiment Description

Since the number of malicious nodes depends on the
distribution of the k closest peers, we first conducted an
experiment to determine the average number of Sybil nodes that
could be inserted into random peer distributions. As illustrated
in Figure 7, the experiment shows an average of 14.31 Sybil
nodes among the 20 closest. For this reason, to represent
an average-case scenario, all our tests were conducted using
distributions that allow the insertion of 14 malicious nodes.

In the same figure, we observe that in at least 91% of
the distributions, a minimum of 10 malicious nodes were
successfully inserted. During our tests, we did not encounter
any distribution where inserting Sybil nodes was impossible.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sybil Quantity

0
2
4
6
8

10
12
14
16
18
20

Oc
cu

rre
nc

es
 [%

]

Average: 14.31 Sybils

Fig. 7: Optimized Sybil count across 100 random distributions.

Even better, we noticed that our optimization algorithm cancels
falsely detected attacks, transforming any k closest nodes into
valid distributions that remain below the detection threshold.

To ensure the reliability of our results, five attacks were
executed in parallel against five distinct distributions, involving
a total of 14×5 = 70 Sybil nodes operating simultaneously.
The Sybil nodes used in the experiment were modified Kubo
implementations, responding to all queries for the target content
by providing ten randomly generated provider records. The
nodes were deployed on a machine within a public network,
ensuring their accessibility for DHT requests. These nodes
were interconnected, enabling them to recommend one another
during lookup operations and ensure the consistent capture of
14 out of the 20 available records in each content publication.

After the Sybil nodes were instantiated, the CID was
announced by a node running both the attack detection and the
region-based mitigation. Upon detecting an attack, this node
would automatically distribute the provider records across the
entire mitigation region. The requesters, which verifies if the
content was eclipsed, were unmodified Kubo implementations,
since the defense mechanism only considers the publication
process. These nodes searched for content every 30 minutes
and were restarted every 60 minutes. Content was considered
unreachable if no response was retrieved within 30 seconds.

In a real-world scenario, content is published before Sybil
nodes are instantiated. However, in our experiment, we chose
to instantiate the malicious nodes before the publication in
order to avoid waiting for the initial expiration cycle, which
would delay the results by 48 hours. While the results would
be similar, the effectiveness of the attack would be reduced
during the first two days.

D. Evaluation

The results of our attack are illustrated in Figure 8, which
presents the retrieval eclipse percentage over a 15-day period.
By the end of the second day, the eclipse rate had already
reached nearly 50%. This rate continued to increase over time,
due to the adaptation period required for the Sybil nodes. As the
routing table favors stable and long-standing connections, the
malicious nodes must wait for opportunities to be incorporated
into more routing tables.

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Day

0
10
20
30
40
50
60
70
80
90

100
Su

cc
es

sf
ul

ly
 E

cli
ps

ed
 (%

)

Fig. 8: Active attack using optimized Sybil placement against
region-based mitigation.

Starting on the 10th day, the results began to stabilize,
converging to an average eclipse rate of 80%. By the end
of the experiment, this rate had increased slightly to 82%.
Although the test was extended by an additional 15 days, the
results remained consistent and are, for this reason, not included
in the figure.

Since the attack successfully bypasses the proposed detection
mechanism and continues to eclipse 80% of content requests,
we consider the mitigation effective in the passive scenario,
but vulnerable to our active attack. Therefore, in the following
section, we introduce a more lightweight and reliable strategy
for defending against Sybil attacks in DHTs: the SR-DHT-
Store.

V. SYBIL-RESISTANT DHT STORE

This section introduces a new defense mechanism for
mitigating Sybil attacks in DHTs: the Sybil-Resistant DHT
Store (SR-DHT-Store). The proposed approach is designed
to be executed during every publication, securing the provide
operation while imposing minimal overhead. We begin by
describing the defense mechanism, followed by an analysis of
its internal structure, and conclude with an evaluation of its
performance and associated costs.

A. Description

We rely on the fact that PIDs are evenly distributed across
the Kademlia address space. For a network size of N nodes,
we can determine the limit distance dk at which at least k
of the closest nodes should be found by simply dividing the
space by the total number of nodes. However, this calculation
requires to know the network size, which is a challenging
value to obtain in a fully decentralized system where nodes
lack a global view of the network. Consequently, estimating
the network size involves many measurements on the DHT
that generate overhead. Since the network size is only used to
deduce the distance dk, an alternative approach is to estimate
directly the average distance to the k-th farthest node by
sending simple queries to random nodes in our routing table.
Specifically, we send a FIND NODE(PID) request to a peer
searching for its own PID, in order to retrieve its k closest

peers. With approximately Qdk direct exchanges, we can obtain
a sufficiently accurate estimate of dk. This estimated distance
can be further refined using the results of lookups naturally
performed by nodes, such as those used to update their routing
tables.

When performing a lookup to identify the k closest nodes
during publication, and given that dk has been previously
calculated, we can opportunistically send provider records to
any nodes found that are closer than the calculated distance
during the lookup. This exchange can be executed in parallel
while continuing the lookup process. After completing the
lookup, if the total number of sent records is below the
replication factor k, additional records are distributed to nodes
beyond dk until k peers store the data. In the presence of
an attack, both reliable and Sybil nodes will receive the
records, causing the total number of resolvers to exceed k
by approximately the number of instantiated Sybil nodes. The
mitigation process is illustrated in Figure 9.

2'

IR PI I I

2. GET DHT lookup
(CID)

1'-2'. Lookup results
closer peers to target

CID

1. DHT lookup (CID)
If within distance, send PR

keyspace

CSC C CCC SS S

= SR-DHT-Store Region

1''. PUT ProviderRecord(Provider) * (> k)
 PR is sent paralelly to all nodes found
within the distance during the lookup.

1'
3. Legitime lookup

result
ProviderRecord(CID)

(I)ntermediate
Peers(R)equester (C)losest Legitimate

Peers (P)rovider(S)ybil Peers

= k Closest

Fig. 9: SR-DHT-Store opportunistic publication. This example
assumes k = 6.

To sum up, our approach differs from Kademlia [2] in that
we no longer rely on the closest nodes to a CID, which favors
Sybil Attacks. We diverge from the approach of Sridhar et al.
[6] as we do not seek to detect the attack, since the detection
can be cheated, but rather we improve the way region-based
queries can be systematically performed, as explained in the
next sections. Moreover, our distance estimation uses the XOR
metric instead of the CPL. This provides more precision by
considering all 256 bits rather than only the most significant
bits. This metric is free from threshold effect, as the zone
defined by the CPL is limited by the powers of two, only
doubling or halving according to the estimated network size.

Another drawback of using CPLs is that an inaccurate
estimation can lead to additional nodes being contacted to
store records in case of attack detection or false positives.
As of August 2024, based on the average network size, the
estimated CPL typically falls around 9. This value is generally
accurate, containing an average of k = 20 nodes within the
defined region. However, as nodes continuously join and leave

9

the network, the region boundary may fall between two CPL
values, leading to incorrect region delimitation and resulting in
significantly more or fewer than k nodes receiving the record.

B. Zone Delimitation

While an accurate estimation of the average dk value
is crucial for our mitigation, this calculation must also be
efficient to minimize overhead. We identified two methods
for determining the distance to the k-th farthest node from
random peers in order to calculate the average dk: (i) directly
requesting their k closest nodes, and (ii) performing a lookup
toward them. Due to the structure of the routing table, which is
organized into k-sized buckets, nodes store more information
about their closest peers than about the rest of the network. Our
approach takes advantage of this by directly querying nodes
for their k closest peers. While this method is not as precise
as a lookup, it provides a sufficiently accurate estimation with
minimal overhead.

To evaluate this trade-off, we compared the k closest nodes
obtained from both approaches. On an average of 100 tests,
16.32 among the k = 20 closest nodes were identical in both
methods. Despite this minor difference, each lookup involved
querying an average of 42.3 nodes until reaching termination,
whereas a direct query required only a single request. For this
reason, when joining the network, we opted to obtain the initial
average dk value by querying Qdk peers for the closest nodes
they know and calculating the average distance of the k-farthest
node.

In Figure 10, we evaluate the impact of the quantity Qdk
on the calculation of dk by initializing Qdk with values
ranging from 1 to 20 queries toward randomly generated
nodes. Each value within the range 1≤ Qdk ≤ 20 was tested
ten times, and the results presented are the averages of all
measurements. To assess the accuracy of each estimation, we
compared the calculated distance against a database of all
nodes discovered during 100 random lookups, determining how
many provider records would theoretically be sent for each
Qdk -based estimation. Observing the chart, while Qdk = 1 and
Qdk = 2 produced results close to k due to chance, starting from
Qdk = 10, the estimations began to present minor variations.
For this reason, upon initialization, a node must first query
Qdk = 10 peers to compute an initial average dk.

The average distance to the k-farthest peer must be updated
over time to improve the accuracy and take into account the
variation of the network size in time. Typically, P2P networks
are subject to hourly size variation which magnitude depends
on the proportion of personal computers hosting peers using
public IP addresses. To maintain an accurate average dk, each
time a lookup is performed, the distance of the k-farthest node
from the response should be incorporated into the dk calculation.
As explained in II-C, the routing table is updated every ten
minutes through Ldk = 16 lookups, which can be used to refine
our average distance estimation with no additional overhead. To
integrate new measurements while preserving the influence of
previous values, we propose using an Exponentially Weighted
Moving Average (EWMA). This approach allows updates while

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Peer's Queried

20.0

20.5

21.0

21.5

22.0

22.5

23.0

23.5

Pe
er

's
to

 re
ce

iv
e

th
e

PR

Fig. 10: Impact of Qdk on the number of peers receiving
provider records.

maintaining stability in the estimation. The updated distance
can be calculated using the following equation:

St+1 = yt ·αs f +St(1−αs f). (4)

The variable yt represents the most recent measurement,
while St denotes the last calculated moving average. The
smoothing factor αs f , where 0 ≤ αs f ≤ 1, determines the
influence of previous averages on the current measurement.
According to Hunter [31], the optimal value of αs f should be
selected by minimizing the mean squared error (MSE) relative
to the target value, in our case, sending exactly k provider
records. Hunter also recommends computing the initial average
as a simple mean over 4–5 values, which corresponds with
our approach, where we initially estimate dk using Qdk = 10
queries. To determine the optimal αs f for our scenario, we first
estimated dk using Qdk = 10, then observed the MSE resulting
from refining this estimate with Ldk = 16 additional lookups
across a range of αs f values, from 0.001 to 0.999 in increments
of 0.001. The lowest average mean squared error was observed
at αs f = 0.100.

In the rest of the paper, we estimate dk by measuring the
distance to the k-th farthest node from the results of the k
closest nodes from Qdk = 10 queries and Ldk = 16 additional
lookups. The moving average is updated with a weighting
factor of αs f = 0.1. Using this approach, we consider both the
initial estimation and the subsequent lookups performed by the
node to initialize its RT, similarly to a real-world scenario.

C. Cost Analysis

To analyze the cost of our solution, we evaluated the accuracy
of dk estimation using our database of 100 random DHT
lookups to determine how many nodes would have received the
provider records according to the distance dk we estimate. The
distance calculation and verification were performed ten times,
and the results are presented in Figure 11, divided into two
charts: one showing the initial distance estimation and the other
presenting the refined estimation with EWMA. On the x-axis,
we display the average distance calculated across the ten tests
for both the initial and refining phases. All data from each of

10

the ten tests were included in the graph, meaning that each
box plot represents 10 (tests)×100 (lookups per test) = 1000
data points. Each chart also includes the equivalent CPL-based
approach, which corresponds to sending provider records to
all nodes within the keyspace−⌊log2(dk)⌋ CPL.

Normal Average
2.134e+74

CPL
9

20

25

30

35

40

Pe
er

s t
o

re
ce

iv
e

th
e

PR

21.50
23.00

Initial: Qdk = 10 peers queried

EWMA
1.781e+74

CPL
9

20.00

23.00

Refined: Ldk = 16 DHT lookups

Distance Average

Fig. 11: Average number of nodes receiving PRs when
initializing dk with Qdk queries and refining with Ldk lookups.

By querying only Qdk nodes for their k-th farthest peer, we
observed a median of k + 1.5 nodes receiving the provider
record. After refinement, the median matched exactly k. In
a real-world scenario, any distribution containing fewer than
k nodes within the distance dk would pursue the publication
process of provider records after the lookup phase until the
target of k is reached by considering slightly farther peers. As
an additional cost, we consider only the extra provider record
exchanges that exceed k, as k records are already sent during
a standard provide operation.

Before and after refinement, the average number of extra
nodes contacted was CXORi = 2.786 and CXORr = 2.064, re-
spectively. If we instead used the CPL of the nodes to define
the target zone, the number of contacted nodes would increase
to CCPLi = 5.135 and CCPLr = 3.860. For a newly instantiated
node, the average extra cost of executing our mitigation is
given by C = Qdk +CXORi , resulting in an overhead of 12.786
contacted nodes. For a node already established in the network,
regular lookups naturally refine the precision of dk, reducing
the extra cost to CXORr = 2.064 nodes per publication.

Comparison against Sridhar et al. [6]. The amount of
nodes contacted at each stage of both mitigation strategies is
compared in Table I. The table highlights individual phases,
and shared phases, such as the main lookup performed to find
the k closest nodes to the content.

Immediately after node initialization, their attack detection
mechanism requires estimating the network size. According
to their implementation on Kubo, available in their paper, this
process involves performing 10 lookups to gather network data,
and following our experiments, this resulted in contacting an
average of 433.8 nodes. We avoid this overhead by directly
calculating the distance to the k-th closest peer. By using this
approach, we eliminate the need to estimate the network size
in order to derive a value that is already available from the
lookup responses, the dk.

TABLE I: Number of nodes contacted during each phase of
Region-Based Queries and SR-DHT-Store.

Phase Attack Detection +
Region-Based Queries SR-DHT-Store

Network Estimation
after Bootstrap 433.8 N/A

dk Estimation N/A 10

Lookup 42.3

Region-Based Queries 72.9 N/A

False Positives 72.9×0.11≈ 8 N/A

PR Overshoot N/A 2.7 to 2

New Node
No Attack 484.1 55

Attack 549 55

Established
Node

No Attack 50.3 44.3

Attack 115.2 44.3

The full list of peers discovered during the main lookup,
performed by any node to locate the k closest nodes to the
content during publication, are reused in our case to eliminate
the need for a specific region crawl. In a regular Kademlia
scenario, only the k closest nodes from the query results are
used, however, it is possible to retain all discovered nodes
during the lookup, avoiding the need to search for them again.
To compare the effectiveness of region-based queries with the
peer list obtained from a standard lookup, we applied both
approaches to identify all nodes within at least CPL 9 of
ten randomly chosen identifiers. On average, the region-based
queries found 22.9 nodes, while the standard lookup returned
22.7 nodes. For this reason, we consider the entire cost of
the region-based approach as additional because unnecessary,
since the results from the standard lookup are obtained at no
extra cost, as this operation is already required for a standard
content publication.

In conclusion, when accounting for the false positive rate
of the attack detection that we evaluate at 11%, as shown
in Figure 5, and the initial PR overshoot of SR-DHT-Store,
starting at 2.7 nodes and reduced to 2 nodes after refinement,
our mitigation strategy reduces the number of contacted nodes
by approximately 88.6% in the absence of an attack, and
by nearly 90% during an attack. When the node is already
established in the network, the number of contacts is reduced
by 10% under normal conditions and by 63% in the presence
of an attack.

D. Evaluation

The SR-DHT-Store was evaluated against both the passive
k closest attack and the active optimized Sybil placement
attack. All Sybil nodes shared the same implementation, with
configurable flags to define their behavior, enabling them to
switch between passive and active modes. In this subsection,
we present the results of the tests conducted to assess the
effectiveness of our mitigation, which are illustrated on Table
II.

11

TABLE II: Evaluation of each mitigation strategy against the
passive k closest and the active optimized Sybil positioning
attacks.

Attack
Retrieval Success Rate (%)

Attack Detection +
Region-Based Queries SR-DHT-Store

Passive k Closest 100% 100%

Active Optimized
Sybil Positioning 18% 28%

We first performed a passive k closest attack on the
latest Kubo release, positioning Sybil nodes using the same
strategy as in previous IPFS attacks [6], [13]. We targeted five
distinct CIDs, performing five lookups toward each of them
after publishing using both the SR-DHT-Store and the attack
detection + region-based queries. The file was successfully
retrieved in every lookup, resulting in a 100% success rate
using both mitigations.

For the optimized Sybil placement attack, we reused the same
Sybil nodes deployed in our earlier active attack experiment,
in Section IV-D, to evaluate our mitigation against well-
established adversarial nodes. Both mitigations were tested
against the same group of Sybils, so for each CID and each
mitigation, the content was republished through different peers.
During content retrieval, if the specific mitigation provider
was not included among the providers returned in the records,
we considered the content to be eclipsed, as the response
originated from a Sybil node. Similarly to the passive attack
scenario, each test was repeated five times using each mitigation,
for a total of ten tests. As result, only 28% of the lookups
successfully retrieved the content after providing with our SR-
DHT-Store. The region-based queries performed a standard
lookup mechanism, as they initially failed to detect the attack,
retrieving the content in only 18% of cases.

The rationale is the following. Since some active Sybil nodes
are among the closest to the content, they can still be the first
contacted during content retrieval, leading early search abortion
even when more other nodes in the network hold the true
records. Our mitigation focuses on securing the store procedure
to ensure that provider records are not exclusively received
by malicious nodes. However, the lookup process remains
vulnerable to active attacks and requires further enhancements
to address this threat. In the following section, we introduce
additional mitigation strategies and defense mechanisms that
can complement our approach, along with their corresponding
evaluation.

VI. ENHANCED MITIGATION STRATEGY

While the content publication process is secured by SR-DHT-
Store, the lookup procedure remains vulnerable to adversaries
exploiting the early termination. To address this, we propose
to combine in this section SR-DHT-Store with two client-side
defense mechanisms. Both lookup defenses were implemented
in Kubo and evaluated against our active attack model. An
additional mechanism is also proposed in this section, however,

it was not implemented, as we believe it increases the difficulty
of performing the attack but does not fully mitigate the issue.

PR Limitation. No external node should have the abil-
ity to prematurely terminate a DHT lookup. Currently,
PRmax = PRmaxpeer = 10, meaning a peer can respond to a
FIND VALUE request with up to ten provider records, just
enough to externally halt the lookup process. To prevent this
behavior, setting PRmaxpeer > PRmax ensures that the node
continues searching until it has locally collected PRmax provider
records. This approach preserves compatibility between peers
by leaving PRmaxpeer unchanged and only modifying PRmax
locally to determine when to terminate the lookup based on
the accumulated records.

In our implementation, we tested two different values for
PRmax: 50 and 200. These values correspond to requiring
complete sets of ten provider records from 5 and 20 peers,
respectively, in order to terminate the lookup.

Disjoint Lookup Paths. This secure lookup mechanism,
proposed by S/Kademlia [14], was introduced in Section III-C.
In the standard Kademlia k closest search, α nodes are queried
in parallel, but all discovered peers are added to a shared query
list. This design allows a single adversarial node, once queried,
to potentially compromise the entire search. To mitigate this
risk, we used d = 3 disjoint lookups, where the results of
each request are kept entirely separate. These disjoint lookups
must also ensure that no node is contacted more than once
across the different paths. Although this approach introduces
additional overhead, it is only necessary when searching for
content, rather than for every lookup operation. To further
reduce overhead, the disjoint lookups could be used only in
cases where the content was not retrieved in the first attempt.

IP Address Limitation in Lookup. During a DHT lookup,
no more than one node sharing a same IP address, or even a
given IP sub-network prefix size, should be contacted. This
limitation increases the difficulty for attackers, as it requires
a larger number of unique IP addresses to successfully carry
out an attack. When combined with disjoint lookup paths and
the PR limitation, it adds another layer of complexity, forcing
the attacker to distribute the Sybils across multiple networks.
While we believe this measure increases the effort required for
launching an attack, it is not a definitive solution as the other
proposed mitigations. For this reason, it was not implemented
or evaluated in our experiments.

A. Cost Analysis

The PR Limitation introduces no additional cost compared
to a normal lookup when no attack is present. Since all k
closest nodes will typically return valid provider records for
the content, the requesting peer will not reach PRmax and
will follow the standard termination procedure. In the case
of an active attack, each contacted Sybil node can result in
ten additional lookups for the fake PIDs. This occurs because
the node is unable to contact the providers returned by the
malicious peers and must perform a separate lookup for each
false provider in an attempt to locate a valid, contactable IP
address.

12

The other mitigation, disjoint requests, introduces an over-
head approximately 2.5 times the cost of a normal lookup,
as it performs d = 3 disjoint lookups. To measure this cost,
we conducted ten lookups using using the standard strategy
and the disjoint request approach, targeting a provided content.
When searching for a previously provided content, the standard
lookup queried an average of 21.9 nodes before retrieving a
valid provider record, while the disjoint requests contacted an
average of 55.7 nodes.

B. Evaluation

All tests were conducted using the same Sybil nodes
previously used in the evaluation of the optimized Sybil
placement attack, in Section IV-D. We began by testing only
the mitigations applied during the content publication phase,
followed by a standard lookup for retrieval. Next, we published
the content using SR-DHT-Store and attempted retrieval by
applying both the PR limitation, with thresholds of 50 and
200, and disjoint lookup paths. Each retrieval attempt was
repeated five times for each of the five targeted content items.
Our results are illustrated in Figure 12.

The results presented in the first two columns of the figure
are identical to those shown in Section V-D. The last three
columns combined the lookup defense mechanisms alongside
the SR-DHT-Store mitigation. When protecting the lookup
using a PR limitation with a threshold of 50, the content
was successfully retrieved in 88% of cases. This demonstrates
improved resistance, but also highlights the persistence of Sybil
nodes, as in 12% of the lookups five Sybils were among the
first nodes queried. By increasing the PR threshold to 200 or
using disjoint lookup paths, the content was retrieved in 100%
of the cases, fully mitigating our attack strategy.

Sridhar et al.
Attack Detection

SR-DHT-Store SR-DHT-Store
+

PR Limitation
= 50

SR-DHT-Store
+

PR Limitation
= 200

SR-DHT-Store
+

Disjoint
Lookups

Mitigation Type

0
10
20
30
40
50
60
70
80
90

100

Re
tre

iv
al

 su
cc

es
s r

at
e

[%
]

Fig. 12: Effectiveness of mitigations against the optimized
Sybil positioning attack.

C. Discussion

When combined with the SR-DHT-Store, the PR Limitation
works well against active attack strategies, while disjoint
lookups can be applied against both active and passive attacks,
but also against adversarial routing [24]. We consider the
PR Limitation a simple and efficient solution that could be
implemented to counter active attacks, at almost no cost. The
disjoint lookups offer a more robust and general solution

that brings diversity in the result of a DHT search to better
withstand Sybil attacks. While disjoint requests increase the
cost of performing lookups, they are capable of fully mitigating
Sybil attacks on DHTs when applied after the SR-DHT-Store.
In conclusion, we highlighted synergies between our provide
mitigation and two other lookup defense mechanisms that leave
some choice for IPFS developers to select the defense strategy
according to the overhead they tolerate.

VII. CONCLUSION

In this paper, we presented a new active Sybil attack
targeting Kubo, the largest IPFS implementation. The attack
was evaluated against the latest mitigation proposed by Sridhar
et al. [6], which, although well implemented in a forked version,
has not yet been merged into the official repository. Our attack
achieved a success rate of 82% against their mitigation by
exploiting an early termination in the libp2p lookup process and
an optimized placement of Sybils to stay below the detection
threshold triggering the mitigation. When executed against
the current official version of Kubo, the attack is capable of
completely eclipsing content, similar to the previously identified
passive Sybil attack on the network.

To mitigate the attack, we introduced the SR-DHT-Store, a
low-cost defense mechanism executed during each content pub-
lication. While our approach effectively addresses previously
identified passive attacks on the network at a lower overhead, it
does not, on its own, fully mitigate the active attack presented
in this work. To achieve complete protection, we introduced
two additional defense mechanisms designed to secure the
content requester. When combined with our new publication
strategy, both mechanisms fully mitigated the active attack.

In future work, we plan to explore new active attacker
models that aim to disrupt the network not regarding the DHT’s
behavior, but rather hijacking what is stored in it. Our goal
is to counter content pollution by designing new consensus
mechanisms that rely on the responses diversity enabled by
SR-DHT-Store. Another work would be to refine the zone
considered by our publication mitigation by introducing a
minimum distance threshold, dkmin , relative to a CID. Any peer
closer than this threshold would be considered statistically too
close and excluded from lookup results.

VIII. ETHICS CONSIDERATION

While this paper introduces a new active attack approach
targeting IPFS, the recently discovered passive attack remains
unmitigated in the current Kubo implementation. Therefore, this
experiment does not introduce any new threats beyond those
already present in the system. Since the mitigation proposed by
Sridhar et al. [6] has not yet been integrated into the mainstream
client, we do not consider this to be an attack on Kubo itself.

All targeted content was provided exclusively by nodes under
our control. No legitimate content in the network was disrupted
or eclipsed, since our malicious nodes responded normally to
all requests except those specifically targeting the test content.
To prevent instability in the DHT, the requester nodes operated

13

in client mode, minimizing the impact of their joining and
leaving the network.

REFERENCES

[1] J. R. Douceur, “The Sybil Attack,” in Revised Papers from the First Inter-
national Workshop on Peer-to-Peer Systems, ser. IPTPS ’01. Springer-
Verlag, 2002, pp. 251–260.

[2] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric,” in Revised Papers from the
First International Workshop on Peer-to-Peer Systems, ser. IPTPS ’01.
Springer-Verlag, 2003, pp. 53–65.

[3] M. Steiner, T. En-Najjary, and E. W. Biersack, “Exploiting KAD:
possible uses and misuses,” vol. 37, no. 5, pp. 65–70, 2007. [Online].
Available: https://dl.acm.org/doi/10.1145/1290168.1290176

[4] T. Cholez, I. Chrisment, and O. Festor, “Monitoring and Controlling
Content Access in KAD,” in 2010 IEEE International Conference
on Communications, 2010, pp. 1–6. [Online]. Available: https:
//ieeexplore.ieee.org/document/5502179

[5] T. Cholez, I. Chrisment, O. Festor, and G. Doyen, “Detection
and mitigation of localized attacks in a widely deployed P2P
network,” vol. 6, no. 2, pp. 155–174, 2013. [Online]. Available:
https://doi.org/10.1007/s12083-012-0137-7

[6] S. Sridhar, O. Ascigil, N. Keizer, F. Genon, S. Pierre, Y. Psaras,
E. Rivière, and M. Król. (2023) Content Censorship in the InterPlanetary
File System. [Online]. Available: http://arxiv.org/abs/2307.12212

[7] J. Benet. (2014) IPFS - Content Addressed, Versioned, P2P File System.
[Online]. Available: http://arxiv.org/abs/1407.3561

[8] “ipfs/kubo,” IPFS Project, 2025. [Online]. Available: https://github.com/i
pfs/kubo

[9] Berty · Berty Technologies. Berty Technologies. [Online]. Available:
https://berty.tech

[10] DTube. [Online]. Available: https://d.tube/
[11] Filecoin. A Decentralized Storage Network for the World’s Information.

Filecoin. [Online]. Available: https://filecoin.io/
[12] libp2p - A modular network stack. libp2p. [Online]. Available:

https://libp2p.io/
[13] T. Cholez and C.-L. Ignat, “Sybil Attack Strikes Again: Denying

Content Access in IPFS with a Single Computer.” ACM, 2024, p. 1.
[Online]. Available: https://inria.hal.science/hal-04666290

[14] I. Baumgart and S. Mies, “S/Kademlia: A practicable approach
towards secure key-based routing,” in 2007 International Conference on
Parallel and Distributed Systems, 2007, pp. 1–8. [Online]. Available:
https://ieeexplore.ieee.org/document/4447808

[15] Merkle Directed Acyclic Graphs (DAG) — IPFS Docs. [Online].
Available: https://docs.ipfs.tech/concepts/merkle-dag/

[16] Multiformats. [Online]. Available: https://multiformats.io/
[17] Work with pinning services — IPFS Docs. [Online]. Available:

https://docs.ipfs.tech/how-to/work-with-pinning-services/
[18] Multiaddr — Multiformats. [Online]. Available: https://multiformats.io/

multiaddr
[19] go-libp2p-kad-dht/amino/defaults.go at master · libp2p/go-libp2p-kad-dht.

[Online]. Available: https://github.com/libp2p/go-libp2p-kad-dht/blob/31
c361257e16379b6dee2fc2981f75ea0935a102/amino/defaults.go

[20] Distributed Hash Tables (DHT) — IPFS Docs. [Online]. Available:
https://docs.ipfs.tech/concepts/dht/

[21] Bitswap — IPFS Docs. [Online]. Available: https://docs.ipfs.tech/conce
pts/bitswap/

[22] A. Singh, T.-W. Ngan, P. Druschel, and D. S. Wallach, “Eclipse
Attacks on Overlay Networks: Threats and Defenses,” in Proceedings
IEEE INFOCOM 2006. 25TH IEEE International Conference on
Computer Communications, 2006, pp. 1–12. [Online]. Available:
https://ieeexplore.ieee.org/document/4146884

[23] P. Wang, J. Tyra, E. Chan-Tin, T. Malchow, D. F. Kune,
N. Hopper, and Y. Kim, “Attacking the Kad network,” in Proceedings
of the 4th international conference on Security and privacy
in communication netowrks, ser. SecureComm ’08. Association
for Computing Machinery, 2008, pp. 1–10. [Online]. Available:
https://dl.acm.org/doi/10.1145/1460877.1460907

[24] M. Kohnen, M. Leske, and E. P. Rathgeb, “Conducting and Optimizing
Eclipse Attacks in the Kad Peer-to-Peer Network,” in Proceedings
of the 8th International IFIP-TC 6 Networking Conference, ser.
NETWORKING ’09. Springer-Verlag, 2009, pp. 104–116. [Online].
Available: https://doi.org/10.1007/978-3-642-01399-7 9

[25] B. Prünster, A. Marsalek, and T. Zefferer, “Total Eclipse of the Heart
– Disrupting the InterPlanetary File System,” 2022, p. 3735. [Online].
Available: https://www.usenix.org/conference/usenixsecurity22/presentat
ion/prunster

[26] (2020) Hardening the IPFS public DHT against eclipse attacks. IPFS
Blog & News. [Online]. Available: https://blog.ipfs.tech/2020-10-30-dht
-hardening/

[27] Peer Diversity for Routing Table and Querying by aarshkshah1992 · Pull
Request #88 · libp2p/go-libp2p-kbucket. GitHub. [Online]. Available:
https://github.com/libp2p/go-libp2p-kbucket/pull/88

[28] Release v0.34.0 · libp2p/go-libp2p. GitHub. [Online]. Available:
https://github.com/libp2p/go-libp2p/releases/tag/v0.34.0

[29] D. Pisinger, “Where are the hard knapsack problems?” vol. 32, no. 9,
pp. 2271–2284, 2005. [Online]. Available: https://www.sciencedirect.co
m/science/article/pii/S030505480400036X

[30] S. Josefsson and I. Liusvaara, “Edwards-Curve Digital Signature
Algorithm (EdDSA),” 2017. [Online]. Available: https://datatracker.ietf.o
rg/doc/rfc8032

[31] J. S. Hunter, “The Exponentially Weighted Moving Average,”
vol. 18, no. 4, pp. 203–210, 1986. [Online]. Available: https:
//doi.org/10.1080/00224065.1986.11979014

14

https://dl.acm.org/doi/10.1145/1290168.1290176
https://ieeexplore.ieee.org/document/5502179
https://ieeexplore.ieee.org/document/5502179
https://doi.org/10.1007/s12083-012-0137-7
http://arxiv.org/abs/2307.12212
http://arxiv.org/abs/1407.3561
https://github.com/ipfs/kubo
https://github.com/ipfs/kubo
https://berty.tech
https://d.tube/
https://filecoin.io/
https://libp2p.io/
https://inria.hal.science/hal-04666290
https://ieeexplore.ieee.org/document/4447808
https://docs.ipfs.tech/concepts/merkle-dag/
https://multiformats.io/
https://docs.ipfs.tech/how-to/work-with-pinning-services/
https://multiformats.io/multiaddr
https://multiformats.io/multiaddr
https://github.com/libp2p/go-libp2p-kad-dht/blob/31c361257e16379b6dee2fc2981f75ea0935a102/amino/defaults.go
https://github.com/libp2p/go-libp2p-kad-dht/blob/31c361257e16379b6dee2fc2981f75ea0935a102/amino/defaults.go
https://docs.ipfs.tech/concepts/dht/
https://docs.ipfs.tech/concepts/bitswap/
https://docs.ipfs.tech/concepts/bitswap/
https://ieeexplore.ieee.org/document/4146884
https://dl.acm.org/doi/10.1145/1460877.1460907
https://doi.org/10.1007/978-3-642-01399-7_9
https://www.usenix.org/conference/usenixsecurity22/presentation/prunster
https://www.usenix.org/conference/usenixsecurity22/presentation/prunster
https://blog.ipfs.tech/2020-10-30-dht-hardening/
https://blog.ipfs.tech/2020-10-30-dht-hardening/
https://github.com/libp2p/go-libp2p-kbucket/pull/88
https://github.com/libp2p/go-libp2p/releases/tag/v0.34.0
https://www.sciencedirect.com/science/article/pii/S030505480400036X
https://www.sciencedirect.com/science/article/pii/S030505480400036X
https://datatracker.ietf.org/doc/rfc8032
https://datatracker.ietf.org/doc/rfc8032
https://doi.org/10.1080/00224065.1986.11979014
https://doi.org/10.1080/00224065.1986.11979014

	Introduction
	Background on IPFS
	Identifiers
	DHT
	Routing Table
	Content Addressing and Retrieval

	Related Work
	DHT Attacks
	IPFS Attacks
	IPFS Defense Mechanisms

	Active Sybil Attack on IPFS
	Attacker Model
	Cost Analysis
	Experiment Description
	Evaluation

	Sybil-Resistant DHT Store
	Description
	Zone Delimitation
	Cost Analysis
	Evaluation

	Enhanced Mitigation Strategy
	Cost Analysis
	Evaluation
	Discussion

	Conclusion
	Ethics Consideration
	References

