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Abstract—Recent advancements in large language models
(LLMs) have spurred the development of diverse AI applica-
tions—from code generation and video editing to text generation.
However, AI supply chains such as Hugging Face, which host
pre-trained models and their associated configuration files
contributed by the public, face significant security challenges.
In particular, configuration files—originally intended to set
up models by specifying parameters and initial settings—can
be exploited to execute unauthorized code, yet research has
largely overlooked their security compared to that of the models
themselves. In this work, we present the first comprehensive
study of malicious configurations on Hugging Face, identifying
three attack scenarios (file, website, and repository operations)
that expose inherent risks. To address these threats, we
introduce CONFIGSCAN, an LLM-based tool that analyzes
configuration files in the context of their associated runtime code
and critical libraries, effectively detecting suspicious elements
with low false positive rates and high accuracy. Our extensive
evaluation uncovers thousands of suspicious repositories and
configuration files, underscoring the urgent need for enhanced
security validation in AI model hosting platforms.

Index Terms—AI Supply Chain, LLM, Configuration

1. Introduction

Developing applications that leverage artificial intelli-
gence is increasingly critical. The advent of large language
models (LLMs) [1], [2] has spurred the emergence of
applications in domains such as code generation [3], video
editing [4], and text generation [5]. Moreover, AI supply
chains (AISCs) such as Hugging Face [6] expedite devel-
opment by hosting pre-trained models for reuse, thereby
empowering researchers and developers. However, since
these platforms provide out-of-the-box access to various
AI models contributed by the public—similar to packages on
PyPI [7]—the security of the hosted models is not assured. In
particular, configuration files, which are originally intended
to set up models by specifying parameters and initial settings,
can be exploited by malicious actors to execute unauthorized
code if not properly validated.

Unfortunately, research on the security of AI model
hosting platforms within AISCs has been limited, particularly
with regard to the configuration files of model repositories.
In contrast, most pioneering studies have focused on the
security of the AI models themselves, addressing issues
such as backdoor attacks [8], adversarial attacks [9], and
embedded code poisoning attacks [10]. However, AI model
hosting platforms such as Hugging Face currently lack tools
to alert users when potentially malicious configuration files
are loaded. Therefore, it is imperative to validate the security
of these configuration files by scrutinizing their constituent
elements and assessing their associated risks.

There are two main challenges in identifying malicious
configurations in AI models. First, the semantic complexity
of diverse configuration files poses a significant challenge:
different model frameworks employ configuration files with
varied structures, contents, and dependencies, each relying on
distinct imported packages. This heterogeneity complicates
the development of a unified and extensible solution. Second,
configuration files do not inherently present static risks;
instead, defenders must analyze not only the file itself but
also how its contents interact with the underlying code,
potentially introducing vulnerabilities.

In this work, we have identified three attack scenar-
ios—file operations, website operations, and repository opera-
tions—in which attackers exploit configuration files to launch
attacks. Based on these observations, we have developed
a tool, CONFIGSCAN, that leverages LLMs to analyze
configuration files in the context of their associated runtime
code, as described in the accompanying README, and the
critical libraries they utilize. CONFIGSCAN is designed to
detect suspicious configuration files by identifying potentially
malicious elements, such as unusual keys related to file paths,
websites, or repository IDs.

Our research makes the following key contributions

• New Finding: We present the first comprehensive study
on malicious configurations in Hugging Face, highlighting
the associated security risks in AISCs. Through our rule-
based analysis, we identified 13,091, 1,324, and 35,761
suspicious repositories containing suspicious elements
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related to file, website and repository operation risk,
respectively.

• New Approach: We introduce CONFIGSCAN, an LLM-
powered tool designed to detect malicious configurations
with high accuracy while minimizing false positives.

• Comprehensive Evaluation: We evaluated CONFIGSCAN
on 1,000 samples, successfully identifying two malicious
configuration files while resolving 998 false positives
compared to rule-based analysis.

2. Related Work

Security of AI Supply Chains. As AISCs [6] have ad-
vanced, security concerns have become more prominent.
Compared to traditional software supply chains, AISCs
involve a larger number of components, creating more
opportunities for attackers to inject malicious payloads [11].
Several studies [12], [10], [13], [14] have identified security
vulnerabilities in AISCs. Zhou [12] explored the risks of
insecure deserialization, specifically focusing on the danger-
ous use of pickle.load in AISCs. Similarly, Walker and
Wood [13] examined the runtime risks posed by machine
learning models using Keras files as an example. Zhao [10]
analyzed over 705K models and 176K datasets, uncovering
91 malicious models and 9 dataset load scripts, highlighting
significant security risks in publicly accessible machine
learning resources. Zhu [14] conducted an in-depth analysis
of TensorFlow APIs, demonstrating how 20 exploited APIs
can pose various runtime risks. However, these studies
primarily focus on code poisoning attacks and overlook
the potential risks associated with configuration file abuses
in AISCs.
Secure AI Supply Chains. To secure AISCs, prior work
has focused on addressing security concerns across various
domains. Trail of Bits developed Fickling [15], a tool that
functions as a decompiler, static analyzer, and bytecode
rewriter for pickle files. ModelScan [16] is another tool
that assesses the threat of model serialization attacks using
static analysis, supporting various machine learning libraries
such as PyTorch, TensorFlow, Keras, and traditional machine
learning libraries. Building on this, Zhao [10] introduced
MalHug, a tool tailored for Hugging Face to analyze models
and datasets. In contrast, Zhu [14] developed an analysis
tool based on large language models (LLMs) and rule-based
approaches. However, these tools primarily focus on securing
the model itself. In this paper, we shift the focus to the
security of configuration files.

3. Threat Model

To systematically analyze configuration-based attacks,
we have developed a comprehensive threat model based on
several key assumptions. Firstly, most users are unaware
of the security risks associated with configuration files in
AISCs, primarily because existing tools do not alert users
to potential risks when executing code from a README
associated with a configuration file. Additionally, the com-
plexity of configuration files and the limited attention and

research in this area mean that many potential attack vectors
remain unexplored. As a result, attackers can craft malicious
configuration files with little concern for detection by AISC
tools. Unlike code injection attacks, these attacks can employ
sophisticated techniques to evade detection. For instance, an
attacker might create a third-party Python library along with
a custom configuration file to deceive users into executing it.
Alternatively, they could exploit an official Python library
(e.g., retrieval_rag.py in Transformers) on Hugging
Face that includes pickle.load, combining it with a
malicious configuration file to execute harmful actions.

4. Methodology

Algorithm 1 The Algorithm of ConfigScan
1: Input: README FILE R, CONFIG FILE C, Vulnera-

bility LLM V LLM , Score LLM SLLM
2: Output: Vulnerabilities V, POC P, Confidence Score S,

Process of Analysis A, Reflection R
3: —-Rule-based Analysis Starting—-
4: K℧ ← Json Data Parsing(C)
5: KR ← README Summarization(R)
6: —-Initial LLM Analysis Starting—-
7: V,P,A← V LLM(K℧,KR, C)
8: S,R← SLLM(V,P,A, C)
9: —-In-depth LLM Analysis Starting—-

10: if S < 0 ∧ S > 1 then
11: return None
12: for each V in V do
13: SPre ← S
14: COUNT ← 0 and NUM ← 0
15: if NUM < N then
16: V,P,A← V LLM(K℧,KR, C, V )
17: SL, R← SLLM(V,P,A, C, V )
18: if SL < SPre then
19: COUNT ← COUNT + 1
20: else
21: SPre ← SL

22: COUNT ← 0
23: if COUNT > n then
24: return V,P,A, C
25: return V,P,A, C

Inspired by vulnhuntr [17], which leverages the power
of LLMs to detect vulnerabilities on GitHub, we introduce
CONFIGSCAN, a hybrid tool that combines rule-based and
LLM-based approaches. CONFIGSCAN is the first scanning
tool specifically designed to analyze configuration files on
Hugging Face. As illustrated in Figure 1, the tool comprises
three key components: Suspicious Configuration Analysis,
Readme Summarization, and LLM-based Analysis.

4.1. Suspicious Configuration Analysis

Suspicious Configuration Analysis is the initial step of
our CONFIGSCAN, which utilizes a rule-based approach to
explore unknown configuration files by analyzing their keys
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Figure 1. Workflow of ConfigScan

and values. In this phase, we focus on three potential risk
scenarios that may arise, which we detailed below.
File Operation Risk. Many Hugging Face configuration
files include file-related keys meant for secure file uploads
and model execution. However, attackers can exploit these
keys to load unauthorized or harmful files, creating security
risks. Additionally, they may use these keys to read or write
files, potentially accessing sensitive information from the
user’s system.
Website Operation Risk. Found in older Hugging Face
configuration files, this feature was originally designed for
model execution and weight extraction but introduces security
risks by allowing access to unknown websites [18]. Visiting
such websites can expose the user’s IP address and lead
to targeted attacks. Moreover, it may involve downloading
third-party files or enabling remote code execution (RCE),
which can harm the target system.
Repository Operation Risk. This vulnerability represents a
common security flaw in Hugging Face, enabling attackers
to launch customized attacks. For example, certain modules
in the Transformers library require file inputs to down-
load packages. Many configuration files contain the key
(_name_or_path), which allows users to seamlessly fetch
remote files. Attackers can exploit this by modifying the key
to redirect users to malicious models hosted in unauthorized
repositories. This can result in the distribution of poisoned
models or backdoored scripts, ultimately compromising
system integrity.

Therefore, to address these issues, we implemented a rule-
based system to extract key-value pairs containing sensitive
terms related to files and URLs (e.g., “url,” “file”). Using
regular expressions, we match keywords like “url” or “file”
in the keys, and patterns such as “http,” “root,” or paths
starting with “/” in the values, which may indicate potential
risks. This approach helps identify and flag critical data that
could be a security threat. Additionally, we check the value
of _name_or_path to see if it matches the repository
name, which may indicate the configuration file links to
a suspicious or malicious repository. This also serves as a
rule-based tool for testing configuration files.

4.2. README Summarization

README provides critical information for users to
run code and execute models in AISC. In this section,

we first identify the file type of the README and then
extract key information from it. In Hugging Face, many
README files contain not only code but also extensive
explanations. Therefore, we instruct the LLM to focus
exclusively on content relevant to running code. Additionally,
not all Hugging Face repositories include a README file.
In such cases, we link the repository name to assist the LLM
in inferring the library used by the repository. Our analysis
relies on zero-shot learning, and we have crafted a specialized
prompt for the LLM to address the following questions: (1)
What is the aim of this project? (2) Does the running code in
the README involve any unknown network connections?
(3) Does the running code in the README involve local file
access or other file operations? This approach enables us to
extract crucial information regarding the project’s objectives
and its overall workflow.

4.3. LLM-based Analysis

As shown in Algorithm 1, this part consists of two
distinct components: Initial LLM Analysis and In-depth
LLM Analysis.
Initial LLM Analysis. In this section, CONFIGSCAN begins
with a methodical analysis, starting with an initial examina-
tion of key features within the configuration file, followed
by generating a detailed summary of the README. This
phase is essential for establishing a foundational understand-
ing of the project’s structure and functionality. Based on
these preliminary analyses, CONFIGSCAN then advances
to a thorough evaluation of the configuration file. During
this phase, CONFIGSCAN applies advanced heuristics to
identify potential vulnerabilities, assess the integrity of the
configuration settings, and flag any anomalies that could pose
a security risk. The results of this evaluation are presented in
a clear, actionable format, including a Proof of Concept
(POC), a detailed list of discovered vulnerabilities, and
a step-by-step breakdown of the analysis process. These
processes are conducted by an LLM, which analyzes the
vulnerabilities. Additionally, another LLM is used to assist
in scoring and reflecting on the previous analysis. This
helps increase confidence in the identified vulnerabilities
and generates reflective statements to guide further analysis.
In-depth LLM Analysis. After completing the Initial Anal-
ysis, CONFIGSCAN progresses to the In-depth Analysis
phase. Unlike the broader Initial Analysis, the In-depth



Analysis focuses specifically on a vulnerability identified
during the initial phase. This targeted approach allows
CONFIGSCAN to investigate the specific issue in greater
detail. The decision to conduct multiple levels of analysis is
intentional, aiming to reduce hallucinations or inaccuracies
that might arise from a single-pass evaluation. By breaking
the process into stages, CONFIGSCAN ensures that each
vulnerability is verified, cross-checked, and assessed with
greater precision, minimizing the likelihood of false positives
or misinterpretation. In the In-depth Analysis, the identified
vulnerability is examined independently, emphasizing its
configuration context, potential impact, and root cause. By
leveraging LLM-based Score Analysis, the tool performs a
comprehensive evaluation of vulnerabilities and iteratively
refines its assessments. Each score is generated based on
criteria such as severity and exploitation likelihood and is re-
evaluated iteratively. If the confidence score does not increase
within the predefined iteration limit, the highest recorded
confidence score is selected as the final result. Combining
this multi-step analysis approach with advanced scoring
mechanisms, CONFIGSCAN enhances accuracy and ensures
that critical vulnerabilities are identified and addressed with
confidence.

5. Experiments

In this section, we briefly describe the experimental
setup and results. To demonstrate the risks associated with
configuration files on Hugging Face, we have structured the
experiments around two distinct research questions:
• RQ1: Identifying Suspicious Risks in Configuration

Files on Hugging Face. Do Hugging Face repositories
contain configuration files with elements that pose potential
security or operational risks?

• RQ2: Evaluating the Effectiveness of CONFIGSCAN.
How effective is CONFIGSCAN in identifying security risks
compared to traditional rule-based methods?

5.1. RQ1: Identifying Suspicious Risks in Configu-
ration Files on Hugging Face.

Datasets. In this part, we employed a web crawler to gather
data from 150,000 repositories on Hugging Face. Due to the
substantial storage demands of repository data, we limited
our collection to repository names. We developed a system
that automatically retrieves and extracts the file contents of
a repository using its name as the primary identifier.
Methods. To address the first research question, we utilized
a rule-based analysis method to extract suspicious elements
from configuration files. We focused on three distinct risk
categories: file, website and repository operation risk. As
described in Section 4.1, we used CONFIGSCAN to help
detect these elements through a rule-based approach.
Results. As shown in Table 1, we identified 13,091, 1,324,
and 35,761 suspicious repositories on Hugging Face that
contained configuration files associated with potential risks.
Within these repositories, we found 13,901, 1,215, and 31,373

TABLE 1. RULE-BASED ANALYSIS

Potential Risk Suspicious Repositories Suspicious Config Files

File Operation 13,091 13,091
Website Operation 1,324 1,215
Repository Operation 35,761 31,373

suspicious configuration files, each corresponding to File
Operation Risk, Website Operation Risk, and Repository
Operation Risk, respectively, demonstrating the potential
risks in configuration files. However, this approach alone did
not uncover the root causes of these issues, highlighting the
significant limitations of rule-based methods in addressing
such challenges effectively.

5.2. RQ2: Evaluating the Effectiveness of CON-
FIGSCAN.

Datasets. Due to API constraints and time limitations, we
sampled 1,000 repositories from the results of Section 5.1
to evaluate the effectiveness of CONFIGSCAN.
Methods. In this part, we utilized CONFIGSCAN to scan
the 1,000 selected repositories. After the scan, we manually
evaluated these repositories to confirm the effectiveness of
CONFIGSCAN.
Results. In our experiment, CONFIGSCAN identified two
new repositories (hauson-fan/RagRetriever and Hugging-
Worm/RagRetriever), both containing references to unknown
repositories in their configuration files. These pose potential
risks to users who execute them, risks that cannot be detected
using rule-based methods alone. Additionally, CONFIGSCAN
confirmed that other analyzed repositories did not present
security risks, which was also verified by our manual check.
In contrast to rule-based methods, CONFIGSCAN uses a dy-
namic and adaptive approach, integrating LLM-based reason-
ing to analyze configuration structures beyond simple pattern
matching. This approach enables CONFIGSCAN to uncover
hidden risks, such as the inclusion of unverified repositories,
which traditional methods fail to detect. The discovery of
hauson-fan/RagRetriever and HuggingWorm/RagRetriever
underscores CONFIGSCAN’s ability to identify latent security
threats, reducing false positives.

6. Conclusion

In conclusion, our study reveals significant security risks
from malicious configuration files on AI model hosting
platforms like Hugging Face. We identified three attack
scenarios—file, website, and repository operations—and
introduced CONFIGSCAN, an LLM-based tool that analyzes
configuration files alongside their runtime code to detect
vulnerabilities with high accuracy and low false positives.
Our findings underscore the urgent need for enhanced security
measures in AI supply chains.
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