
Capability-Based Multi-Tenant Access Management
in Crowdsourced Drone Services

Junaid Akram∗, Ali Anaissi∗†, Awais Akram‡, Youcef Djenouri§¶, Palash Ingle∥, Rutvij H. Jhaveri∗∗
∗School of Computer Science, The University of Sydney, Camperdown NSW 2008, Australia

†TD School, University of Technology Sydney, Ultimo NSW 2007, Australia
‡Independent Researcher

§NORCE Norwegian Research Center, Oslo, Norway
¶University of South-Eastern Norway, Konsberg, Norway

∥Department of Computer and Information Security, Sejong University, Seoul, South Korea
∗∗Department of Computer Science and Engineering, School of Technology, Pandit Deendayal Energy University, India

Email: jakr7229@uni.sydney.edu.au, ali.anaissi@sydney.edu.au, awais.akram.1212@gmail.com,
yodj@norceresearch.no, palash@sejong.ac.kr, rutvij.jhaveri@sot.pdpu.ac.in

Abstract—We propose a capability-based access control
method that leverages OAuth 2.0 and Verifiable Credentials
(VCs) to share resources in crowdsourced drone services. VCs
securely encode claims about entities, offering flexibility. How-
ever, standardized protocols for VCs are lacking, limiting their
adoption. To address this, we integrate VCs into OAuth 2.0,
creating a novel access token. This token encapsulates VCs using
JSON Web Tokens (JWT) and employs JWT-based methods for
proof of possession. Our method streamlines VC verification with
JSON Web Signatures (JWS) requires only minor adjustments
to current OAuth 2.0 systems. Furthermore, in order to increase
security and efficiency in multi-tenant environments, we provide
a novel protocol for VC creation that makes use of the OAuth
2.0 client credentials grant. Using VCs as access tokens enhances
OAuth 2.0, supporting long-term use and efficient data man-
agement. This system aids bushfire management authorities by
ensuring high availability, enhanced privacy, and improved data
portability. It supports multi-tenancy, allowing drone operators
to control data access policies in a decentralized environment.

Index Terms—Crowdsourced Drone Services, Decentralized
Identifiers, Delegation, JSON Web Tokens, JSON Web Signature

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), or drones, have trans-
formed various sectors, including surveillance, logistics, and
environmental monitoring, over the last two decades [1]. More
recently, the concept of crowdsourced drone services within
the Internet of Drone Things (IoDT) has enabled a decen-
tralized and collaborative approach to environmental manage-
ment, with significant applications in critical areas like bush-
fire monitoring [2], [3]. This paper explores the deployment
of a crowdsourced drone service framework specifically for
bushfire management, where authorities act as data consumers
and drone operators provide real-time data for decision-making
[4], [5]. This model democratizes drone usage, allowing more
scalable and rapid responses to bushfire events through the
aggregation of critical data from multiple sources [6], [7].

However, the implementation of such a decentralized system
introduces several challenges. The most prominent of these

Corresponding Authors: Youcef Djenouri, Rutvij H. Jhaveri

is managing access control in a multi-tenant environment,
where numerous independent drone operators must handle
access rights while maintaining security and operational ef-
ficiency [8]. Traditional access control mechanisms, such as
bearer tokens and static Access Control Lists (ACLs), are
often inadequate for these dynamic environments. In scenarios
where resource servers operate independently of authorization
servers (Sauth) or where drones need to function offline or
with intermittent connectivity, these methods fail to provide
the required flexibility and security [5], [9].

The core challenge lies in designing an access management
system that can dynamically handle the decentralized nature
of drone services. During bushfire emergencies, for example,
drone operators need to provide timely data access without the
delays caused by conventional static systems. Furthermore, the
crowdsourced nature of the system raises concerns about data
privacy and the quality of information provided by different
operators, making it crucial to secure both the access and the
integrity of the shared data [2].

To overcome these limitations, we propose a capability-
based access control system that integrates OAuth 2.0 with
Verifiable Credentials (VCs). OAuth 2.0, typically used for
web authorization, is adapted here to manage the dynamic
access requirements of drone services, while VCs provide
a secure and privacy-preserving way to verify access rights
[10]. This approach addresses the weaknesses of traditional
methods, offering a flexible solution for decentralized, ad-
hoc access requests in complex environments like bushfire
management, ensuring secure, reliable data exchange between
operators and authorities. Our work makes the following key
contributions:

• We create a protocol based on OAuth 2.0 for issuing VCs,
optimizing the OAuth framework for decentralized drone
operations and enhancing security and flexibility in multi-
tenant environments.

• We enhance JSON Web Tokens (JWTs) by integrating
VCs, enabling secure, standardized, and easily verifiable
data exchanges between drone operators and bushfire

ar
X

iv
:2

50
5.

01
04

8v
1

 [
cs

.C
R

]
 2

 M
ay

 2
02

5

management authorities.
• We propose improvements to OAuth 2.0 workflows with

a streamlined proof-of-possession mechanism for secret
keys, simplifying verification to a single message ex-
change, thus reducing complexity and bolstering security.

• We design a cloud storage system optimized for drone-
operated bushfire detection, ensuring lightweight, easily
integrated infrastructure to facilitate efficient data man-
agement and seamless adoption.

The paper is organized as follows: Section II covers related
work, Section III outlines the proposed solution’s architecture,
and Section IV details the system design. Section V presents
performance and security evaluations, and Section VI con-
cludes with key contributions and future directions.

II. RELATED WORK

With an emphasis on IoT devices, Lagutin et al. [11]
propose incorporating VCs and DIDs into OAuth 2.0 through
the use of ACE-OAuth [10], a lightweight variant of OAuth 2.0
made for constrained environments. Their solution employs
DIDs and VCs as authentication grants to obtain access tokens,
whereas our approach uses authentication grants to issue
VCs as access tokens. Other innovative approaches, such as
DIDComm [12], Presentation Exchange [13], and Hyperledger
Aries [14], develop protocols for secure communication and
credential management but lack compatibility with existing
authorization standards. Munoz’s [15] investigation on inte-
grating DIDs and VCs into eIDAS is one example of efforts
to incorporate these technologies into official systems of
identification . Our solution handles delegation and attenuation
while utilizing VCs to convey capabilities and taking use
of their standard format. These concepts are challenging to
implement solely with VCs. Macaroons [16] and ZCAP-LD
[17] offer alternative methods for capability-based systems,
considered in our design. By addressing the limitations of
existing approaches and focusing on the unique requirements
of crowdsourced drone services for bushfire management, our
work advances the state-of-the-art in capability-based access
control and multi-tenant resource management.

III. SYSTEM DESIGN

A. Entities and Definitions

In this section, we outline the key entities and definitions
integral to our capability-based multi-tenant access manage-
ment system, which is tailored for crowdsourced drone ser-
vices in bushfire management. The framework is depicted in
Figure 1. Our framework includes multiple drone operators
as data providers, who capture and deliver real-time informa-
tion essential for bushfire monitoring and response. Bushfire
management authorities serve as data consumers, utilizing
this information to enhance decision-making and emergency
response strategies. Each drone operator manages resources,
such as drone-collected data stored on a shared Resource
Server (Sres), and maintains an Sauth to handle access rights.
The primary goal of our system is to enable secure and

Request access token
with DPoP proof

(Pub_BMA, HTTP method, URI, timestamp, nonce)

Extract Pub_BMA from JWS header
Verify proof signature with Pub_BMA
Check HTTP method and URI match
Validate nonce uniqueness
Verify timestamp recency

DPoP proof verified

Check Pub_BMA in access table
Generate Verifiable Credential (VC)

with appropriate capabilities

Encode VC into JSON Web Token (JWT)
Include cnf claim with JWT-encoded Pub_BMA

Set iss claim to URL_S_auth
Sign JWT with private key

Serialize JWT into JWS

Send access token (serialized JWS)

Request resource access
with DPoP proof and access token (serialized JWS)

Deserialize access token
Verify iss claim matches URL_S_auth
Verify signature with Pub_S_auth
Extract cnf claim from access token
Check JWK matches DPoP proof
Verify DPoP proof signature
Check HTTP method and URI
Validate nonce uniqueness
Verify timestamp recency

DPoP proof and access token verified

Extract capabilities from VC
and Check capabilities are

sufficient for requested operation

Grant access to resource

Resource Server

Resource Server

Authorization Server

Authorization Server

Bushfire Management Authority

Bushfire Management Authority

Fig. 1: Capability-Based Multi-Tenant Access Management Frame-
work

efficient access to this valuable data for bushfire management
authorities through access tokens generated by the Sauth.

The entities are defined as follows: a Bushfire Management
Authority (BMA) is identified by a unique public key PubBMA
and requests access to data. An Sauth is identified by a
unique URL (URLSauth

) and public key PubSauth
. The Sauth

generates and manages access tokens. A Sres stores drone-
collected data and enforces access control policies as specified
by the Sauth. Capabilities, denoted as Cop→res, define specific
operations, such as allowing a BMA to read data from a sensor.

The system operates as follows: A BMA requests an access
token from the Sauth using its public key PubBMA. The Sauth

issues an access token if the BMA holds a valid Verifiable
Credential (VC) that includes the required capabilities. The
Sauth maintains an access table mapping each BMA’s public
key to its capabilities, PubBMA → [C1, C2, . . . , Cn]. The Sres

maintains a resource table linking resource identifiers to their
respective Sauth URLs and public keys, ensuring accurate
access control delegation. To ensure secure and consistent
access, each Sres adheres to a standardized credential format,
promoting interoperability across the system.

B. Proof-of-Possession of a Key

Our system employs DPoP [18] to validate cryptographic
key possession. While DPoP is currently a draft with the
IETF, it has gained significant attention and is actively being
developed. Future iterations of our system might incorpo-
rate additional proof-of-possession techniques. DPoP, designed
for HTTP communications, facilitates proof-of-possession
through a single message. In our implementation, drone
operators (acting as data providers) embed a DPoP proof

within their HTTP requests to bushfire management authorities
(acting as clients). A JSON Web Signature (JWS) signed
using the operator’s private key constitutes a DPoP proof. The
JWS header provides a public key for the JSON Web Key
(JWK) that may be used to verify the signature of the DPoP
proof, along with a type field that is set to dpop+jwt and
the digital signature method. The JWS payload consists of
the request’s HTTP method, HTTP URI, creation timestamp,
and unique identifier (such as an adequately large random
integer). Listing 1 offers an illustration of a DPoP proof
that is employed in our framework. The JWS payload is
shown on lines 10-15, whereas the JWS header is shown on
lines 1-9. Lines 4–7 include the public key that is required
to validate the DPoP proof’s digital signature. An HTTP
POST request to ”https://drone-services.org/token” includes
this DPoP evidence.

Listing 1: Example of a DPoP proof for drone data access

{
” t y p ” : ” dpop+ j w t ” ,
” a l g ” : ”EdDSA” ,
” jwk ” : {

” k t y ” : ”OKP” ,
” c r v ” : ” Ed25519 ” ,
” x ” : ”3 pLJ . . . sXIS7 ”

}
}
{

” htm ” : ”POST” ,
” h t u ” : ” h t t p s : / / drone − s e r v i c e s . o rg / t o k e n ” ,
” i a t ” : 1617548847 ,
” j t i ” : ” a1d2e4 . . . gcd567 ”

}
In this example, the JWS header specifies the use of the Ed-

DSA algorithm ("EdDSA") and includes the JWK containing
the OKP public key. The request URI, the issued-at timestamp,
the HTTP method (”POST”), and a unique identifier (JWT ID)
are all included in the payload. This proof mechanism ensures
secure and verifiable communication between drone operators
and bushfire management authorities, guaranteeing that data
exchange is authenticated and authorized.

C. Access Token Request

The BMA request access token from the Sauth in accor-
dance with our protocol. DPoP proof with signature verifiable
using PubBMA is attached to this request. In order to verify the
DPoP proof, Sauth does the following actions: It first extracts
PubBMA from the JWS header, then uses PubBMA to verify
the proof’s signature. It then makes sure the HTTP method
and URI in the payload match the request made by the BMA,
validates that the random number in the payload is unique, and
determines the proof’s recency based on when it was created.
When the proof is successfully validated, Sauth recognizes
PubBMA in its access table. After that, it creates a VC that is
in line with the Resource Server’s (Sres) credential description
and embeds all pertinent capabilities associated with PubBMA.

Following that, this VC is encoded in accordance with the
OAuth 2.0 protocol to create a JSON Web Token (JWT). The
JWT includes the cnf (confirmation) claim with the JWT-
encoded PubBMA and the iss (issuer) claim set to URLSauth

.
Finally, Sauth encodes the JWT into a JWS, signs it using
its private key, and serializes it with base64url encoding. This
serialized JWS, now functioning as an access token, is returned
to the BMA.

D. Resource Request

The system handles the request to perform an action on the
resource when a BMA provides a DPoP proof and its acquired
access token. More complicated cases requiring multiple VCs
are covered in Section III-F. Upon receiving a request, the Sres

performs the following verifications: it opens the resource table
corresponding to the requested resource, extracts URLSauth

and PubSauth
, deserializes the access token, verifies that the

iss claim matches URLSauth
, and uses PubSauth

to verify the
signature. After that, it takes the deserialized access token and
extracts the cnf claim, ensuring that it has the same JWK as
the DPoP proof. Next, it confirms the signatures of the DPoP
proof, looks up the HTTP URL and method, makes sure the
identification is unique, and verifies the creation time. The
VC is bound to the BMA that submitted the request via this
verification procedure. The Sres extracts the capabilities from
the VC and verifies they are enough for the proposed operation
if all of these steps are completed successfully.

E. Token Revocation

Our system offers two methods for determining the state of
an access token: verifying the included Verifiable Credential
(VC) revocation status or using OAuth 2.0 token introspec-
tion. In OAuth 2.0 introspection, Sres queries the token
introspection endpoint provided by Sauth, retrieves related
meta-data, and assesses the token’s state. The introspection
endpoint returns a JSON object with an active field that
indicates the token’s validity. However, this approach increases
communication overhead, as Sres must inquire about each
token separately, and it can compromise client privacy due
to the implicit sharing of the introspection endpoint. The
alternative method involves using a privacy-preserving re-
vocation mechanism, where Sres verifies the access token
by checking the included VC’s revocation status. Each VC
granted by Sauth is associated with a position in a revocation
list, represented as a bitstring. When a VC is revoked, its
corresponding bit is set to 1, and the position is indicated
by the revocationListIndex field. Sres downloads the
revocation list once and can reuse it for multiple VCs, en-
hancing efficiency and preserving client privacy, as Sauth

does not know which VC is being verified. Additionally, the
VC may provide a URL for retrieving the revocation list,
offering flexibility by enabling storage outside of URLSauth

.
This method is more flexible in handling revocation data than
OAuth 2.0 introspection.

F. Combining Multiple VCs

The capacity to integrate several VCs into a single Verifiable
Presentation (VP) is a significant advantage of VCs. A BMA in
our system has the ability to combine numerous access tokens
(Sauth) that it receives from various Authorization Servers into
a single access token. The same PubBMA must appear in the
cnf field for every access token.

The following stages are involved in the process of gener-
ating a VP:

1) A new JWT object is created by the BMA.
2) Sets PubBMA as the SHA-256 hash in the iss (issuer)

field of this JWT.
3) Includes an array of each unique access token in a vp

field in the JWT.
4) Encodes the JWT in a JWS.
5) Signs it with the BMA’s private key.
6) Generates the new access token by serializing the JWS.

The verification process for the Sres is as follows:

1) Deserializes the access token and checks for a vp field.
2) It extracts each individual access token in the event that

a vp field is present.
3) Uses the process described in Section III-D to verify

each access token.
4) Uses PubBMA to confirm the signature of the access

token that was received.
5) It retrieves all capabilities from each VC and verifies that

they are sufficient to authorize the intended operation if
all verifications are successful.

This approach enables BMAs to combine multiple access
tokens into a single, verifiable token. This is particularly
useful in a crowdsourced drone services environment where
data from various drone operators needs to be accessed and
combined to provide a comprehensive and timely response
during bushfire emergencies. By verifying all combined access
tokens, Sres ensures proper authorization of all capabilities,
enhancing the security and efficiency of the data management
process.

G. Using DIDs as VC Subject

While our approach employs public keys, standard VC
systems use Decentralized Identifiers (DIDs) to identify the
credential subject. Key rotation is an important DID feature
that our system does not provide. By refreshing the public
key linked to a DID, key rotation enhances security and
adaptability. An entity often requests a DID registry in order
to obtain the public key associated with a DID. For example,
an access token with a DID is first obtained by a BMA
through their central command system. However, for the Sres

to validate the token, it must query the DID registry to get the
corresponding public key, used as PubBMA. Subsequently, the
authority decides to use a mobile command unit to access the
Sres. They update their DID to link it to a public key stored
on the mobile unit through the DID registry. The Sres will
retrieve a different PubBMA from the DID registry when the

authority requests resource access again with the same access
token.

This mechanism offers several advantages. Enhanced se-
curity is achieved by rotating keys, which reduces the risk
associated with long-term key exposure. Flexibility is ensured
as authorities can switch devices while maintaining the same
DID, allowing continuous access without reissuing credentials.
Scalability is supported by the system, as it can accommodate
a broader range of clients and devices without managing
static public keys. Integrating DIDs into our system could
significantly improve its robustness and adaptability, especially
in the dynamic and decentralized environment of crowd-
sourced drone services for bushfire management. This would
allow drone operators and bushfire management authorities
to leverage advanced security features and ensure seamless
access across different devices and contexts.

IV. IMPLEMENTATION AND EVALUATION

Our capability-based multi-tenant access management sys-
tem has a proof-of-concept prototype that we have created with
Python 3. The JWS functionality is provided by the JWCrypto
library, and for cryptographic operations, we employ the
EdDSA digital signature technique [19] using Ed25519 public
keys.

A. Performance analysis

We developed a prototype for our proposed system as a
proof of concept. The system integrates cloud storage where
drone operators store their data. Each operator manages an
Authorization Server (Sauth), which grants access rights to
bushfire management authorities. The public keys of the Sauth

in charge of those areas are mapped to storage locations via
the resource table in the cloud storage. For instance, the Sauth

identified by Pubdrone1 controls access to the /data/drone1
directory. Our system defines a VC type that specifies the
format for acceptable VC claims. An example VC in our
system includes claims formatted as follows:

Listing 2: VC Claims Format

{
” c a p a b i l i t i e s ” : [

{ ” / d a t a / d rone1 ” : [” r e a d ” , ” w r i t e ”]} ,
{ ” / d a t a / d rone2 ” : [” r e a d ”]}

]
}

A VC must contain a capabilities key, which lists
paths and their corresponding access rights. Each Sauth main-
tains an access table that maps a BMA’s public key to its
access rights. For example, the Sauth for drone1 includes the
public keys of several authorities, specifying their read and
write access to various data paths. An access token is granted
to a BMA upon initiation of the access token request protocol.
The BMA then sends a base64url-encoded proof-of-possession
along with an HTTPS POST requesting resource access to the
Sauth token providing service. In response, the Sauth provides
a signed access token. The size of claims included affects

200 400 600 800 1000
Number of Requests

0.001

0.002

0.003

0.004

0.005

0.006

Ti
m

e
(s

)
Generation Time

EdDSA
RS256
PS256
ES512

200 400 600 800 1000
Number of Requests

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

Ti
m

e
(s

)

Verification Time
EdDSA
RS256
PS256
ES512

200 400 600 800 1000
Number of Requests

600

800

1000

1200

1400

1600

1800

2000

Re
qu

es
ts

 p
er

 S
ec

on
d

Throughput

EdDSA
RS256
PS256
ES512

Fig. 2: Performance comparison of cryptographic algorithms across varying request loads: (a) access token generation time (b) verification
time (c) system throughput.

the size of the access token; a JWS access token normally
has 700 bytes. With the access token and an extra HTTP
header containing the proof-of-possession, the resource access
request is made via HTTPS GET. The cloud storage goes
through many validation processes. For the /data/drone1 path,
it retrieves the Sauth public key. Then, it verifies the VC and
proof-of-possession. Finally, it checks if the VC capabilities
grant the authority read access to the requested data. This end-
to-end evaluation shows that our system is practical for secure
and efficient data access in a crowdsourced drone services
environment.

To comprehensively assess our system’s performance, we
conducted simulations focusing on access token generation
time, verification time, and system throughput for four cryp-
tographic algorithms: EdDSA, RS256, PS256, and ES512,
across request loads ranging from 100 to 1000. The results
are illustrated in Figure 2. EdDSA demonstrated the fastest
access token generation time, consistently averaging 0.58
milliseconds, with a verification time of approximately 0.17
milliseconds. The throughput for EdDSA was notably high,
reaching about 5700 requests per second at a load of 1000,
indicating its efficiency and suitability for real-time appli-
cations. RS256 showed robust performance with an average
generation time of 1.2 milliseconds and a verification time of
0.35 milliseconds. Its throughput was around 3300 requests per
second at maximum load, providing a good balance between
security and performance. PS256 exhibited similar perfor-
mance to RS256, with a generation time of 1.1 milliseconds
and a verification time of 0.32 milliseconds, achieving approx-
imately 3400 requests per second. These results suggest PS256
as a marginally more efficient option while maintaining com-
parable security properties. ES512, the most computationally
intensive algorithm, had the longest generation and verification
times of 2.3 milliseconds and 0.65 milliseconds, respectively,
resulting in the lowest throughput of around 1500 requests
per second at the highest load. Despite its strong security
guarantees, the significant computational overhead of ES512
may impact its suitability for high-throughput scenarios. These

simulations indicate that EdDSA offers the best performance
in terms of speed and throughput, making it highly suitable
for real-time operations. Both RS256 and PS256 provide a
reasonable trade-off between security and performance, while
ES512, despite its computational expense, offers robust se-
curity features beneficial in environments where security is
paramount.

B. Formal Security Analysis

In this section, we present the formal security analysis
of our proposed solution using the Alloy Analyzer [20].
Formal methods provide a rigorous foundation for verifying
the correctness and security properties of complex systems.
Our comprehensive Alloy model encapsulates the key compo-
nents and behaviors of our system, ensuring robust security
properties.

Our formal model describes the key entities and their rela-
tionships. The primary entities include Tokens (T), Authorities
(A), Servers (S), and Revocation Servers (RS). Each entity
has specific attributes and interacts with other entities in
defined ways. Tokens (T) represent a set of tokens, each with
a validity attribute (T.valid ∈ {true, false}) and an owner
attribute (T.owner ∈ Authority). Authorities (A) are sets of
authorities, each owning a subset of tokens (A.tokens ⊆ T).
Servers (S) are sets of servers, each authorizing a subset of
tokens (S.authorizedTokens ⊆ T). Revocation Servers (RS)
are a subset of servers that handle revocation, maintaining a
list of revoked tokens (RS.revokedTokens ⊆ T).

To ensure the security of our system, we define several
predicates and assertions that capture the desired security
properties. The valid token usage property ensures that any
access token used by a BMA is valid. The holder of the token
must possess the appropriate VCs issued by an Sauth, granting
them the necessary capabilities. The model confirms that the
resource server correctly validates these tokens against the
holder’s capabilities before granting access to the requested
data. This is formally expressed as:

validTokenUsage(a, t) ⇐⇒ t ∈ A[a].tokens∧
t.valid = true

To further ensure security, we assert that no tampered tokens
are used. This assertion checks that for all authorities and
tokens, if a token is valid, it must belong to the authority
and be valid:

∀a ∈ A, t ∈ T · (t.valid =⇒ validTokenUsage(a, t))

The token integrity property ensures that any token used by
a server is valid. The server must detect and reject any forged
or tampered tokens. This is formally expressed as:

detectForgedTokens(s, t) ⇐⇒ t ∈
S[s].authorizedTokens ∧ t.valid = true

We assert that no forged tokens are used, ensuring that for
all servers and tokens, the server must detect and reject invalid
tokens:

∀s ∈ S, t ∈ T · detectForgedTokens(s, t)

The revocation mechanisms property ensures that any at-
tempt to use a revoked credential is denied, maintaining the
integrity of access control. This is crucial for mitigating the
risks associated with compromised or outdated credentials.
This is formally expressed as:

tokenRevocationMechanism(rs, t) ⇐⇒
t /∈ RS[rs].revokedTokens

We assert that revocation mechanisms are effective, ensuring
that for all revocation servers and tokens, the revocation
mechanism must effectively revoke tokens:

∀rs ∈ RS, t ∈ T · tokenRevocationMechanism(rs, t)

Our system supports the principles of delegation (transfer-
ring capabilities) and attenuation (limiting capabilities). For
instance, a client can delegate an access token to another
client while limiting access to only a subset of the original
capabilities. This ensures that the system can flexibly manage
access rights in a secure manner.

V. CONCLUSIONS

This study proposed a capability-based access control sys-
tem for crowdsourced drone services in bushfire management,
securing resources in a multi-tenant environment. Verifiable
Credentials (VCs) were used to represent user capabilities,
integrated with OAuth 2.0 for requesting and utilizing these
credentials. JSON Web Tokens (JWT) and JSON Web Signa-
tures (JWS) facilitated smooth integration, leveraging existing
infrastructure. Public keys were chosen over DIDs for simplic-
ity, though DIDs can be integrated if needed. This enhances
OAuth 2.0 for long-term credential use and efficient data
management. Our solution provides high availability, enhanced
privacy, data portability, and multi-tenant support, empowering
drone operators to control access in a decentralized setting,
crucial for bushfire emergencies.

REFERENCES

[1] M. Aamir, R. Raut, and R. H. Jhaveri, “Ai-generated content-as-a-service
in iomt-based smart homes: Personalizing patient care with human
digital twins,” IEEE Transactions on Consumer Electronics, 2024.

[2] J. Akram and A. Anaissi, “Privacy-first crowdsourcing: Blockchain and
local differential privacy in crowdsourced drone services,” in 2024 IEEE
International Conference on Web Services (ICWS), 2024.

[3] J. Akram and A. Anaissi, “Decentralized pki framework for data
integrity in spatial crowdsourcing drone services,” in 2024 IEEE In-
ternational Conference on Web Services (ICWS), 2024.

[4] W. Othman and A. Alabdulatif, “Dronessl: Self-supervised multimodal
anomaly detection in internet of drone things,” IEEE Transactions on
Consumer Electronics, vol. 70, no. 1, pp. 4287–4298, 2024.

[5] R. S. Rathore, R. H. Jhaveri, and A. Akram, “Digital twin-driven trust
management in open ran-based spatial crowdsourcing drone services,”
IEEE Transactions on Green Communications and Networking, vol. 8,
no. 2, pp. 841–855, 2024.

[6] R. S. Rathore, R. H. Jhaveri, and A. Akram, “Galtrust: Generative
adverserial learning-based framework for trust management in spatial
crowdsourcing drone services,” IEEE Transactions on Consumer Elec-
tronics, vol. 70, no. 1, pp. 2285–2296, 2024.

[7] J. Akram and A. Anaissi, “Ddrm: Distributed drone reputation manage-
ment for trust and reliability in crowdsourced drone services,” in 2024
IEEE International Conference on Web Services (ICWS), 2024.

[8] M. Alazab and H. Chi, “Bc-iodt: blockchain-based framework for
authentication in internet of drone things,” in Proceedings of the 5th
international ACM mobicom workshop on drone assisted wireless com-
munications for 5G and beyond, pp. 115–120, 2022.

[9] D. W. Chadwick, R. Laborde, A. Oglaza, R. Venant, S. Wazan, and
M. Nijjar, “Improved identity management with verifiable credentials
and fido,” IEEE Communications Standards Magazine, vol. 3, no. 4,
pp. 14–20, 2019.

[10] I. A. W. Group, “Oauth 2.0 authorization framework
for the application communication environments (ace).”
https://datatracker.ietf.org/doc/draft-ietf-ace-oauth-authz/45/, 2021.
Accessed: 2024-07-19.

[11] D. Lagutin, Y. Kortesniemi, N. Fotiou, and V. A. Siris, “Enabling
decentralised identifiers and verifiable credentials for constrained iot
devices using oauth-based delegation,” in Workshop on Decentralized
IoT Systems and Security, Internet Society, 2019.

[12] D. I. Foundation, “Didcomm messaging specification.”
https://identity.foundation/didcomm-messaging/spec/, 2023. Accessed:
2024-07-19.

[13] D. I. Foundation, “Presentation exchange specification v1.0.0.”
https://identity.foundation/presentation-exchange/spec/v1.0.0/, 2022.
Accessed: 2024-07-19.

[14] H. Foundation, “Hyperledger aries.”
https://www.hyperledger.org/projects/aries, 2021. Accessed: 2024-
07-19.

[15] C. G. MUNOZ, “Ssi and eidas vision: How they are connected.”
https://ec.europa.eu/futurium/en/eidas-observatory/ssi-and-eidas-vision-
how-they-are-connected-share-your-views.html, 2019. Accessed:
2024-07-19.

[16] A. Birgisson, J. G. Politz, U. Erlingsson, A. Taly, M. Vrable, and
M. Lentczner, “Macaroons: Cookies with contextual caveats for decen-
tralized authorization in the cloud,” Network and Distributed System
Security Symposium, 2014.

[17] C. Lemmer-Webber, M. Sporny, and M. S. Miller, “Authorization
capabilities for linked data (zcap-ld).” https://w3c-ccg.github.io/zcap-
spec/, 2023. Accessed: 2024-07-19.

[18] D. Fett, B. Campbell, J. Bradley, T. Lodderstedt, M. Jones, and D. Waite,
“Oauth 2.0 demonstrating of proof-of-possession at the application layer
(dpop),” RFC draft, 2020.

[19] S. Josefsson and I. Liusvaara, “Edwards-curve digital signature algo-
rithm (eddsa),” tech. rep., 2017.

[20] D. Jackson, “Alloy: a language and tool for exploring software designs,”
Communications of the ACM, vol. 62, no. 9, pp. 66–76, 2019.

	Introduction
	Related Work
	System Design
	Entities and Definitions
	Proof-of-Possession of a Key
	Access Token Request
	Resource Request
	Token Revocation
	Combining Multiple VCs
	Using DIDs as VC Subject

	Implementation and Evaluation
	Performance analysis
	Formal Security Analysis

	Conclusions
	References

