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Abstract—Anomaly Detection (AD) is critical in data analysis,
particularly within the domain of IT security. In recent years,
Machine Learning (ML) algorithms have emerged as a powerful
tool for AD in large-scale data. In this study, we explore the
potential of quantum ML approaches, specifically quantum
kernel methods, for the application to robust AD. We build
upon previous work on Quantum Support Vector Regression
(QSVR) for semisupervised AD by conducting a comprehensive
benchmark on IBM quantum hardware using eleven datasets.
Our results demonstrate that QSVR achieves strong classification
performance and even outperforms the noiseless simulation on
two of these datasets. Moreover, we investigate the influence of –
in the NISQ-era inevitable – quantum noise on the performance of
the QSVR. Our findings reveal that the model exhibits robustness
to depolarizing, phase damping, phase flip, and bit flip noise,
while amplitude damping and miscalibration noise prove to be
more disruptive. Finally, we explore the domain of Quantum
Adversarial Machine Learning and demonstrate that QSVR is
highly vulnerable to adversarial attacks and that noise does not
improve the adversarial robustness of the model.

Index Terms—benchmark, semisupervised learning, noise, hard-
ware, adversarial attacks, robustness, quantum kernel methods,
quantum machine learning

I. INTRODUCTION

Quantum Machine Learning (QML) merges Quantum Com-
puting (QC) and Machine Learning (ML) to exploit potential
advantages of QC for ML. Recently, Quantum Kernel Methods
(QKMs) have gained attention for their potential to replace
many supervised QML models and their ability to surpass
variational circuits, as evidenced by Schuld [1]. Theoretical
findings further prove that QKMs can potentially address
classification problems intractable for classical ML, such as
the discrete logarithm problem [2].

Anomaly Detection (AD) is crucial in the realm of IT
security, as it identifies deviations from normal patterns in
areas like network intrusion and fraud detection [3]. However,
it is important to note that ML models employed in security-
sensitive contexts are susceptible to adversarial attacks, where
small, carefully crafted perturbations in inputs can result in
misclassification. (Quantum) Adversarial Machine Learning
(QAML/AML) explores techniques for both generating these
adversarial attacks and defending against them.

Given the potential of QML to address problems challenging
for classical methods, the application of QML to AD is a
tempting progression. In 2023, Tscharke et al. [4] proposed a
semisupervised AD approach based on the reconstruction loss
of a Quantum Support Vector Regression (QSVR) equipped

with a quantum kernel. The authors compared the performance
of the QSVR against a Quantum Autoencoder (QAE), a
classical Support Vector Regression (CSVR) with a Radial
Basis Function (RBF) kernel, and a classical autoencoder
(CAE), using ten real-world and one synthetic dataset. Their
simulated QSVR demonstrated comparable performance to
CSVR, with marginal superiority over the other models.
However, the implementation of their QSVR on hardware
was left open, a gap tackled by this paper.

In today’s Noisy Intermediate-Scale Quantum (NISQ) era,
noise limits the application of QC for industrial tasks, under-
scoring the need for a comprehensive understanding of how
noise affects quantum algorithms. Noise impacts QML models
by affecting predictive performance and, in QAML, altering
robustness against adversarial attacks [5], [6].

The remainder of this work is structured as follows: The
next subsection I-A offers a comprehensive review of re-
search related to QKMs, the impact of noise on QML, and
QAML. Our contributions are detailed in subsection I-B. The
following Background (section II) provides a foundation for
understanding QKMs, noisy QC, and adversarial attacks. Next,
the Methods (section III) describe the implementation of the
QSVR on hardware, the noise simulation, and the adversarial
attacks generation. In Results and Discussion (section IV), we
analyze the results of the hardware experiments and investigate
the influence of noise and adversarial attacks on the model’s
performance. Finally, Conclusion and Outlook (section V)
highlights the key results of this work and provides future
research directions.

A. Related Work

In 2019, Havlicek et al. [7] introduced a quantum Support
Vector Machine (QSVM) for binary classification on a two-
qubit NISQ device. Since then, QSVMs have been applied
to many areas, including remote sensing image classification
[8], mental health treatment prediction [9], and breast cancer
prediction [10]. Kyriienko and Magnusson [11] extended this to
unsupervised fraud detection with a simulated one-class QSVM,
and Tscharke et al. [4] developed a QSVR for semisupervised
AD in 2023. However, to the best of our knowledge, a QSVR
for semisupervised AD has not yet been set up on hardware.

Research has also explored the influence of noise in QML
models [12]–[14], focusing on noise robustness [15], [16] or
beneficial use of noise [17], [18]. However, as far as we know,
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the influence of noise on a QSVR for semisupervised AD has
not yet been evaluated.

Finally, the link between quantum noise and QAML was
established by Du et al. [5] in 2021, who found that adding
depolarization noise can increase adversarial robustness. Build-
ing on this, Huang and Zhang [6] improved the adversarial
robustness of Quantum Neural Networks by adding noise layers
in 2023. To date, there have been no published results involving
adversarial attacks on semisupervised QML models for AD.

B. Contributions

The goal of our work is to gain further insight into the
potential of QSVR for semisupervised AD in the NISQ era,
which we accomplish through these contributions:

1) We investigate how the model performs on hardware
and report that the QSVR achieves good classification
performance on a 27-qubit IBM device, even outperform-
ing a noiseless simulation on two out of ten real-world
datasets.

2) We show that the QSVR is largely robust to noise by
training and evaluating over 500 noisy models. We further
observe that amplitude damping and miscalibration have
the most damaging effect on the model’s performance and
that the artificial Toy dataset, constructed to be linearly
separable, suffers the most from noise.

3) Finally, we investigate the robustness of the QSVR
against adversarial attacks and find it highly vulnerable,
with performance on real-world datasets dropping by up
to an order of magnitude for a weak attack strength of
ε = 0.01. Introducing noise into the QSVR does not
clearly improve the model’s adversarial robustness.

II. BACKGROUND

A. Quantum Kernel Methods

A kernel is a positive, semidefinite function κ : X × X →
C on the input set X . It uses a distance measure κ(xi,xj)
between two input vectors xi,xj ∈ X to create a model that
captures the properties of a data distribution. A feature map
ϕ : X → F maps input vectors x to a Hilbert or feature space
F . They are of great importance in ML, as they map input
data in a higher-dimensional space with a well-defined metric.
The feature map can be a nonlinear function that changes the
relative position of the data points. As a result, the dataset can
become easier to classify in feature space, and even linearly
separable. We associate feature maps with kernels by defining
a kernel via

κ(xi,xj) := ⟨ϕ(xi), ϕ(xj)⟩F (1)

where ⟨·, ·⟩F is the inner product defined on F .
With the exponentially large Hilbert space of QCs, the use

of QKMs for ML is close at hand. A quantum feature map
ψ : x → |ϕ(x)⟩ is implemented via a feature-embedding circuit
U(x), which acts on a ground state |0 . . . 0⟩ of a Hilbert space
F as |ϕ(x)⟩ = U(x) |0 . . . 0⟩. The distance measure in the
quantum kernel is the absolute square of the inner product of
the quantum states. On hardware, this can be realized by the

inversion test, where a sample xi is encoded in the unitary U ,
followed by the adjoint U† encoding the second sample xj

and measuring the probability of the all-zero state. Thus, the
quantum kernel is defined as

κ(xi, xj) = |⟨ϕ(xi)|ϕ(xj)⟩|2

=
∣∣⟨0⊗n|U†(xi)U(xj) |0⊗n⟩

∣∣2 (2)

and returns the overlap or fidelity of the two states. A more
in-depth description of quantum kernels can be found in [19],
[20].

There exist many different encoding techniques for the circuit
realizing the quantum feature map, but for this work, we
will focus on angle encoding because of its advantageous
complexity with respect to the number of gates O(k) for an
input vector x of dimension k. Angle encoding is a special
form of time-evolution encoding, where a scalar value x is
encoded in the unitary evolution of a quantum system governed
by a Hamiltonian H . The unitary of time-evolution encoding
is given by

U(x) = e−ixH . (3)

In the case of angle encoding, the Pauli matrices σa with
a ∈ {x, y, z} are used in the Hamiltonian H = 1

2σa.

B. Noisy Quantum Computing

Real quantum systems are never completely isolated from
the environment; for example, an electron realizing a qubit
will interact with other charged particles. Moreover, quantum
computers are programmed by an external system and thus
can never be a closed system [21], [22].

In the current NISQ-era, noise significantly limits the
performance of quantum algorithms, primarily through coherent
and incoherent noise. Coherent noise arises from systematic,
reversible errors that lead to predictable but undesired evolution
of the states, often caused by imperfect calibrations or imprecise
control signals [23]. Coherent noise is an unitary evolution of
the system, characterized by having only one operation element
in the operator-sum representation introduced below [24], [25].

Incoherent noise, on the other hand, is characterized by
random, stochastic processes caused by insufficient isolation
of the system from its environment. These uncontrolled
interactions between system and environment lead to deviations
between the desired and the actual evolution and to a loss of
coherence in the system [22], [23].

Quantum noise can be modeled by a quantum channel, where
the term ”channel” is drawn from classical information theory
[21]. In the operator-sum representation, a channel is described
by the map E with operation elements (or Kraus operators)
{Ei} mapping the density operator ρ = |ψ⟩ ⟨ψ| to another
density operator E(ρ).

E(ρ) =
∑
i

EiρE
†
i . (4)

In the following, selected types of single-qubit noisy channels
are described, and their operation elements Ei are listed. For a



more detailed explanation of the noisy quantum channels, we
refer to [21], [24], [26].

1) Amplitude Damping channel: describes the effect of
energy loss, such as when an atom emits a photon.
The channel acts on the quantum system A and the
environment E as follows: if both A and E are in their
ground state |0⟩, nothing happens. If A is in the excited
state |1⟩A, a photon will be emitted with probability p,
leading to the excitation of the environment and causing
the transition |0⟩E → |1⟩E , while A drops to the ground
state, i.e. |1⟩A → |0⟩A. The evolution caused by the
channel can be summarized as:

|0⟩A ⊗ |0⟩E 7→ |0⟩A ⊗ |0⟩E
|1⟩A ⊗ |0⟩E 7→

√
1− p|1⟩A ⊗ |0⟩E +

√
p|0⟩A ⊗ |1⟩E

(5)

This is achieved by the operation elements:

E0 =

[
1 0
0

√
1− p

]
E1 =

[
0

√
p

0 0

]
(6)

2) Bitflip channel: flips the state of a qubit from |0⟩ to |1⟩
and vice versa with probability p. The operators are:

E0 =
√
1− pI =

√
1− p

[
1 0
0 1

]
E1 =

√
pX =

√
p

[
0 1
1 0

]
(7)

3) Depolarizing channel: the qubit remains intact with
probability 1− p, while an error occurs with probability
p. If an error occurs, the state is replaced by a uniform
ensemble of the three states X |ψ⟩ , Y |ψ⟩ , Z |ψ⟩. This
is a symmetric decoherence channel defined by operation
elements:

E0 =
√
1− pI =

√
1− p

[
1 0
0 1

]
X-Error: E1 =

√
p/3X =

√
p/3

[
0 1
1 0

]
Y -Error: E2 =

√
p/3Y =

√
p/3

[
0 −i
i 0

]
Z-Error: E3 =

√
p/3Z =

√
p/3

[
1 0
0 −1

]
(8)

4) Miscalibration channel: a coherent noise channel apply-
ing an ”overrotation” p to the Ra rotation gate with
a ∈ {x, y, z}. This can be caused by an imperfect
calibration of the device [23]. Since the channel is unitary,
it has only one operation element:

E0 = Ra(p). (9)

5) Phase Damping channel: the phase damping or dephasing
channel models the effect of random environmental
scattering on a qubit, such as photon interactions in a
waveguide or atomic states perturbed by distant charges.

This channel causes a partial loss of phase information
without energy loss. It produces the same effect as the
phase flip channel, with the phase damping λ related to
the phase flip probability p by

p =
1−

√
1− λ

2
. (10)

6) Phaseflip channel: applies a phase of −1 to the |1⟩-state
with probability p and leaves the |0⟩-state unchanged. It
has the operation elements:

E0 =
√

1− pI =
√
1− p

[
1 0
0 1

]
E1 =

√
pZ =

√
p

[
1 0
0 −1

]
(11)

The channel has the following effect on the state’s density
matrix ρ:

E
(
ρ00 ρ01
ρ10 ρ11

)
=

(
ρ00 (1− 2p)ρ01

(1− 2p)ρ10 ρ11

)
(12)

From this, we can see that the phase flip channel destroys
superposition by decaying the off-diagonal terms of the
density matrix ρ while the on-diagonal terms remain
invariant.

C. Adversarial Attacks

QML models are typically trained using a hybrid quantum-
classical approach. In this framework, the model parameters
are optimized using a classical optimization algorithm, while
the quantum part is limited to the evaluation of the loss, which
is (partially) done by the quantum computer or simulator. This
hybrid approach allows us to easily extend the concept of
adversarial attacks from classical ML to QML, which has
already been successfully demonstrated in [27].

An adversarial attack is a small, carefully crafted perturbation
of the k-dimensional input x that causes the model to
misclassify the input [28], [29]. An untargeted adversarial
sample is created by maximizing the model’s loss L while
keeping the perturbation δ small enough to be imperceptible
to humans, e.g., by ensuring δ ∈ ∆ = {δ ∈ Rk : ∥δ∥∞ ≤ ε}
for some small ε. In general, the ideal perturbation is given by

δ ≡ argmax
δ′∈∆

L (f (x+ δ′; θ∗) , y) , (13)

where f is the model, θ∗ are the model’s optimized parameters
after training, and y is the target.

One of the most widely used methods for generating
adversarial samples is Projected Gradient Descent (PGD) [30].
PGD iteratively maximizes the model’s prediction error while
ensuring that the perturbation remains within a predefined
range. This approach has become a standard tool for evaluating
the robustness of models to adversarial threats. The perturbed
input is determined by

xt+1 = Πx+S

(
xt + α sgn

(
∇xL(xt, y; θ∗)

))
, (14)



where xt represents the perturbed data at step t, Πx+S clips
the perturbed data into the range of the normalized input set
S, and α is the step size.

A straightforward strategy to increase the adversarial robust-
ness is adversarial training, where adversarial samples are
included in the training set.

III. METHODS

The experiments performed in this work are threefold.
First, we benchmarked the QSVR for semi-supervised AD
on hardware. Second, we evaluated the influence of noise
on the classification performance of the QSVR, and third,
we investigated the influence of noise on the adversarial
robustness of the QSVR. An overview of the datasets used
in the experiments is given in Table VI in Section A in the
appendix. The datasets were reduced to five dimensions using
Principal Components Analysis. For a more detailed description
of the model, the datasets, and the preprocessing techniques,
we refer to [4].

A. Quantum Support Vector Regression Model

The QSVR for semi-supervised AD is described in detail in
[4] , and the kernel circuit is displayed in Fig. 1. The first data
point xi is encoded by the unitary U , followed by its inverse
U† encoding the second data point xj . The unitary U consists
of a layer of RZ gates and a layer of RX gates, followed by
a layer of IsingZZ1 gates to create entanglement. Each of the
single-qubit gates encodes one feature, while the parameter
of the IsingZZ gate is a product of two features. The kernel
entry Kij = Kji is obtained by measuring the probability of
the all-zero state after applying both unitaries.

B. Hardware Experiments

In the hardware experiments, we used a training set of size
30 from the normal class and a test set of size 50 with equal
class ratio, following [4].

1) Device Specifications: The experiments were performed
on the IBM System One in Ehningen, Germany, in January
2024. The system is a 27-qubit superconducting quantum
computer with a quantum volume of 64. The QSVR was
implemented using qiskit [31] with default error mitigation
techniques. Further specifications of the system are listed in
table I.

2) Reference Models: We benchmarked our model against
four other models, following the approach in [4]. The models
include a simulated QSVR, a simulated quantum autoencoder
based on [32], a classical SVR, and a classical autoencoder.

C. Generation of Noise

The influence of noise on the QSVR for semisupervised AD
was evaluated by applying six noise channels with different
strengths to the quantum circuit that computes the kernel. The
seven noise probabilities used in the experiments are p ∈
{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and the five noise channels
are [bitflip, phaseflip, depolarizing, phase damping, amplitude

1https://docs.pennylane.ai/en/stable/code/api/pennylane.IsingZZ.html

TABLE I
SPECIFICATION OF THE IBM SYSTEM ONE EHNINGEN.

Spec Value

Name IBM Quantum System One at Ehningen
System type Superconducting
Number of qubits 27
Quantum Volume 64
Processor type Falcon
Deployment year 2021
Coherence time ≈ 150µs
Single qubit error ≈ 0.025%
Two qubit gate error ≈ 0.7%
Operation time of 2 qubit gate ≈ 300ns for CNOT

damping]. This leads to a total of 7 · 5 = 35 models per
dataset. For the miscalibration channel, the noise probability
p is the overrotation in radians in 20 linear steps between 0
and 2π. For the DoH dataset subject to adversarial attacks of
strength ε = 0.1, additional evaluations were performed in the
region close to p = π. The noisy QSVR was simulated using
PennyLane [33]. We used a training set of size 100 from the
normal class and a test set of size 100 with a balanced class
ratio.

D. Generation of Adversarial Attacks
We created 100 adversarial samples of the test set (50 from

each class) using PGD with the parameters listed in Table
II. The attacks targeted the noiseless models and were then
applied to the noisy models. For adversarial training, we create
adversarial samples of the training set and train the model
using the adversarial training set of size 100.

TABLE II
OVERVIEW OF THE PARAMETERS USED IN THE PGD ATTACKS.

Spec Values

Attack strength ε [0.01, 0.1, 0.3]
Iterations n 50
α ε/n

IV. RESULTS AND DISCUSSION

In this study, we first benchmarked our QSVR on the 27-
qubit IBM Ehningen device (labeled qc-QSVR) and compared
its performance against the simulated quantum baseline models
QSVR (simulated version of our model, see [4]) and QAE
(based on [32]), as well as CSVR and CAE as classical
baselines. Second, six different noise channels of varying
strength were introduced to evaluate the influence of noise
on the QSVR algorithm. Third, the adversarial robustness of
the model was examined, and the influence of noise on the
adversarial robustness was evaluated by exposing the (noisy)
models to adversarial attacks. The simulations show no error
bars because the SVR is a deterministic model and pennylane’s
default.mixed2 device used to calculate the kernels computes
exact outputs.

2https://docs.pennylane.ai/en/stable/code/api/pennylane.devices.default
mixed.DefaultMixed.html

https://docs.pennylane.ai/en/stable/code/api/pennylane.IsingZZ.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.devices.default_mixed.DefaultMixed.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.devices.default_mixed.DefaultMixed.html


Fig. 1. QSVR circuit. Explanation in text.

A. Hardware Results

Figure 2 compares model performance on eleven datasets
using area under the ROC curve (AUC), a commonly used
metric in AD that measures the trade-off between the true
and false positive rates independent of a detection threshold.
An AUC of 1.0 indicates perfect classification of the dataset,
and a random classifier achieves an AUC of 0.5 on balanced
binary datasets. The datasets include Credit Card Fraud (CC),
Census, Forest Cover Type (CoverT), Domain Name System
over HTTPS (DoH), EMNIST, Fashion MNIST (FMNIST),
Network Intrusion (KDD), MNIST, Mammography (Mammo),
URL, and our constructed dataset Toy. The models included in
the study are qc-QSVR (ours), QSVR, QAE, CSVR, and CAE.
The average performance of each model across all datasets is
represented by a dotted line, while the bars indicate the models’
performance on individual datasets.

On average, our qc-QSVR exhibits an AUC decrease of 0.04
compared to the simulated QSVR. In 8 out of 11 datasets,
the simulated model outperforms the qc-QSVR, with the
performance gap explained by hardware noise. On the DoH
datasets, both models perform identically, while on the CC
and KDD datasets, the qc-QSVR surprisingly outperforms
its simulated counterpart. On these two datasets, hardware-
induced noise appears to enhance model performance, an
effect we attribute to improved generalization. Specifically,
the perturbations introduced by the noisy gates mimic the
corruptions applied in denoising autoencoders, a technique
shown to yield superior generalization compared to standard
autoencoders [34]. Our results are consistent with those of other
authors who observe that noise can improve the performance
of QML models under certain circumstances [35], [36].

B. Influence of Noise on the Model Performance

The hardware results show that noise in NISQ devices affects
the performance of QSVR. Therefore, in this section, we
examine the influence of six noise channels on the QSVR
based on the performance on eleven datasets. Figure 3 shows
the AUC of noisy simulations with the noise channels described
in Section II-B as well as the influence of adversarial attacks
of strength ε = 0.1 on the noisy simulations. The model’s
robustness against noise is now analyzed, and the adversarial
robustness is investigated in Section IV-C. The QSVR is largely

Fig. 2. Plot of area under the curve (AUC) for the different models on the
evaluated data sets.

robust against depolarizing, phase damping, phaseflip , and
bitflip noise, as the AUC for these noise types remains rather
stable with increasing noise probability. A theoretical analysis
of the robustness of quantum classifiers done by LaRose
and Coyle [37] proves that single-qubit classifiers are robust
against precisely these noise channels. Taking into account
the findings of Schuld [1] that many short-term and fault-
tolerant quantum models can be replaced by a general support
vector machine whose kernel computes distances between data-
encoding quantum states, we expect these results to transfer to
our QSVR.

Amplitude damping has a large effect on the model’s behavior
as the AUC decreases for all datasets except CoverT and URL
at p = 0.1 and p = 0.2. At higher p, the AUC partially recovers,
approaching 0.5. This shows that the QSVR is very sensitive
to amplitude damping , and at high noise levels the model
becomes a random classifier. These results are also supported
by LaRose and Coyle’s [37] analysis, who found that quantum
classifiers are generally not robust against amplitude damping
noise.

The curves of the models subject to miscalibration noise
show a periodicity of approximately π, with dips at about



kπ for k = 0, 1, 2, and plateaus in between. Small levels
of miscalibration degrade the performance of the model, but
when the noise level is above about 0.25π , the AUC reaches
a plateau at a level similar to the one for zero noise until the
curve dips again around p = π. We conclude that small degrees
of miscalibration reduce model performance, and that this type
of noise should be avoided in hardware.

C. Adversarial Robustness

AD is often used in security-critical areas such as credit
card fraud detection or network intrusion detection. Therefore,
ML models used for AD must be robust to adversarial attacks.
For low-dimensional, tabular data sets, it is possible that a
sample can be completely and effectively transformed into a
sample of a different class at high attack strengths. In these
cases, the effect on the AUC may be exaggerated and should
be interpreted only as an upper bound on the performance
drop.

1) Noise-Free Adversarial Attacks: First, we consider the
noise-free model and plot the obtained results of the PGD
attacks up to a strength of ε = 0.5 in Figure 4. The noise-free
QSVR is highly vulnerable to adversarial attacks, as evidenced
by the decrease in AUC for small attack strengths of ε = 0.01
for all datasets except Toy. The largest decrease is in the AUC
of the DoH dataset, which drops by an order of magnitude from
0.67 to 0.06 for the ε = 0.01 attack. As the attack strength
increases, the AUC continues to decrease for all datasets until
it approaches 0.0 for p = 0.3. We conclude that techniques
to increase the adversarial robustness of the model should be
investigated.

The unchanged AUC of Toy for ε = 0.01 can be explained by
the creation process of the dataset. The dataset was created to
be linearly separable with a separation distance of 0.4 between
the classes, so the data points must be shifted a large distance
in feature space to be misclassified. However, since the AUC
drops to 0.0 for ε = 0.3, which is smaller than the separation
distance, we might conclude that the QSVR is susceptible to
overfitting.

2) Noisy Adversarial Attacks: Second, the performance of
the noisy QSVR when subjected to adversarial perturbations of
strength ε = 0.1 is shown in Figure 3. Omitting miscalibration,
we find that for noise levels below p = 0.1, the AUC is low
for most noise types and datasets, following the trend of high
adversarial vulnerability observed in Figure 4. At higher noise
levels, however, the AUC typically recovers to some extent,
reaching a plateau at about an AUC of 0.5. This indicates that
the model transitions to a random classifier, showing that the
adversarial attacks are so powerful that quantum noise cannot
improve performance beyond that of a random classifier. Other
researchers report similar results, noting that random noise and
adversarial noise are fundamentally different, and that models
resilient to random noise are often still vulnerable to adversarial
noise [38].

Miscalibration noise affects both models under attack and
models not under attack, similarly, resulting in spikes around
p = kπ for k = 0, 1, 2 in most datasets. Interestingly, for

adversarially attacked models, as opposed to models that are
not under attack, these spikes can be lower than the adjacent
plateaus, depending on the dataset. Between these spikes, the
AUC generally remains stable, forming plateau regions.

The DoH dataset is an outlier, with an AUC of 0.0 across
almost all noise types and strengths, which is explained
by its extreme vulnerability to adversarial attacks seen in
Figure 4. This vulnerability can be explained by Figure 5
in Section B in the appendix, showing the p-value from the
Kolmogorov–Smirnov test and the maximum feature variance
within the test set. The DoH dataset has a relatively high p-
value combined with a very low variance. The high p-value
indicates a high probability that the normal and anomalous
samples originate from the same distribution, while the low
variance suggests a high degree of similarity between all
samples, especially between the normal and anomalous data.
As a result, the DoH dataset is difficult to classify, and even tiny
adversarial attacks of strength ε = 0.01 lead to manipulations
a magnitude greater than the variance within the dataset.

Notably, the AUC for the DoH dataset with miscalibration
noise is 0.0 over nearly all noise levels and peaks only around
p = π, where it approaches 1.0. An analysis of the adversarial
test kernels for the DoH dataset subject to miscalibration noise
is shown in Table III and highlights major differences between
a high-performing run (p = 2.9 ≈ 0.9π, AUC = 0.98) and a
low-performing run (p = 1.7 ≈ 0.5π, AUC = 0.00) for both
classes. The mean kernel values for the high-AUC run are four
orders of magnitude larger than those for the low-AUC run.
In addition, the disparity between kernel values of classes 0
and 1 is greater in the high-performing scenario, allowing for
easier distinction by the SVR and thus improved model AUC.
Considering that the kernel entries represent the probability of
measuring the all-zero state, we observe that miscalibration
noise with a strength close to π shifts the DoH-embedding
states closer to the all-zero state, thus increasing the kernel
values.

Since the overrotation introduced by miscalibration noise
is independent of the data, this type of noise can be thought
of as additional fixed parameter rotation gates in the circuit.
Because the parameters of these gates have a significant impact
on model performance, we highlight the importance of using
kernels tailored to the dataset, such as trainable kernels.

TABLE III
ANALYSIS OF THE ADVERSARIAL TEST KERNEL FOR THE DOH DATASET

SUBJECT TO MISCALIBRATION NOISE

p AUC class mean kernel value

2.9 0.98 0 1.743e-01 ± 5.157e-02
1 1.734e-01 ± 5.121e-02

1.7 0.00 0 1.800e-05 ± 7.360e-06
1 1.796e-05 ± 7.395e-06

The models attacked with ε = 0.01 and ε = 0.3 do not
provide new insights, as they exhibit similar behavior to the
ε = 0.1 attacks above, and can be obtained from the authors
upon reasonable request.



Fig. 3. Left two columns: Influence of six different noise types on the QSVR. Right two columns: Influence of six different noise types on the QSVR for
adversarial attacks of strength ε = 0.1

We conclude that quantum noise is not suited for increasing
the adversarial robustness of the QSVR. This finding is
consistent with prior research [14], where the authors suggest
that adding noise to QML models to increase the adversarial
robustness is unlikely to be beneficial in practice.

3) Adversarial Training: Adversarial training is a straight-
forward approach to increasing the adversarial robustness of
supervised learning algorithms. Table IV reveals that adversarial
training increases the AUC for the adversarial test set on seven
out of eleven datasets, and the average AUC over all datasets
rises from 0.28 to 0.31. However, the increase in AUC is small,
and except for FMNIST and Toy, the AUC remains below
0.5. For the test set without adversarial samples, the AUC
decreases through adversarial training on six out of eleven

datasets, and the average declines from 0.75 to 0.71. Table V
shows the ratio of correctly classified normal samples to the
total number of normal samples, as well as the same ratio for
the anomalies. For normal data, the ratio is tn

tn+fp , and for
the anomalies it is tp

tp+fn . We observe that retraining increases
the classification ratio for the normal data of the Toy dataset
from 0.78 to 0.94, while the ratio for the anomalies remains
unchanged at 1.00. For KDD, we report similar results, but the
increase in the classification ratio of the normal data through
retraining is smaller. This shows that adversarial retraining
can lead to more normal samples being classified correctly
without influencing the classification of the anomalies, since
the latter are not contained in the training set. However, this



Fig. 4. Influence of adversarial attacks on the noise-free models.

was not observed for other datasets and was most pronounced
for the synthetic dataset, suggesting this behavior requires a
large separation distance between the two classes.

We conclude that adversarial training cannot be used to
reliably harden the QSVR against adversarial attacks. We
attribute this to the semisupervised setting, meaning that only
normal samples are available during training.

TABLE IV
AUCS OF THE MODELS FOR THE TEST SET AND ADVERSARIAL TEST SET

WITH AND WITHOUT ADVERSARIAL TRAINING.

Dataset Test
AUC w/
retraining

Test
AUC w/o
retraining

Adv
AUC w/
retraining

Adv
AUC w/o
retraining

CC 0.85 0.90 0.37 0.31
Census 0.62 0.53 0.05 0.12
DoH 0.68 0.68 0.00 0.00
EMNIST 0.63 0.62 0.17 0.14
FMNIST 0.91 0.88 0.73 0.74
CoverT 0.44 0.56 0.18 0.08
KDD 0.71 0.90 0.46 0.43
Mammo. 0.74 0.95 0.22 0.19
MNIST 0.62 0.67 0.11 0.07
URL 0.59 0.60 0.08 0.08
Toy 1.00 1.00 1.00 0.95
Mean 0.71 0.75 0.31 0.28

V. CONCLUSION AND OUTLOOK

We first benchmarked our QSVR for semisupervised AD
on 27-qubits IBM hardware and found that the average AUC
was slightly lower than that of the noiseless simulation (0.72
compared to 0.76). However, the QSVR outperformed the
noiseless simulation on two out of eleven datasets.

Second, the influence of six noise channels on the per-
formance of the QSVR was evaluated, revealing that the
QSVR is largely robust against deporarizing, phasedamping,
phase flip and bit flip noise. Amplitude damping, on the other
hand, results in the most significant degradation of the model

TABLE V
RATIOS OF CORRECTLY CLASSIFIED NORMAL AND ANOMALOUS SAMPLES.

Dataset retraining no retraining
norm. anom. norm. anom.

CC 0.96 0.28 0.98 0.24
Census 1.00 0.00 1.00 0.00
DoH 1.00 0.00 1.00 0.00
EMNIST 1.00 0.02 0.98 0.02
FMNIST 0.86 0.66 0.86 0.68
CoverT 1.00 0.00 1.00 0.00
KDD 1.00 0.34 0.96 0.34
Mammo. 0.96 0.18 1.00 0.14
MNIST 1.00 0.00 1.00 0.00
URL 0.96 0.08 0.98 0.04
Toy 0.94 1.00 0.78 1.00
Mean 0.97 0.23 0.96 0.22

and miscalibration noise also has the potential to impact
performance.

Finally, the adversarial robustness of the (noisy) model
was assessed, and it was observed that the QSVR is highly
vulnerable to adversarial attacks. Even weak PGD attacks
with a strength of ε = 0.01 can reduce the AUC by up to
an order of magnitude. Introducing quantum noise does not
yield any beneficial effect, neither on the unattacked model’s
performance nor on its adversarial robustness. Moreover,
adversarial training does not reliably improve the adversarial
robustness of the model. Consequently, we conclude that the
QSVR demonstrates potential for semisupervised AD in the
NISQ era, however, special attention should be paid to the
vulnerability to adversarial attacks and amplitude damping and
miscalibration noise.

We emphasize the importance of employing dataset-specific
kernels and recommend exploring trainable kernels to further
enhance the performance of QML models. Future research
directions could also include expanding the model to more
qubits, and finally, future work may also focus on techniques
to enhance the adversarial robustness of the QSVR and defend
against such attacks.
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APPENDIX A
OVERVIEW OF THE DATASETS

TABLE VI
OVERVIEW OF THE DATASETS USED FOR THE EXPERIMENTS.

Dataset Reference Normal class Anomalous class

CC [39] Normal Anomalous
Census [40] ≤50k >50k
CoverT [41] 1-4 5-7

DoH [42] Benign Malicious
EMNIST [43] A-M N-Z
FMNIST [44] 0-4 5-9

KDD [45] Normal Anomalous
MNIST [46] 0-4 5-9
Mammo [47] Normal Malignant

Toy / Normal Anomalous
URL [48] Benign Non-benign

APPENDIX B
ANALYSIS OF THE DOH DATASET

Fig. 5. Left axis: min. p-value obtained from the Kolmogorov-Smirnov test. It gives the probability of the normal and anomalous samples being from the same
distribution. Right axis: max. variance within the test set. Both values are build feature-wise and then the min/max value is plotted.
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