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A B S T R A C T

Large Language Models (LLMs) have become central to numerous natural language processing tasks,

but their vulnerabilities present significant security and ethical challenges. This systematic survey

explores the evolving landscape of attack and defense techniques in LLMs. We classify attacks into

adversarial prompt attack, optimized attacks, model theft, as well as attacks on application of LLMs,

detailing their mechanisms and implications. Consequently, we analyze defense strategies, including

prevention-based and detection-based defense methods. Although advances have been made, chal-

lenges remain to adapt to the dynamic threat landscape, balance usability with robustness, and address

resource constraints in defense implementation. We highlight open problems, including the need for

adaptive scalable defenses, explainable security techniques, and standardized evaluation frameworks.

This survey provides actionable insights and directions for developing secure and resilient LLMs,

emphasizing the importance of interdisciplinary collaboration and ethical considerations to mitigate

risks in real-world applications.

1. Introduction

The Large Language Model (LLM) is a machine learn-

ing model characterized by an extensive number of parame-

ters and advanced learning capabilities, enabling it to exhibit

exceptional proficiency in language processing. By analyz-

ing context, it predicts the most likely word sequences to

generate coherent new text [14, 6]. With the rapid devel-

opment and maturation of LLM technology, its remarkable

capabilities and vast application potential have attracted sig-

nificant scholarly attention. Research in this field is advanc-

ing swiftly, and LLMs are being increasingly adopted across

various domains. To date, they have been widely applied

in medicine, healthcare, education, scientific research, and

beyond [18, 43, 69].

Although LLMs have become increasingly powerful in

their capabilities, the rapid development of this research field

is remarkable and concerning. Despite their impressive ad-

vancements, LLMs exhibit inherent vulnerabilities and are

susceptible to various disruptions, posing potential safety

risks. This makes LLMs susceptible to various forms of at-

tacks, thereby compromising their integrity and functional-

ity. Based on current research, there are several challenges

that LLMs continue to face. For instance, the issue of model

training data leakage [5] can result in significant economic

losses for development companies, which have invested sub-

stantial resources and manpower in model training. Fur-

thermore, there have been studies indicating that LLM also

∗Corresponding author

zyliao@jmu.edu.cn (Z. Liao); chenkang@kean.edu (K. Chen);

xdlyg@jmu.edu.cn (Y. Lin); likangkang2020@jsnu.edu.cn (K. Li);

allenliu113@hotmail.com (Y. Liu); chenhf@jmu.edu.cn (H. Chen);

huangxw@jmu.edu.cn (X. Huang); andy@jmu.edu.cn (Y. Yu)

ORCID(s):

presents a phenomenonof personal information leakage [21],

which poses a significant threat to personal privacy, personal

safety, and property security. Additionally, one of the issues

is the misuse of the model [20, 40], such as using LLM in-

appropriately to generate malicious content, generate papers,

or generate phishing emails.

At present, attacks on LLM can be broadly categorized

into two main categories: one category attacks targeting the

LLM itself and its applications, while the other primarily fo-

cuses on assaults aimed at the data layer. The first involves

attacks targeting the LLM itself and its applications, which

can compromise the secure operation and normal function-

ality of the model. Such attacks may lead to severe con-

sequences, including reduced model performance, denial of

service, and failures in the model’s security systems [4]. The

second category focuses on attacks aimed at the data and pri-

vacy layers of LLMs, threatening the internal data security of

the model, as well as its training data and processes. These

attacks can result in critical issues such as the leakage of

internal model parameters, the insertion of backdoors [72],

and the generation of harmful outputs [79].

Fortunately, effective defensive and preventive measures

have been developed to address most of the attacks associ-

ated with LLMs. In our investigation, we reviewed existing

defense strategies and categorized them into two main ap-

proaches: detection-based and protection-based approaches.

Detection-based defenses focus on identifying threats through

methods such as detecting malicious inputs [49], analyzing

key attributes [67], and monitoring for sensitive informa-

tion. In contrast, protection-based defenses involve proac-

tive measures, such as incorporating security prompts within

the model [68], modifying input prompts [23], and utilizing

red team training techniques [12].
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Fig. 1: Taxonomy of attack and defense techniques related to LLMs in our survey

However, despite ongoing advancements in research, the

field of LLM security studies still faces some challenges.

Some articles argue that the current research in certain direc-

tions is relatively scattered and not systematic. Additionally,

some scholars point out that with the continuous exploration

of LLM attack methods and the discovery of security mod-

els, there is an urgent need for more diverse and complex

defense measures, as well as evaluation criteria for the effec-

tiveness of attacks and defenses. Therefore, a more compre-

hensive and up-to-date investigation of attacks and defenses

is needed in current research in the field of LLM security.

With the increasing application scenarios of LLM pa-

rameters, the research in the field of LLM security will be-

come an important factor influencing the development of

LLM. Accordingly, it is necessary to systematically and com-

prehensively review LLM attack and defense techniques to

promote the development of this field. Moreover, this survey

can provide appropriate guidance for researchers and prac-

titioners in this field, enabling them to better understand the

current situation.

Our contributions are as follows.

• We provide a systematic classification of existing at-

tack and defense techniques related to LLMs ontology

and its applications.

• We summarize the current challenges of LLMs, while

exploring various mechanisms and principles of at-

tacks and defenses.

• Based on the current research situation, we put for-

ward relevant suggestions for emerging directions and

future development in the field of LLMs.

In the remaining sections of this survey, we provide the

relevant background and current status of the field in Sec-
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Fig. 2: The overall workflow of an LLM program

tion 2, and elaborate on the main attack methods currently

observed in the LLM ontology and its application in Sec-

tion 3. We summarize the existing defense mechanisms in

Section 4, and provide an outlook on the future development

of LLM in Section 5. Finally, Section 6 concludes this sur-

vey. As illustrated in Figure 1, the structure of our article is

outlined below.

2. Background on LLMs

LLMs are machine learning systems distinguished by their

vast number of parameters and advanced language process-

ing capabilities. With technologies continuing to evolve,

LLMs are increasingly being integrated into a wider range of

fields and applications. However, this widespread adoption

increases the importance of ensuring their security. Conse-

quently, there is an urgent need for comprehensive research

on the security aspects of LLMs. To provide readers with a

solid foundation for the subsequent discussion, this section

offers a systematic overview of the composition and work-

ing principles of LLMs, as well as the latest advancements

in LLM security research.

2.1. LLM Architecture and Workflow
Many LLMs are built on the foundation of the trans-

former architecture, which includes core components such

as self-attention, positional encoding, and sequence model-

ing [11]. Based on the specific components incorporated,

LLMs can be categorized into three types: decoder-only,

encoder-only, and encoder-decoder architectures. In recent

years, pure decoder models, such as GPT-3, have emerged

as the dominant design for LLM development [70].

As shown in Figure 2, the process of generating a re-

sponse in an LLM, starting with user input, involves several

key steps, including tokenization, embedding, decoder com-

putation, and output generation. Each stage of this process

introduces potential security vulnerabilities, making LLMs

susceptible to a variety of attacks. For instance, the input

stage may be exploited through injection attacks or jailbreak

attacks, while the output stage can expose risks such as model

theft and prompt theft. The following sections will provide

a detailed analysis of these vulnerabilities and their implica-

tions.

2.2. Current Status of LLM Security Research
Drawing from the existing body of research, numerous

studies and experiments have investigated both offensive and

defensive measures within the domain of LLM security. Broadly,

current research in this area can be categorized into two main

domains. The first domain focuses on the security of the

LLM’s core architecture and its associated applications, while

the second domain addresses data and privacy security.

Research on data and privacy security emphasizes pro-

tecting internal model data, safeguarding the model train-

ing process, and ensuring the privacy of personal informa-

tion [11]. However, this domain faces significant challenges,

including model data leakage [5], personal privacy breaches

[31], and data poisoning attacks [51]. Conversely, efforts to

secure the LLM’s architecture and its applications primarily

aim to maintain operational integrity, prevent unauthorized

access or modifications, and ensure availability for legiti-

mate users. Key concerns in this area include threats such

as jailbreak attacks and prompt injection attacks.

In summary, while the field of LLM security research

is extensive and multifaceted, this article will focus specif-

ically on addressing the security challenges associated with

the LLM’s core architecture and its related applications.

3. Attack Techniques

The methods employed to attack LLMs continuously evolve

due to inherent vulnerabilities, leading to an increasing di-

versity of attack variants. While this phenomenon poses

significant challenges, it also offers valuable opportunities.

On one hand, the development of novel attack techniques

enhances our understanding of LLM security, enabling re-

searchers to identify vulnerabilities, address existing gaps,

and further advance the field. On the other hand, the increas-

ing complexity and diversity of attacks complicate research

efforts and hinder classification, posing challenges for new-

comers seeking a comprehensive understanding of the field.

To address these challenges, this section presents a clas-

sification of three main categories of attack techniques, de-

rived from the most prominent research directions. An overview

of the related literature is shown in Table 1. A detailed dis-

cussion of each category follows in the subsequent sections.
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Table 1

Statistics on our investigation of attack technologies in LLMs

Category work Method/Algorithm Evaluated LLM Model Dataset Evaluation Metric

[34] Analyzing-Based Jailbreak
Llama-3,Qwen-2,GLM-4,
gpt-3.5 turbo,
gpt-4 turbo,Claude-3

AdvBench’s harmful
behavior dataset

ASR, AE

Jailbreak [33] DeepInception
Llama-2-chat,
Falcon,vicula-v,
GPT-3.5-turbo,GPT-4

AdvBench’s harmful
behavior dataset

Jailbreak
success rate

[36]
Genetic Algorithm,
AutoDAN-HGA

Vicuna-7b,Guanaco-7b,
Llama2-7b-chat,
gpt-3.5 turbo

AdvBench’s harmful
behavior dataset

ASR,
GPT recheck

[73]
Workflow of GPTFUZZER,
MCTS-Explore

ChatGPT,
Llama-2-7b-chat,
Vicuna-7B

\ ASR

[48] \ text-davici-002
OpenAI
sample page

ASR

Prompt
injection

[26] \
ChatGPT, GPT-3,
InstructGPT model series

\ ASR

[4]
Normalized Levenshtein,
Cosine Distance,
Sørensen–Dice distance

text-davincii-002,
BERT-base-uncase,
ALBERT-base-v2,
GPT-3

\ Human evaluation

[16] \
text-davincii-003,
gpt-4

\ \

Prompt
leakage

[71]

Prompt attention algorithm
based on output difference,
Selective beam search for
related word identification,

GPT-3.5,GPT-4 \
BLEU, ASR,
Human evaluation,
FastKASSIM

[1] \

LLama2-13b-chat,
Mistral-7b,
Mix-tral 8x7b,
gpt-3.5-turbo,
gpt-4,Gemini-pro,
Command-{XL,R},
Claude v

\
Response Labeling,
Rouge-L recall

Optimize
attacks

[24]
QROA: Query Response
Optimization Attack
Framework

LLama2-7B-chat,
Vicuna-7B,
FALCON-Instruct (7B),
Mistral-Instruct (7B)

AdvBench
benchmark

ASR

[54] JudgeDeceiver

GPT-3.5-turbo,
Gemma-7B,
GPT-4, LLaMA-2,
Mistral-7B-Instruct-v0.1,
etc

MT-bench,
LLMBar

ACC,ASR,
Average baseline
attack success rate,
PAC

Attacks on
application
of LLMs

[38]
Component Generation
Strategy Update

SUPERTOOLS \ \

[30] \
FLAN-T5-XXL,
Llama2-7B-CHAT-HF

\
Number of
successful attacks

Model
theft

[3] \ ChatGPT-3.5-Turbo
Stanford Questions
1.1 dataset

EM and Fl similarity
score, ASR

[58] \ \ IWSLT, WMT14 BLEU

3.1. Adversarial Prompt Attack
Before discussing adversarial prompt attacks, it is es-

sential first to understand the concept of adversarial attacks

and the role of prompts within LLMs. An adversarial attack

refers to the process of designing a targeted numerical vec-

tor that causes a machine learning model to make incorrect

predictions [46].

Prompts play a indispensable role in the operational mech-

anisms of LLMs, serving as the interface between external

inputs and the model’s internal processes. They are involved
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in every stage of the LLM workflow, from input detection to

output generation. As shown in Figure 2, we illustrate the

workflow of the large language model (LLM) and highlight

the stages where attacks are most likely to occur. Moreover,

prompts are essential during the security training phase, as

they guide and evaluate the model’s performance. However,

this central role also renders prompts vulnerable to adver-

sarial manipulation, creating significant risks for users and

applications [61].

An adversarial prompt attack involves manipulating prompts

to disrupt the internal functioning of the model, compelling

it to generate outputs that align with the attacker’s objec-

tives. For instance, prompt injection is a technique where an

attacker embeds malicious input into a prompt, causing the

model to generate responses according to the attacker’s in-

tent. Jailbreak attacks, a related strategy, aim to circumvent

safety measures and produce unauthorized outputs. Both

represent adversarial prompt attacks, with numerous instances

documented in the literature [65, 80, 59].

In conclusion, most adversarial attacks are based on the

strategic manipulation of prompts. . This section will exam-

ine three key types of adversarial prompt attacks, with par-

ticular emphasis on jailbreak attacks and prompt injection.

3.1.1. Jailbreak

Jailbreak attacks refer to the use of subtle techniques de-

signed to bypass the security restrictions or security mech-

anisms embedded in LLMs, such as alignment protocols or

output filtering. These attacks enable users to elicit desired

outputs from the model, regardless of whether the results are

secure or harmful [32]. As described above, a jailbreak at-

tack compromises the internal security mechanisms of the

model. Once successful, it causes the model to disregard eth-

ical boundaries and safety training, producing outputs with-

out restriction.

One significant risk associated with jailbreak attacks is

the possibility of sensitive information leakage. If the model

retains fragments of training data, it may inadvertently re-

veal confidential information, such as instructions for con-

structing dangerous objects (e.g., a bomb) or disclosing pri-

vate data like phone numbers [13]. This vulnerability un-

derscores the severity of jailbreak attacks, especially as their

sophistication grows with ongoing research.

Current studies suggest that jailbreak attacks often rely

on the use of jailbreak prompts [39]. These prompts gener-

ally fall into two categories: malicious issues and jailbreak

templates. Malicious issues are tailored by attackers to ex-

ploit vulnerabilities in the model, such as prompting meth-

ods for creating phishing websites. In contrast, jailbreak

templates are generic text structures designed to manipulate

the model’s behavior. By crafting scenarios such as role-

playing, scenario reenactments, or text continuation, attack-

ers can stimulate the model to generate responses to harmful

or restricted queries [32].

Jailbreak templates are widely recognized as a critical

component of jailbreak attacks, serving as a foundational

tool for executing malicious prompts. In the following sec-

tion, we classify jailbreak attacks based on the different meth-

ods employed in creating and utilizing jailbreak prompts.

Manual Jailbreak: This type of jailbreak attack involves

a series of manual interactions with the model, aimed at dis-

rupting its alignment and exploiting vulnerabilities [7, 64].

Human involvement plays a critical role in these attacks, as

it often includes creating jailbreak templates, analyzing the

model’s feedback, instructing the model to perform specific

actions, re-optimizing strategies, and deploying successive

rounds of attacks, such as Analysis-Based Jailbreak (ABJ) [34]

and Deepinception [33].

These attacks typically demand considerable manual ef-

fort, requiring attackers to continually refine and enhance

their templates. As a result, manual jailbreaks are often more

labor-intensive and constrained in scope. However, they re-

main a significant threat due to their capacity to exploit weak-

nesses in the model’s alignment.

In the following section, we provide a detailed exami-

nation of the methods and techniques employed in these at-

tacks.

ABJ Attack: Analysis plays a crucial role in the execu-

tion of the Analysis-Based Jailbreak (ABJ) attack. As illus-

trated in Figure 3(a), the attack process is shown. This at-

tack begins with the input of the Harmful Behaviors dataset,

obtained from AdvBench (Zou et al., 2023), which was col-

lected by the researchers within the model [34]. The dataset

is analyzed using a model guided by prompt engineering

techniques.

The researchers examined the model’s outputs to evalu-

ate its internal responses to the initial malicious tasks. Based

on this analysis, they developed a generic jailbreak prompt

template, which was subsequently used to launch an attack

on the model.

In their methodology, the researchers designated the tar-

get LLM2 as the LLMtarget and the initial malicious input

as X. The specific modification strategy derived through the

jailbreak attack, within a bounded policy space, was denoted

as S. They also defined the hazard evaluator as Meval.

By combining these elements, they constructed a systematic

process aimed at deriving strategy S, which optimizes the

malicious promptX to maximize the probability of the LLM

target classifying X as malicious, as assessed by Meval.

This optimization process is represented by the following

formula:

S∗ = arg m
s
axMeval(LLMtarget(S(X))), (1)

where S∗ represents the optimal strategy for maximizing

the hazard score assigned by Meval to the modified prompt

S(X). A higher hazard score indicates a greater probability

of a successful jailbreak attack.

Deepinception: Advances in the field of LLM security

have rendered most direct or simple indirect jailbreak attacks

ineffective. Inspired by the renowned Milgram shock exper-

iment, researchers developed a sophisticated multi-layered

nested black-box jailbreak technique known as DeepIncep-

tion [33]. This method, which requires no training, utilizes

intricately designed jailbreak templates and nested prompts

Y. Liao et al.: Preprint submitted to Elsevier Page 5 of 19
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(a) ABJ attack [34]

(b) AutoDAN [36]

Fig. 3: The objective of ABJ attack [34] is achieved by generating customized data based on malicious inputs and then analyzing
the generated data by instructing the target model. AutoDAN [36] utilizes internal evaluation and genetic algorithms to determine
the optimal template for completing the entire attack process.

to obscure the attacker’s intentions, thereby evading detec-

tion by the model. Through a gradual process, DeepIncep-

tion manipulates the model into producing harmful content,

effectively executing the jailbreak attack.

The implementation of the DeepInception attack hinges

on leveraging the model’s intrinsic generative capabilities.

By simulating a form of "hypnosis," the method transitions

the model from a serious state to a more relaxed state, en-

abling the successful injection of harmful content.
In the specific scenario xs1 ∶ �, the Deepinception at-

tack that can be executed, denoted as p(∗)�, can be formal-
ized as follows.

p∗�(x�+n+1∶�+n+M′ |xs
1∶�+n) =

M′

Π
i=1

p�(x�+n+i|xs
1∶� , x�+1∶�+n+i−1), (2)

where x�+n+1∶�+n+M ′ represents harmful content generated

within a "hypnosis" scenario. xs1∶� and x�∶�+n correspond

Y. Liao et al.: Preprint submitted to Elsevier Page 6 of 19
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to the wrapped harm requests and their initiation signals.

This sophisticated approach allows DeepInception to sub-

tly manipulate the model’s output, successfully embedding

harmful content while bypassing conventional security mea-

sures.

Automatic Jailbreak: Researchers from various fields

are increasingly exploring the concept of jailbreaking, seek-

ing more efficient methods to further their studies. As a re-

sult, the concept of automatic jailbreaking has emerged. In

our investigation, we define automatic jailbreak attacks as

those that can be executed without human intervention, con-

trasting them with manual jailbreaks. These attacks are sim-

ilar to the methods proposed in several studies [36, 13, 73,

66].

Based on our investigation of this particular type of jail-

break, we found that automatic jailbreak is often more effi-

cient than manual jailbreak. Unlike manual jailbreaks, which

require significant human involvement, automatic jailbreaks

operate without the need for extensive manpower or resources.

As shown in Figure 1, the key distinction lies in the addi-

tional step of self-optimization or self-learning in automatic

jailbreaks. This process enhances the performance of each

attack iteration, enabling the system to target and exploit

model vulnerabilities more effectively.

Automatic jailbreaking, therefore, introduces a new set

of challenges to model security, presenting a more formidable

threat to current models. Due to space constraints, we will

focus on discussing a few of the most prominent methods in

this area.

AutoDAN: As noted earlier, the distinction between au-

tomatic and manual jailbreaks lies in the additional steps of

self-optimization. AutoDAN demonstrates this difference

by focusing on the innovative attack optimization process

shown in Figure 3(b). At its core, AutoDAN incorporates a

groundbreaking hierarchical genetic algorithm specifically

designed for optimizing jailbreak templates [36]. This algo-

rithm systematically mutates templates to identify and select

those with enhanced attack performance.

AutoDAN demonstrated significant effectiveness in the

attack experiments on Vicuna-7B and Guanaco-7B. They

bypass confusion defenses with an attack success rate (ASR)

of 97.69% against Vicuna-7B and 73.65% against Guanaco-

7B. As illustrated in Figure 1, the AutoDAN attack process

requires minimal input from the attacker. The attacker sim-

ply provides a malicious question, and AutoDAN autonomously

identifies the most effective jailbreak template, executes the

attack, and coerces the model into responding to the mali-

cious query.

GPTFuzzer:: GPTFuzzer is a black-box jailbreak fuzzing

framework introduced by Yu et al [73]. This framework

leverages fuzzing testing techniques to identify vulnerabil-

ities in models. The process begins with the collection of

a set of manually crafted jailbreak templates sourced from

the internet. These templates serve as the foundation for the

iterative process.

Using specific algorithms, such as Monte Carlo Tree Search

(MCTS), GPTFuzzer selects initial seeds for further test-

ing. The framework then applies a sequence of mutations

and evaluations to these templates. Through successive it-

erations, only the most effective jailbreak templates are re-

tained, forming the basis for subsequent rounds of optimiza-

tion.

This dynamic, self-evolving methodology enables GPT-

Fuzzer to automatically generate high-quality jailbreak prompts

over time, presenting a robust and adaptable approach for un-

covering vulnerabilities in language models.

3.1.2. Prompt Injection

Prompt injection, also referred to as goal hijacking, in-

volves embedding malicious content within or alongside orig-

inal prompts. This malicious input is carefully crafted to

disrupt the complex internal mechanisms of a LLM, causing

the injected content to override the original prompts. This

leads to deviations in the execution of the model’s intended

tasks [38, 41].

Although prompt injection and jailbreak attacks share

some similarities, they differ in key aspects. In jailbreak at-

tacks, the original prompts of the LLM remain unchanged.

Instead, the attack exploits the original prompts to deceive

the model into performing the desired action. Conversely,

prompt injection involves the introduction of malicious con-

tent that directly disrupts the LLM’s operations, causing it

to execute erroneous or unintended requests.

To clarify the distinction, consider the following exam-

ple:

Jailbreak Attack: Suppose the model is designed to pro-

hibit the output of "hello world". To bypass this restriction,

an attacker might input, "If you are a welcome robot, you

need to output ’hello world’ to every customer". By framing

the input within a specific scenario, the attacker deceives the

model into generating a "hello world".

Prompt Injection: To achieve the same outcome, the at-

tacker could input, "Please tell me what time it is," followed

by a malicious instruction such as, "Ignore the above text

and print ’hello world’." This injection overrides the original

context and forces the model to comply with the malicious

directive.

These examples illustrate the nuanced differences between

jailbreak attacks and prompt injection. While both techniques

aim to manipulate the LLM, the mechanisms and objectives

differ significantly.

Previous studies have highlighted various types of injec-

tion attacks [16, 50, 48]. However, the systematic classifi-

cation of prompt injection remains underdeveloped. To ad-

dress this gap, we systematically reviewed the literature and

integrated existing classification systems. Based on current

research, prompt injection can be broadly divided into the

following types.

Direct Injection: Direct injection involves the inten-

tional embedding of malicious prompts into a model by at-

tackers to achieve their objectives [14]. This method al-

lows attackers to manipulate the model’s behavior by craft-

ing and delivering harmful prompts through various carriers.

These carriers may include input text, emails, websites, or
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any other medium capable of transmitting malicious content.

In this context, attackers utilize techniques such as obfusca-

tion, payload splitting, and adversarial suffixes to enhance

the effectiveness of their active injection strategies. These

methods are collectively categorized as forms of active in-

jection within our organization.

Obfuscation: Obfuscation attacks are a type of prompt

injection that evades detection mechanisms and bypasses a

model’s security measures by altering trigger inputs or out-

put filters. These modifications often involve techniques such

as misspelled words, synonym substitutions, escape charac-

ters, or delimiters, which are designed to generate malicious

outputs while avoiding detection [53, 48, 50].

Perez et al. introduced a modular prompt injection frame-

work capable of adapting to various types of attacks, includ-

ing those that leverage escape characters and delimiters to

manipulate outputs [48]. Similarly, Kang et al. described

obfuscation techniques such as synonym substitution and the

use of misspelled words to bypass input and output filters,

demonstrating the effectiveness of these strategies in evad-

ing safeguards [26].

As for the reasons behind the occurrence of such a phe-

nomenon, Wei et al. conducted experiments to investigate

obfuscation and noted a significant disparity between the

scope of models’ pre-training and safety training. Many mod-

els are pre-trained on expansive, diverse datasets, but their

safety training often covers a narrower range of scenarios [63].

Consequently, these models retain functionalities that were

not addressed in safety training, leading to unsafe responses

in scenarios outside the safety training’s coverage.

Despite the recognition of obfuscation in prompt injec-

tion research, the topic remains insufficiently explored. Fur-

ther investigation is necessary to deepen our understanding

of its nature and to develop more effective defenses against

such attacks.

Context Ignoring: Context ignoring refers to the delib-

erate introduction of context-switching text within a prompt,

which misleads the model and causes errors in its output [41].

By inserting irrelevant or contradictory information, attack-

ers can force the model to disregard the original context and

produce incorrect or malicious responses.

Branch et al. demonstrated the effectiveness of manu-

ally crafted adversarial examples in exploiting this vulnera-

bility. They showed that by substituting different labels on

target markers, attackers could significantly alter the seman-

tic meaning of inputs, leading to misclassifications and re-

duced performance on text classification tasks. In their ex-

periments with GPT-3, they observed that such attacks could

even surpass existing quality control methods [4].

Perez et al. further explored context ignoring by intro-

ducing explicit commands, such as "Ignore And Print", into

the input text. This simple prompt led the model to disregard

its original task and instead execute the malicious instruc-

tions embedded within the injection [48].

These studies underscore the risks associated with con-

text ignoring, highlighting how minor changes in input text

can have significant, unintended effects on model behavior.

Indirect Injection: As LLMs continue to evolve, the

APIs that extend their capabilities are becoming more di-

verse. These APIs allow LLMs to perform additional func-

tions, such as accessing network links, reading electronic

documents, and viewing emails. While this expands the model’s

potential, it also introduces new security risks.

Recent research has highlighted a growing concern: at-

tackers may exploit the invocation of APIs by LLMs to inject

malicious prompts indirectly. In these attacks, attackers can

target the external data that LLMs access, injecting harmful

prompts into this data. When the model ingests this data,

the injected prompts can influence its behavior and lead to

manipulation [16].

Greshake et al. have referred to this form of attack as

indirect prompt injection. Although this research is still in its

early stages, it underscores the importance of safeguarding

the external APIs that LLMs rely on to reduce the risks of

such attacks.

Due to the preliminary nature of current studies, this sur-

vey will not delve deeply into specific case examples. How-

ever, the implications of indirect injection remain an impor-

tant area for future exploration.

3.1.3. Prompt Leakage

Recent research has revealed that the definitions of prompt

injection and prompt leakage share significant similarities,

as both attacks use malicious text in conjunction with prompts

to achieve their objectives. Some studies even suggest that

prompt leakage can be considered a form of prompt injec-

tion [10]. However, a key distinction exists between the two:

While prompt injection generally focuses on manipulat-

ing a model’s behavior through external prompts, prompt

leakage places more emphasis on gaining unauthorized ac-

cess to the model’s internal prompts and system messages [48].

In prompt leakage, attackers aim to exploit vulnerabilities

that allow them to steal or manipulate the internal structures

and configurations used by the LLM.

Given these differences, we categorize prompt leakage

separately from prompt injection for further discussion.

PRSA: PRSA is the first framework specifically designed

to target LLMs for prompt leakage attacks [71]. By analyz-

ing both input and output, PRSA can effectively infer the

intentions behind prompts and steal them. This poses a sig-

nificant threat to emerging industries, such as the prompt

services market, which has gained traction alongside the de-

velopment of LLMs. These services offer customers high-

quality, carefully crafted prompts to enhance profitability.

PRSA’s introduction has raised alarms within these indus-

tries, as it can compromise intellectual property and disrupt

market dynamics.

PRSA operates in two primary stages: prompt mutation

and prompt pruning. During the prompt mutation phase,

Yang et al. utilized a generative model to generate proxy

prompts. However, these prompts often deviated from the

intended target prompts. To address this, Yang et al. intro-

duced a prompt attention algorithm that compares the output

differences between proxy prompts and target prompts. This
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algorithm provides feedback to refine the generative model

and reduce discrepancies.

In the second stage, prompt pruning, Yang et al. devel-

oped a two-step strategy to identify relevant words in proxy

prompts. This strategy accurately locates words highly cor-

related with the input, thereby improving the consistency

and generalizability of the prompts to the target prompts.

To demonstrate the effectiveness of PRSA, Yang et al.

tested the PRSA framework using GPT-3.5 as the prompt

generation model. They targeted 50 popular GPT models

available in OpenAI’s GPT store—most of which had prompt

leakage protection mechanisms in place. The results showed

that PRSA could achieve an attack success rate (ASR) of ap-

proximately 30% with a single query.

Agarwal et al. [1] introduced a multi-round query ap-

proach for prompt leakage attacks, simulating a retrieval-

augmented generation (RAG) scenario. This method involves

a two-round attack, utilizing carefully designed baseline tem-

plates to set up the task.

In the first round of the attack, a pre-designed template

query is input into the model, accompanied by attack prompts.

This results in the leakage of prompts within the model. In

the second round, the attack is reinforced by a fixed chal-

lenger utterance containing a flattery component, alongside

the same prompts used in the first round. This second stage

aims to enhance the leakage effect.

Experiments conducted on GPT-4 and Claude-1.3 demon-

strate that this multi-round attack can achieve a leakage rate

of up to 99%.

3.2. Optimized Attacks
Recently, a new category of attacks, referred to as opti-

mized attacks, has emerged and is increasingly prevalent in

contemporary attack experiments [61]. Optimized attacks

are defined as attacks where the attacker selects or enhances

attack algorithms using optimization techniques to maximize

the attack’s effectiveness [80]. The ultimate goal of an op-

timized attack is to iteratively improve the attack’s perfor-

mance until optimal results are achieved, or the desired at-

tack outcome is realized.

Optimized attacks can be integrated with other attack

techniques, such as jailbreak or prompt injection, to enhance

their impact. Compared to manual attacks, optimized attacks

offer greater flexibility and self-optimization, which signifi-

cantly increases their potential as a serious threat to current

model security research.

The rise of optimized attacks underscores a growing need

for automated defense mechanisms in the context of LLMs.

To effectively counter these attacks, it is imperative to thor-

oughly understand their principles and characteristics. The

following text provides a detailed explanation and example

of an optimized attack.

QROA: QROA(Query-Response Optimization Attack)

is an optimization-based strategy that generates malicious

content in a black-box manner solely through query inter-

actions [24].This method draws inspiration from deep Q-

learning and Greedy Coordinate Descent, iteratively updat-

ing tokens to optimize a carefully designed reward function.

Ultimately, harmful content can be generated by inputting

malicious instructions containing optimized triggers into the

LLM. This approach functions independently of the model’s

logits or internal data, leveraging only the LLM’s standard

query-response interface. Moreover, the attack success rate

of this method on various LLMs, including Vicuna, Falcon,

and Mistral, exceeds 80%.

Judgedeception: Shi et al. [54] introduced an optimized

prompt injection attack known as judgedeception,which lever-

ages optimization algorithms to efficiently generate adver-

sarial sequences for targeted manipulation of the model. This

attack operates through a multi-step process. Initially, a shadow

dataset is created to simulate and collect the responses gen-

erated by the target model. This dataset serves as the foun-

dation for the subsequent attack strategy.

The next phase involves utilizing the optimization al-

gorithm developed by Shi et al. in combination with the

shadow dataset to generate specific attack sequences that ex-

ecute the intended manipulation. The judgedeception at-

tack is particularly designed for scenarios where the LLM

acts as a decision-maker, allowing attackers to influence the

model’s selection process.

Specifically, this attack may result in the appearance of

more content that attackers want to propagate in LLM-based

search engines, leading to adverse social impacts.

3.3. Attacks on Application of LLMs
With the continued advancement of LLMs, these sys-

tems have demonstrated exceptional capabilities across var-

ious domains. This has led developers to increasingly in-

tegrate LLMs into a wide range of applications, aiming to

enhance functionality, create intelligent assistants, or enrich

content generation. The integration of LLMs into practical

applications undoubtedly drives both the evolution of LLM

technology and the broader field of software development.

However, as the excitement surrounding the application

of LLMs grows, there is a risk of overlooking potential vul-

nerabilities. Our survey reveals that applications utilizing

LLMs are susceptible to the same types of attacks that tar-

get the LLM models themselves—such as prompt injection,

prompt leakage, and model theft. These attacks can have

severe consequences for applications, especially when their

security measures are breached.

Once the defenses of LLM-powered applications are com-

promised, the repercussions can be even more significant

than the threats faced by standalone LLMs. For instance,

there may be exposure of sensitive user data, proprietary in-

formation belonging to vendors, and critical system param-

eters. As such, securing applications that leverage LLMs

becomes a critical issue.

In this section, we systematically examine various at-

tacks on LLM-based applications, analyzing their fundamen-

tal mechanisms and potential risks.

Vocabulary Attack: Levi et al. [30] extended previous

research on prompt word injection attacks, particularly those

based on delimiters [48], by incorporating insights from Wal-
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lace et al. [57]. Their work introduced the concept of a vo-

cabulary attack, aimed at large-scale language model (LLM)

applications.

In their methodology, Levi et al. first defined a loss func-

tion that measured the discrepancy between the target model’s

output and the desired output from the attacker’s perspective.

This function served as a foundation for identifying which

word had the greatest impact on the model’s behavior. To

achieve this, they combined cosine distance calculations be-

tween the output embeddings and the difference in simple

word counts.

Once the most impactful word was identified, the attacker

used it to hijack the model’s response, achieving the attacker’s

desired output. This approach demonstrated a novel method

for influencing the behavior of LLMs by strategically manip-

ulating specific vocabulary elements within the input.

HouYi: HouYi, a black-box prompt injection attack de-

signed for LLM-integrated applications, was proposed by

Liu et al. [38]. The attack is composed of three main com-

ponents: the Framework Component, the Separator Compo-

nent, and the Disruptor Component.

Framework Component: This component standardizes

the input format, as many applications only accept prede-

fined formats. By doing so, it can bypass malicious content

detection mechanisms that might otherwise flag irregular in-

puts.

Separator Component: The Separator separates user in-

put from predefined prompts, tricking the LLM into inter-

preting the subsequent input as commands rather than data.

This separation allows the attacker to inject malicious in-

structions effectively.

Disruptor Component: The Disruptor component con-

tains malicious queries designed to manipulate the model

and achieve the attacker’s objective. These questions are in-

jected into the LLM to disrupt its normal behavior and elicit

the desired output.

To execute a successful HouYi attack, three steps are in-

volved:

Context Inference: The attack begins with a context in-

ference step, in which input-output pairs are collected via a

question-and-answer process. These pairs are then compiled

into a document that serves as the basis for customizing the

attributes of the target LLM analysis program in the subse-

quent stages.

Component Generation: The Framework Component is

generated by inputting the context document into a genera-

tive LLM, which creates framework questions based on the

attacker’s specifications. Following a set of strategies de-

veloped by Liu et al., a separator component is generated to

guide the LLM in producing separator instances. The Dis-

ruptor Component is tailored to the specific strategies and

goals of the attacker, ensuring that the malicious content

aligns with the overall attack objective.

Iterative Prompt Refinement: After generating the com-

ponents, the final step is iterative refinement. Each compo-

nent is optimized based on feedback to improve the attack’s

success rate, ensuring the attack is as effective as possible.

3.4. Model Theft
The increasing adoption of LLMs today has made these

models extremely valuable due to the high cost of training.

However, their value also exposes them to the risk of theft.

Model theft, or model extraction, refers to the act of attack-

ers using queries to extract knowledge from a target model

and duplicate a copy that closely resembles the original one.

This kind of attack is not only low-cost but also highly ef-

fective, as it enables attackers to train a model similar to the

original by analyzing its responses to mass querying [45, 28].

Such attacks violate intellectual property rights, as the

attacker essentially bypasses the original model’s training

process and creates a near-identical model. The ability to

replicate models in this manner represents a serious threat

to the proprietary nature of LLMs and could undermine the

incentives for developing these models.

Wallace et al. proposed a model theft attack specifi-

cally targeting black-box NLP processing models [58]. Their

study demonstrated the effectiveness of this attack on trans-

lation models, particularly those based on the Transformer

architecture. In their experiments, they utilized a monolin-

gual sentence corpus from the target model and selected sen-

tences from this corpus to query the model, collecting the

corresponding translations. This process provided them with

labeled data, which they then used to train an imitation model.

Through this approach, Wallace et al. successfully im-

itated popular translation systems like Google, Bing, and

Systran using the WMT14 dataset. They validated the per-

formance of the imitation models using Test BLEU Scores,

which are commonly used to measure the quality of ma-

chine translation. The results were impressive, with the imi-

tation models achieving BLEU scores of 65.6, 67.7, and 69.0

for Google, Bing, and Systran, respectively, in English-to-

German translation. This study highlighted the feasibility of

model stealing attacks on translation systems based on the

Transformer architecture and demonstrated how such attacks

can effectively replicate the functionality of well-established

models.

Model Leeching: Model leeching is a black-box model

extraction attack proposed by Birch et al., designed to obtain

a copy of a target model that can perform a specific task [3].

This attack involves four key stages: Prompt Design, Data

Generation, Extracted Model Training, and ML Attack Stag-

ing.

Prompt Design: In the first phase, the attacker tests the

attributes of the target model by giving it specific tasks, such

as those in image processing, NLP, or audio. Based on these

results, the attacker designs and validates various prompts to

probe the model’s functionality.

Data Generation: The prompts generated in the previ-

ous phase are then used to extract the purpose and task of

the target model. The attacker inputs a preprocessed dataset

into the model, collects the responses, and then uses them to

generate a new dataset, essentially replicating the function-

ality of the model.

Extracted Model Training: The dataset generated in the

previous phase is divided into training and evaluation sets.
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A blank model is then trained using this data, with adjust-

ments made to the model to closely match the original target

model’s behavior.

ML Attack Staging: In the final phase, the attacker tests

the vulnerabilities and attack methods on the local copy of

the model. Having unrestricted access to the copied model,

the attacker can probe for weaknesses and devise attack strate-

gies to exploit them.

This attack demonstrates the ease with which an attacker

can replicate a model and subsequently stage attacks against

it, making model leeching a significant concern in the realm

of model security.

4. Defense Techniques

In this section, we provide an overview of current de-

fensive mechanisms in the field of LLM security. We will

categorize solutions according to defense techniques, focus-

ing on three key types of attacks to which LLMs are vulner-

able. Our analysis distinguishes between prevention-based

and detection-based defenses. Prevention-based defenses typ-

ically involve processing inputs, outputs, or internals of the

model to mitigate potential attacks. In contrast, detection-

based defenses focus on monitoring inputs and outputs to

identify and respond to malicious behavior. An overview

of the related literature is shown in Table 2. The following

sections will dive into these methods in more detail.

4.1. Defense against Jailbreak
Jailbreak has always been a tricky problem. Because of

its flexibility and openness, it becomes difficult to solve well.

Therefore, we focus on summarizing the research on the dan-

gers of jailbreak and its defense.

The Dangers of Jailbreak: The goal of a jailbreak at-

tack is to manipulate models into producing malicious out-

puts by disrupting their alignment [37]. These outputs can

encompass a variety of harmful content, including racist state-

ments, misleading or dangerous information, and personal

data [13]. Such irresponsible outputs pose significant risks,

undermining personal privacy, hindering the development

and responsible application of LLMs, and potentially threat-

ening societal security. Whether from the perspective of

safeguarding personal information, ensuring the sustainable

growth of LLMs, or maintaining public order and safety,

these consequences are entirely unacceptable. Consequently,

defense against jailbreak attacks has become a critical and

rapidly evolving area of research in LLM security.

4.1.1. Prevention-Based Defense

SmoothLLM: Robey et al. identified a novel phenomenon

concerning the vulnerability of character-level perturbations

to adversarial suffixes generated through adversarial suffix

jailbreaking [49]. Specifically, they discovered that adver-

sarial suffixes designed for jailbreaking are significantly weak-

ened when a small portion of characters in the input are man-

ually altered, such as through random character swapping or

insertion.

Building on these findings, Robey et al. proposed a new

defense mechanism called SmoothLLM to counter such jail-

breaking attacks. This method involves two primary steps:

the perturbation step and the aggregation step. In the pertur-

bation step, three strategies—insertion, swapping, and patch-

ing—are applied to randomly perturb the adversarial hints

provided to the LLM.

Insertion: A percentage q of characters from the hints

are randomly selected, and random letters from the alpha-

bet are inserted after each character. The parameter q rep-

resents a tunable perturbation ratio, with larger values of q

corresponding to more extensive perturbations. Swapping:

A percentage q of characters from the hints are selected and

swapped with random letters from the alphabet.

Patching: A percentage q of characters from the hints are

replaced with random letters from the alphabet.

In the aggregation step, to ensure that perturbing indi-

vidual adversarial hints does not render the attack ineffec-

tive, Robey et al. aggregate the responses corresponding to

these perturbed versions and return a single response. This

aggregation nullifies the attack by reducing the effectiveness

of the adversarial hints.

From a defensive perspective, SmoothLLM demonstrates

a marked reduction in the effectiveness of adversarial at-

tacks. Specifically, it reduces the Attack Success Rate (ASR)

of the Vicugna model and GPT-4’s PAIR semantic attack by

a factor of 2, and it reduces the ASR of GPT-3.5 by a factor of

29. Such significant results are undoubtedly highly instruc-

tive. This research not only proposes effective solutions to

existing problems but also points the way forward for future

defense studies.

System-Mode Self-Reminder: This method was pro-

posed by Wu et al [65]. as a simple yet effective defense

mechanism against jailbreak attacks. It aims to provide the

LLM with appropriate context and prevent the model from

entering certain uncontrollablemodes, such as DAN(DO Any-

thing Now), by reminding itself to act as a responsible AI

assistant. The authors leverage the reasoning capabilities of

LLMs to encapsulate user queries with system prompts and

remind themselves to take responsible actions. Although the

method is simple and easy to understand, it successfully re-

duced the jailbreak attack success rate on the constructed

dataset from 67.21% to 19.34% for ChatGPT. Additionally,

it exhibits a certain level of resistance against two different

adaptive attacks they designed.

4.1.2. Detection-Based Defense

Autodefense: Autodefense is a filtering-based, multi-

agent defense framework proposed by Zeng et al. [75], de-

signed to actively monitor and filter the responses generated

by LLMs to ensure they are safe and free from harmful con-

tent. This framework consists of three key components: the

input agent, the defense agency, and the output agent.

The input agent preprocesses the model-generated re-

sponses by wrapping them in a specific format of prompt

templates before sending them to the defense agency. In the

defense agency, multiple LLM agents collaborate to analyze
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Table 2

Statistics on our investigation of defense technologies for LLMs

Category work Method Method\Algorithm Evaluated LLM Model Dataset Evaluation Metric

[49] prevent SMOOTHLLM Vicuna,Llama2
AdvBench,
JBB-Behaviors

ASR

Defense
against
jailbreak

[65] prevent
Self-Adversarial
Attack via System
Prompt

GPT-4V \

Recognition
success rate,
Defense success
rate, ASR

[23] detect
Baseline
defense

Vicuna-v1.1,
Chat-GLM
MPT-Chat,Guanaco
Falcon-Instruct

AdvBench
ASR, PPL,
PPL Windowed

[75] detect
Multi-Agent
Defense

GPT-3.5 \
False Positive Rate,
Accuracy,ASR

[55] prevent Signed-Prompt
ChatGPT-4,
ChatGLM-6B

\ ASR

Defense
against
prompt
injection

[8] prevent

Generate
structured
instruction
tuning dataset

Llama-7B,
mistral-7b

cleaned Alpaca
instruction
tuning dataset

ASR, AlpacaEval

[52] detect SPML
GPT-4,GPT-3.5
LLAMA-7B,
LLAMA-13B

Gandalf,
Tensor-Trust

error rate (ER)

[22] detect Attention Tracker

Qwen2-1.5B-
Instruct, Phi-3-
mini-4k-instruct,
Meta-Llama-3-
8B-Instruct,
Gemma-2-9b-it

open-prompt-
injection benchmark,
deepset prompt
injection dataset

AUROC score

[77] white box

Watermark
detection,
Watermark
detection
with text alone,

\
IWSLT14,WMT14,
ROCstories

F1 scores for
ROUGE-L and
BERTScore,
Detect mAP

Defense
against
model
theft

[47] white box \ \
SST2,MIND,
AG News,
Enron,WikiText

Accuracy, KS test,
cosine similarity,
squared L2 distance

[45] black box \
GPT-2 Large-0.7B
LLAMA2-7B,
MISTRAL-7B

Human ChatGPT
Comparison
Corpus,
InstructWild

BLEU and
ROUGE metrics

[19] black box Cater
BART (summarization)
mBART (translation)

\ BLEU, p-value,

the content for potential harm and generate a final judgment

on whether the response contains harmful content. The out-

put agent then decides whether to reject the response or out-

put the original, unaltered response of the protected LLM,

based on the analysis provided by the defense agency.

PPL Detect: Alon et al. [2] proposed a detection-based

method for identifying jailbreak attacks. Currently, several

jailbreak attack methods bypass models by inputting strings

that deviate from typical semantic structures or are rarely

encountered in natural language. These strings, known as

adversarial suffixes, are designed to exploit model vulnera-

bilities [80]. Alon et al. detect such adversarial suffixes by

comparing them to regular text. They define a perplexity

calculation function PPL(x) as follows:

PPL(x) = exp

[
−
1

t

t∑

i=1

log p(xi ∣ x<i)

]
, (3)

where x is a sequence of t tokens.

In their approach, Alon et al. utilize GPT-2 to calcu-

late the perplexity and other relevant parameters for each in-

put prompt using a specific algorithm. Based on the input’s

calculated perfection, any input exceeding the threshold is

flagged and subsequently filtered out.

The perplexity-based detection method is effective in iden-

tifying GCG attacks; however, it performs poorly in detect-
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ing manual jailbreak attempts. Despite these limitations, the

study provides valuable insights into the characteristics of

current jailbreak attacks, laying a solid foundation for future

research on the specific nature of these threats.

4.2. Defense against Prompt Injection
The detailed principles of prompt injection have been

thoroughly explained in the previous section on attack tech-

niques. Therefore, in this section, we will focus on the im-

pact and defense of prompt injection on LLM.

The Impact of Prompt Injection: From the perspective

of attack objectives, prompt injection attacks are highly ver-

satile, as they can be executed through the flexible design of

malicious prompts to achieve a variety of harmful outcomes.

For instance, carefully crafted prompts can be used to per-

form unauthorized operations or extract internal data from

models [74]. The potential risks are even more severe when

prompt injection occurs in specialized LLMs, such as med-

ical or commercial models, where the consequences can be

catastrophic.

As a result, defending against prompt injection has be-

come a primary focus of current research in LLM security.

At present, defense strategies against prompt injection pri-

marily center on input filtering and input sanitization tech-

niques. The following sections will explore several of these

defense methods in detail.

4.2.1. Prevention-Based Defense

Signed-Prompt: The Signed-Prompt method, proposed

by Suo [55], is a defense technique designed to prevent prompt

injection attacks in LLM-integrated applications. The core

concept behind this method is to identify the allowed com-

mands for the application by analyzing user input and re-

placing these commands with character arrangements that

are rarely seen in natural language. This process of encrypt-

ing the commands is referred to as signing.

The signing process is carried out by the Signed-Prompt

Encoder, which uses ChatGPT-4, trained in prompt engi-

neering, to encrypt the input. The signed inputs are then

distinguished from invalid inputs (those that are not allowed

by the LLM-integrated application). Specifically, valid in-

puts are signed, while invalid ones remain unsigned.

In the next step, signed commands are formatted as sys-

tem commands, while unsigned commands are not executed.

The counterpart of signing is signing removal, a process also

facilitated by ChatGPT-4 trained in prompt engineering. Dur-

ing signing removal, the model recognizes and outputs the

correspondingformatted commands for both encrypted (signed)

and unencrypted (unsigned) inputs.

As a result, user input undergoes two stages—signing

and signing removal—to generate commands that the inte-

grated application can accept.

StruQ: StruQ (Structured Queries) is a defense method

proposed by Chen et al. [8], aimed at improving the security

of LLM-integrated applications. The core concept of this

approach is to convert user input into a structured format,

filter out harmful content, and then have the specially tuned

LLM respond to it using predefined commands.

To implement this process, both a Front-End and a spe-

cially tuned LLM are required. The Front-End is responsible

for categorizing the user input into two types: prompts and

user data, and then formatting them in a specific structure.

Additionally, it filters out certain delimiters within the user

data to prevent obfuscation attacks, while embedding mark-

ers that signal the LLM’s command-tuning services. The

specially tuned LLM, in turn, receives the structured input

and processes it accordingly.

Experimental results show that StruQ significantly re-

duces the success rate of manual attacks on models like Llama

and Mistral, lowering it to less than 2%. Furthermore, it re-

duces the success rate of GCG attacks [80] from 97% to 58%.

4.2.2. Detect-Based Defense

SPML: SPML (System Prompt Meta Language) is a de-

fense method proposed by Sharma et al. [52] for enhancing

the generation of system prompts, specifically designed for

chatbots based on LLMs. The overall workflow is shown in

the Figure 4. The primary goal of this method is to pro-

cess user inputs into a specific format of code, known as

SPML-IR, which serves as an intermediate representation.

This SPML-IR is then fed into the LLM, enabling it to un-

derstand the user’s prompt and generate corresponding natu-

ral language system prompts, thereby reducing the potential

for harmful input.

A key component of this method is the SPML-IR, which

plays a crucial role in detecting prompt injection attacks.

The process involves several steps: first, the SPML-IR must

process all variables within the code to generate the SPML-

IR Skeleton. Next, each variable is filled with user input, and

once this step is completed, the resulting version is compared

to the original SPML-IR for security checks.

Compared to advanced LLM models such as GPT-4 and

LLAMA-7B that do not use SPML, the inclusion of SPML

significantly reduces the success rate of prompt injection at-

tacks. SPML offers a novel approach to defending against

prompt injection, distinguishing it from previous methods.

Attention Tracker: Hung et al. introduced the concept

of the distraction effect by visualizing the partial numerical

values of prompt injections within LLMs [22]. This effect

emphasizes the critical role of separators in influencing the

model’s attention shift. Building on this insight, Hung et al.

proposed a prompt injection detection method called Atten-

tion Tracker. This method operates in two key stages: Find-

ing Important Heads and Prompt Injection Detection with

Important Heads.

In the Finding Important Heads stage, the focus is on

identifying specific attention heads that trigger the distrac-

tion effect by analyzing them based on the input text. Once

these important heads are identified, they can be utilized in

the Prompt Injection Detection stage to detect prompt injec-

tion attacks using a specialized algorithm. By utilizing the

focus score (FS), it is possible to detect important attention

heads and determine whether prompt injection has occurred.

The definition of the FS focus score is given as follows:
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Fig. 4: The general workflow of SPML[52] involves compiling the input prompts using this method and then checking the compiled
results based on specific methods to ensure the security of the input prompts.

FS =
1

||Hi
||

∑

(l,ℎ)∈Hi

Attnl,ℎ(I), (4)

whereHi represents the set of important attention heads iden-

tified through computation, and Attn(l, ℎ) refers to the ag-

gregated attention score, as described in [41].

Experimental results show that, compared to other base-

lines, the Attention Tracker achieved a 3.1% improvement in

AUROC[41] on the open prompt injection benchmark and a

10.0% improvementon the deep-set prompt injection dataset.

Overall, the introduction of this method provides a new

perspective for rapid injection detection, laying the founda-

tion for further research into prompt injection in the future.

4.3. Defense against Model Theft
As mentioned earlier, trained or fine-tuned models gen-

erally hold significant value. Unfortunately, current defense

mechanisms cannot completely prevent model theft. How-

ever, this does not mean that traces of model theft cannot be

detected in stolen models. Therefore, rather than attempting

to entirely prevent model theft, detecting plagiarized mod-

els and defending intellectual property rights through legal

means is a more practical and feasible approach. As a result,

model watermarking techniques have seen substantial devel-

opment. Specifically, model watermarking involves modify-

ing internal model parameters or employing other methods

to embed specific signals into the model’s output. Training

imitation models using outputs embedded with these signals

can impart certain properties (e.g., triggering specific re-

sponses to predefined inputs[47]), enabling the detection of

plagiarism and facilitating the identification of stolen mod-

els. In summary, this section introduces several watermark-

based defense mechanisms.

4.3.1. White-Box Defense

GINSEW: GINSEW is a white-box watermark defense

method proposed by Zhao et al. [77]. Unlike other defense

methods aimed at preventing model theft, the purpose of

GINSEW is not to stop theft directly but to ensure that any

stolen model contains specific, detectable information that

can be identified by a third-party arbitration agency. The

ultimate goal of this approach is to protect the intellectual

property of the model owner.

To achieve this objective, GINSEW involves two key

steps: the generation of invisible watermarks and watermark

detection. The generation and detection of the invisible wa-

termark are shown in the Figure 5. The generation of invisi-

ble watermarks relies on creating the probability distribution

for each token within the target model.

However, modifying the token creation probability within

the model without affecting its output has become a signif-

icant challenge. Therefore, Zhao et al. proposed that this

process can be formalized as follows:

Q̃G1
=

QG1
+ "(1 + z1(x))

1 + 2"

Q̃G2
=

QG2
+ "(1 + z2(x))

1 + 2"
,

(5)

where the Q̃G1
andQ̃G2

refer to the modified group proba-

bilistic periodic signals that we have computed. " denotes

the watermark level, which quantifies the amount of noise

introduced into the group probability. z1(x) and z2(x) rep-

resent the periodic signal functions derived through compu-

tation.

In the watermark detection phase, a detection dataset is

input into the suspicious model, and the probability vector

distribution during the decoding step is analyzed to extract

the watermark signal.

Experimental results by Zhao et al. demonstrate that

GINSEW provides excellent protective performance for the

model while maintaining the quality of text generation. In

conclusion, GINSEW presents an effective strategy for de-

fending against model theft and ensuring that stolen models

can be traced back to their source.

EmbMarker: EmbMarker is a model theft defense frame-

work proposed by Peng et al. [47]. The core idea behind Em-

bMarker is to select a set of high-frequency words as triggers

and use target embeddings to perform backdoor processing

on the original embeddings. This ensures that any extracted

model contains the corresponding backdoor. EmbMarker

consists of three key steps: trigger selection, watermark in-

jection, and copyright verification.
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Fig. 5: Watermark Formation: The imitation model is embedded with a similar API to that of the victim by incorporating the
victim’s API into the output of the model. Watermark Detection: A specific algorithm is used to detect watermark signals from
the imitation model.

In the trigger selection phase, the goal is to identify an

appropriate number of words to serve as triggers, selected

from the text using a specific method. During the water-

mark injection phase, the watermark is embedded into the

model’s embeddings based on the number of triggers iden-

tified in the previous step. Finally, in the copyright veri-

fication phase, the suspected stolen model is evaluated by

querying it with two distinct datasets: a benign dataset and

a backdoor dataset. The resulting embeddings are analyzed

to verify the presence of the watermark and confirm model

theft.

4.3.2. Black-Box Defense

Model Shield: Model Shield is a black-box, automatic

watermark generation method proposed by Pang et al. [45],

designed to guide LLMs in generating robust watermarks in

a simple yet effective manner. Similar to other watermark

defense methods, Model Shield consists of two key stages:

watermark generation and watermark detection. What dis-

tinguishes Model Shield from other watermark defenses is

its use of additional system prompts, which instructs the tar-

geted model to autonomously embed the watermark into the

generated content. These system prompts are specifically

crafted by Pang to guide the model in embedding specific

words as watermarks at appropriate positions within the gen-

erated text.

In the watermark detection phase, a set of formulas pro-

posed by Pang is employed to detect the output of any imi-

tating model. Extensive experiments conducted by Pang et

al. demonstrate that Model Shield can successfully generate

robust watermarks without manipulating the model’s inter-

nal probabilities or outputs. However, the study also notes

that Model Shield may become ineffective in the face of jail-

breaking attacks, which can undermine the effectiveness of

the watermark generation prompts and, consequently, the de-

fense itself.

In conclusion, this research provides valuable insights

into watermark defense mechanisms in the context of LLM

security.

Cater: Cater is a defense framework based on condi-

tional watermarking, designed by He et al. [19]. Cater is

divided into two main phases: watermark generation and

watermark detection. However, unlike previous approaches

that modify token probabilities, Cater does not alter the orig-

inal probability distribution during watermark generation.

Instead, it injects watermarks into specific conditional words.

In essence, a series of optimization algorithms is devel-

oped to calculate the generated text of the model under given

conditions and ultimately produce text embedded with wa-

termarks. Cater achieves conditional generation by taking

into account the part-of-speech and dependency tree of the

text, as well as their higher-order variations.

For watermark recognition, Cater verifies the input val-

idation dataset of the imitating model and determines the

presence of watermarks based on the word distribution of

the model’s output content. According to the experimental

results, while Cater may exhibit slightly lower watermark

effectiveness compared to some other methods, it is notably

more resistant to watermark elimination and covert in its op-

eration. These characteristics make Cater a valuable defense

framework for preventing advanced model theft in the future.

5. Practical Challenges and Future Directions

Defending against attacks in LLMs is a multifaceted chal-

lenge that requires a combination of technical, ethical, and

operational strategies. As the landscape of threats continues

to evolve, ongoing research into robust defenses, ethical con-
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siderations, and scalable solutions will be essential to ensur-

ing the safe deployment of LLMs in real-world applications.

In this section, we explore five practical challenges faced by

defense techniques in LLMs, alongside potential future di-

rections for mitigating these challenges. In this way, we can

pave the way for more secure, fair, and trustworthy LLM

models in the future.

5.1. Resistance to Evasion Attacks
Attackers can use dynamic evasion strategies, constantly

changing their attack methods to bypass defenses. For exam-

ple, they may vary the type and magnitude of perturbations

in adversarial attacks over time. Defending against these

evolving strategies requires detection systems to be able to

adapt quickly, which is difficult to achieve with traditional

static defense mechanisms. Additionally, in real - time ap-

plications, the LLM model needs to respond immediately

to user inputs. This leaves little time for elaborate defense

mechanisms to detect and block evasion attacks. The need

to balance response time and security makes it challenging

to implement effective defenses against evasion attacks in

real-time scenarios.

Toward this end, we need to develop adaptive defense

systems that can learn and respond to new evasion strate-

gies in real-time. These systems can use safe reinforcement

learning [17] to continuously adapt their defense mechanisms

based on the observed attack patterns. For example, the de-

fense system can adjust the thresholds for detecting adversar-

ial inputs as the attacker changes the magnitude of perturba-

tions. Furthermore, it is necessary to design lightweight de-

tection algorithms that can be run on resource - constrained

devices. These algorithms can use techniques such as fea-

ture selection and dimensionality reduction [25] to reduce

the computational requirements while still maintaining high

detection accuracy. For example, using compact neural net-

work architectures [60] or approximatecomputing methods [35]

for attack detection.

5.2. Robustness Against Poisoning Attacks
Poisoning attacks in LLMs can be hidden within the train-

ing data in a way that is difficult to detect. Attackers may

add malicious data points that are carefully crafted to blend

in with the normal training data. These poisoned examples

may only affect the model’s behavior under specific condi-

tions, making it hard to identify them during the training pro-

cess or through traditional data - quality checks. As the size

of the training data for LLMs grows, detecting poisoned data

becomes increasingly difficult. Traditional methods for de-

tecting outliers or malicious data points may not scale well

to the large - scale datasets used in training LLMs. Develop-

ing scalable detection algorithms that can handle the volume

and complexity of these datasets is a major challenge.

To address the above challenges, we can use deep learning-

based anomaly detection techniques [42] to identify poisoned

data points in the training set. These methods can learn

the normal patterns of the training data and flag any data

points that deviate significantly from these patterns. For ex-

ample, autoencoders [78] can be trained to reconstruct the

training data, and data points that are difficult to reconstruct

accurately may be potential poisoned examples. Besides,

we should leverage appropriate training algorithms that are

more resilient to poisoning attacks. For example, robust op-

timization algorithms [15] can be used to minimize the im-

pact of poisoned data on the model’s learning process. These

algorithms can be adjusted to give less weight to potentially

poisoned data points during training.

5.3. Adversarial Attack Detection
Adversarial attacks in LLMs are often designed to be im-

perceptible to human readers. For example, attackers may

subtly modify a sentence by changing a few words with sim-

ilar semantic meanings, but these changes can significantly

alter the model’s output. Detecting such minute changes is

extremely difficult, as the perturbed text still appears natural

and grammatically correct. Most detection methods rely on

large amounts of data to train classifiers that can distinguish

between normal and adversarial inputs. However, obtaining

a comprehensive dataset that covers all possible types of ad-

versarial attacks is nearly impossible. New and novel attacks

can emerge at any time, and the detection models may not be

able to generalize well to these unseen attack patterns.

Meta-learning [56] can be used to train a detection model

that can quickly adapt to different LLMs. By learning the

general characteristics of adversarial attacks across multiple

models during the meta-training phase, the meta-learner can

then be fine-tuned on a specific LLM with minimal addi-

tional data. This approach has the potential to reduce the

need for model-specific detection development.

Incorporatingadditional modalities such as syntactic anal-

ysis, semantic role labeling, and discourse analysis can en-

hance the detection of adversarial attacks. For instance, ana-

lyzing the syntactic tree of a sentence [29] can reveal abnor-

mal patterns that may indicate an adversarial modification,

even if the surface-level semantics seem normal. Combin-

ing these multimodal features can provide a more compre-

hensive view of the input and improve detection accuracy.

5.4. Lack of Generalized Defenses
One of the biggest challenges in securing LLMs against

attacks is the lack of generalized defense mechanisms. Each

attack type often requires a different defense strategy, mak-

ing it difficult to develop a one-size-fits-all solution. On one

hand, the wide variety of attack methods—from adversarial

attacks to backdoors to data poisoning—makes it hard to de-

velop a defense that can address all these threats effectively.

On the other hand, many defense mechanisms, such as adver-

sarial training or differential privacy, can degrade the perfor-

mance of the model, leading to a trade-off between security

and model effectiveness.

Universal Defense Frameworks are essential for ensur-

ing the robustness of LLMs against diverse and evolving ad-

versarial attacks. One approach is the use of modular de-

fense architectures, where different defensive strategies can

be applied based on the attack type. For instance, algorithms

like Fast Gradient Sign Method (FGSM) [76] generate ad-

versarial examples that can be incorporated into the train-
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ing process to enhance the model’s resilience to similar fu-

ture attacks. Additionally, input preprocessing techniques

like input sanitization (e.g., through denoising autoencoders)

can remove adversarial noise before the data is fed to the

model [9].

Continuous Learning and Adaptation are also pivotal in

maintaining the model’s resilience against novel attacks. On-

line learning algorithms like Elastic Weight Consolidation

(EWC) [44] can help prevent catastrophic forgetting, ensur-

ing that models can adapt to new threats without losing pre-

vious knowledge.

5.5. Ethical and Bias Concerns
LLMs are trained on vast amounts of data from diverse

sources, which often contain biases prevalent in society. These

biases can be related to gender, race, ethnicity, or other so-

cial factors. For example, if a significant portion of the train-

ing data associates certain occupations more with one gen-

der over another, the LLM may generate text that reinforces

such stereotypes. Detecting and rectifying these biases is

challenging because they are deeply ingrained in the learned

patterns of the model. When trying to address biases, there

are ethical dilemmas. For instance, removing certain data to

reduce bias might lead to loss of important information or af-

fect the model’s overall performance. Additionally, different

stakeholders may have different views on what constitutes a

bias.

Future research should focus on developing training al-

gorithms that are more sensitive to biases. These algorithms

could monitor the training process in real-time, detecting

when the model is learning biased patterns. For example,

using fairness-aware optimization techniques [62] that adjust

the model’s parameters to minimize bias while maintaining

performance. This could involve adding penalty terms to the

loss function that penalize the model for generating biased

outputs. Moreover, ensuring that the training data is more

diverse and representative is crucial. This can be achieved

through active data collection strategies that target underrep-

resented groups. Finally, data curation processes should be

more transparent, e.g., achieved through the pipeline of the

AI metadata [27], with clear guidelines on how to handle

potentially biased data.

6. Conclusion

In this article, we systematically summarize the existing

research on attacks and defenses against the LLM ontology

and its applications. We categorize these attacks and de-

fense techniques systematically based on their correspond-

ing strategies. Unlike previous studies, we pay more atten-

tion to the risks faced by LLM-related applications and their

corresponding solutions. This is crucial for the future de-

velopment of the LLM field. Additionally, we identify some

shortcomings in current research, including insufficient de-

velopment in certain areas and the need for more suitable

benchmarks. Addressing these issues will lay a solid founda-

tion for the future development of LLM. In conclusion, our

study provides a summary of the threats faced by LLM and

the corresponding defense techniques based on the nature of

various technologies. We aim to provide a clear understand-

ing of the current state of LLM and its application security

field, as well as provide researchers with clearer insights and

details on various issues.
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