
ar
X

iv
:2

50
5.

00
89

4v
1 

 [
cs

.C
R

] 
 1

 M
ay

 2
02

5

Non-Adaptive Cryptanalytic Time-Space Lower Bounds via a

Shearer-like Inequality for Permutations

Itai Dinur∗ Nathan Keller† Avichai Marmor†

June 2, 2025

Abstract

The power of adaptivity in algorithms has been intensively studied in diverse areas of
theoretical computer science. In this paper, we obtain a number of sharp lower bound results
which show that adaptivity provides a significant extra power in cryptanalytic time-space
tradeoffs with (possibly unlimited) preprocessing time.

Most notably, we consider the discrete logarithm (DLOG) problem in a generic group
of N elements. The classical ‘baby-step giant-step’ algorithm for the problem has time
complexity T = O(

√
N), uses O(

√
N) bits of space (up to logarithmic factors in N) and

achieves constant success probability.
We examine a generalized setting where an algorithm obtains an advice string of S bits

and is allowed to make T arbitrary non-adaptive queries that depend on the advice string
(but not on the challenge group element for which the DLOG needs to be computed).

We show that in this setting, the T = O(
√
N) online time complexity of the baby-step

giant-step algorithm cannot be improved, unless the advice string is more than Ω(
√
N)

bits long. This lies in stark contrast with the classical adaptive Pollard’s rho algorithm for
DLOG, which can exploit preprocessing to obtain the tradeoff curve ST 2 = O(N). We ob-
tain similar sharp lower bounds for the problem of breaking the Even-Mansour cryptosystem
in symmetric-key cryptography and for several other problems.

To obtain our results, we present a new model that allows analyzing non-adaptive pre-
processing algorithms for a wide array of search and decision problems in a unified way.

Since previous proof techniques inherently cannot distinguish between adaptive and non-
adaptive algorithms for the problems in our model, they cannot be used to obtain our results.
Consequently, we rely on information-theoretic tools for handling distributions and functions
over the space SN of permutations of N elements. Specifically, we use a variant of Shearer’s
lemma for this setting, due to Barthe, Cordero-Erausquin, Ledoux, and Maurey (2011), and
a variant of the concentration inequality of Gavinsky, Lovett, Saks and Srinivasan (2015) for
read-k families of functions, that we derive from it. This seems to be the first time a variant
of Shearer’s lemma for permutations is used in an algorithmic context, and it is expected
to be useful in other lower bound arguments.

∗Ben-Gurion University and Georgetown University
†Bar-Ilan University
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1 Introduction

1.1 Background

Cryptanalytic time-space tradeoffs. We consider cryptanalytic time-space tradeoffs in the
preprocessing (i.e., non-uniform) model. An algorithm in this model is divided into two phases.
In the first phase, the preprocessing algorithm obtains access to an input defined by the setting
of the problem (e.g., f : [N ]→ [N ] in the function inversion problem), and produces an ‘advice
string’ of S bits. In the second phase, the online algorithm receives a specific challenge it has
to solve with respect to the given input (e.g., an output of the function to invert). The online
algorithm is given the advice string, along with oracle access to the input. The complexity of
the algorithm is measured in terms of the bit-length S of the advice and the time complexity
T of the online phase, typically measured in terms of the number of oracle queries. Such an
algorithm is called an (S, T )-algorithm.

The preprocessing model is very natural from a practical point of view, as in many scenarios,
the adversary is willing to solve many specific instances of the problem and the cost of a one-time
preprocessing is amortized over the multiple solved instances.

The first and most famous cryptanalytic algorithm in the preprocessing model is Hellman’s
algorithm [Hel80] for inverting a random function. For constant success probability, Hellman’s
algorithm obtains a time-space tradeoff of about TS2 = Õ(N2) (where Õ hides logarithmic
factors in N) on a domain of size N . The algorithm was extended for inverting any function
by Fiat and Naor [FN99].

In recent years, there has been a significant effort in the cryptographic community to under-
stand the power of non-uniform algorithms by devising new algorithms and proving time-space
lower bounds against them. The emphasis has been on proving lower bounds for various prob-
lems (see, for example, [DGK17, CDG18, CDGS18, CK18, CK19, BMZ19, GGH+20, CHM20,
CGLQ20, ACDW20, GLLZ21, FGK22, GGPS23, ABG+24, AGL24, GGK24]).

Non-adaptive cryptanalytic time-space tradeoffs. An algorithm with oracle access to
an input is called adaptive if its oracle queries may depend on the outcome of its previous
queries. Otherwise it is called non-adaptive. In this paper, we will be interested in non-adaptive
cryptanalytic algorithms receiving advice.

Almost all best-known cryptanalytic time-space tradeoff algorithms are adaptive. This
includes (for example) Hellman’s algorithm [Hel80] and the Fiat and Naor [FN99] algorithm for
function inversion, and the algorithms by Mihalcik [Mih10], Bernstein and Lange [BL13] and
Corrigan-Gibbs and Kogan [CK18] for discrete log (DLOG).

However, in most cases there is no proof that non-adaptive algorithms cannot perform as
well as the best known adaptive ones. For example, for the function inversion problem, the best-
known lower bound of ST ≥ Ω̃(N) is far from the best-known tradeoff of TS2 = Õ(N2). Yet, for
non-adaptive algorithms, the gap is even larger, as the lower bound remains roughly ST ≥ Ω̃(N)
(see [GGK24]), but the best-known algorithm cannot do better than max(T, S) = Õ(N).

In 2019, Corrigan-Gibbs and Kogan [CK19] formally raised the question of the power of
adaptivity in the context of the function inversion problem. The authors of [CK19] argued
that the lack of progress in establishing such lower bounds can be explained by a classical
barrier in complexity theory. Indeed, they showed that a significantly improved lower bound
on strongly non-adaptive algorithms for function inversion would imply a circuit lower bound
against Boolean circuits of linear size and logarithmic depth, thus resolving a 50-year old well-
known open question of Valiant [Val77]. Later on, it was shown that such a lower bound would
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also imply significant data structure lower bounds [DKKS21, GGH+20]. Following the work
of Corrigan-Gibbs and Kogan [CK19], the power of adaptivity in the context of the function
inversion problem was studied in a number of papers [CHM20, DKKS21, GGK24, GGPS23].

Our work. In this paper, we investigate the question of [CK19] in a more general context:

What is the power of adaptivity in non-uniform cryptanalytic algorithms?

We present sharp lower bound proofs which demonstrate the significant power of adaptivity
in a variety of cryptographic problems, in the preprocessing model. More specifically, in the
context of public-key cryptography, we present sharp non-adaptive time-space lower bounds for
the generic DLOG problem and the square-DDH (decisional Diffie-Hellman) problem. We also
prove a lower bound for DDH that is sharp in a part of the range. In the context of symmetric-
key cryptography, we present sharp time-space lower bounds for key-recovery attacks against
the classical Even-Mansour cipher.

From a technical viewpoint, we show in Section 1.3 and Appendix B that previous lower
bound proof techniques for the problems we consider are inherently limited and cannot distin-
guish between adaptive and non-adaptive algorithms.

Definition of adaptivity in our model. In the problems we analyze, each query of the
online adversary is processed by a translation function before it is passed to the oracle. We
allow the pre-translated queries of the online algorithm to depend on the advice, but not on the
challenge. In Appendix A, we argue that this is the natural definition of non-adaptivity for the
problems we analyze. Intuitively, the reason is that the translation function adds an additional
adaptivity round. In particular, after being processed by the translation function, some of the
queries of the adversary to the oracle in our model do depend on the challenge (even though
this dependency does not exist before translation). Nevertheless, we believe that our results are
valuable regardless of the exact definition of adaptivity in our setting, which we do not consider
to be particularly important.

Interestingly, our main lower bounds for DLOG and Even-Mansour are matched by classical
and well-known algorithms, which are non-adaptive in our model.

Before presenting our results, we elaborate on the rich history of the problems we analyze.

The generic discrete logarithm problem. Given a group G of N elements with a fixed
generator g, the DLOG problem in G asks for solving the equation gd = x, for a given x ∈ G.
It is widely believed that the problem is hard if the group is chosen carefully, and the security
of various cryptosystems relies on the hardness of this problem and its variants.

In 1997, Shoup [Sho97] presented the generic group model (GGM), intended for proving
lower bounds against a specific class of algorithms that are applicable to any group of a par-
ticular order. A major motivation for studying this model is that in some cryptographically
relevant groups (such as some elliptic curve groups), generic algorithms are the best-known
algorithms for DLOG.

The model uses an auxiliary set W of bit strings with |W| ≥ N . In the model, the elements
of G are ‘hidden’ by mapping gj to σ(j), where σ : ZN → W is a randomly chosen bijective
function. (We show in the sequel that there is no loss of generality in stating our results with
W = [N ] = {1, 2, . . . , N}, and so we state them this way.) An algorithm for solving the problem
receives as inputs the encodings σ(1), σ(d) of g, x, and its goal is to find d. The oracle queries
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allowed for the algorithm are of the form σ(a · d+ b mod N).1 The complexity of the algorithm
is the total number of queries it makes, and its success probability is the expectation of the
probability that it outputs d, over all uniform choices of σ, d, and the internal randomness of
the algorithm. In this model, Shoup proved that if N is prime, then the success probability of
any algorithm for DLOG that makes T queries is at most T 2/N .

The Ω(
√
N) lower bound asserted by Shoup on the complexity of any algorithm for DLOG in

the GGM is matched by the classical baby-step giant-step algorithm proposed by Shanks [Sha71]
in 1971. The algorithm is based on writing the equation gd = x in the form gim+j = x, where
m = ⌈

√
N⌉ and 0 ≤ i, j < m, which in turn can be written as gj = x(g−m)i. The algorithm

computes gj for 1 ≤ j ≤ m and stores the values in a table. Then, it computes y = g−m and
tries to find matches between x, xy, xy2, . . . and values in the table. Once a match of the form
gj = x(g−m)i is found, we know that d = im + j is the solution of the equation gd = x, that
is, the discrete logarithm of x. The algorithm can be executed in the generic group model, by
replacing each computation of gj by the query σ(j) and each computation of xyi by the query
σ(im+ d mod N). The algorithm uses memory O(

√
N) words of O(logN) bits, and its query

complexity is O(
√
N).

In 1978, Pollard [Pol78] introduced the Pollard Rho algorithm for DLOG, which obtains
the same query complexity of O(

√
N) while using only a very small amount Õ(1) of memory.

The algorithm is based on finding collisions of the form xagb = xa
′
gb

′
and using them to

find a solution of the equation gd = x via the extended Euclid’s algorithm. The collisions
are found using Floyd’s cycle finding algorithm [Knu69], which allows finding a collision in a
random function f : [N ]→ [N ] in time O(

√
N), using only a few memory cells. This algorithm

can also be executed in the GGM, as computations of xagb correspond to queries of the form
σ(a · d+ b mod N), and the rest of the algorithm is based on comparisons.

The baby-step giant-step algorithm is clearly non-adaptive. On the contrary, Pollard’s Rho
algorithm heavily uses adaptivity, via Floyd’s algorithm each of whose queries depends on the
output of its previous query.

Time-space tradeoffs for the generic DLOG problem with preprocessing. The generic
group model is naturally extended to algorithms with preprocessing. In this case, an algorithm
A consists of a ‘preprocessing’ algorithm A0 and an ‘online’ algorithm A1. The algorithm A0

has direct access to the encoding function σ (but not to the input σ(d)) and produces an advice
string z. The algorithm A1 is defined as in the standard generic group model described above,
but also receives the advice string z as input.

The baby-step giant-step algorithm can be naturally viewed as an algorithm with prepro-
cessing, as its first stage of computing {gj : 0 ≤ j < m} can be done before the value of x is
known. However, it does not seem to fully exploit the power of preprocessing, since the time
complexity of the preprocessing phase (which is allowed to be unbounded) is equal to its space
complexity.

Pollard’s Rho algorithm does not use preprocessing. Yet, as noted above, Mihalcik [Mih10],
Bernstein and Lange [BL13] and Corrigan-Gibbs and Kogan [CK18] presented generic algo-
rithms that solve DLOG with preprocessing with high probability whose time and space com-
plexity satisfy ST 2 ≤ Õ(N). In particular, if space of Õ(N1/3) is allowed, then the online time
complexity can be reduced to O(N1/3). These algorithms are known to be best possible [CK18].

1The original model of Shoup is slightly different but it is easy to show that this does not affect the analysis.
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The Decisional Diffie Hellman (DDH) and the square-DDH (sqDDH) problems.
The DDH problem in the GGM asks to distinguish between the triples (σ(x), σ(y), σ(xy)) and
(σ(x), σ(y), σ(z)), where x, y, z ∈ G are random elements. This corresponds to the situation in
the Diffie-Hellman key exchange scheme (and many other cryptosystems) where the adversary
sees the elements gx, gy sent between the parties and wants to decide whether a candidate
element is the shared secret key gxy or a random element gz. When introducing the GGM,
Shoup [Sho97] showed that for a prime N , any algorithm for the DDH problem in the GGM

with |G| = N that makes T queries, has a success probability of at most 1
2 + T 2

N .
The sqDDH problem [MW99] is the special case of DDH in which x = y. Namely, it

asks to distinguish between the pairs (σ(x), σ(x2)) and (σ(x), σ(z)), where x, z ∈ G are uniform
elements. While there are groups in which sqDDH is significantly easier than DDH (see [JN03]),
it can be shown that in the GGM, any algorithm for sqDDH that makes T queries, has a success
probability of at most 1

2 + T 2

N , just like for DDH (see [CDG18]).
As in the case of the DLOG problem, the complexity of algorithms for DDH and sqDDH

can be significantly reduced if preprocessing is allowed. Indeed, for the DDH problem with
preprocessing, the generic algorithms of Mihalcik [Mih10], Bernstein and Lange [BL13], and
Corrigan-Gibbs and Kogan [CK18] achieve success probability of 1

2+Ω̃(ST 2/N). For the sqDDH
problem, Corrigan-Gibbs and Kogan [CK18] presented a generic algorithm with preprocessing
that achieves an even higher success probability of 1

2 + Ω̃(
√

ST 2/N). In the other direction,
Corrigan-Gibbs and Kogan [CK18] showed that any algorithm with preprocessing for the DDH
problem or for the sqDDH problem in the GGM has success probability of 1

2 + Õ(
√
ST 2/N).

Interestingly, the correct tradeoff formula for the DDH problem remained open for several
years, until recently Akshima, Besselman, Guo, Xie and Ye [ABG+24] proved that it is equal
to 1

2 + Θ̃(ST 2/N) by presenting a tighter proof.

The Even-Mansour (EM) cryptosystem. The EM cryptosystem was proposed in 1991
by Even and Mansour [EM97] as the ‘simplest possible’ construction of a block cipher from a
public permutation. It is defined as EM(m) = k2⊕ σ(k1⊕m), where k1, k2 ∈ {0, 1}n are n-bit
keys and σ : {0, 1}n → {0, 1}n is a publicly known permutation. The EM cryptosystem has
become a central element in block cipher constructions and the security level of EM and of its
iterative variants was studied extensively (see, e.g., [CLL+18, CLS15, DSST17]).

An adversary is allowed to make encryption/decryption queries to EM and public queries
to σ or σ−1. We consider key-recovery attacks which aim at recovering (k1, k2). Even and
Mansour showed that if σ is chosen uniformly at random, then such an attack which makes T2

encryption/decryption queries to EM and T1 queries to σ or σ−1, has a success probability of
O(T1T2/2

n). Dunkelman, Keller and Shamir [DKS15] showed that the same result holds for
the seemingly weaker Single-key EM cryptosystem, defined as SEM(m) = k1⊕σ(k1⊕m) (i.e.,
EM with k2 = k1).

Both adaptive and non-adaptive attacks matching these bounds are known [BW00, Dae91,
DKS15]. Like in the case of DLOG, it was shown that the online complexity can be reduced
significantly in the preprocessing model. Specifically, a key recovery attack with complexity S =
T1 = T2 = Õ(2n/3) was presented in [FJM14] and an upper bound of 1

2+Õ(
√
S(T1 + T2)T2/2n+

T1T2/2
n) on the success probability of any distinguishing attack, which matches the attack in

the constant success probability setting, was shown in [CDG18]. The previous works on EM
are described in detail in Section 6.
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1.2 Our results

Main motivation. The main motivation behind this work is seeking a better understanding
of classical generic algorithms for DLOG and other problems. Although Pollard’s algorithm for
DLOG is over 45 years old, we are not aware of any formal statement that justifies its need for
adaptivity. Indeed, proving such a statement seems to be related to the major open problem of
proving strong time-space lower bounds against short-output oblivious branching programs,2

for which the best-known result was obtained by Babai, Nisan and Szegedy [BNS92] more than
30 years ago. Yet, given the historical significance of Pollard’s algorithm, we view the question
of formally justifying its adaptivity in an alternative (but standard) computational model as
fundamental. We make progress on this question by showing that adaptivity does provide a
significant advantage for DLOG algorithms in the generic group model, in the preprocessing
(auxiliary input) setting. We also obtain similar results for several other major problems.

In particular, we present a new model, which we call permutation challenge (PC), which
allows proving lower bounds on non-adaptive time-space tradeoffs for a wide variety of problems,
including DLOG, DDH, sqDDH, and breaking the EM cryptosystem. We describe the model
as part of the proof overview in Section 1.4. We now describe the results we obtain for the
specific problems.

Sharp lower bound for non-adaptive algorithms for DLOG with preprocessing.
Our main result concerns non-adaptive generic algorithms with preprocessing for the DLOG
problem. We show that unlike the adaptive setting, for non-adaptive algorithms preprocessing
cannot be exploited better than in the baby-step giant-step algorithm – indeed, its O(

√
N) on-

line time complexity cannot be reduced even if a preprocessing phase of unbounded complexity
is allowed, as long as the size of the advice z is Õ(

√
N).

Theorem 1. Let A = (A0, A1) be a non-adaptive (S, T )-algorithm for the DLOG problem
in the generic group model, over a group G with a prime number N of elements. Denote by
MaxSDLOG(T ) the optimal success probability of a non-preprocessing, non-adaptive algorithm
that makes at most T queries. Then, the success probability of A is at most

2 ·MaxSDLOG(T ) +
4 log(2)ST

N
+

T 2

N
≤ 3T 2

N
+

4 log(2)ST

N
.

The bound onMaxSDLOG(T ) ≤ T 2

N is by Shoup’s theorem [Sho97] for any non-preprocessing
DLOG algorithm.

Lower bounds for non-adaptive algorithms for DDH and sqDDH with preprocess-
ing. Our next results analyze decisional problems in the GGM.

Theorem 2. Let A = (A0, A1) be a non-adaptive (S, T ) algorithm for the DDH (resp. sqDDH)
problem in the generic group model, over a group G with a prime number N of elements.
Denote by MaxSDDH(T ) the optimal success probability of a non-preprocessing, non-adaptive
algorithm that makes at most T queries. Then, the success probability of A is at most

MaxSDDH(T ) +

√
2 loge(2)ST

N
+

T 2

N
≤ 1

2
+

2T 2

N
+

√
2 loge(2)ST

N
.

2Technically, the open problem is to prove slightly super-linear time-space tradeoff lower bounds for oblivious
branching programs. In our case, since the best algorithm runs in time O(

√
N), the analogous problem is to

prove a time-space tradeoff of the form TS ≥ N1/2+ϵ for some ϵ > 0.
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where the inequality is by Shoup’s theorem [Sho97] which bounds MaxSDDH(T ) ≤ 1
2 +

T 2

N for
any non-preprocessing DDH algorithm (the bound for sqDDH follows by a similar proof).

For the sqDDH problem, the theorem is sharp, as a simple non-adaptive variant of the
adaptive algorithm of [CK18] attains its success probability bound (see Appendix C for a
sketch of this algorithm).

For the DDH problem, we conjecture that the bound on the success probability is not sharp,
and the ‘right’ bound is 1

2 + Õ(T
2

N + ST
N ). Possibly, the techniques used in the recent result of

Akshima, Besselman, Guo, Xie and Ye [ABG+24] which determined the maximal success rate
of adaptive algorithms can be combined with our techniques to show this improved bound in
the non-adaptive setting.

Sharp lower bound for non-adaptive key-recovery attacks on Even-Mansour with
preprocessing. Our last result shows that unbounded preprocessing does not allow speeding
up non-adaptive key-recovery attacks on EM (unless S ≥ Ω̃(

√
N)), in stark contrast with

adaptive attacks. In the theorem, we denote by T = T1 + T2 the total number of queries the
online phase of the algorithm makes.

Theorem 3. Let A = (A0, A1) be a key-recovery, non-adaptive (S, T )-adversary for the Even-
Mansour cryptosystem, which can query only the public and encryption oracles and not the de-
cryption oracle. Denote by MaxSEM(T ) the optimal success probability of a non-preprocessing,
non-adaptive algorithm that makes at most T queries. Then, the success probability of A is at
most

2 ·MaxSEM(T ) +
4 log(2)S(T + 1)

N
+

T 2

N
≤ 3T 2

N
+

4 log(2)S(T + 1)

N
.

Moreover, the theorem also holds for the single-key variant where k1 = k2.

The inequality is by [DKS15, EM97]. We remark that by symmetry of the EM construction,
we may allow querying the decryption (and not the encryption) oracle. The theorem is tight
by the non-adaptive attacks of [BW00, Dae91, DKS15] that can be viewed as preprocessing
attacks in the setting of the theorem.3

1.3 Our techniques

Our bounds are obtained using techniques from information theory, as summarized below.

Entropy and Shearer’s lemma. For a finite set X , the entropy of a random variable X
assuming values in X is H(X) =

∑
x∈X Pr[X = x] loge(1/Pr[X = x]). The entropy, which

measures the amount of uncertainty associated with the possible outcomes of X, is one of the
central notions in information theory.

A basic property of entropy is subadditivity : For any random variables X1, X2, . . . , XN ,
the entropy of the Cartesian product (X1, X2, . . . , XN ) (which assumes values in X × . . .×X )
satisfies the relation H(X1, . . . , XN ) ≤

∑N
i=1H(Xi). Shearer’s lemma [CGFS86] is a classical

inequality which generalizes this property to the relation between the entropy of a set of random
variables to the entropies of collections of its subsets.

3Similarly to baby-step giant-step for DLOG, these algorithms have a challenge-independent phase that can
be performed during preprocessing, and whose outcome can be viewed as an advice string.
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Theorem 4 (Shearer’s lemma). Let X1, . . . , XN be random variables, and let U1,U2, . . . ,Um be
subsets of [N ] = {1, 2, . . . , N}, such that each i ∈ [N ] belongs to at least k of them. Then

H(X1, . . . , XN ) ≤ 1

k

m∑
i=1

H(XUi),

where for U = {i1, . . . iℓ} ⊂ [N ], H(XU ) := H(Xi1 , Xi2 , . . . , Xiℓ).

Shearer’s lemma was used to obtain numerous results in combinatorics, theoretical computer
science, probability theory, and other areas (see the survey [Gal14]).

KL-divergence. In our applications, it will be convenient to use Shearer’s lemma via its
version for the Kullback-Leibler (KL) divergence, which measures the amount of dissimilarity
between two distributions.

For two distributions P,Q such that the support of P is contained in the support of Q, the
KL divergence between P and Q is

DKL(P∥Q) =
∑

x∈Support(P )

P (x) log
P (x)

Q(x)
.

The version of Shearer’s lemma for KL-divergence reads as follows:

Theorem 5 (Shearer’s lemma for KL-divergence [GLSS15]). For a finite set X , let Q =
(Q1, Q2, . . . , QN ) be the uniform distribution on XN = X × . . .× X , and let P = (P1, . . . , PN )
be another distribution on XN . Let U1,U2, . . . ,Um be subsets of [N ], such that each i ∈ [N ]
belongs to at most k of them. Then

k ·DKL(P∥Q) ≥
∑
j∈[m]

DKL(PUj∥QUj ),

where for U = {i1, . . . iℓ} ⊂ [N ], PU = (Pi1 , . . . , Piℓ) is the marginal distribution of P on X ℓ,
and analogously for Q.

The concentration inequality of [GLSS15] for families of read-k functions. One of
the directions in which Shearer’s lemma was applied is showing that functions on a product
space which depend on ‘almost-disjoint’ sets of variables behave, in some senses, similarly to
independent functions. A formal manifestation of this phenomenon is the following.

Definition 1. A family {f1, f2, . . . , fm} of functions over a product space XN is called a read-k
family if for each 1 ≤ i ≤ N , at most k of the functions depend on the i’th coordinate.

An easy application of Shearer’s lemma allows showing that if f1, . . . , fm : {0, 1}n → {0, 1}
is a read-k family with Pr[fi(x) = 1] = p for all i, then Pr[f1(x) = f2(x) = . . . = fm(x) =
1] ≤ pm/k. That is, the probability that all functions are equal to 1 simultaneously is not much
larger than pm (which would be the probability if the functions were completely independent).

Gavinsky, Lovett, Saks and Srinivasan [GLSS15] used the KL-divergence variant of Shearer’s
lemma to prove a significantly stronger result in this direction – a variant of Chernoff’s bound
for read-once families of Boolean functions. Recall that for independent random variables
X1, X2, . . . , Xm ∈ {0, 1} such that Pr[Xi = 1] = p, Chernoff’s inequality asserts Pr[

∑m
i=1Xi ≥

(p+ ϵ)m] ≤ exp(−2ϵ2m). The authors of [GLSS15] proved the following.
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Theorem 6 (The concentration bound of [GLSS15] for read-k families of Boolean functions).
Let f1, . . . , fm : {0, 1}N → {0, 1} be a read-k family of functions. If Pr[fi(x) = 1] = p for all i,
then Pr[

∑m
i=1Xi ≥ (p+ ϵ)m] ≤ exp(−2ϵ2m/k).

In the 10 years since its introduction, this concentration inequality has become very useful
and was applied to obtain various results in theoretical computer science and combinatorics
(see, e.g., [HHTT21, HS24, Kah22]).

Variants of Shearer’s lemma and the concentration inequality of [GLSS15] for dis-
tributions defined over permutations. The main technical tools we use in this paper are
variants of the above results for distributions defined over the space SN of permutations. It
will be convenient for us to state the results for the space of bijections from [N ] to a set with
N elements, which is obviously equivalent.

The following variant of Shearer’s lemma for this non-product setting is a special case of
a result that was proved (in equivalent forms) by Barthe, Cordero-Erausquin, Ledoux, and
Maurey [BCELM11, Proposition 21] and by Caputo and Salez [CS24, Theorem 4].

Theorem 7 (Variant of Shearer’s inequality for random bijections). Let X be a set of size
N . Let QX = QX1,...,XN

be the uniform distribution over bijections from [N ] to X , and let
PX = PX1,...,XN

be another distribution over such bijections. Let U1,U2, . . . ,Um be subsets of
[N ], such that each i ∈ [N ] belongs to at most k of them. Then

2k ·DKL(PX∥QX) ≥
∑
j∈[m]

DKL(PXUj
∥QXUj

),

where PXU is the distribution of the vector XU := (Xi | i ∈ U) with respect to P (and analogously
for Q).

Since the proofs of Theorem 7 in [BCELM11, CS24] are somewhat involved, we present an
elementary proof of the theorem, albeit with a worse constant of 9, in Appendix D. We note
that the constant 2 in the theorem cannot be improved to 1, as there are examples in which
the ratio between the two sides of the inequality is N

N−1 . It is not known whether the constant
2 is optimal in general.

We derive from Theorem 7 the following variant of the concentration inequality of Gavinsky,
Lovett, Saks and Srinivasan for k-read families [GLSS15], for the setting of bijections.

Theorem 8 (Concentration for read-k families on bijections). Let X be a set of size N . Let
QX = QX1,...,XN

be the uniform distribution over bijections from [N ] to X , and let PX =
PX1,...,XN

be another distribution over such bijections. Let {fj}j∈[m] be a read-k family of

functions, with fj : XN 7→ [0, 1] for all j. Denote pj = EPX
[fj(X)] and let p = 1

m ·
∑

j∈[m] pj

be the average of the expectations. Similarly, denote qj = EQX
[fj(X)] and q = 1

m ·
∑

j∈[m] qj.
Then

2k ·DKL(PX∥QX) ≥ m ·DKL(p∥q),

where DKL(p∥q) = p log(pq ) + (1 − p) log(1−p
1−q ) is the KL-divergence between two Bernoulli dis-

tributions with parameters p and q.

The proof of Theorem 8 is presented in Section 2. We remark that this theorem easily yields
a concentration result in the form of Theorem 6 for read-k families on bijections, but we use
the above variant as it is more useful to us.
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We expect that, like Shearer’s lemma and the concentration inequality of Gavinsky, Lovett,
Saks and Srinivasan [GLSS15] for Boolean functions, the new variants will be useful in various
other settings in theoretical computer science and combinatorics.

1.4 Proof overview

We begin by defining a model, referred to as permutation challenge (PC), for the problems
analyzed in this paper. This model is inspired by the pre-sampling technique [BMZ19, CDG18,
CDGS18, DGK17, Unr07] which allows bounding the success probability of preprocessing adver-
saries by analyzing non-preprocessing adversaries. Analogously, our model allows bounding the
success probability of non-adaptive preprocessing adversaries (for a certain class of problems)
by analyzing non-preprocessing adversaries.

While the pre-sampling technique is specialized to adaptive adversaries, our model allows
optimizations for non-adaptive adversaries, and uses a completely different set of analytic tech-
niques. The model abstracts away the internal details of the problem that are less relevant,
and allows focusing on its most important aspects that allow proving time-space tradeoffs for
non-adaptive adversaries. The fact that a single model can capture the wide array of search
and decision problems we consider and allows analyzing them collectively is highly non-trivial.

The permutation challenge model. At a high-level, in a game in the PC model, there is
an “inner permutation” σ : [N ] 7→ [N ] and a secret d selected from some space. An adversary
A1 is given direct oracle access to σ by issuing inner queries.

In addition, the secret d is used to implement an “outer function” which wraps the inner
permutation. The adversary is allowed to query the outer function, while each query is trans-
lated using d to a query to σ using a translation function, and the output of σ is post-processed
(again using d) and given back to the adversary as the oracle answer to the outer query.

The goal of A1 is to “unwrap” the inner permutation (for example, by recovering the secret
or a part of it) after interacting with the inner permutation via inner queries and with the outer
function via outer queries.

In the preprocessing setting, A1 is given an additional advice string z = A0(σ). The game is
essentially the same, and we allow the queries of A1 to depend on z. We say that an algorithm
is non-adaptive if its inner and outer queries (before translation) depend only on z (but not on
evaluations of σ on secret-dependent values).

Instantiations. The DLOG problem can be easily reduced to a setting where the encoding
σ is a permutation on [N ], and the secret is the secret discrete-log d which the adversary has
to compute. A query of the adversary is a pair of group elements (a, b), which is mapped to
the group element a · d + b mod N via a linear function applied to the discrete log. If a ≡ 0
(mod N), then the query directly accesses the inner permutation, and otherwise, it is an outer
query. Here, there is no post-processing of the answer of σ.

Our model further supports the DDH and sqDDH problems (although their definitions are
more technical).

For the Even-Mansour construction, the inner permutation σ is the public permutation
and the adversary is allowed to query it directly. The secret is the key (k1, k2), and the outer
function corresponds to the encryption/decryption oracle. The translation function maps an
outer query by XORing it with one of the keys, while the post-processing function XORs the
other key to the output of σ.

9



The proof. The most important component of the model is the translation function that
maps each outer query to an input of σ using the secret d.

A translation function is called uniform if it maps every outer query of A1 to a (roughly)
uniform input of σ for a uniformly chosen secret d. We show that if the translation function is
uniform, then a non-adaptive preprocessing adversary obtains only a limited advantage (as a
function of S and T and a uniformity parameter) over a non-preprocessing adversary.

Specifically, if the online non-adaptive adversary A1 makes no inner queries, then fixing
any preprocessing string z (which fixes the queries of the adversary), the uniformity of the
translation function allows applying Theorem 8 to bound the advantage of A1 over a non-
preprocessing adversary. Moreover, we show that a similar bound holds even if we allow the
adversary to issue inner queries that depend on the advice string. It is obvious that in this
setting, Shearer-like inequalities are no longer directly applicable since some indices of the
permutation may always be queried. Yet, we show that Theorem 8 can still be applied to the
part of the permutation that has not been directly queried by an inner query. The overall proof
is by a subtle hybrid argument. It works by defining an intermediate game that is positioned in
between the preprocessing and non-preprocessing games, and allows dealing with inner queries.

We remark that one could potentially include the answers to the inner queries in the pre-
processing string. However, this blows up the preprocessing string and gives a weaker result.

Comparison with other techniques. At a high level, there are currently three main generic
techniques for proving cryptanalytic time-space tradeoffs: (1) compression arguments [CK18,
FGK22, GT00, GGH+20, Wee05], (2) the pre-sampling technique [BMZ19, CDG18, CDGS18,
DGK17, Unr07], and (3) concentration inequalities [ABG+24, ACDW20, AGL24, CHM20,
CGLQ20, GLLZ21, IK10].

Most of these generic techniques were devised for adaptive algorithms, and it is not clear how
to optimize them for non-adaptive algorithms for the problems we consider. In Appendix B,
we discuss the limitations of previous techniques in detail and argue that (up to logarithmic
factors) they cannot distinguish between adaptive and non-adaptive algorithms in our setting.

In addition to generic techniques, several papers developed specialized methods for prov-
ing time-space lower bounds for specific problems (some of which extended the generic tech-
niques and combined additional methods). Examples of such papers include [CHM20, GGK24,
GGPS23], which deal with non-adaptive algorithms for function inversion, as well as [CL23]
which analyzes the 3SUM-Indexing problem. These specialized techniques seem inapplicable in
our setting.

Future work. A natural goal to pursue, in view of our results, is to obtain time-space lower
bounds for adaptive attacks with preprocessing, as a function of the number of adaptivity rounds
for the problems considered in this paper. The most basic setting is to allow the queries of the
adversary to depend on the challenge, corresponding to 2 adaptivity rounds (see Appendix A).
For the DLOG problem, we conjecture that the success probability of an (S, T )-algorithm
with r rounds of adaptivity is at most Õ(T 2/N + rST/N). This matches our result for non-
adaptive algorithms (i.e., 1 rounds of adaptivity), as well as the bounds of [CK18] for adaptive
algorithms (i.e., T rounds of adaptivity). Furthermore, it would be sharp, as for any 1 ≤ r ≤ T ,
it is matched by a variant of the adaptive algorithm of [BL13, CK18, Mih10], in which instead
of constructing one chain of length T one constructs multiple chains of length r.
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Organization of the paper. In Section 2 we present in detail the definitions and results
related to entropy and KL-divergence that we will use in our proofs, including the variants of
Shearer’s inequality and of the inequality of Gavinsky, Lovett, Saks and Srinivasan for functions
over permutations. In Section 3 we present the permutation challenge (PC) game model and
show how DLOG, DDH, sqDDH, and breaking EM fit into it. In Section 4 we prove our main
theorem for the PC model. In Section 5 we present the bounds for the DLOG, DDH, and
sqDDH problems, and in Section 6 we present the bound for attacks on the EM cryptosystem.

2 Information Theory

In this section we present definitions and results from information theory that will be used
throughout the paper. For more background on information theory, see [CT06].

2.1 Definitions and notations

Let X ,Y,Z be finite sets. Let PX,Y,Z and QX,Y,Z be probability distributions over X ×Y ×Z.
Denote the projections of PX,Y,Z on X × Y,X , and Z, by PX,Y , PX , and PZ , respectively, and
use similar notations for QX,Y,Z . A random variable X assuming values in X is said to be
drawn from the distribution PX if Pr[X = x] = PX(x) for all x ∈ X .

(a). The entropy of a random variable X drawn from PX is

H(X) = E
PX(x)

[log(1/PX(x))] =
∑
x∈X

PX(x) log(1/PX(x)).

Here and throughout the paper, all logarithms are in base e, unless explicitly stated otherwise.
In case of ambiguity about the distribution, we may also write H(PX).

(b). The conditional entropy of X given Y (drawn from PY ) is

H(X | Y ) = E
PY (y)

[H(X | Y = y)] =
∑
y∈Y

PY (y)H(X | Y = y) = H(X,Y )−H(Y ).

(c). The Kullback-Leibler divergence (KL-divergence) between two distributions PX , QX is

DKL(PX∥QX) = E
PX(x)

[log(PX(x)/QX(x))] = E
PX(x)

[log(1/QX(x))]−H(PX),

where we assume that the support of PX is contained in the support of QX (otherwise, the
KL-divergence is infinite).

(d). The KL-divergence between PX , QX conditioned on PZ is

DKL(PX|Z∥QX|Z) = E
PZ(z)

[DKL(PX|Z=z∥QX|Z=z)].

(e). The KL-divergence between two Bernoulli distributions PX , QX with parameters p, q,
respectively (i.e., X = {0, 1}, PX(1) = p, PX(0) = 1− p, and similarly for QX) is denoted by

DKL(p∥q) = DKL(PX∥QX).

(f). The mutual information between X and Y (drawn from PX , PY ) is

I(X;Y ) = DKL(PX,Y ∥PXPY ).
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2.2 Basic properties

We shall use the following basic properties of entropy, KL-divergence and mutual information.

(1) Conditioning does not increase entropy, namely

H(X) ≥ H(X | Y ),

with equality if and only if X,Y are independent, i.e., PX,Y = PX × PY .

(2) The chain rule for entropy asserts that

H(X,Y ) = H(X) + H(Y | X).

Thus, H(X,Y ) = H(X) + H(Y ) if and only if X,Y are independent.

(3) The entropy of X is upper-bounded by the logarithm of the size of its support, namely

H(X) ≤ log |Supp(X )|.

(4) KL-divergence is non-negative, namely

DKL(PX∥QX) ≥ 0.

(5) KL-divergence is convex, namely for 0 ≤ λ ≤ 1,

DKL(λPX + (1− λ)P ′
X∥λQX + (1− λ)Q′

X) ≤ λDKL(PX∥QX) + (1− λ)DKL(P
′
X∥Q′

X).

(6) If QX is uniform over its support (which includes the support of PX), then

DKL(PX∥QX) = E
PX(x)

[log(1/QX(x))]−H(PX) = E
QX(x)

[log(1/QX(x))]−H(PX)

= H(QX)−H(PX).

(7) The chain rule for KL-divergence asserts that

DKL(PX,Y ∥QX,Y ) = DKL(PX∥QX) + DKL(PY |X∥QY |X).

(8) The data processing inequality asserts that for a function f : X 7→ Y,

DKL(PX∥QX) ≥ DKL(Pf(X)∥Qf(X)).

(9) A special case of Pinsker’s inequality states that

2(p− q)2 ≤ DKL(p∥q).

(10) The mutual information satisfies

I(X;Y ) = DKL(PX,Y ∥PXPY ) = DKL(PX|Y ∥PX) = H(X)−H(X | Y ) ≤ H(X).
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2.3 Lemmas

We shall use the following lemmas.

Proposition 1. Let p, ϵ > 0 such that p+ ϵ ≤ 1. Then,

DKL(p+ ϵ∥p) ≥ ϵ2

2(p+ ϵ)
.

Proof. The proof follows a standard analytic approach for proving inequalities on KL-divergence.
By Property (9), DKL(p+ϵ∥p) ≥ 2ϵ2, implying the statement whenever p+ϵ ≥ 1

4 . Therefore,
we may assume p+ ϵ ≤ 1

4 . Let us define a function f : [0, ϵ]→ R by

f(x) = DKL(p+ x∥p)− 1

2(p+ ϵ)
x2.

Since f(0) = 0 and the statement is equivalent to f(ϵ) ≥ 0, it suffices to show that f is
monotonically increasing. We have

f ′(x) = log

(
p+ x

p

)
− log

(
1− (p+ x)

1− p

)
− 1

p+ ϵ
x.

Again, we may notice that f ′(0) = 0. Therefore, in order to show that f ′(x) ≥ 0 for all
x ∈ [0, ϵ] and finish the proof, it suffices to show that f ′′(x) ≥ 0 for all x ∈ [0, ϵ]. Since p+ϵ ≤ 1

4 ,
we obtain that for all x ∈ [0, ϵ] we have

f ′′(x) =
1

(1− (p+ x))(p+ x)
− 1

p+ ϵ
≥ 1

(1− (p+ ϵ))(p+ ϵ)
− 1

p+ ϵ
≥ 0,

completing the proof. ■

Corollary 1. Let 0 < p, q ≤ 1. Then,

p ≤ 2(q +DKL(p∥q)).

Proof. If p − q < q, then p < 2q ≤ 2(q + DKL(p∥q)), as the KL-divergence is non-negative.
Otherwise, p− q ≥ q. Applying Proposition 1, we obtain

DKL(p∥q) ≥
(p− q)2

2q
≥ (p− q)

2
.

Therefore, p ≤ q + 2DKL(p∥q)) ≤ 2(q +DKL(p∥q)).
■

Proposition 2 ([GLSS15], Claim 2.6). Let QX be the uniform distribution over a set X , let
PX be a distribution over X , and let f : X 7→ [0, 1]. Denote q = EQ[f(X)] and p = EP [f(X)].
Then

DKL(PX∥QX) ≥ DKL(p∥q).
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2.4 A variant of Shearer’s inequality for functions over bijections

In this subsection we show how our formulation of the variant of Shearer’s inequality for bi-
jections (namely, Theorem 7) follows from [BCELM11, Proposition 21] of Barthe, Cordero-
Erausquin, Ledoux and Maurey and [CS24, Theorem 4] of Caputo and Salez, which are stated
in a very different form. Let us recall Theorem 7.

Theorem 7. Let X be a set of size N . Let QX = QX1,...,XN
be the uniform distribution over

bijections from [N ] to X , and let PX = PX1,...,XN
be another distribution over such bijections.

Let U1,U2, . . . ,Um be subsets of [N ], such that each i ∈ [N ] belongs to at most k of them. Then

2k ·DKL(PX∥QX) ≥
∑
j∈[m]

DKL(PXUj
∥QXUj

),

where PXU is the distribution of the vector XU := (Xi | i ∈ U) with respect to P (and analo-
gously for Q).

Since the equivalence between [BCELM11, Proposition 21] and [CS24, Theorem 4] is discussed
in a remark after [CS24, Theorem 4], we show how Theorem 7 follows from [CS24, Theorem 4].
We first cite this result and then explain the notations involved.

Theorem 9 ([CS24, Theorem 4, Equation (34)]). For any choice of a probability vector (θA, A ⊆
[N ]) on subsets of [N ] and every function f : SN → R≥0,∑

A⊆[N ]

θA Ent(EA[f ]) ≤ (1− κ)Ent(f),

where κ = mini ̸=j
∑

A⊇{i,j} θA.

The reader is referred to [CS24] for a full description of the functional Ent and its properties.
Here we only state two basic observations, that follow immediately from its definitions:

Observation 1. Let X be a set of size N . Let QX = QX1,...,XN
be the uniform distribution

over bijections from [N ] to X , let PX = PX1,...,XN
be another distribution over such bijections,

and let f : SN → R be defined as f(σ) = P (σ)
Q(σ) . Let A ⊆ [N ] be a set of indices. Then:

• Ent(f) = DKL(P∥Q).

• Ent(EA[f ]) = DKL(PXAc∥QXAc ) (note that the distributions are projected to the comple-
ment set Ac = [N ] \A and not to A).

Using these observations, we show that Theorem 7 follows directly from Theorem 9.

Proof (of Theorem 7). Let P,Q, f be as in Observation 1. Let U1,U2, . . . ,Um be subsets of
[N ], such that each i ∈ [N ] belongs to at most k of them. For every A ⊆ [N ], we denote
θA = |{j | Uj = Ac}|/m. Applying Theorem 9 we obtain∑

A⊆[N ]

θA Ent(EA[f ]) ≤ (1− κ) Ent(f),

where κ = mini ̸=i′
∑

A⊇{i,i′} θA. By Observation 1, an equivalent formula is∑
A⊆[N ]

θADKL(PXAc∥QXAc ) ≤ (1− κ)DKL(P∥Q).
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Substituting the formula for θA, we obtain

1

m

m∑
j=1

DKL(PXUj
∥QXUj

) ≤ (1− κ)DKL(P∥Q). (1)

It remains to bound κ. Notice that κ = mini ̸=i′
∑

A⊇{i,i′} θA = 1
m mini ̸=i′ |{j | {i, i′} ⊆ Uc

j }|.
From the assumption on Uj we obtain that |{j | i ∈ Uc

j }| ≥ m − k for all i, implying that

κ ≥ m−2k
m . The statement now follows from (1). ■

An elementary direct proof of a weaker version of Theorem 7, with the constant 9 instead of 2,
is presented in Appendix D.

2.5 A variant of the inequality of [GLSS15] for functions over bijections

In this subsection we derive Theorem 8, namely, the variant of the concentration bound of
Gavinsky, Lovett, Saks and Srinivasan [GLSS15] for read-k families of functions over bijections,
from the variant of Shearer’s lemma for the same setting (Theorem 7 above). Let us restate
the theorem we prove:

Theorem 8. Let X be a set of size N . Let QX = QX1,...,XN
be the uniform distribution

over bijections from [N ] to X , and let PX = PX1,...,XN
be another distribution over such

bijections. Let {fj}j∈[m] be a read-k family of functions, with fj : XN 7→ [0, 1] for all j. Denote

pj = EPX
[fj(X)] and let p = 1

m ·
∑

j∈[m] pj be the average of the expectations. Similarly, denote

qj = EQX
[fj(X)] and q = 1

m ·
∑

j∈[m] qj . Then

2k ·DKL(PX∥QX) ≥ m ·DKL(p∥q),

where DKL(p∥q) = p log(pq ) + (1 − p) log(1−p
1−q ) is the KL-divergence between two Bernoulli

distributions with parameters p and q.

Proof. Let {Uj}j∈[m] be a family of index sets such that for each j ∈ [m], fj depends only on
the coordinates in Uj . Since for each i ∈ [N ], |{j ∈ [m] | i ∈ Uj}| ≤ k, Theorem 7 implies

2k ·DKL(PX∥QX) ≥
∑
j∈[m]

DKL(PXUj
∥QXUj

).

For every j ∈ [m], QXUj
is uniform over its support (which includes the support of PXUj

). Thus,

we apply Proposition 2 with fj and deduce

DKL(PXUj
∥QXUj

) ≥ DKL(pj∥qj).

Hence,

2k ·DKL(PX∥QX) ≥
∑
j∈[m]

DKL(pj∥qj) = m
∑
j∈[m]

(1/m)DKL(pj∥qj) ≥ m ·DKL(p∥q),

where the final inequality holds by convexity of the KL-divergence (Property (5)). ■

Remark 1. Note that while the definition of a read-k family requires the functions {fj} to be
defined over the entire domain XN , only their values on bijections are relevant in Theorem 8.
Consequently, in the applications of this theorem we define each function only over bijections,
while implicitly fixing it to 0 on inputs that are not bijections.
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3 The Permutation Challenge Model

3.1 Non-preprocessing setup

A permutation challenge (PC) game

PC := PC(N,D,M, tr,post, suc)

is defined as follows.
For an integer N > 0, let σ : [N ] 7→ [N ] be a permutation and let D be a space of secrets.
Let tr : D×M→ [N ] be a translation function that obtains as inputs a secret d ∈ D (e.g.,

the discrete log in the DLOG problem) and an outer query m ∈M (from the outer query space
M) and returns a translated query to σ, denoted tr(d,m) ∈ [N ]. Let post : D × [N ] → [N ]
be a post-processing function that receives the secret and an inner permutation output and
returns a value in [N ] (the output space of the outer function).

Definition 2. A translation function tr is called u-uniform if for every m ∈M and j ∈ [N ],

|{d ∈ D | tr(d,m) = j}| ≤ |D|
u .

In several of our applications, the translation function tr will be N -uniform, which is the largest
value possible.

Let A1 be an adversary for PC. We assume for simplicity that A1 is deterministic. As
noted in Remark 2 below, this assumption is without loss of generality.

A1 has oracle access to two related oracles. The inner oracle allows A1 to issue an inner
query i ∈ [N ] to σ and obtain σ(i). In some applications, A1 can also issue inner queries i ∈ [N ]
to the inverse inner permutation and obtain σ−1(i).

The outer oracle allows A1 to issue an outer query m ∈M and obtain post(d, σ(tr(d,m))).

After the interaction with the oracles which we denote in short by O(σ, d), AO(σ,d)
1 outputs

a value v from some domain V.
Let suc := suc

A
O(σ,d)
1

(d) be a 0/1 success predicate that obtains d and has the same oracle

accesses as A
O(σ,d)
1 . This predicate outputs 1 if A1 succeeds and 0 otherwise.

Formally, suc has two phases. In the first phase, it simulates A
O(σ,d)
1 and obtains its output.

In the second phase, it outputs a value by applying a 0/1 predicate that receives as input the
secret d, the output of A, and all the query answers obtained by A.4 We may also allow suc
to make additional queries to verify the success of A, which will be accounted for in the total
time complexity (but we do not use this possibility in our applications).

We remark that when we write PC := PC(N,D,M, tr,post, suc), the success predicate
is viewed as an interface that is instantiated given an adversary A1.

Let PΣ,D = PΣPD be a distribution such that PΣ is uniform over permutations and PD is
uniform over the secret space D.

The success probability of A1 is defined as

E
PΣ,D

[suc
A

O(Σ,D)
1

(D)].

We measure the complexity of A1 in terms of its number of queries to the inner permutation,
T1, and its number of queries to the outer function, T2, and define T = T1 + T2.

4In our applications, the predicate only needs the output of A, but we allow it to obtain the query answers
obtained by A for generality.
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Non-adaptivity. We say that A1 is non-adaptive if its queries are fixed in advance and do
not depend on σ.

3.2 Preprocessing setup

Let A = (A0, A1) be a pair of deterministic preprocessing and online algorithms for PC.

Remark 2. In our context, we may assume that A is deterministic without loss of generality,
as our lower bound proofs hold for every randomness string shared by A0 and A1.

The preprocessing algorithm A0 gets direct access to σ as input and outputs an advice
string z = A0(σ). The online algorithm A1 takes as an additional input the advice string z.
We denote the algorithm A1, when it is executed with a preprocessing string z, by (A1)z.

We call (A0, A1) an (S, T )-algorithm if the length of z = A0(σ) is bounded by S bits (for
all σ) and A1 makes at most T oracle queries to both the inner permutation and the outer
function.

We extend the non-preprocessing success predicate suc to the preprocessing model as fol-
lows: it additionally obtains an advice string z. As previously, suc

(A1)
O(σ,d)
z

(d) has two phases.

In the first phase, it simulates (A1)
O(σ,d)
z and obtains its output. In the second phase, it outputs

a value by applying the same non-preprocessing 0/1 predicate that receives as input the secret
d, the output of A1 and all the query answers obtained by A1.

5

We extend the distribution PΣ,D as PΣ,Z,D = PΣ,Z × PD, where PΣ,Z = PΣPZ|Σ such that
PZ|Σ=σ(z) = 1 if z = A0(σ).

The success probability (A0, A1) in solving the problem is defined as

p := p(A0, A1) := E
PΣ,Z,D

[suc
(A1)

O(Σ,D)
Z

(D)].

Remark 3. Crucially, the predicate applied by suc after simulating (A1)
O(σ,d)
z does not receive

z as input. Namely, suc must be able to verify whether the output of (A1)z is correct on (σ, d)
independently of z. Technically, our analysis will sometimes fix z that is not equal to A0(σ),
but we require that the success of (A1)z will still be defined with respect to (σ, d).

Another way to state this remark is that it is sufficient to define the predicate suc for
non-preprocessing algorithms. The extension to the preprocessing model is well-defined and it
simply simulates (A1)z as a black-box and checks its success with respect to (σ, d) as in the
non-preprocessing model.

Non-adaptivity. We say that A1 is non-adaptive if given any z, its queries are fixed and do
not (further) depend on σ. Note that if A1 is non-adaptive then suc := suc

(A1)
O(σ,d)
z

(d) is a

non-adaptive predicate.
We denote by S ⊆ [N ] the set of inner queries of A1 (which may include inverse queries)

and by U ⊆ M the set of its outer queries. To simplify notation, we assume that S refers to
queries to σ and not σ−1 using the conversion that if σ−1(i) = j, then σ(j) = i is a query to
σ. Both S and U may depend on z, and we sometimes emphasize this by writing (for example)
S(z).

5In our applications, the predicate only compares the output of (A1)z to some function of the secret.

17



3.3 Instantiation in the generic group model

We first define the general setting of GGM which is common to all problems in the model.
Let A1 be a generic group algorithm in ZN such that N is prime. We assume that A1 knows

the image of σ : ZN → W, as this knowledge can only increase its success probability. Thus,
we restrict σ to a subset of W of size N . Furthermore, by renaming the symbols of the image
of σ, we assume without loss of generality that σ : ZN → ZN is a uniform bijection from ZN

to itself. We represent the elements of ZN using [N ], and we can thus write σ : [N ]→ [N ]. In
particular, note that N mod N = 0.

We remark that in GGM, we do not allow A1 to query σ−1.
We now define the DLOG, DDH, and sqDDH problems as permutation challenge games.

Discrete-log. Let A1 be a discrete-log algorithm for ZN . We define a permutation challenge
game PC := PCDL(N,D,M, tr,post, suc) for the discrete-log problem as follows.

Let D = [N ] (identified with ZN ) be the space of secrets of discrete logarithms. Let
post(d, j) = j be the trivial post-processing function (as A1 always sees direct outputs of
σ).

LetM = [N − 1]× [N ] be the space of outer queries and define

tr(d, (a, b)) = a · d+ b mod N

as the translation function that maps a query (a, b) (where a ̸= N) to a group element according
to the linear function a · d+ b mod N . Note that in the representation, an inner query issued
to σ corresponds to the pair (N, b) (but we view it as directly accessing σ(b)).

The adversary receives as input the values σ(1) and σ(d). However, for simplicity we assume
that these are given as outputs of the queries (N, 1) and (1, N), and the adversary receives no
input (we make similar assumptions about DDH and sqDDH, defined below).

Finally, suc
A

O(σ,d)
1

(d) simply simulatesA1 and returns 1 if it outputs the discrete-log secret d.

DDH. Let A1 be a DDH generic algorithm for ZN . We define a permutation challenge game
PC := PCDDH(N,D,M, tr,post, suc) for the DDH problem as follows.

Let D = [N ]3×{0, 1} be the secret space, consisting of 3 group elements d1, d2, d3 and a bit
k that A1 needs to output. Let post(d, j) = j be the trivial post-processing function.

LetM = [N ]4 \ ({(N,N,N)}× [N ]) be the space of outer queries, which consists of 4 group
elements that specify a multi-linear function, denoted by (a1, a2, a3, b), where we do not allow
a1 = a2 = a3 = N (as this corresponds to an inner query).

Define the translation function tr((d1, d2, d3, k), (a1, a2, a3, b)) as follows:

tr((d1, d2, d3, k), (a1, a2, a3, b)) =

{
a1 · d1 + a2 · d2 + a3 · d3 + b mod N if k = 0,

a1 · d1 + a2 · d2 + a3 · (d1d2) + b mod N if k = 1.

Note that if k = 0, the algorithm effectively receives σ(d1), σ(d2), σ(d3), while if k = 1, the
algorithm effectively receives σ(d1), σ(d2), σ(d1d2 mod N), as in DDH.

As in the discrete-log game, an inner query can be viewed as directly accessing σ.
Finally, suc

A
O(σ,d1,d2,d3,k)
1

(d1, d2, d3, k) simply simulates A1 and returns 1 if it outputs the

bit k.
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sqDDH. Let A1 be a sqDDH generic algorithm for ZN . We define a permutation challenge
game PC := PCsqDDH(N,D,M, tr,post, suc) for the sqDDH problem as follows.

Let D = [N ]2 × {0, 1} be the space of secrets, consisting of 2 group elements d1, d2 and a
bit k that A1 needs to output. Let post(d, j) = j be the trivial post-processing function.

Let M = [N ]3 \ ({(N,N} × [N ]) be the space of outer queries, which consist of 3 group
elements that specify a multi-linear function, denoted by (a1, a2, b), where we do not allow
a1 = a2 = N (as this corresponds to an inner query).

Define the translation function tr((d1, d2, k), (a1, a2, b)) as follows:

tr((d1, d2, k), (a1, a2, b)) =

{
a1 · d1 + a2 · d2 + b mod N if k = 0,

a1 · d1 + a2 · (d1)2 + b mod N if k = 1.

Note that if k = 0, the algorithm effectively receives σ(d1), σ(d2), while if k = 1, the algorithm
effectively receives σ(d1), σ((d1)

2 mod N), as in sqDDH.
Once again, an inner query is viewed as directly accessing σ.
Finally, suc

A
O(σ,d1,d2,k)
1

(d1, d2, k) simply simulates A1 and returns 1 if it outputs the bit k.

3.3.1 Uniformity of the translation function in GGM.

In all the PC games in GGM defined above, the tr function is a multi-variate polynomial of
degree 1 or 2, in up to 3 group elements, chosen uniformly at random from [N ]. The coeffi-
cients of this polynomial are determined by the query. For such queries, the Schwartz–Zippel
lemma [Sch80] immediately gives the following general result.

Lemma 1 (u-uniformity of tr in the GGM). Let PC(N,D,M, tr,post, suc) be a permutation
challenge game in the GGM. Assume that tr is a multi-variate polynomial (with coefficients
determined by the query) of degree m > 0 in v variables chosen uniformly at random from [N ]
with N prime. Then, tr is N

m -uniform.

3.4 Instantiation for the Even-Mansour cryptosystem

We represent plaintexts, ciphertexts and keys using [N ], and we can thus write σ : [N ]→ [N ].
Using this encoding, the bit representation of any a ∈ [N ] (used when XORing values in the
domain) is the standard bit representation of a− 1.

We define a permutation challenge game for the key recovery. Let D = [N ]2 be the space
of secrets, consisting of pairs (k1, k2) (in case of the single-key scheme, k1 = k2 and D = [N ]).
LetM = [N ] be the space of outer queries, which are chosen encryption messages. For a secret
(k1, k2) ∈ [N ]2 and a message (outer query) m ∈ [N ], define tr((k1, k2),m) = m ⊕ k1, and let
post((k1, k2), j) = j ⊕ k2.

Note that an inner query that is issued to σ corresponds to a call to the public encryption
oracle. Here, we allow the adversary to query σ−1 as well.

Let A1 be a key-recovery algorithm for EM. For the permutation challenge game PC :=
PCEM−KR(N,D,M, tr,post, suc), the success predicate suc

A
O(σ,(k1,k2))
1

(k1, k2) simply simu-

lates A1 and returns 1 if it outputs the key (k1, k2).

4 Main General Result

In this section we prove our main result in the permutation challenge game model.
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Theorem 10. Let PC := PC(N,D,M, tr,post, suc) be a permutation challenge game, such
that tr is u-uniform, and suc compares the output of (A1)z to some function of the secret. Let
(A0, A1) be an (S, T ) non-adaptive algorithm with preprocessing for PC. Denote by MaxS(T )
the optimal success probability (with respect to suc) of a non-preprocessing, non-adaptive algo-
rithm that makes at most T queries. Then, the success probability of (A0, A1) is at most

min

(
2 ·MaxS(T ) +

4 log(2)ST

u
+

T 2

u
,MaxS(T ) +

√
log(2)ST

u
+

T 2

2u

)
.

We note that a slightly better bound can be achieved for problems with a trivial post-
processing function post(d, j) = j. For further details, see Appendix E.

4.1 Discussion

Before proving the theorem, several important remarks are due.

No need to analyze the preprocessing setting. The power of the theorem comes from the
fact that there is no need to analyze the preprocessing setting. Indeed, it suffices to instantiate
the permutation challenge game PC := PC(N,D,M, tr,post, suc), to prove that tr is a
u-uniform translation function (ideally, for u ≥ Ω(N)), and to bound MaxS(T ) (in the non-
preprocessing setting). Plugging these values into Theorem 10 immediately bounds the success
probability of an adversary in the preprocessing setting.

Generality of suc. We prove the theorem only for a limited class of success predicates that
compare the output of (A1)z to some function of the secret. Yet, almost all the steps of the proof
apply to arbitrary non-adaptive success predicates (under the restrictions defined in Section 3),
where the only exception that uses this restriction is Lemma 2. This lemma deals with a
specific game in the non-preprocessing setting, and it is not possible to prove it in general for
all predicates, as its statement is false for some artificial predicates.

However, for all “natural” predicates we are aware of, it is easy to extend the theorem
tightly by extending the proof of Lemma 2 accordingly. This may require extending suc to
make additional non-adaptive queries, which are accounted for in the parameter T . For example,
it is possible to support selective forgery attacks, where the goal of the adversary is to predict
the value of a predefined outer query (that the adversary is not allowed to make). This is
done by extending suc to make this additional (non-adaptive) outer query, thus adjusting the
total query complexity to T + 1. Now, suc verifies success by comparing the outcome of the
query to the output of (A1)z. The proof is then adjusted by proving a corresponding variant
of Lemma 2.

tr vs. post, and treatment of inner queries to σ−1. The u-uniformity of tr is crucially
used in the proof. On the other hand, there are no additional requirements on the function post,
and indeed it does not play any direct role in the proof. Its relevance will be in applications
of this theorem (in particular, it is important for bounding MaxS(T )). Similarly, the proof
holds regardless of whether A1 can issue inner queries to σ−1, yet this fact may be important
for bounding MaxS(T ).
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4.2 Warm-up: no inner queries

Inner and outer queries. The proof of Theorem 10 combines two separate ideas. The first
idea allows proving a restricted variant of the theorem under the assumption that A1 makes no
inner queries. The second idea shows how to lift this assumption and prove the general theorem.
In order to isolate each of these ideas, we first prove the restricted variant of Theorem 10 and
then extend it.

As we show below, the reason that it is easier to prove the restricted version is that if the
algorithm makes no inner queries, then a variant of Shearer’s lemma applies more directly,
whereas for algorithms with inner queries, additional work is required.

Theorem 11 (Restricted variant of Theorem 10). In the setting of Theorem 10, suppose that
A1 makes no inner queries. In addition, let suc be an arbitrary success predicate, as defined
in Section 3. Then, the success probability of (A0, A1) is at most

min

(
2 ·MaxS(T ) +

4 log(2)ST

u
,MaxS(T ) +

√
log(2)ST

u

)
.

4.2.1 Proof overview.

• Recall that in the distribution PZ,Σ, Σ is a uniform permutation and Z is determined by
Σ as Z = A0(Σ). The proof essentially shows that a preprocessing adversary whose oracle
is distributed as PΣ|Z cannot do much better that a non-preprocessing adversary whose
oracle is distributed as PΣ. Formally, this is done by defining a distribution Q, in which
Σ and Z are independent, and the success probability of a non-preprocessing algorithm
is bounded by MaxS(T ) (Claim 1).

• We define κz to measure the amount of information that A1 obtains if the preprocessing
algorithm A0 outputs the value z, compared to a non-preprocessing adversary under Q
that obtains no information. We show that since z is of length S bits, on average over
z, κz ≤ log(2)S (Claim 2), confirming the intuitive insight that a string of S bits can
provide at most S bits of information on average.

• Claim 3 is the heart of the proof. We fix Z = z, and show that the success probabilities
of adversaries with and without z are very close (as a function of κz and T/u). This is
done by observing that the translated outer queries (that are input to Σ) are u-uniform
for a uniformly sampled secret d. It follows that the probability that A1 queries any fixed
i ∈ [N ] of Σ is at most T

u , which allows us to apply variants of Shearer’s lemma.

• The theorem follows by averaging over Claim 3 and applying Claim 2 to bound this
average.

4.2.2 Proof of Theorem 11.

We define a distribution QΣ,Z,D, in which Σ and Z are distributed as in P , but are now sam-
pled independently. Specifically, QΣ,Z = PΣPZ . The conditioned distribution of D remains
unchanged, i.e., QD|Σ,Z = PD|Σ,Z . Intuitively, the distribution Q represents running the al-
gorithms (A0, A1), where each algorithm queries a different bijection, effectively making A1 a
non-preprocessing algorithm. Denoting the success probability of (A0, A1) with respect to Q
by q(A) := EQΣ,Z,D

[suc
(A1)

O(Σ,D)
Z

(D)], we obtain the following claim as a direct corollary:
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Claim 1.
q(A) ≤MaxS(T ).

Let
κz = DKL(PΣ|Z=z∥QΣ|Z=z)

measure the amount of information A1 obtains if the preprocessing algorithm A0 outputs the
value z. We have:

Claim 2.

E
PZ(z)

[κz] ≤ log(2)S. (2)

Proof. Recall that QZ,Σ = PZPΣ. Therefore, by Property (10) above, we obtain:

E
PZ(z)

[κz] =: DKL(PΣ|Z∥QΣ|Z) = DKL(PΣ|Z∥PΣ) = DKL(PΣ,Z∥PΣPZ) ≤ H(PZ).

From Property (3), we get H(PZ) ≤ log |Supp(Z)| ≤ log(2)S, which completes the proof. ■

We will consider the success probability of (A0, A1) when some of the random variables are
fixed and denote the fixed values in subscript. In particular, let pz := EPΣ,D|Z=z

[suc
(A1)

O(Σ,D)
z

(D)]

and qz := EQΣ,D|Z=z
[suc

(A1)
O(Σ,D)
z

(D)] denote the success probabilities of (A0, A1) conditioned

on Z = z with respect to P and Q, respectively. Clearly, p = EPZ(z)[pz].
The heart of the proof of Theorem 11 is the following claim.

Claim 3. For any z in the support of PZ ,

pz ≤ min

(
2qz +

4κzT

u
, qz +

√
κzT

u

)
.

The proof of Theorem 11 below simply averages both sides of this claim over PZ(z).

Proof (of Claim 3). We fix z, which fixes the queries of A1.
Recall that U = U(z) denotes the set of outer queries made by A1, which includes all queries

in this case. Define |D| sets {Ud}d∈D, where each Ud = {tr(d,m) | m ∈ U} represents the set
of indices of σ queried by A1 after translation, given that the secret is d and the preprocessing
string is z. Fix any i ∈ [N ].

Since tr is a u-uniform translation function, we have

|{d | i ∈ Ud}| = | ∪m∈U {d | tr(d,m) = i}| ≤
∑
m∈U
|{d | tr(d,m) = i}| ≤ |U| · |D|

u
=

T · |D|
u

. (3)

For every d ∈ D, define the indicator function fd : [N ]N → {0, 1} as fd(σ) = suc
(A1)

O(σ,d)
z

(d),

which outputs 1 if (the deterministic algorithm) A1 succeeds on input σ and secret d when hard-
wired with z.

Recall that pz,d := EPΣ|Z=z,D=d
[suc

(A1)
O(Σ,d)
z

(d)], qz,d := EQΣ|Z=z,D=d
[suc

(A1)
O(Σ,d)
z

(d)] denote

the success probabilities of (A0, A1) conditioned on Z = z and D = d, with respect to P and
Q, respectively. Note that under Q, generally z ̸= A0(σ), but the success predicate suc does
not depend on z (see Remark 3) and remains accurate.
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Thus,
E

PΣ|Z=z

[fd(Σ)] = pz,d, E
QΣ|Z=z

[fd(Σ)] = qz,d,

and
1

|D|
∑
d∈D

pz,d = pz,
1

|D|
∑
d∈D

qz,d = qz.

Recall that for every d ∈ D, fd(σ) = suc
(A1)

O(σ,d)
z

(d) depends only on the secret and the part of

σ queried by (A1)
O(σ,d)
z . Hence, it follows from (3) that {fd}d∈D form a read-(T · |D|/u) family

on the N variables of Σ.
Observe that QΣ is the uniform distribution function over bijections on [N ], and PΣ is

another distribution function over such bijections.
We apply Theorem 8 and deduce

(2 · T · |D|/u) · κz = (2 · T · |D|/u) ·DKL(PΣ|Z=z∥QΣ|Z=z) ≥ |D| ·DKL(pz∥qz).

Therefore, DKL(pz∥qz) ≤ 2·κzT
u .

Applying Corollary 1 and Property (9), respectively, we conclude

pz ≤ 2qz +
4κzT

u
, and pz ≤ qz +

√
κzT

u
,

as claimed. ■

Finally, we prove Theorem 11.

Proof (of Theorem 11). We average both sides of the inequality in Claim 3 over PZ(z).
On the left-hand-side we obtain EPZ(z)[pz] = p, which is the success probability of (A0, A1)

with respect to P .
On the right-hand-side, we consider qz and κz separately. First, by Claim 1, we obtain

E
PZ(z)

[qz] = E
QZ(z)

[qz] = q ≤MaxS(T ).

Second, recall that by Claim 2, we have EPZ(z)[κz] ≤ log(2)S. Therefore, for the first term
we obtain

E
PZ(z)

[
4κzT

u

]
≤ log(2)4ST

u
.

For the second term, we use the concavity of the square root function to conclude

E
PZ(z)

[√
κzT

u

]
≤
√

EPZ(z)[κz]T

u
≤
√

log(2)ST

u
,

completing the proof. ■

4.3 Proof of Theorem 10

We now assume that A1 makes T1 ≥ 0 inner queries and prove Theorem 10. The structure of
the proof is similar to that of Theorem 11, albeit somewhat more involved.

We prove Theorem 10 by a hybrid argument. We refer to the hybrid as a middle game:
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Definition 3. A middle game MID has the same setting as PC, and it differs only in the
allowed actions for the adversary. An adversary Â is a pair of algorithms (Â0, Â1) that work as
follows: Â0 receives only N as input, and outputs constraints which include a pair of sequences
I = (I1, . . . , IT1) and O = (O1, . . . , OT1), each containing non-repeating elements from [N ].
Then a permutation σ : [N ]→ [N ] is sampled uniformly from the set of permutations satisfying
σ(Ij) = Oj for all j. Â1 is defined similarly to the algorithm A1 from PC, but with respect
to that permutation σ, and it is allowed to make only outer queries and no inner queries. The
outer queries of Â1 may depend on I and O. The rest of the game is defined similarly. The
running time T2 of Â1 is defined as the number of queries it makes, and the total running time
of Â is defined as T := T1 + T2.

4.3.1 Proof overview.

MID can be thought of as a non-preprocessing game, where the adversary is allowed to choose
a limited number of T1 values of the permutation (while the other values are sampled uniformly).
The proof is divided into two steps.

1. The first step shows (in Theorem 12 below) that the preprocessing model PC is not
much stronger than MID. First, allowing to fix T1 values of the permutation gives the
adversary in MID enough power to simulate the inner queries of the online algorithm in
PC, that depend on the preprocessing string. Once we have dealt with the inner queries,
it remains to deal with the outer queries. We exploit the fact that in MID the non-
fixed elements of the permutation are sampled uniformly from all the possible (remaining)
values, hence we are left with a uniform permutation on a smaller space. Thus, the proof
proceeds in similar way to the proof of Theorem 11 (where the online adversary only
makes outer queries), considering the permutation on the smaller space. As Theorem 11,
Theorem 12 is applicable to an arbitrary success predicate suc, as defined in Section 3.

2. The second step shows (in Lemma 2 below) that fixing T1 values of the permutation
(independently of the secret) does not give the MID adversary much advantage over
a non-preprocessing adversary. This lemma assumes that suc compares the output of
(A1)z to some function of the secret.

Combining the two above steps allows showing that in our setting, a preprocessing adversary
is not much stronger than a non-preprocessing adversary, proving Theorem 10.

4.3.2 First step.

We first prove that the game MID is not much weaker than PC.

Theorem 12. Let PC := PC(N,D,M, tr,post, suc) be a permutation challenge game, such
that tr is u-uniform. Let (A0, A1) be an (S, T ) non-adaptive algorithm with preprocessing for

PC. Denote by M̂axS(T ) the optimal success probability (with respect to suc) of an adversary
to MID with running time T . Then, the success probability of (A0, A1) is at most

min

(
2 · M̂axS(T ) +

4 log(2)ST

u
,M̂axS(T ) +

√
log(2)ST

u

)
.

In order to prove the theorem, some preparation is needed.
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First, let us recall a few notations we shall use in the proof. The set of inner queries is
denoted by S, and we denote S = [N ] \ S. Recall that S depends on z. The distribution P
was defined in Section 3.2, as PΣ,Z,D = PΣPZ|ΣPD, where PΣ is the uniform distribution over
permutations, PD is the distribution over secrets D, and PZ|Σ=σ(z) = 1 if z = A0(σ).

We define a distribution Q′
Σ,Z,D which is identical to PΣ,Z,D, with the exception that

Q′
Σ|Z = Q′

S,ΣS ,ΣS |Z
= Q′

S,ΣS |ZQ
′
ΣS |Z,S,ΣS

is defined by setting Q′
S,ΣS |Z = PS,ΣS |Z , while Q′

ΣS |Z,S,ΣS
is the uniform distribution over

bijections mapping the elements of S to those of [N ] \ ΣS . On the other hand, Q′
Σ = PΣ,

Q′
Z = PZ , Q

′
D = PD, and Q′

Σ,Z,D = Q′
Σ,Z ×Q′

D.
To simplify notation, denote the random variables that A1 obtains from inner queries to σ

by Σin := (S,ΣS).
Given Σin, the distribution function Q′

ΣS |Z,Σin does not depend on the value of Z. Therefore,

Q′
ΣS |Z,Σin = Q′

ΣS |Σin = PΣS |Σin .

Note that if T1 = 0 (i.e., if S = ∅), then Q′ is identical to Q defined above. However, in
general we have Q′

Σ|Z = Q′
Σin|ZQ

′
ΣS |Z,Σin = PΣin|ZPΣS |Σin , while QΣ|Z = QΣ = PΣ.

Denote the success probability of (A0, A1) with respect to Q′ by

q′ := E
Q′

Σ,Z,D

[suc
(A1)

O(Σ,D)
Z

(D)].

Claim 4. We have
q′ ≤ M̂axS(T ).

Proof. Recall thatQ′
ΣS |Z,Σin = Q′

ΣS |Σin = PΣS |Σin is the uniform bijection mapping the elements

of S to those of [N ] \ ΣS .
Since (A1)z queries S, the preprocessing string z does not give A1 any additional information

about Σ. Thus, A under Q′ cannot do better than in the following game: First A0 receives
a uniform permutation σ′, and chooses a set S of elements to fix to pre-chosen values. Then,
these elements are fixed, and the other elements of σ′ are re-shuffled to obtain σ. The rest of
the game occurs with respect to σ. One can see that this game is equivalent to MID.

Formally, given a preprocessing algorithm (A0, A1) we define a (randomized) adversary
(Â0, Â1) for MID that makes T queries and has success probability identical to (A0, A1) (i.e.,

q′). By definition, the success probability of (Â0, Â1) is bounded by M̂axS(T ), hence this will
complete the proof. It remains to define (Â0, Â1).

Â0 receives N as input, samples a permutation σ′, and calls A0 to obtain z. Then, it calls
A1 with z as input and obtains the set S(z) of inner queries. Finally, Â0 outputs I = S(z) and
O = σ′

S(z). Â1 receives oracle access to a permutation σ with σS = σ′
S and independent values

elsewhere. Notably, S, σS and z are known to Â1, since Â0 and Â1 share the randomness tape
and it is the only randomness source of Â0. Therefore, the distribution of σ conditioned on z is
exactly Q′

Σ|Z . Therefore, Â1 can perfectly simulate A1 by making the same (non-adaptive) outer

queries as A1 and returning its output. Thus, the success probability of Â is q′, as required. ■
Fixing z, σin, we can think of σS drawn from either PΣS |Σin=σin,Z=z or Q′

ΣS |Σin=σin as an

extended bijection from [N ] to itself that maps the elements of S to those in σS , and maps the
elements of S to those of [N ] \ σS .
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We can therefore think of σin as being hardwired into (A1)z such that it only makes queries
to the random variables ΣS (after translation). Of course, some of the (translated) queries of
(A1)z may still fall in S, but σin = (S, σS) are formally no longer random variables.

Denote
pz,σin := E

PΣS ,D|Σin=σin,Z=z

[suc
(A1)

O(σin,ΣS ,D)

z

(D)]

and
q′z,σin := E

Q′
ΣS ,D|Σin=σin,Z=z

[suc
(A1)

O(σin,ΣS ,D)

z

(D)].

Also, denote

κ′z,σin = DKL(PΣS |Σin=σin,Z=z∥Q′
ΣS |Σin=σin) = DKL(PΣS |Σin=σin,Z=z∥PΣS |Σin=σin).

The heart of the proof of Theorem 12 is the following additional claim.

Claim 5. For any z, σin in the support of PZ,Σin,

pz,σin ≤ min

2q′z,σin +
4κ′

z,σinT2

u
, q′z,σin +

√
κ′
z,σinT2

u

 .

Proof. We fix z, σin (hence fixing the queries of A1).
As in the proof of Claim 3, define |D| sets {Ud}d∈D, where Ud = {tr(d,m) | m ∈ U}. Recall

that Σin and D are independent random variables (under both P and Q′), so for any value
Σin = σin, D is still uniform.

For every d ∈ D, define the indicator function fc : [N ]N−T1 7→ {0, 1} by setting fd(σS) =
suc

(A1)
O(σin,σS ,d)

z

(d), which outputs 1 if (the deterministic algorithm) A1 succeeds with the

secret d on input σS when hard-wired with z, σin.
Recall that

pz,σin,d := E
PΣS|Σin=σin,Z=z,D=d

[suc
(A1)

O(σin,ΣS ,d)

z

(d)]

and
q′z,σin,d := E

Q′
ΣS|Σin=σin,Z=z,D=d

[suc
(A1)

O(σin,ΣS ,d)

z

(d)]

denote the success probability of (A0, A1) conditioned on Z = z,Σin = σin, D = d with respect
to P and Q′, respectively.

Thus,

E
PΣS|Σin=σin,Z=z

[fd(ΣS)] = pz,σin,d and E
QΣS|Σin=σin,Z=z

[fd(ΣS)] = q′z,σin,d.

Also,
1

|D|
∑
d∈D

pz,σin,d = pz,σin and
1

|D|
∑
d∈D

q′z,σin,d = q′z,σin .

Recall that when σin is fixed, A1 only makes queries in S (after translation), and by similar
calculation to (3), {fd}d∈D form a read-(T2 · |D|/u) family on the N − T1 variables of ΣS .
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Note that σS drawn from either PΣS |ΣS=σS ,Z=z or Q′
ΣS |Σin=σin,Z=z

= Q′
ΣS |Σin=σin is a

bijection from S to [N ] \ σS , and Q′
ΣS |Σin=σin is uniformly chosen. We apply Theorem 8 and

deduce

(2 · T2 · |D|/u)κ′z,σin = (2 · T2 · |D|/u)DKL(PΣS |Σin=σin,Z=z∥Q′
ΣS |Σin=σin)

≥ |D|DKL(pz,σin∥q′z,σin).

Therefore,

DKL(pz,σin∥q′z,σin) ≤
2 · κ′

z,σinT2

u
.

Applying Corollary 1 and Property (9), respectively, we conclude

pz,σin ≤ 2q′z,σin +
4κ′

z,σinT2

u
and pz,σin ≤ q′z,σin +

√
κ′
z,σinT2

u
,

as claimed. ■

Now, we are ready to prove Theorem 12.

Proof (of Theorem 12). We average both sides of the inequality of Claim 5 over PZ,Σin(z, σin).
On the left-hand-side, we obtain EPZ,Σin (z,σin)[pz,σin ] = p.

On the right-hand-side, we consider q′
z,σin and κ′

z,σin separately.

First, since PZ,Σin(z, σin) = Q′
Z,Σin(z, σ

in), we have

E
Q′

Z,Σin (z,σ
in)

[q′z,σin ] = q′ ≤ M̂axS(T ),

where the inequality is by Claim 4.
Second, we have

E
PZ,Σin (z,σin)

[κ′z,σin ] = E
PZ,Σin (z,σin)

[DKL(PΣS |Σin=σin,Z=z∥PΣS |Σin=σin)] = DKL(PΣ|Z∥PΣ),

while by Property (3) and recalling that (A0, A1) is an (S, T ) algorithm, we have

DKL(PΣ|Z∥PΣ) = DKL(PΣ,Z∥PΣPZ) ≤ H(PZ) ≤ log |Supp(Z)| ≤ log(2)S.

Overall, we obtain

p ≤ 2 · M̂axS(T ) +
log(2)4ST

u
, and p ≤ M̂axS(T ) +

√
log(2)ST

u
,

where the second inequality uses the concavity of the square root function. This concludes the
proof. ■

4.3.3 Second step - completing the proof of Theorem 10.

Theorem 10 follows immediately from Theorem 12 and the following lemma (which is the only
lemma that restricts suc):
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Lemma 2. Let PC := PC(N,D,M, tr,post, suc) be a permutation challenge game, such
that tr is u-uniform, and suc compares the output of A1 to some function of the secret. Denote
by MaxS(T ) the optimal success probability (with respect to suc) of a non-preprocessing, non-
adaptive algorithm that makes at most T queries.

Let MID be the corresponding game defined above (see Definition 3). Denote by M̂axS(T )
the optimal success probability (with respect to suc) of an adversary to MID with running time
T . Then

M̂axS(T ) ≤MaxS(T ) +
T 2

2u
.

Proof. Let Â = (Â0, Â1) be an adversary to MID with running time T = T1 + T2, and denote
its success probability by q̂. We describe a non-preprocessing algorithm A for PC with success
probability q ≥ q̂ − T 2

2u that makes T queries.

A simulates Â0 to obtain the constraints I,O, which also determine the outer queries of Â1

(recall that a MID game has no inner queries). It ignores the constraints of Â, requests its
outer queries from O, sends the responses to Â1 and outputs the same value.

Let g : D → D′ be the function of the secret computed by suc (D′ is its output space).
Denote by P : D′ ×D′ → {0, 1} the success predicate of suc.

Below, we define the algorithm sucAO(σ,d)(d) in the above case, where Â is simulated by A
(we omit the explicit interaction with A for simplicity).

1. Receive I,O from Â0.

2. Pass I,O to Â1 and receive the outer queries U = (m1, . . . ,mT2).

3. Sample d ∼ D.

4. For all 1 ≤ i ≤ T2:

(a) Denote ui ← tr(d,mi).

(b) If ui = uj for some j < i, set vi ← vj . Otherwise, sample vi ∼ [N ] \ {v1, . . . , vi−1}
uniformly.

5. Pass (post(d, v1), . . . ,post(d, vT2)) to Â1 and receive the answer d̃ ∈ D′.

6. Return P(g(d), d̃).

Below, we define the algorithm suc
Â

O(σ,d)
1

(d), in case that Â runs in the MID game. It uses

two additional flags, W1,W2, that do not affect the output, and are only defined for the sake
of the analysis. The differences from the previous algorithm are underlined.

1. Receive I,O from Â0.

2. Pass I,O to Â1 and receive the outer queries U = (m1, . . . ,mT2).

3. Sample d ∼ D.

4. Set W1 ← 0,W2 ← 0.

5. For all 1 ≤ i ≤ T2:

(a) Denote ui ← tr(d,mi).
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(b) If ui = Ik ∈ I, set vi ← Ok and W1 ← 1. Continue to mi+1.

(c) If ui = uj for some j < i, set vi ← vj . Otherwise, sample vi ∼ [N ] \ {v1, . . . , vi−1}
uniformly.

(d) If vi ∈ O, re-sample vi ∼ [N ] \ (O ∪ {v1, . . . , vi−1}) uniformly, and set W2 ← 1.

6. Pass (post(d, v1), . . . ,post(d, vT2)) to Â1 and receive the answer d̃ ∈ D′.

7. Return P(g(d), d̃).

Observe that the algorithms are equivalent, as long as W1 = W2 = 0 at the end of the execution
of suc

Â
O(σ,d)
1

(d)). Thus,

q = Pr[sucAO(Σ,D)(D)]

≥ Pr[suc
Â

O(Σ,D)
1

(D)) ∩ (W1 = W2 = 0)]

≥ Pr[suc
Â

O(Σ,D)
1

(D))]− Pr[W1 = 1]− Pr[W2 = 1]

= q̂ − Pr[W1 = 1]− Pr[W2 = 1].

By a union bound over the T2 outer queries, we have Pr[W1 = 1] ≤ T1T2
u ≤ T 2

4u , where the
probability is taken over the choice of d. By another union bound over the T2 outer queries,
Pr[W2 = 1] ≤ T 2

4u , where the probability is taken over the choice of c1, c2, . . .. Overall, q ≥ q̂− T 2

2u ,
as claimed. ■

5 Applications to Problems in the Generic Group Model

In this section we describe our applications to the DLOG, DDH, and sqDDH problems. All
these applications (as well as the application to the Even-Mansour cryptosystem presented in
Section 6) are obtained via Theorem 10. This theorem can indeed be used, since in all these
applications, suc compares the output of (A1)z to some function of the secret (as defined
in Section 3.3). We stress again that none of the uses of this theorem directly analyzes the
preprocessing setting. For simplicity, we count the input group elements of the generic group
algorithm A1 as part of its T queries. Otherwise, we have to add to T a small additive factor
based on its input size.

5.1 The discrete-log problem

As was written in the introduction, the bound we prove for the DLOG problem is the following.

Theorem 1. Let A = (A0, A1) be a non-adaptive (S, T )-algorithm for the DLOG problem
in the generic group model, over a group G with a prime number N of elements. Denote by
MaxSDLOG(T ) the optimal success probability of a non-preprocessing, non-adaptive algorithm
that makes at most T queries. Then, the success probability of A is at most

2 ·MaxSDLOG(T ) +
4 log(2)ST

N
+

T 2

N
≤ 3T 2

N
+

4 log(2)ST

N
.

Proof (of Theorem 1). We would like to use Theorem 10 via the corresponding permutation
challenge game PC := PCDL(N,D,M, tr,post, suc) defined in Section 3.3. For this purpose
it remains to show that tr is N -uniform, where tr(d, (a, b)) = a · d+ b mod N . Since for every
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query the translation function defines a polynomial of degree 1 in d, Lemma 1 implies that tr
is N -uniform.

Finally, as was mentioned in the introduction, the bound on online(A1) on the right-hand-

side is by Shoup’s theorem [Sho97] which bounds MaxSDLOG(T ) ≤ T 2

N for DLOG. ■

5.2 The DDH and sqDDH problems

As was written in the introduction, the main theorem we prove for DDH and sqDDH is the
following.

Theorem 2. Let A = (A0, A1) be a non-adaptive (S, T ) algorithm for the DDH (resp. sqDDH)
problem in the GGM, over a group G with a prime number N of elements. Denote by
MaxSDDH(T ) the optimal success probability of a non-preprocessing, non-adaptive algorithm
that makes at most T queries. Then, the success probability of A is at most

MaxSDDH(T ) +

√
2 log(2)ST

N
+

T 2

N
≤ 1

2
+

2T 2

N
+

√
2 log(2)ST

N
.

Proof (of Theorem 2). We treat DDH and sqDDH separately.

DDH. We would like to use Theorem 10 via the corresponding permutation challenge game
PC := PCDDH(N,D,M, tr,post, suc) defined in Section 3.3. For this purpose, it remains
to show that tr is (N/2)-uniform.

Recall that

tr((d1, d2, d3, k), (a1, a2, a3, b)) =

{
a1 · d1 + a2 · d2 + a3 · d3 + b mod N if k = 0,

a1 · d1 + a2 · d2 + a3 · (d1d2) + b mod N if k = 1.

Since for every query, the translation function defines a polynomial of degree 1 or 2 in c1, c2, c3,
Lemma 1 implies that tr is (N/2)-uniform, as asserted.

sqDDH. We apply Theorem 10 via the corresponding permutation challenge game PC :=
PCsqDDH(N,D,M, tr,post, suc) defined in Section 3.3. For this purpose, it remains to show
that tr is (N/2)-uniform.

Recall that

tr((d1, d2, k), (a1, a2, b)) =

{
a1 · d1 + a2 · d2 + b mod N if k = 0,

a1 · d1 + a2 · (d1)2 + b mod N if k = 1.

Since for every query, the translation function defines a polynomial of degree 1 or 2 in d1, d2,
Lemma 1 implies that tr is (N/2)-uniform, as asserted.

Finally, the inequality in the assertion holds by Shoup’s theorem [Sho97] which bounds

MaxSDDH(T ) ≤ 1
2 + T 2

N for DDH, and a similar argument which yields the same bound for
sqDDH (see [CDG18]). ■

6 Application to the Even-Mansour Cryptosystem

In this section we present our application to the EM cryptosystem. We first briefly review
previous results on EM, and then we present the proof of Theorem 3.
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6.1 Previous results on the security of EM

Recall that the Even-Mansour cryptosystem [EM97] is defined as EM(m) = k2 ⊕ σ(k1 ⊕m),
where k1, k2 ∈ {0, 1}n are n-bit keys and σ : {0, 1}n → {0, 1}n is a publicly known permutation.
Even and Mansour showed that if σ is chosen uniformly at random, then any attack which
makes T2 encryption/decryption queries to EM and T1 queries to σ or σ−1, has a success
probability of O(T1T2/2

n).
Right after the introduction of the EM cryptosystem, Daemen [Dae91] presented a matching

attack: Pick an arbitrary α ∈ {0, 1}n, query σ to obtain T1/2 pairs of values (σ(xi), σ(xi⊕α)),
and store the pairs (σ(xi) ⊕ σ(xi ⊕ α), xi) in a sorted table. Then, query EM to obtain
T2/2 = N/T1 pairs of values (EM(mi), EM(mi⊕α)), and check, for each j, whether EM(mj)⊕
EM(mj ⊕ α) appears in the table. If a collision of the form EM(mj) ⊕ EM(mj ⊕ α) =
σ(xi) ⊕ σ(xi ⊕ α) is found, then it is likely that k1 = mj ⊕ xi or k1 = mj ⊕ xi ⊕ α. At this
stage, the second key k2 can be retrieved easily. The attack algorithm is based on the fact that
XOR with a secret key preserves XOR differences, and on the birthday paradox. The memory
complexity of Daemen’s attack is Õ(T1).

In 2000, Biryukov and Wagner [BW00] presented an alternative attack with complexities
of T1 = T2 = O(2n/2), and in 2012, Dunkelman, Keller and Shamir [DKS15] showed that
its memory complexity can be reduced to Õ(1), using an adaptive collision-search procedure.
The authors of [DKS15] also generalized the attack of [BW00] to the entire tradeoff curve
T1T2 = O(2n) and asked whether its memory complexity can be reduced to Õ(1) for the entire
curve. This was partially addressed by Fouque, Joux and Mavromati [FJM14], who showed
that the memory complexity can be reduced to o(T1) using an adaptive procedure, though a
reduction to Õ(1) has not been found yet.

While Daemen’s attack is clearly non-adaptive, the Biryukov-Wagner attack and its en-
hancements heavily use adaptivity via Floyd’s algorithm. Like in the case of DLOG, for about
35 years it hasn’t been known whether adaptivity is indeed essential for reducing the memory
complexity below the Õ(T1) complexity of Daemen’s algorithm.

Daemen’s algorithm can be naturally viewed as an algorithm with preprocessing, as the
public knowledge of σ allows performing all queries to it offline. The Biryukov-Wagner algorithm
and its variants do not use preprocessing. Fouque, Joux and Mavromati [FJM14] showed that
if preprocessing with a space of S = 2n/3 is allowed, then an attack with online complexity
of T = Õ(2n/3) can be mounted. In the other direction, Coretti, Dodis and Guo [CDG18]
showed that any distinguishing attack on EM with preprocessing has a success probability of
1
2 + Õ(

√
S(T1 + T2)T2/2n + T1T2/2

n), matching the attack of [FJM14] in the case of constant
success probability.

6.2 Our bound for EM

In this section we prove Theorem 3 stated in the introduction. We assume that adversary can
query only the public and encryption oracles and not the decryption oracle. A direct corollary
due to the symmetry of EM is that the same results hold if the adversary can query only the
public and decryption oracles.

Theorem 3. Let A = (A0, A1) be a key-recovery, non-adaptive (S, T )-adversary for the
Even-Mansour cryptosystem, which can query only the public and encryption oracles and not
the decryption oracle. Denote by MaxSEM(T ) the optimal success probability of a non-
preprocessing, non-adaptive algorithm that makes at most T queries. Then, the success prob-
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ability of A is at most

2 ·MaxSEM(T ) +
4 log(2)S(T + 1)

N
+

T 2

N
≤ 3T 2

N
+

4 log(2)S(T + 1)

N
.

Moreover, the theorem also holds for the single-key variant where k1 = k2.

Proof (of Theorem 3). We would like to use Theorem 10 via the corresponding permutation
challenge game PC := PCEM−KR(N,D,M, tr,post, suc) defined in Section 3.4. First, ob-
serve that suc compares the output of (A1)z to the secret key, which is a function of the secret.
It remains to show that tr is N -uniform, where tr((k1, k2),m) = m⊕ k1.

Fix m ∈ [N ] and let j ∈ [N ]. Then,

tr((k1, k2)),m) = j ⇔ m⊕ k1 = j ⇔ k1 = j ⊕m.

Therefore,
E

PK1,K2

[1(tr((K1,K2),m) = j)] = E
PK1,K2

[1(K1 = j ⊕m)] = 1
N ,

as required. Note that this also holds for the single-key scheme with k1 = k2. ■

A Adaptivity in our Model

The untranslated queries of a non-adaptive (online) algorithm in our model may depend on
the advice, but not on the challenge. We argue that it is reasonable to forbid the non-adaptive
queries from depending on the challenge since the translation function should be viewed as
adding an adaptivity round to the model (compared to standard problems such as function
inversion).

We demonstrate this below for the DLOG problem. In particular, we argue that even if
the (untranslated) queries of the adversary do not depend on the challenge σ(d), its oracle
queries will still depend on the challenge, making it comparable to a non-adaptive algorithm in
a standard model (with challenge-dependent queries). Moreover, if the (untranslated) queries
of the adversary depend on the challenge, then it is comparable to an adaptive algorithm in a
standard model.

We first state the definition of adaptivity from [CK19], which was given in the context of
the function inversion problem.

Definition 4 (Adaptivity ([CK19], Definition 2)). We say that an oracle algorithm is k-round
adaptive if the algorithm’s oracle queries consist of k sets, such that each set of queries depends
on the advice string, the input, and the replies to the previous rounds of queries. We call a
1-round adaptive algorithm non-adaptive. Finally, we say that an algorithm is strongly non-
adaptive if it issues a single set of queries that only depends on the algorithm’s input, but not
on the advice string. In all of the above cases, when referring to the number of queries made
by the algorithm, we account for the sum over all rounds.

Observe that Definition 4 considers the queries to the oracle σ.
Consider the DLOG problem, for a secret DLOG d, where the algorithm receives the inputs

σ(1), σ(d), z (such that z is the advice string). For simplicity, we ignore the input σ(1), as it
may be given as part of z.

Suppose first that the algorithm makes a query (a, b) = (f1(z), f2(z)) (for some functions
f1, f2) that is independent of σ(d). This query is translated to the oracle query d · f1(z) +
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f2(z) mod N which depends on d. This case is not covered by Definition 4, since the value d is
not part of the input and the query cannot be computed only from the input of the algorithm.

However, the query indirectly depends on σ(d), since d = σ−1(σ(d)).
In contrast, consider, for example, the function inversion problem for a permutation with

advice, where the algorithm receives z, σ(d) and its goal is to output d. Suppose that it makes
the query a = f(z) (for some function f), which is passed directly to the oracle σ. Clearly,
there is no dependence at all on σ(d). In fact, unlike in our model, such an adversary is not
interesting at all (e.g., all such queries could be included in z, reducing the number of online
queries to zero and making the problem degenerate and trivial).

Next, suppose that the adversary makes a query of the form (a, b) = (f1(σ(d), z), f2(σ(d), z))
(for some functions f1, f2), which is translated to the oracle query d·f1(σ(d), z)+f2(σ(d), z) mod
N . This query directly depends on both d and σ(d).

Once again, we cannot directly rely on the adaptivity definition of Definition 4 to determine
the number of adaptivity rounds in such an algorithm, since d is not part of the input. Generally,
it is logical to consider such an algorithm as adaptive since it has an additional adaptivity round
compared to the previous case.

Specifically, we show below that such a query depends on σ beyond the direct dependency
via the inputs σ(d) and z. An algorithm making a query with such a complex dependency on
σ should arguably be considered adaptive.

Suppose that we fix the inputs σ(d) = v and z and change σ to a different σ′ that is
associated with the same advice string z. Now, the corresponding secret DLOG changes to
d′ = (σ′)−1(v), and hence the oracle query changes to d′ · f1(σ(d), z) + f2(σ(d), z) mod N , as
claimed above.

In contrast, consider, for example, the function inversion problem for a permutation, where
the algorithm receives σ(d) as input. Suppose that it makes a query a = f(σ(d), z) (for some
function f), which is passed directly to the oracle σ. Clearly, if we fix σ(d) and z, the oracle
query remains the same. Hence, the algorithm is non-adaptive by our argument, which is also
consistent with Definition 4.

B Limitations of Previous Techniques in Dealing with Non-
Adaptive Algorithms

We consider the three main generic techniques for proving cryptanalytic time-space tradeoffs:
compression arguments, the pre-sampling technique, and concentration inequalities. The pre-
sampling technique and the concentration inequalities technique are closely related, as demon-
strated in [GLLZ21]. Our techniques are related to both, as they are also based on concentration
inequalities. Yet, the previously used concentration inequalities are somewhat similar to mar-
tingales, which are generally not strong enough to obtain “dimension-free” inequalities such as
those obtained from Shearer’s inequality (see [Von10, Section 4]). Furthermore, it seems that
compression arguments are not sufficiently strong to obtain our results as well (though, we
cannot give a short intuitive argument for this).

We now argue in more detail that previous techniques are inherently limited and (up to log-
arithmic factors), cannot distinguish between adaptive and non-adaptive algorithms, focusing
on the DLOG problem for simplicity. Since this argument is obvious for the pre-sampling tech-
nique, we focus on techniques based on concentration inequalities and compression arguments.

We remark that we cannot completely rule out the possibility that a simple extension of
these techniques would give a significant improvement, but this seems highly unlikely.
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B.1 Concentration inequality-based proofs in the multi-instance model

The MI model.

We summarize the main ideas of the technique that is based on concentration inequalities.
It reduces proving security against adversaries with advice to analyzing multi-instance (MI)
security against adversaries without advice. In the (basic) MI DLOG game, an adversary plays
a sequence of DLOG instances. Initially, a uniform permutation is chosen, and it remains fixed
throughout the MI DLOG game. In each instance, a new uniform DLOG secret is independently
chosen and the adversary is allowed to issue T new queries in order to solve it. The adversary
wins the multi-instance game if all instances are solved correctly. The main theorem asserts
that if the success probability (of any adversary) in the MI DLOG game with S instances is at
most δS for some 0 < δ < 1, then the success probability of any adversary with S bits of advice
is at most O(δ).

For simplicity, we focus on the setting of a constant δ. Below we describe a non-adaptive ad-
versary to the MI game with success probability of at least 2−Õ(N/T 2) regardless of the number
of instances. Asymptotically, this is also the success probability of the best general (adap-
tive) adversary, hence this technique cannot distinguish between adaptive and non-adaptive
adversaries.

Considering time-space tradeoffs in the proprocessing model, our adversary shows that this
technique cannot prove a bound that is better than ST 2 ≥ Ω̃(N) (which is tight for adaptive
algorithms [CK18]), while Theorem 1 proves a much better bound.

The MI adversary.

Assume that T 2 = o(N), as otherwise, a non-preprocessing algorithm already achieves a con-
stant advantage. In addition, the MI adversary can guess each secret DLOG with probability
N−1, hence it can achieve a success probability of at least 2−Õ(N/T 2) with Õ(N/T 2) instances.
We may thus assume that the number of instances S is at least Ω̃(N/T 2).

In the MI game, we have a sequence of DLOG instances, with corresponding secrets d1, d2, . . ..
Consider an MI adversary B that for each instance, executes the same sequence of queries
(aj , 0)j∈[T ]. We select a generator g ∈ Z∗

N and choose ai = g−i mod N for 1 ≤ i ≤ T/2

and ai = g(i−T/2)·T mod N for T/2 < i ≤ T (somewhat mimicking the baby-step-giant-step
algorithm). These queries are translated to oracle queries of the form ajdi mod N .

Observe that if a collision in the translated queries of the form ajdi mod N = aj′di′ mod N
occurs for di ̸= di′ , then di = aj′ · (aj)−1 · di′ mod N (recall that aj ̸= 0 by assumption). Hence,
di′ determines di and vice versa. Such collisions can be detected by B, as they lead to collisions
at the output of σ.

Thus, for each instance, if its (translated) queries do not collide with the (translated) queries
of a previous instance, B guesses its secret. Otherwise, using the collision, B computes the secret
of the instance deterministically using the previous guess.

Analysis sketch.

Let us show that for S ≥ Ω̃(N/T 2), the success probability of B is at least 2−Õ(N/T 2). B guesses

di correctly for all 1 ≤ i ≤ Õ(N/T 2) with probability 2−Õ(N/T 2). In this case, B succeeds if
each of the remaining secrets can be determined from them. Hence, it remains to show that
each of the remaining secrets can be determined with high probability.
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Notably, after Ω̃(N/T 2) instances — corresponding to a total of Ω̃(N/T ) queries — the
following property holds with very high probability due to our choice of non-adaptive queries:
every interval of the form gi, gi+1, . . . , gj , where i, j ∈ [N−1] and j−i mod N−1 = T/2, contains
at least one queried point. The proof is by a Chernoff bound for each interval (exploiting the
fact that each interval is hit by a query of an instance with probability Ω(T 2/N)), followed by a
union bound over all such intervals. Once this property holds, the queries of every new instance
are guaranteed to collide with the queries of a (successfully guessed) previous one, allowing its
recovery.

B.2 Compression arguments

Compression arguments for proving time-space lower bounds for the DLOG problem have the
following structure: one starts with a DLOG adversary with advice A = (A0, A1) that possesses
a (too good to be true) time-space tradeoff. This adversary is then used to devise encoding and
decoding procedures for the random permutation oracle. These procedures compress the oracle
beyond what is possible information-theoretically, leading to a contradiction.

Specifically, on input σ, the encoding procedure first runs A0(σ) and writes the advice z of
length S bits as part of the encoding string. Then (somewhat similarly to the MI game), it
runs A1 sequentially using z on multiple DLOG instances, and the goal is to gain beyond S
bits in the encoding length, establishing a contradiction.6

In each instance, the encoding procedure encodes the query answers of A1, so that the
decoding procedure can repeat the same steps. Assuming that A1 is deterministic, this is
sufficient (otherwise, shared randomness is used). A saving in the encoding length is obtained
when A1 answers the instance correctly, as this answer gives information about σ (of at most
logN bits) that does not need to be encoded.

For simplicity, we assume that A answers correctly with constant probability. We shall show
that after answering Ω̃(N/T 2) instances, a saving cannot be obtained (with high probability).
Thus, the total saving is bounded by Õ(N/T 2) bits and the technique cannot be used to prove
a time-space tradeoff that is better than ST 2 ≥ Ω̃(N). Once again, this time-space tradeoff
is tight for adaptive algorithms, and this technique cannot distinguish between adaptive and
non-adaptive algorithms (up to logarithmic factors).

It remains to show that after answering Ω̃(N/T 2) instances, a saving cannot be obtained
(with high probability). The argument here is similar to the one used for concentration in-
equalities. At the threshold of Ω̃(N/T 2) instances, about Ω̃(N/T ) queries were already made.
Therefore, it is very likely that at least one of the T queries for the new instance will collide
with a previous one. Such a collision query gives no new information about σ, hence encoding it
in a standard way, using about logN bits, results in a loss that nullifies the encoding advantage
from running A1.

One may try to encode collisions in a special way to mitigate the loss by encoding the
specific query indices that collide. However, at the threshold of Ω̃(N/T 2) instances (where
Ω̃(N/T ) queries have already been issued), encoding the query pair seems to require more than
log T +(logN − log T ) = logN bits, once again nullifying the encoding advantage from running
A1.

6These DLOG instances have non-uniformly distributed secrets, on which the success of A1 is not guaranteed.
However, this problem is addressed using the random self-reducibility property of the DLOG problem, which
allows to execute A1 on instances where the secret is uniformly distributed.
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C Non-adaptive sqDDH Algorithm

We sketch the details of the non-adaptive variant of the adaptive sqDDH algorithm of [CK18].
Essentially, the algorithm replaces the adaptive random walk of [CK18] with a sequence that
can be computed non-adaptively.

First, define a biased pseudorandom predicate P : [N ]2 → {0, 1} that evaluates to 1 with
probability about T−1. We call a pair of the form (σ(x), σ(x2)) (where x ∈ [N ]) special if
P(σ(x), σ(x2)) = 1.

Second, define a balanced pseudorandom predicate Q : [N ]2 → {0, 1} that evaluates to 1
with probability 1/2.

Third, define a pseudorandom function g : [N ]2 → [S] that evaluates to each i ∈ [S] with
probability about S−1.

Given σ, for each v ∈ [S], define the set

Lv = {(σ(x), σ(x2)) ∈ [N ]2 : P(σ(x), σ(x2)) = 1 ∧ g(σ(x), σ(x2)) = v},

which contains roughly N
ST pairs. Moreover, define the majority value of Q on Lv by

Majv = Majority{Q(σ(x), σ(x2)) : (σ(x), σ(x2)) ∈ Lv}.

A standard probabilistic argument shows that with high probability, Majv agrees with a pair

chosen uniformly form Lv on the value of Q with probability about 1
2 +

√
ST
N . Namely, with

high probability,

Pr
(σ(x),σ(x2))∼Lv

[Q(σ(x), σ(x2)) = Majv] ≥
1

2
+ Ω

(√ST

N

)
.

The preprocessing algorithm A0 works by calculating and storing Majv for each v ∈ [S] in
the advice string.

The online algorithm A1 defines a sequence of T/2 pairs in [N ]2 that can be computed
using non-adaptive queries and preserve the sqDDH relation. For example, for some pseu-
dorandom function f : [N ] → [N ], starting from the secret (d1, d2), define the sequence
(σ(d1), σ(d2)), (σ(d1 · f(1)), σ(d2 · f(1)2)), (σ(d1 · f(2)), σ(d2 · f(2)2)) . . ..

With high probability, one of these T/2 pairs evaluates to 1 on P (otherwise, A1 guesses the
answer). Denote the first such pair by (y1, y2). A1 computes v := g(y1, y2) and b := Q(y1, y2).
It then returns 1 if b = Majv, and 0 otherwise.

The main observation in the analysis is that on a YES instance, b = Majv with probability

about 1
2 +

√
ST
N (as noted above). On the other hand, on a NO instance, b = Majv with

probability of about 1
2 , since Q is balanced and uncorrelated with pairs computed for NO

instances.

D A Variant of Shearer’s Lemma for Bijections

In this appendix we present an elementary proof of a slightly weaker version of Theorem 7, in
which the constant 2 is replaced by 9. Specifically, we prove the following.

Theorem 13. Let X be a set of size N . Let QX = QX1,...,XN
be the uniform distribution over

bijections from [N ] to X , and let PX = PX1,...,XN
be another distribution over such bijections.
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Let U1,U2, . . . ,Um be subsets of [N ], such that each i ∈ [N ] belongs to at most k of them. Then

9k ·DKL(PX∥QX) ≥
∑
j∈[m]

DKL(PXUj
∥QXUj

),

where PXU is the distribution of the vector XU := (Xi | i ∈ U) with respect to P (and analogously
for Q).

We need several tools in order to prove the theorem. Let us begin with the following
technical lemma:

Lemma 3. Let N ∈ N and let ℓ ≤ N
4 . Let p1, . . . , pℓ ∈ (0, 1) with

∑
i pi ≤ 1, and let us denote

ϵi = pi − 1
N . Denote also p′ =

1−
∑

i pi
N−ℓ and ϵ′ = p′ − 1

N . Then the following holds:

Np′ log
(
Np′

)
−Nϵ′ ≤ 4

∑
i

(pi log(Npi)− ϵi) .

Proof. The proof utilizes the following inequalities (recall that logarithms are in base e):

(i) For all x > 0 it holds that x log x− x+ 1 ≥ 0.

(ii) For all 0 < x ≤ 2 it holds that x log x− x+ 1 ≤ (x− 1)2 ≤ |x− 1|.

(iii) For all x < 5 it holds that x log x− x+ 1 ≥ 1
4(x− 1)2.

(iv) For all x ≥ 5 it holds that x log x− x+ 1 ≥ |x− 1|.

All these inequalities can be easily proved by basic analytical tools.

We prove the statement by case-analysis. Let us first assume that∑
i:Npi≥5

|ϵi| ≥
1

2

∑
i:Npi<5

|ϵi| .

We obtain ∑
i

|ϵi| ≤ 3
∑

i:Npi≥5

|ϵi| .

Since ℓ ≤ N
4 and following the definition of ϵ′, we may also obtain∣∣Nϵ′

∣∣ ≤ 4

3

∑
i

|ϵi| ≤ 4
∑

i:Npi≥5

|ϵi| . (4)

Therefore, we may bound:

Np′ log
(
Np′

)
−Nϵ′ = (Np′) log(Np′)−Np′ + 1

≤
∣∣Nϵ′

∣∣ ineq. (ii) with x = Np′

≤ 4
∑

i:Npi≥5

|ϵi| Equation (4)

≤ 4

N

∑
i:Npi≥5

(Npi log(Npi)−Npi + 1) ineq. (iv) with x = Npi

= 4
∑

i:Npi≥5

(pi log(Npi)− ϵi)

≤ 4
∑
i

(pi log(Npi)− ϵi) ineq. (i) with x = Npi,
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as required.

Next, we assume ∑
i:Npi≥5

|ϵi| <
1

2

∑
i:Npi<5

|ϵi| ,

implying that ∣∣Nϵ′
∣∣ ≤ 4

3

∑
i

|ϵi| ≤ 2
∑

i:Npi<5

|ϵi| . (5)

Therefore we may bound:

Np′ log
(
Np′

)
−Nϵ′ = (Np′) log(Np′)−Np′ + 1

≤
(
Nϵ′
)2

ineq. (ii) with x = Np′

≤

2
∑

i:Npi<5

|ϵi|

2

Equation (5)

≤ 4ℓ
∑

i:Npi<5

ϵ2i Cauchy–Schwarz inequality

≤ 16ℓ

N

∑
i:Npi<5

(pi log(Npi)− ϵi) ineq. (iii) with x = Npi

≤ 4
∑

i:Npi<5

(pi log(Npi)− ϵi) 4ℓ ≤ N

≤ 4
∑
i

(pi log(Npi)− ϵi) ineq. (i) with x = Npi,

as required. ■

Lemma 3 allows proving a variant of Shearer’s inequality for indicator vectors.

Lemma 4 (Variant of Shearer’s inequality for indicator vectors). Let N be a positive integer.
Let QX = QX1,...,XN

be the uniform distribution function over the set
(
[N ]
1

)
:= {v ∈ {0, 1}N |∑

i vi = 1} of indicator vectors, and let PX = PX1,...,XN
be another distribution function over

the same set. Let U1, . . . ,Um ⊆ [N ] be such that for each i ∈ [N ], |{j ∈ [m] | i ∈ Uj}| ≤ k.
Then

9k ·DKL(PX∥QX) ≥
∑
j∈[m]

DKL(PXUj
∥QXUj

).

Proof. Denote S = DKL(PX∥QX). By applying Property (8) we obtain that for every U ⊆ [N ]
we have DKL(PXU∥QXU ) ≤ S. Since the number of sets Uj with |Uj | > N

4 is at most 4k, we
may assume that |Uj | ≤ N

4 and prove that∑
j∈[m]

DKL(PXUj
∥QXUj

) ≤ 5kS.

Moreover, since DKL(PXi∥QXi) ≥ 0 following Property (4), we may assume that |{j ∈ [m] | i ∈
Uj}| = k for all i ∈ [N ].
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For every i ∈ [N ], we notice that QXi(1) = 1
N (i.e., the probability of the event Xi = 1

when sampled with respect to Q is 1/N) and denote pi = PXi(1) and ϵi = pi− 1
N , to obtain by

definition S =
∑

i pi log(Npi). Additionally, for every set U ⊆ [N ] we denote

p′(U) =
1−

∑
i∈U pi

N − |U|
and ϵ′(U) = p′(U)− 1

N
= −

∑
i∈U ϵi

N − |U|
.

Let U ⊆ [N ] be an index set. By the definition of KL-divergence, we may obtain:

DKL(PXU∥QXU ) =
∑

v∈Supp(XU )

PXU (v) · log
(
PXU (v)

QXU (v)

)

=
∑
i∈U

pi log (Npi) +

(
1−

∑
i∈U

pi

)
log

(
1−

∑
i∈U pi

1− |U|
N

)
=
∑
i∈U

pi log (Npi) + (N − |U|)p′(U) log
(
Np′(U)

)
.

Notably,
∑

j∈[m]

∑
i∈Uj

pi log (Npi) = kS, so it remains to bound∑
j∈[m]

(N − |Uj |)p′(Uj) log
(
Np′(Uj)

)
.

Since |{j ∈ [m] | i ∈ Uj}| = k is assumed to be constant, we obtain that∑
j∈[m]

(N − |Uj |)ϵ′(Uj) = −
∑
i

kϵi = 0.

Therefore, we may bound:∑
j∈[m]

(N − |Uj |)p′(Uj) log
(
Np′(Uj)

)
=
∑
j∈[m]

(N − |Uj |)
(
p′(Uj) log

(
Np′(Uj)

)
− ϵ′(Uj)

)
≤
∑
j∈[m]

N
(
p′(Uj) log

(
Np′(Uj)

)
− ϵ′(Uj)

)
≤ 4

∑
j∈[m]

∑
i∈Uj

(pi log(Npi)− ϵi)

= 4kS,

where the first inequality follows from the fact that (p′(Uj) log (Np′(Uj))− ϵ′(Uj)) ≥ 0 (implied
by ineq. (i) from the proof of Lemma 3), and the second inequality follows from Lemma 3. ■

In order to prove Theorem 13, we need another lemma which shows that under an additional
assumption, conditioning does not decrease KL-divergence.

Lemma 5. Let P and Q be two distributions on pairs (X,Y ). Suppose that X and Y are
independent with respect to Q (i.e., QX,Y = QXQY ). Then

DKL(PY ∥QY ) ≤ DKL(PY |X∥QY |X).

Proof. Since QX,Y = QXQY , we obtain

QY (y) =
∑
x

PX(x)QY |X=x(y).
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Moreover, by the law of total probability, we obtain

PY (y) =
∑
x

PX(x)PY |X=x(y).

Therefore, we obtain

DKL(PY ∥QY ) = DKL

((∑
x

PX(x)PY |X=x(y)

)
∥

(∑
x

PX(x)QY |X=x(y)

))
.

Finally, we may apply Property (5) inductively to obtain

DKL(PY ∥QY ) ≤
∑
x

PX(x)DKL(PY |X=x∥QY |X=x) =: DKL(PY |X∥QY |X).

■

Now we are ready to prove Theorem 13.

Proof (Proof of Theorem 13). First we set some notations, given a bijection X = X1, . . . , XN :
[N ]→ X , indices i, j ∈ [N ] and a set S ⊆ [N ]:

Xi→j =

{
1 Xi = j,

0 otherwise;

X→j = X−1(j),

XS→j =

{
X−1(j) X−1(j) ∈ S,
∗ otherwise.

Note that X = X1, . . . , XN and the sequence X→1, . . . , X→N are equivalent in the sense
that they both encode the same information about the permutation. Similarly, Xi is equivalent
to (Xi→1, . . . , Xi→N ), and XS is equivalent to (XS→1, . . . , XS→N ).

By Property (7), we obtain:

DKL(PX∥QX) = DKL(PX→1∥QX→1) + DKL

(
PX→2,...,X→N |X→1

∥QX→2,...,X→N |X→1

)
. (6)

Similarly, given a set U , we obtain:

DKL(PXU∥QXU ) =DKL(PXU→1
∥QXU→1

)+

+ DKL

(
PXU→2,...,XU→N |XU→1

∥QXU→2,...,XU→N |XU→1

)
.

(7)

By Lemma 4, we have∑
j∈[m]

DKL(PXUj→1
∥QXUj→1

) ≤ 9k ·DKL(PX→1∥QX→1). (8)

In addition, notice that the conditioned variable XU→2, . . . , XU→N | XU→1, distributed with
respect to Q, is independent of X→1. Indeed, if XU→1 = i ∈ U then X→1 = i deterministically.
Otherwise, XU→1 = ∗, implying that XU is a uniform sequence of |U| distinct elements other
than 1 (since Q is the uniform distribution on bijections). For any i /∈ U , conditioning on
X→1 = i has no effect on this distribution. Therefore, we may apply Lemma 5 to obtain:

DKL

(
PXU→2,...,XU→N |XU→1

∥QXU→2,...,XU→N |XU→1

)
≤ DKL

(
PXU→2,...,XU→N |X→1

∥QXU→2,...,XU→N |X→1

)
.
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The distribution QXU→2,...,XU→N |X→1
is equivalent to a uniform distribution over bijections on

N − 1 elements. Therefore, we may apply an inductive argument to obtain∑
j∈[m]

DKL

(
PXUj→2,...,XUj→N |XUj→1

∥QXUj→2,...,XUj→N |XUj→1

)
≤
∑
j∈[m]

DKL

(
PXUj→2,...,XUj→N |X→1

∥QXUj→2,...,XUj→N |X→1

)
≤9k ·DKL

(
PX→2,...,X→N |X→1

∥QX→2,...,X→N |X→1

)
.

Combining with Equations (6), (7), and (8), we obtain∑
j∈[m]

DKL(PXUj
∥QXUj

) ≤ 9k ·DKL(PX∥QX),

completing the proof. ■

E Improved Bound for Problems without Post-Processing

Recall Theorem 10. A slightly better bound can be achieved for problems with a trivial post-
processing function post(d, j) = j. This rule captures the DLOG and DDH problems, but does
not capture EM key recovery.

Theorem 14. Let PC := PC(N,D,M, tr,post, suc) be a permutation challenge game, such
that tr is u-uniform and post(d, j) = j is a trivial post-processing function. Let (A0, A1) be an
(S, T ) non-adaptive algorithm with preprocessing for PC. Denote by MaxS(T ) the optimal
success probability (with respect to suc) of a non-preprocessing, non-adaptive algorithm that
makes at most T queries. Then, the success probability of (A0, A1) is at most

min

(
2 ·MaxS(T ) +

4 log(2)ST

u
,MaxS(T ) +

√
log(2)ST

u

)
.

Proof. By Theorem 12, the success probability of (A0, A1) is at most

min

(
2 · M̂axS(T ) +

4 log(2)ST

u
,M̂axS(T ) +

√
log(2)ST

u

)
,

where M̂axS(T ) is the optimal success probability of an adversary to MID with running

time T . Thus, it remains to show that M̂axS(T ) ≤MaxS(T ) and complete the proof. Let

Â = (Â0, Â1) be an adversary to MID with success probability M̂axS(T ). Let us describe a
non-preprocess algorithm A to the problem:

1. A receives N and a non-adaptive oracle access by inner and outer queries to the permu-
tation σ with respect to a secret d.

2. A runs Â0(N) to obtain the sequences I = (I1, . . . , IT1) and O = (O1, . . . , OT1).

3. A runs Â1 and obtains its queries (recall that Â1 is allowed to make only outer queries),
m1, . . . ,mT2 ∈M.
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4. A makes the inner queries I1, . . . , IT1 and obtains O′
1, . . . , O

′
T1
. Additionally, A makes the

outer queries m1, . . . ,mT2 . Since the post-processing function is assumed to be trivial,
the outputs are of the form ri := σ(tr(d,mi)).

5. Using some deterministic process that depends only on {O1, . . . , OT1 , O
′
1, . . . , O

′
T1
}, A

constructs a permutation π with π(O′
i) = Oi for all i.

6. A simulates Â1’s oracle, and returns π(ri) as the response to the query mi. A returns
Â1’s output.

Clearly, the permutation π ◦ σ is uniformly distributed over the permutations with ∀i :
Ii 7→ Oi. Moreover, the responses Â1 obtained are π(ri) = (π ◦ σ)(tr(d,mi)). Therefore, the
distribution of the permutation π ◦ σ is exactly as it is supposed to be, and the responses to all
queries are correct with respect to it. Therefore, the simulation is accurate and does not affect

the success probability. Thus, the success probability of A is exactly M̂axS(T ). ■
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