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Abstract—While supervised deep neural networks (DNNs) have
proven effective for device authentication via radio frequency
(RF) fingerprinting, they are hindered by domain shift issues and
the scarcity of labeled data. The success of large language models
has led to increased interest in unsupervised pre-trained models
(PTMs), which offer better generalization and do not require
labeled datasets, potentially addressing the issues mentioned
above. However, the inherent vulnerabilities of PTMs in RF
fingerprinting remain insufficiently explored. In this paper, we
thoroughly investigate data-free backdoor attacks on such PTMs
in RF fingerprinting, focusing on a practical scenario where
attackers lack access to downstream data, label information, and
training processes. To realize the backdoor attack, we carefully
design a set of triggers and predefined output representations
(PORs) for the PTMs. By mapping triggers and PORs through
backdoor training, we can implant backdoor behaviors into
the PTMs, thereby introducing vulnerabilities across different
downstream RF fingerprinting tasks without requiring prior
knowledge. Extensive experiments demonstrate the wide applica-
bility of our proposed attack to various input domains, protocols,
and PTMs. Furthermore, we explore potential detection and de-
fense methods, demonstrating the difficulty of fully safeguarding
against our proposed backdoor attack.

Index Terms—Backdoor Attack, Pre-trained Model, Radio
Frequency Fingerprinting, Security.

I. INTRODUCTION

The proliferation of the Internet of Things (IoT) has led to
the ubiquitous integration of wireless technology in daily life.
As the number of wireless devices continues to grow, there
is a critical need for effective and efficient device authenti-
cation methods [1]–[3]. Radio frequency (RF) fingerprinting
has emerged as a promising technique, offering enhanced
resistance to tampering and spoofing compared to conventional
methods [4], [5]. RF fingerprints are unique characteristics
that arise from inherent physical imperfections in the analog
circuitry of RF emitters, introduced during the manufacturing
process [6], [7]. These subtle imperfections affect transmitted
signals without compromising overall device functionality,
resulting in a distinct fingerprint for each RF emitter, including
ultra-low-power and legacy devices.

Deep neural networks (DNNs) have demonstrated remark-
able capabilities in automatically extracting and classifying
RF fingerprints [8]–[10]. However, they face two significant
challenges in RF fingerprinting applications: the need for
large amounts of high-quality labeled data and vulnerability
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to domain shift. While previous studies have explored few-
shot learning [11], [12] and domain adaptation techniques [13],
[14] to mitigate these issues, these approaches have lim-
itations and fail to fully leverage the abundant unlabeled
data. The success of large language models (LLMs) such as
GPT [15] and BERT [16] has sparked increased interest in self-
supervised learning (SSL) across various domains, including
RF fingerprinting [17], [18]. The SSL pipeline consists of two
key components: pre-trained models (PTMs) and downstream
classifiers. PTMs are trained on large amounts of unlabeled
data to serve as feature extractors, while downstream classifiers
are built on these PTMs using minimal or no labeled data.
This approach enhances generalization and reduces the need
for extensive labeled datasets, potentially addressing the data
scarcity and domain shift challenges in RF fingerprinting.

Applying SSL techniques to train general PTMs for RF
fingerprinting could potentially improve authentication per-
formance. However, ensuring security remains a top priority
for these systems. In the current deep learning landscape,
PTMs are typically large, enabling them to capture extensive
contextual information at the cost of being computationally
expensive to train. To mitigate this burden, a common practice
is to download open-source PTMs from platforms like GitHub
and HuggingFace and then fine-tune them for specific tasks.
While this approach is convenient and efficient, the widespread
use of publicly available PTMs raises concerns about potential
security vulnerabilities in RF fingerprinting.

One practical threat is data poisoning-based backdoor at-
tacks, where an adversary seeks to manipulate the victim
model to misbehave on inputs containing predefined triggers
while maintaining normal behavior on clean inputs. Backdoor
attacks have been extensively studied in supervised DNNs, and
recent work has explored their impacts on unsupervised PTMs
in computer vision (CV) and natural language processing
(NLP) domains. For example, BadEncoder [19] investigates in-
jecting backdoors into image PTMs, causing downstream clas-
sifiers to inherit the backdoor behavior. Shen et al. demonstrate
backdoor attacks on PTMs by mapping triggers to predefined
output representations in the NLP domain [20]. However, there
is limited analysis of backdoor attacks on PTMs in the RF
fingerprinting domain. Given that RF fingerprinting enables
device identification and impacts the security of broader ap-
plications, it is crucial to investigate potential backdoor threats.
Therefore, this paper studies protocol-agnostic and data-free
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backdoor attacks on PTMs to meet the practical settings of RF
fingerprinting systems.

Challenges. Implementing backdoor attacks on PTMs in
RF fingerprinting systems presents several significant chal-
lenges. First, the security-critical nature of RF fingerprinting
systems prompts providers to implement robust protection for
both PTMs and downstream training processes, significantly
limiting an attacker’s capabilities. Existing powerful backdoor
attacks typically rely on manipulating the training process to
obtain the gradient information for optimizing trigger patterns
and mapping them to targeted classes [21]. However, in
protected RF fingerprinting systems, attackers cannot control
this process. Furthermore, most backdoor attacks on PTMs
require access to downstream data and label information [19],
[22], [23], which is highly sensitive and should be inaccessible
to attackers in these systems. Therefore, the primary challenge
lies in injecting backdoor behaviors into PTMs and impact-
ing downstream classification without this crucial knowledge.
Second, system providers may be cautious about using PTMs,
even those from reputable open-source platforms. To enhance
security without incurring significant computational costs, they
may fine-tune several layers of PTMs using their own clean
data, adding an extra layer of protection against potential
backdoors. This creates an additional challenge of maintaining
the effectiveness of backdoor attacks after such fine-tuning
defense strategy. Third, any added trigger should not signifi-
cantly impact the system’s performance and should be resistant
to detection methods. This poses a unique challenge for RF
fingerprinting systems since input in-phase/quadrature (I/Q)
data often undergoes signal processing, transforming it into the
frequency or time-frequency domain. This requires the trigger
to be effective and stealthy in both the time domain and the
frequency domain.

Solution. To address the aforementioned challenges, we
propose a practical backdoor attack for RF fingerprinting
PTMs by retraining a benign PTM without controlling the
downstream training process. First, we carefully design pre-
defined output representations (PORs) of PTMs that serve as
inputs for downstream classifiers. Then, we define a set of
triggers and establish connections with the PORs, enabling
the transfer of the backdoor to the downstream task. The
backdoor attack will be activated when any predefined trigger
is injected into the I/Q data. Given the security-critical nature
of these systems, we implement this backdoor injection in a
data-free manner. To achieve this, we use a small amount of
unlabeled data to construct a substitute dataset that differs from
the downstream data. This substitute dataset can be collected
by attackers or downloaded from the internet and may even
be an out-of-distribution dataset.

The main contributions of this paper are as follows.
• To the best of our knowledge, this is the first work to

investigate backdoor attacks on PTMs in RF fingerprint-
ing. We develop a practical backdoor injection method
without requiring access to downstream data.

• We propose a novel approach to generate output rep-
resentations, enabling the successful implementation of

protocol-agnostic backdoor attacks on PTMs.
• We conduct comprehensive experiments to evaluate our

backdoor attacks on various protocols (i.e., 802.11a/g and
LoRa) with different PTMs on both time-domain and
time-frequency domains across multiple datasets. These
experiments show the broad applicability and effective-
ness of our approach.

The rest of the paper is organized as follows. Section III
discusses the related work and Section II introduces back-
ground on SSL. Section IV illustrates the attack scenario and
threat model. Our proposed backdoor attacks are elaborated in
Section V. Section VI presents the experimental evaluations
and analysis. Finally, Section VII concludes this paper.

II. BACKGROUND: SSL

Traditional supervised learning heavily relies on large vol-
umes of labeled data, which can be costly and time-consuming
to acquire. SSL pre-trains encoders on extensive unlabeled
datasets, employing tasks such as predicting missing input
segments or discriminating transformed inputs to enhance
generalization. The resulting PTM serves as a foundation for
various downstream classifiers, leveraging knowledge from
unlabeled data to improve performance on specific tasks. This
paper focuses on two mainstream SSL approaches: generative
and contrastive methods [24]. Generative methods train an
encoder fθ to represent input data x as a discernible rep-
resentation fθ(x), paired with a decoder that reconstructs x
from fθ(x). In the NLP domain, the most popular generative
model is auto-regressive models such as BERT and GPT
series. On the other hand, contrastive methods train an encoder
to transform augmented input x′ into a vector representation
fθ(x

′), enabling similarity measurements between inputs. A
notable example is SimCLR [25], which aims to learn through
comparisons using the NT-Xent loss as follows:

L = − 1

K

K∑
i=1

exp(sim(fθ(x
′
i), fθ(x

′
j))/τ)∑2K

k=1,k ̸=i exp(sim(fθ(x′
i), fθ(x

′
k))/τ)

, (1)

where sim(·) denotes the similarity function, K is the batch
size, and τ represents the temperature hyperparameter.

III. RELATED WORK

A. RF Fingerprinting PTMs.

Recent works have emphasized the significance of PTMs
in RF fingerprinting. Chen et al. employ contrastive learn-
ing to extract domain-invariant features, demonstrating its
effectiveness in mitigating domain-specific variations for ro-
bust RF fingerprinting [18]. Liu et al. introduce SSL during
pre-training to address label dependence issues and utilize
knowledge transfer in fine-tuning to overcome sample de-
pendence limitations [17]. Similarly, Shao et al. apply SSL
to improve emitter identification performance through RF
fingerprints [26]. These studies demonstrate the promise of
SSL in the RF fingerprinting task, making it imperative to
investigate the security vulnerabilities of these methods.



B. Backdoor Attacks.

Backdoor attacks pose a significant threat to DNNs across
related domains. Zhao et al. [27], [28] leverage explainable
tools to design backdoor attacks on model-agnostic RF fin-
gerprinting systems. [29] designs a training-based backdoor
trigger generation approach on RF signal classification. [30]
proposes backdoor attacks on wireless traffic prediction in
both centralized and distributed training scenarios. Trojan-
Flow [21] implements attacks on network traffic classification
by simultaneously optimizing a trigger generator and the
target model. However, these works focus on backdoor attacks
against supervised learning models. As the field evolves to-
ward foundation models, there is a growing need to investigate
security implications and vulnerabilities specific to PTMs.

BadEncoder [19] first proposes backdoor attacks targeting
image PTMs, followed by several concurrent studies in the
same domain [22], [23]. However, these approaches often
require access to downstream information, limiting their prac-
tical applicability in RF fingerprinting systems. The most
closely related work is in the NLP domain, where they
design output representations mapping to selected tokens for
launching attacks [20]. Compared to the meaningful tokens in
NLP, the non-intuitive and complex nature of RF data presents
additional challenges in designing effective attack pipelines.

Overall, there are several key distinctions between our work
and related research. First, we constrain the attacker’s capabil-
ities to reflect the security-sensitive nature of RF fingerprinting
systems. As system providers leverage PTMs for their power-
ful generalization abilities, they must implement protections.
Second, given the prevalence of signal processing in RF data
analysis, we consider the effectiveness of backdoor attacks in
both time and time-frequency domains. Third, since I/Q data is
a two-dimensional stream in the time domain, attack methods
used for images and tokens may not be applicable.

IV. ATTACK SCENARIO AND THREAT MODEL

A. Attack Scenario Description

The overall backdoor injection process is shown in Fig. 1.
Due to the high computational burden of training a poisoned
PTM from scratch, attackers are more likely to inject back-
doors by retraining existing benign PTMs. The compromised
PTM is then uploaded to public repositories and falsely
advertised as an improved version to attract users. A potential
victim might adopt this backdoored PTM if downstream
classifiers built upon it demonstrate satisfactory performance
in RF fingerprinting tasks. Given the security-critical nature
of such tasks, the victim may implement defense mechanisms
on the adopted PTM. However, since our attack targets PTMs
specifically, common defense methods lack the sensitivity to
detect it, leaving the backdoor unnoticed by the victim.

B. Threat Model

1) Attacker’s Goal: We consider an attacker who aims to
inject backdoors into a PTM fθ in a data-free manner so that
a downstream classifier g built on the backdoored PTM fθb

UploadDownload

Benign PTM Backdoored PTMAttacker

Download

Victim

Train

Classifier

Fig. 1. Attack scenario: our attack is stealthy.

renders the RF fingerprinting system ineffective with attacker-
chosen triggers tj ∈ T . The attacker has three goals to achieve:

• Stealthiness goal. The backdoored PTM must maintain
its utility to remain stealthy. The attacker needs to ensure
that downstream classifiers built on the compromised
PTM still perform well on clean data x, thus deceiving
victims into adopting the backdoored model. Besides,
triggers need to be concealed to evade detection methods.

• Effectiveness goal. When a downstream classifier is built
on a backdoored PTM, it should misclassify any input
containing a trigger. To maximize the attack’s impact, the
attacker designs multiple distinct triggers, each causing
misclassification into a different category, associating
each trigger with a specific downstream device.

• Robustness goal. Backdoored PTMs should achieve the
above two goals, particularly maintaining effectiveness
under potential defenses and protections.

In summary, the overall goals can be represented as:

g(fθb(x
p)) ̸= g(fθ(x)); max(|g(fθb(xp))|); (2)

g(fθ(x)) = g(fθb(x)), (3)

where xp = x⊕t denotes poisoned samples with triggers and
max(|·|) represents maximizing the number of output classes.

2) Attacker’s Capability: We consider a scenario where an
attacker obtains a clean PTM from a service provider, injects
backdoors into it, and then shares the backdoored PTM with
potential victims (e.g., by republishing it for public download).
In this context, the attacker has access to the original clean
PTM. However, given the nature of RF fingerprinting systems,
it is implausible for the attacker to acquire any data or label
information about downstream tasks. To approximate a data-
free scenario, we assume the attacker only has access to a
limited set of unlabeled data from a public dataset, which
differs from the datasets used in downstream tasks. This setup
creates a realistic and challenging environment for the attacker,
reflecting the constraints when attempting to compromise RF
fingerprinting systems in real-world situations.

V. BACKDOOR METHODOLOGY

A. Overview

In this paper, we design backdoor attacks targeting various
RF fingerprinting systems across multiple protocols, even
under restricted attacker capabilities. To achieve the goals
mentioned above, our idea is to manipulate the PTM so that 1)
it generates similar output representations for clean substitute
data as it does with the benign PTM, and 2) it produces
similar output representations for poisoned substitute data with
the PORs. Therefore, a downstream classifier built on our



backdoored PTM will perform normally on clean inputs while
misbehaving on poisoned inputs embedded with triggers.

As shown in Fig. 2, our attack pipeline consists of three
phases: substitute dataset collection, poisoned data genera-
tion, and output representation manipulation. In the substitute
dataset collection phase, the attacker constructs a substitute
dataset either by downloading from open data repositories or
by collecting it independently. Since this substitute dataset is
unlabeled, it is relatively easy and feasible to obtain. In the
poisoned data generation stage, we first design a set of triggers
T = {tj}Nt

j=1 for the backdoor attacks. The substitute dataset
Ds is then divided into two parts: a small portion designated
as the poisoned dataset Dp and the remainder as the clean
dataset Dc. Data in the poisoned dataset are embedded with the
designed triggers. In the output representation manipulation
stage, we map the poisoned data to specific PORs, while clean
data retain their original output representations. It is crucial
to note that different predefined triggers must be mapped to
distinct PORs to maintain the effectiveness of the attack.

B. Backdoor Design

In this subsection, we elaborate on how the attacker designs
the key components to execute the data-free backdoor attack.

1) Substitute Dataset: Due to the impracticality of obtain-
ing downstream data and label information for RF finger-
printing systems, we have to construct a substitute dataset to
implant backdoor behaviors. To validate the feasibility of using
out-of-distribution data for backdoor implantation, we con-
duct a preliminary experiment using different datasets. Fig. 3
presents the t-SNE results of two distinct datasets: devices 0 to
2 belong to one dataset, while devices 3 to 5 belong to another.
Fig. 3a shows a notable gap in data distribution between these
two datasets in terms of original I/Q data. However, Fig.
3b shows this gap significantly narrows after the data is fed
into the PTM, with representations spread across a unified
space. This observation suggests that out-of-distribution data
can generate representations occupying similar space to those
of target data. Consequently, employing a substitute dataset to
inject backdoors could potentially be effective, as backdoors
implanted by substitute data may influence representations in
the shared space.

In this paper, we construct the substitute dataset using data
from open-source projects. To achieve the dual objectives
of implanting backdoors and maintaining accuracy on clean
samples, we divide the substitute dataset Ds = {xi}Si=1 into
two parts: a small portion designated as the poisoned dataset
Dp = {xp

k}Nk=1, and the remainder serving as the clean dataset
Dc = {xi}Mi=1. The ratio of poisoned to total data is defined
as the poisoning rate φ

.
= N

S .
2) Predefined Triggers: Following the construction of the

poisoned dataset, we proceed to inject backdoor triggers into
these samples. Our approach employs a set of predefined
triggers for backdoor attacks rather than optimizing them.
This decision is based on two key factors. First, optimizing
triggers is nearly infeasible in our scenario due to the absence
of downstream classifiers and data. Without access to this

crucial information, it becomes nearly impossible to obtain
the necessary gradient information required for updating and
optimizing the trigger values through traditional gradient-
based methods. Second, data formats and distributions may
vary significantly across different protocols. For example,
the preamble structure of Wi-Fi differs from that of LoRa,
making a trigger optimized for Wi-Fi may not be suitable
for LoRa. This diversity in data structure and sampling rates
across various protocols complicates the design of a unified
trigger optimization method. Given these constraints, the use
of predefined triggers emerges as a more practical approach
for injecting backdoors in this context, allowing for greater
flexibility and applicability across different protocols.

In this paper, we choose to formulate the trigger set using
time domain Gaussian noise, which has proven effective for
launching backdoor attacks in related domains [29]. Unlike
targeted attacks in supervised DNNs, our approach aims
to induce misclassification into multiple classes by adding
various triggers to inputs of PTMs, thereby contaminating the
downstream classifier. Considering the output representations
given by fθ(x ⊕ tj) = Wθ · (x ⊕ tj) + Bθ, our goal is
to ensure that these representations differ sufficiently when
different triggers are applied. Given that the weight Wθ and
bias Bθ matrices remain constant across samples, the most
effective strategy is to introduce inherent differences in the
poisoned samples xp themselves after adding various triggers
tj . Intuitively, we assume that fθ(x ⊕ tj) and fθ(x ⊕ −tj)
will generate two relatively dissimilar output representations
by simply reversing the trigger value. Therefore, we design
the j-th trigger tj in the trigger set T as follows:

tj =

{
N(0, σ;L), j ≤ Nt+1

2 ;

−tNt−j , j > Nt+1
2 ,

(4)

where L denotes the length of the trigger, which simultane-
ously regulates the trigger’s size along with σ. In this paper,
we use L = 48 and σ = 0.1 as the baseline settings.

3) Output Representations: While incorporating triggers
into RF data can induce shifts in output representations, these
minor changes alone are insufficient to launch a successful
backdoor attack on downstream classifiers. Table I presents ex-
perimental results demonstrating that directly adding triggers
to the inputs yields only minimal accuracy drops. Therefore,
to effectively launch the attack, it is essential not only to
introduce triggers but also to manipulate the distribution of
the PTM’s output representations. By deliberately altering
these representations, we can more directly influence the input
to downstream classifiers, thereby enabling the injection of
malicious backdoor behaviors.

TABLE I
DOWNSTREAM ACCURACY DROPS WITH ONLY ADDED TRIGGERS.

Dataset ORACLE WiSig CORES NetSTAR Ours
Acc. Drop 4.12% 0.75% 0.02% 0.24% 5.75%

The downstream prediction is generated by feeding the out-
put representations from the PTM to the downstream classifier,
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Fig. 2. Backdoor attack pipeline.

(a) Original data (b) Representations

Fig. 3. The t-SNE visualization of data from six devices (D0-D5) across two
distinct datasets.

represented as y = g(fθ(x)) = Wc · fθ(x) + Bc. However,
the attacker has no control over the weight Wc and bias Bc

matrices of the downstream classifier. Therefore, to achieve a
backdoor attack, the only feasible approach is to manipulate
the output representations fθ(x) and map them to specific
triggers. For binary classification tasks, a straightforward way
to shift the predicted class is to reverse the sign of the input,
expressed as y′ = Wc · (−fθ(x)) + Bc. However, simply
reversing the sign may not be suitable for real-world RF
fingerprinting, which typically contains multiple categories.

Benign Representation Decision Boundary

1

Backdoor Representation

2

Route

Fig. 4. Two cases when designing PORs.

Fig. 4 illustrates more intricate scenarios for manipulating
output representations to achieve classification into separate
classes. Case 1 depicts a relatively independent situation where
different data clusters are distributed clearly. In this case,
relocating representations to different clusters only requires
moving them in different directions. In contrast, Case 2
presents a more crowded scenario where data clusters are
situated in closer proximity. While it is possible to move the
representations similarly to Case 1, this approach may cause

the representations to drift further from their corresponding
data clusters. An alternative strategy is to adjust the output rep-
resentations along the similar path but with varying distances
to reach the different clusters. Based on these observations,
we devise the PORs ej = fθ(x⊕ tj) as follows:

ej =


0, j = 1;

(1 + j−1
Nt

) ·A · cos(2π · j · t), 1 < j ≤ Nt+1
2 ;

(1 + j−1
Nt

) · (−A) · cos(2π · j · t), Nt+1
2 < j < Nt;

1 ·A, j = Nt,
(5)

where t is a variable with length corresponding to the rep-
resentation dimension, and cos(2π · j · t) generates a cosine
vector. The amplitude coefficient A, combined with (1+ j−1

Nt
),

determines the moving distance among different PORs.
This proposed method for generating PORs enables target-

ing a broader range of classes for several reasons. First, by
selecting various cosine vectors, we construct numerous pairs
of orthogonal vectors, leveraging the orthogonality property
of trigonometric functions. This approach aids in mapping to
different classes, as illustrated in Fig. 4. Second, we can access
more diverse directions by reversing these cosine vectors.
Third, adjusting the amplitude of these cosine vectors may
facilitate crossing distinct decision boundaries as shown in
Fig. 4. Last, the inclusion of zero-vectors 0 and scaled unit-
vectors 1 ·A can potentially reach further boundaries.

C. Backdoor Training

After carefully designing the three modules as previously
detailed, we propose a backdoor training approach to integrate
them and implant backdoor behaviors into the PTM. The
training process fine-tunes a clean PTM fθ into a backdoored
PTM fθp by minimizing the following loss function:

min
fθp

L =
∑

xi∈Dc

L(fθp(xi), fθ(xi))+
∑

xk∈Dp

L(fθp(xk⊕tj), ej),

(6)
where L denotes the mean squared error (MSE) loss. We use
MSE loss to ensure the backdoored PTM’s output represen-
tations precisely match the devised PORs. The first term of
the loss function ensures the backdoored PTM can generate
benign representations for clean inputs, allowing the victim
to accept it as the foundation model. On the other hand, the



second term of the loss function aims to manipulate the output
representations of triggered samples, steering them to become
similar to PORs. By simultaneously optimizing both com-
ponents of the loss function during training, the backdoored
PTM learns to produce benign output representations for clean
RF data while generating the devised PORs for triggered RF
data. This dual functionality aligns with the attacker’s goals
as defined in Section IV-B1, enabling the PTM to maintain
normal operation on clean inputs while facilitating backdoor
attacks when triggered.

Algorithm 1 PTM backdoor training process
Input: Substitute dataset Ds = {xi}Si=1, benign PTM fθ,

trigger set T = {tj}Nt
j , PORs E = {ej}Nt

j , poisoning
rate φ, learning rate lr

Output: Backdoored PTM fθp
Step 1: Prepare training set and PORs

1: N ← φ · S, M ← (1− φ) · S
2: Initialize Dc = {xi}Mi=1 and Dp = {xk}Nk=1 from Ds

3: for j in (1, Nt) do
4: for n in (1, N

Nt
) do

5: xp
k ← xk ⊕ tj , yp

k ← ej ; k++
6: end for
7: end for
8: for i in (1,M) do
9: yi ← fθ(xi)

10: end for
Step 2: Updating backdoored PTM parameters

11: θp ← θ // Copy structure and parameters
12: for number of epoch do
13: L←

∑
L(fθp(xi),yi) +

∑
L(fθp(x

p
k),y

p
k)

14: θp ← θp − lr · ∂L
∂θp

15: end for
16: return fθp

Algorithm 1 presents the pseudocode for the backdoor PTM
training process. The process requires three inputs: unlabeled
substitute datasets Ds = {xi}Si=1, predefined triggers T =
{tj}Nt

j=1, and devised PORs E = {ej}Nt
j=1. First, we construct

the clean set Dc and the poisoned set Dp using the substitute
dataset and poisoning rate φ. For Dc, we generate pseudo-
labels yi by feeding unlabeled data xi to the benign PTM and
using the resulting output representations as labels. For Dp,
we select N

Nt
samples for each trigger-POR pair, establishing

connections between triggers and devised PORs, resulting in
a labeled poisoned dataset of N samples. We then initialize
the backdoor PTM by replicating the structure and parameters
of the benign PTM fθ. The MSE loss is computed using the
constructed Dc and Dp, and employed to update the backdoor
PTM’s parameters θp via gradient descent optimization.

VI. EXPERIMENTAL EVALUATION AND ANALYSIS

A. Experiment Setup

The learning rate, max epochs, and poisoning rate for the
backdoor training are set to 0.001, 200, and 0.1, respectively.

All experiments are conducted on a Linux server with an
Intel(R) Xeon(R) Gold 6258R CPU and NVIDIA A100 GPUs
with 40GB of memory.

1) Victim PTMs: Given the early stage of RF fingerprinting
PTM research, our experimental evaluation focuses on assess-
ing backdoor attack effectiveness on classic PTMs employing
two principal SSL approaches discussed in Section II.

Generative SSL. BERT is one of the most representative
works in this field. We modify its lightweight version [31] for
RF fingerprinting tasks. Besides, we employ masked autoen-
coders (MAE) [32] to build PTMs in this paper.

Contrastive SSL. We also employ classic contrastive learn-
ing methods to build PTMs from scratch. Following Qian et
al. [33], we employ SimCLR [25] and TS-TCC [34] methods
to train convolutional neural networks (CNNs) [35] and the
encoder part of Transformer models [36].

We modify the first layer of all PTMs to fit RF data
shapes. As mentioned in Section I, time domain I/Q data often
undergoes signal processing. Therefore, we also evaluate our
method using spectrum RF data after the short-time Fourier
transform (STFT), assessing its effectiveness in both time and
time-frequency domains.

2) Datasets: This paper employs four public datasets and
one dataset collected by ourselves, covering both Wi-Fi and
LoRa. Table II summarizes key information about the down-
stream datasets. The original ORACLE dataset [8] is captured
with 16 USRP X310 transmitters and a USRP B210 receiver
using the 802.11a standard. [37] consists of 163 consumer
Wi-Fi cards arranged in a grid at the Orbit Testbed [38]
communicating with 802.11g. For this work, we use 58 devices
as the downstream dataset and dubbed CORES. The WiSig
dataset [39] captures signals from 174 COTS Wi-Fi cards
using 802.11a/g access on channel 11. [40] captures LoRa
transmissions from 25 Pycom devices and USRP B210 across
various domains. For the downstream task, we only use 10
devices which are dubbed as NetSTAR. As shown in Fig. 5,
our dataset uses 10 commercial LoRa transmitters (Pycom
LoPy4) and a USRP N210 receiver. Due to different sampling
rates and preamble structures, the original captured I/Q data
for LoRa is 2× 1024 in size. This is downsampled to 2× 256
to meet model input requirements.

TABLE II
DOWNSTREAM DATASET SUMMARY.

Dataset # of samples # of devices

ORACLE 32,000 16
CORES 52,628 58
WiSig 67,854 130

NetSTAR 19,000 10
Ours 10,000 10 Fig. 5. LoRa transmitters

and a USRP receiver.

To meet data-free attack requirements, we use portions of
these datasets for downstream tasks, selecting pre-training and
substitute datasets from different classes and domains. The
substitute dataset is 20% the size of the pre-training dataset,



enhancing attack practicality. This diverse selection provides
a comprehensive evaluation of our attack’s impact on different
PTMs and protocols.

B. Evaluation Metrics
1) Effectiveness: To analyze our attack’s effectiveness, we

employ untargeted attack success rate (UASR) and targeted
ratio (TR) as the metrics. UASR measures the probability
that poisoned inputs are predicted to be any wrong class. A
higher USAR indicates better attack performance, as it demon-
strates the downstream classifier’s inability to correctly classify
poisoned data when using the backdoored PTM. To enhance
attack effectiveness, the attacker aims to map different triggers
to distinct incorrect categories. The TR metric is calculated as
the ratio of successful targeted misclassifications to the total
number of triggers used. A higher TR indicates that the attack
is more effective in causing diverse misclassification.

2) Stealthiness: Visual inspection is inefficient and im-
practical. Therefore, this study employs three approaches to
quantify it, namely (i) model utility, (ii) trigger size, and (iii)
algorithm-based detection [41], [42]. Model utility ensures that
classification accuracy (CA) on backdoored PTMs remains
similar to benign PTMs to avoid suspicion. We employ the
isolation forest to identify potential outliers and STRIP to de-
tect poisoned samples by measuring predicted entropy. Higher
entropy makes attacks harder for STRIP to detect.

3) Robustness: The last goal of the attack is to ensure its
robustness against defense methods. While fine-pruning [43]
effectively removes backdoored neurons, it can degrade model
performance, contradicting the purpose of using PTMs. Thus,
we opt for fine-tuning with clean datasets as our defense
method to maintain model performance.

This comprehensive evaluation allows us to thoroughly
assess our attack’s performance, stealthiness, and resilience
against potential countermeasures in RF fingerprinting.

C. Stealthiness Evaluation
To evaluate stealthiness, we first assess the performance of

both benign and poisoned PTMs and then evaluate the ability
of our predefined trigger set to evade detection.

1) Model Utility: Table III presents clean downstream clas-
sification accuracies and stealthiness metrics. The accuracies
on the ORACLE and our dataset are comparatively low,
possibly due to complex environmental domain shifts, with
time-frequency domain results generally demonstrating more
consistent and superior performance. We implant backdoors
into these PTMs using 8 predefined triggers and PORs, with
average results shown in Table V. Here, “-R” and “-T” denote
ResNet and Transformer encoders, respectively. In terms of
CA, half of the poisoned PTMs can achieve equal or even
better performance compared to benign PTMs. Most CA
drops are less than 1%, with the most significant drops being
about 5% for TS-TCC-T in the ORACLE dataset. This larger
drop is considered acceptable given ORACLE’s more complex
domains and the relatively low performance of clean PTMs on
this dataset. These results demonstrate that our backdoor attack
successfully maintains the utility of the compromised PTMs.

TABLE III
BASELINE UTILITY EVALUATION. “ANOMALIES” SHOWS THE CHANGE IN

THE OUTLIER DATA RATIO AFTER ADDING THE TRIGGER. “SPEC.”
DENOTES RESULTS IN THE TIME-FREQUENCY DOMAIN.

Dataset ORACLE WiSig CORES NetSTAR Ours

Stealth
SNR (dB) 22.26 21.91 21.99 22.79 22.93
∆l2-norm 0.0377 0.0394 0.0390 0.0357 0.0350
Anomalies 0.0642 -0.0465 0.0009 -0.0253 0.0178

Time

SimCLR-R 0.6341 0.9423 0.9915 0.8055 0.6406
SimCLR-T 0.7208 0.8726 0.9766 0.8287 0.9047
TS-TCC-R 0.6339 0.8378 0.9524 0.8797 0.7137
TS-TCC-T 0.6125 0.7939 0.9540 0.7542 0.8484

BERT 0.9264 0.9444 0.9953 0.9674 0.6363

Spec.

SimCLR-R 0.8966 0.9860 0.9999 0.9695 0.5613
SimCLR-T 0.9087 0.9856 0.9999 0.9721 0.5813

MAE-R 0.9716 0.9859 0.9999 0.9766 0.7175
MAE-T 0.8517 0.9867 0.9999 0.9787 0.7138

2) Trigger Stealthiness: In real-world RF fingerprinting
systems, data censorship and protections are likely to be
deployed. Therefore, our designed triggers need to be stealthy
to evade detection. To demonstrate the physical stealthiness
of our predefined triggers, we use two indicators: ∆l2-norm,
which quantifies changes in the l2-norm of data after adding
triggers, and signal-to-noise ratio (SNR). Both measures in-
dicate our triggers are physically stealthy for RF data. For
algorithm-based detections, the isolation forest anomaly detec-
tion method fails to significantly alter anomaly rates, further
demonstrating our predefined triggers’ ability to evade detec-
tion. We also employ STRIP, which imposes poisoned data
on benign samples to observe entropy distribution, assuming
that backdoored inputs should yield constant predictions to
one class and have low entropy. Table IV presents entropy
differences (×10−2) between backdoored and clean PTMs,
with negative values indicating more constant predictions for
backdoored PTMs. Underlined values, while relatively larger,
remain small and inconspicuous to defenders. Combined with
the results from Table I, which show that the trigger does not
impact the performance of clean PTMs, we can conclude that
our predefined trigger set meets the stealthiness goal.

TABLE IV
MEAN ENTROPY DIFFERENCE FROM STRIP (×10−2). RES AND TRANS

DENOTE RESNET AND TRANSFORMER ENCODERS, RESPECTIVELY.
UNDERLINED VALUES INDICATE POTENTIAL DETECTABILITY.

(×10−2) Time Domain Time-frequency Domain
SSL SimCLR TS-TCC BERT SimCLR MAE

Model Res Trans Res Trans Trans Res Trans Res Trans

ORACLE -0.01 -0.30 -0.01 -0.11 0 0 0.04 0 0
WiSig 0 -1.84 -0.04 4.78 0 0 5.38 0.04 -0.02

CORES 0 -2.04 -0.04 -0.64 0 -0.01 1.49 0.02 -0.02
NetSTAR 0 0.38 0 -0.55 0 0.01 0.03 0 0.01

Ours 0 -0.07 0 -0.34 0 0.01 0.02 0 -0.01

D. Effectiveness Evaluation
Table V demonstrates the effectiveness of our proposed

data-free backdoor attack across various protocols and PTMs.
Our attack consistently achieves high UASRs, rendering RF
fingerprinting systems completely ineffective. For both Net-
STAR and our dataset, the UASR is relatively low because



TABLE V
THE DOWNSTREAM RESULTS OF BACKDOORED PTMS WITH 8 TRIGGER-POR PAIRS. THE CA DROPS LARGER THAN 1% ARE DENOTED IN BOLD, WHILE

DROPS BETWEEN 0 AND 1% ARE DENOTED WITH UNDERLINE. “-R” AND “-T” INDICATE RESNET AND TRANSFORMER ENCODERS, RESPECTIVELY.

Dataset ORACLE WiSig CORES NetSTAR Ours

Domains PTMs CA UASR TR CA UASR TR CA UASR TR CA UASR TR CA UASR TR

Time

SimCLR-R 0.6444 0.9307 0.50 0.9430 0.9718 0.88 0.9934 0.9522 0.75 0.7955 0.7281 0.38 0.6734 0.8939 0.38
SimCLR-T 0.6856 0.9084 0.50 0.8766 0.8966 0.88 0.9793 0.8733 0.63 0.8105 0.8146 0.38 0.9088 0.9075 0.63
TS-TCC-R 0.5825 0.9372 0.50 0.8218 0.9861 1.00 0.9513 0.9661 0.75 0.8582 0.7315 0.88 0.7109 0.9067 0.38
TS-TCC-T 0.5573 0.9101 0.25 0.7860 0.9610 0.88 0.9538 0.9396 0.38 0.7247 0.8583 0.38 0.8687 0.8973 0.50

BERT 0.8908 0.9279 0.88 0.9488 0.9676 1.00 0.9959 0.9406 0.75 0.9603 0.8452 0.75 0.6963 0.9052 0.50

Spec.

SimCLR-R 0.9070 0.9336 0.88 0.9870 0..9871 0.75 0.9999 0.9604 0.50 0.9663 0.8887 0.63 0.6225 0.9034 0.50
SimCLR-T 0.8941 0.9279 0.50 0.9860 0.9491 0.63 0.9999 0.9434 0.38 0.9692 0.8626 0.63 0.5763 0.8991 0.38

MAE-R 0.9677 0.9381 0.75 0.9858 0.9853 1.00 0.9999 0.9630 0.50 0.9329 0.8876 0.88 0.7953 0.9008 0.50
MAE-T 0.8684 0.9348 1.00 0.9870 0.9881 0.88 0.9999 0.9731 1.00 0.9726 0.8954 0.75 0.6891 0.9042 0.63

(a) ORACLE (b) WiSig (c) CORES (d) NetSTAR (e) Ours

Fig. 6. Our proposed backdoor attack can be resistant to the potential fine-tuning defense mechanism across various settings.

there are only 10 downstream categories. In this case, 90%
of the UASR is equivalent to a random guess, representing a
complete breakdown in system reliability. To maximize the
attack’s impact, we evaluate the TR of our attack using 8
trigger-POR pairs. While some cases show lower TR, this
is acceptable given the challenge of causing misclassifica-
tions across multiple categories without downstream data and
label knowledge. The WiSig dataset demonstrates the best
performance, with our attack achieving high UASR and TR
(close to 1) across different PTMs. Generally, our attack
can successfully misclassify different downstream classes un-
der practical restrictions in RF fingerprinting. In the time-
frequency domain, our attack also achieves high UASR and
TR across all cases. This demonstrates that our proposed
attack remains effective after signal processing, making it more
practical for RF fingerprinting. Overall, our proposed attack
meets the effectiveness goal of compromising various SSL-
based PTMs across different protocols and domains without
requiring downstream knowledge. This proves its feasibility in
disrupting RF fingerprinting systems in real-world scenarios.

E. Robustness Evaluation

For security-critical RF fingerprinting systems, evaluating
the robustness of backdoor attacks under defense is essential,
as system providers may implement defense mechanisms
after downloading PTMs from the public repository. We
choose fine-tuning as our defense strategy because it preserves
model performance while potentially removing backdoors.
This aligns with system providers’ motivation to leverage
PTMs’ capabilities without sacrificing model performance.
Fig. 6 illustrates the results of various PTMs with different

fine-tuning rates across diverse domains. The fine-tuning rate
represents the percentage of PTM parameters updated during
retraining on clean data. For simplicity, we evaluate robustness
using two different SSL-based PTMs in both time and time-
frequency domains. After fine-tuning, CA improves as PTMs
learn downstream information. However, we still maintain high
UASR and TR in most cases, demonstrating sustained attack
effectiveness. Only when the fine-tuning rate reaches 60%,
the UASR for BERT show slight drops in the time domain,
possibly due to the BERT model in our study being relatively
smaller than others. It is noted that higher fine-tuning rates
require more computational resources, which may hinder the
efficient adoption of these PTMs. Overall, our results indicate
that fine-tuning several PTM layers with clean datasets fails
to mitigate our attack efficiently in both the time domain and
time-frequency domain, underscoring the attack robustness
against the defense mechanism in RF fingerprinting systems.

F. Impacts of Different Modules

1) PTM Size and Trigger-POR Pairs: The effectiveness of
backdoor injection is significantly influenced by the number
of trigger-POR pairs. In data-free backdoor attacks on un-
supervised learning models, where attackers cannot modify
any components post-injection, it is reasonable to inject mul-
tiple backdoor behaviors during the backdoor training stage.
Besides, the size of PTM also impacts attack performance
as discussed in Section VI-E. Fig. 7 presents the impact of
these factors on attack performance. We evaluate Transformer
encoders of varying sizes (small: 0.6M, medium: 1.3M, and
large: 2.3M parameters) with different numbers of trigger-
POR pairs. The results reveal that our proposed backdoor



(a) ORACLE-BERT (b) WiSig-BERT (c) CORES-BERT (d) NetSTAR-BERT (e) Ours-BERT

(f) ORACLE-SimCLR (g) WiSig-SimCLR (h) CORES-SimCLR (i) NetSTAR-SimCLR (j) Ours-SimCLR

Fig. 7. Effects of PTM size and trigger-POR pairs on backdoor attacks in time domain BERT (top row) and time-frequency domain SimCLR (bottom row).
Small-CA and Small-UASR denote the CA and UASR for small-sized PTMs.

attack generally achieves high CA and UASR across different
configurations, indicating attack effectiveness. Compared to
the small PTM, larger PTMs can maintain high CA and UASR
in both the time domain and time-frequency domain. When
increasing the number of trigger-POR pairs to implant more
backdoor behaviors into PTMs, a clear trend emerges. Smaller
PTMs experience drops in UASR, indicating they cannot retain
a large number of backdoor behaviors while maintaining their
utility. In contrast, larger PTMs can remember these backdoors
and maintain high UASR. It is important to note that today’s
foundation models continue to grow in size, becoming more
capable of remembering backdoor behaviors while potentially
offering stronger generalization performance compared to
smaller models. This highlights a potential security concern
in deploying PTMs in RF fingerprinting systems.

2) PORs Design Comparison: We evaluate the effective-
ness of our proposed orthogonal PORs design by comparing
it to the non-orthogonal PORs used in [20], which employs
varying numbers of −1s and 1s. To ensure a fair comparison,
we maintain consistency with our previous setup by using 8
trigger-POR pairs. In all cases, the CA is similar to ours, and
the UASR only experiences drops in a few cases compared
to our method. The most significant difference is observed
in the TR metric as shown in Table VI. TR decreases in
most cases using the non-orthogonal PORs design, with some
cases achieving only 25%, indicating that their attack targets
only two different downstream categories using 8 trigger-POR
pairs. There are only four cases that can achieve the same TR
as our orthogonal PORs method. Additionally, their method
generates a constant number of PORs based on representation
length, while ours can generate any number of orthogonal
PORs. These results demonstrate that our orthogonal PORs
design is crucial for successfully launching backdoor attacks
on PTMs in a data-free setting. It allows for more effective
targeting of multiple downstream categories, providing a more
practical attack strategy for RF fingerprinting systems.

TABLE VI
PORS DESIGN COMPARISON. UNDERLINED VALUES INDICATE THE SAME

TR AS OUR PROPOSED ATTACK.

Time Domain Time-frequency Domain
SSL SimCLR TS-TCC BERT SimCLR MAE

Model Res Trans Res Trans Trans Res Trans Res Trans

ORACLE 0.38 0.38 0.50 0.38 0.50 0.50 0.25 0.63 0.63
WiSig 0.88 0.38 0.63 0.25 1.00 0.25 0.25 0.50 0.50

CORES 0.63 0.38 0.63 0.25 0.38 0.38 0.25 0.50 0.63
NetSTAR 0.50 0.25 0.75 0.38 0.38 0.38 0.38 0.50 0.38

Ours 0.25 0.38 0.25 0.38 0.38 0.25 0.25 0.50 0.25

VII. CONCLUSION

In this paper, we propose the first protocol-agnostic and
data-free backdoor attack on PTMs used in RF fingerprinting
systems. Unlike traditional backdoor attacks where attackers
may possess data and label information, we inject backdoors
into unsupervised PTMs without downstream knowledge or
access to downstream training. To achieve this, we employ
three key strategies: utilizing substitute datasets, designing
trigger sets, and manipulating output representations to inject
backdoor behaviors into the PTMs. Extensive experiments
are conducted across Wi-Fi and LoRa, using five different
datasets and two mainstream SSL methods in both the time
and time-frequency domain. Through this comprehensive anal-
ysis, we demonstrate that our proposed data-free backdoor
attack poses a practical threat to RF fingerprinting systems,
highlighting the urgent need for robust security measures to
mitigate such threats when deploying PTMs in the real world.
The authors have provided public access to their code at
github.com/Tianyaz97/rf_backdoor.

ACKNOWLEDGMENTS

This work is supported in part by the NSF (CNS-
2415209, CNS-2321763, CNS-2317190, IIS-2306791, and
CNS-2319343).

https://github.com/Tianyaz97/rf_backdoor


REFERENCES

[1] Y. Zou, J. Zhu, X. Wang, and L. Hanzo, “A survey on wireless security:
Technical challenges, recent advances, and future trends,” Proc. IEEE,
vol. 104, no. 9, pp. 1727–1765, 2016.

[2] E. Perenda, S. Rajendran, G. Bovet, M. Zheleva, and S. Pollin, “Con-
trastive learning with self-reconstruction for channel-resilient modula-
tion classification,” in Proc. IEEE Conf. Computer Communications
(INFOCOM). IEEE, 2023, pp. 1–10.

[3] Q. Xu, R. Zheng, W. Saad, and Z. Han, “Device fingerprinting in wire-
less networks: Challenges and opportunities,” IEEE Commun. Surveys
Tuts., vol. 18, no. 1, pp. 94–104, 2015.

[4] J. Zhang, G. Shen, W. Saad, and K. Chowdhury, “Radio frequency
fingerprint identification for device authentication in the internet of
things,” IEEE Commun. Mag., 2023.

[5] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, “Deep learning
convolutional neural networks for radio identification,” IEEE Commun.
Mag., vol. 56, no. 9, pp. 146–152, 2018.

[6] J. Zhang, R. Woods, M. Sandell, M. Valkama, A. Marshall, and
J. Cavallaro, “Radio frequency fingerprint identification for narrowband
systems, modelling and classification,” IEEE Trans. Inf. Forensics Secu-
rity, vol. 16, pp. 3974–3987, 2021.

[7] L. Peng, A. Hu, J. Zhang, Y. Jiang, J. Yu, and Y. Yan, “Design of a
hybrid RF fingerprint extraction and device classification scheme,” IEEE
Internet Things J., vol. 6, no. 1, pp. 349–360, 2018.

[8] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis, and
K. Chowdhury, “ORACLE: Optimized radio classification through con-
volutional neural networks,” in Proc. IEEE Conf. Computer Communi-
cations (INFOCOM). IEEE, 2019, pp. 370–378.

[9] G. Shen, J. Zhang, A. Marshall, L. Peng, and X. Wang, “Radio frequency
fingerprint identification for LoRa using spectrogram and CNN,” in Proc.
IEEE Conf. Computer Communications (INFOCOM). IEEE, 2021, pp.
1–10.

[10] A. Al-Shawabka, F. Restuccia, S. D’Oro, T. Jian, B. C. Rendon,
N. Soltani, J. Dy, S. Ioannidis, K. Chowdhury, and T. Melodia, “Ex-
posing the fingerprint: Dissecting the impact of the wireless channel on
radio fingerprinting,” in Proc. IEEE Conf. Computer Communications
(INFOCOM). IEEE, 2020, pp. 646–655.

[11] T. Zhao, X. Wang, and S. Mao, “Cross-domain, scalable, and in-
terpretable rf device fingerprinting,” in Proc. IEEE Conf. Computer
Communications (INFOCOM). IEEE, 2024, pp. 2099–2108.

[12] T. Zhao, N. Wang, S. Mao, and X. Wang, “Few-shot learning and data
augmentation for cross-domain uav fingerprinting,” in Proceedings of
the 30th Annual International Conference on Mobile Computing and
Networking, 2024, pp. 2389–2394.

[13] H. Li, K. Gupta, C. Wang, N. Ghose, and B. Wang, “RadioNet:
Robust deep-learning based radio fingerprinting,” in Proc. IEEE Conf.
on Communications and Network Security (CNS). IEEE, 2022, pp.
190–198.

[14] Z. Chen, Z. Pang, W. Hou, H. Wen, M. Wen, R. Zhao, and T. Tang,
“Cross-device radio frequency fingerprinting identification based on
domain adaptation,” IEEE Trans. Consum. Electron., 2024.

[15] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[17] C. Liu, X. Fu, Y. Wang, L. Guo, Y. Liu, Y. Lin, H. Zhao, and G. Gui,
“Overcoming data limitations: a few-shot specific emitter identification
method using self-supervised learning and adversarial augmentation,”
IEEE Trans. Inf. Forensics Security, 2023.

[18] J. Chen, W.-K. Wong, and B. Hamdaoui, “Unsupervised contrastive
learning for robust RF device fingerprinting under time-domain shift,”
arXiv preprint arXiv:2403.04036, 2024.

[19] J. Jia, Y. Liu, and N. Z. Gong, “Badencoder: Backdoor attacks to pre-
trained encoders in self-supervised learning,” in IEEE Symp. on Security
and Privacy (SP). IEEE, 2022, pp. 2043–2059.

[20] L. Shen, S. Ji, X. Zhang, J. Li, J. Chen, J. Shi, C. Fang, J. Yin,
and T. Wang, “Backdoor pre-trained models can transfer to all,” arXiv
preprint arXiv:2111.00197, 2021.

[21] R. Ning, C. Xin, and H. Wu, “Trojanflow: A neural backdoor attack
to deep learning-based network traffic classifiers,” in Proc. IEEE Conf.
Computer Communications (INFOCOM). IEEE, 2022, pp. 1429–1438.

[22] N. Carlini and A. Terzis, “Poisoning and backdooring contrastive
learning,” arXiv preprint arXiv:2106.09667, 2021.

[23] A. Saha, A. Tejankar, S. A. Koohpayegani, and H. Pirsiavash, “Backdoor
attacks on self-supervised learning,” in Proc. IEEE/CVF Conf. on
Computer Vision and Pattern Recognition, 2022, pp. 13 337–13 346.

[24] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang, “Self-
supervised learning: Generative or contrastive,” IEEE Trans. Knowl.
Data Eng., vol. 35, no. 1, pp. 857–876, 2021.

[25] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[26] M. Shao, P. Deng, D. Li, R. Lin, and H. Sun, “A specific emitter
identification method based on self-supervised representation learning,”
in 2024 IEEE 4th Int. Conf. on Power, Electronics and Computer
Applications (ICPECA). IEEE, 2024, pp. 125–128.

[27] T. Zhao, X. Wang, J. Zhang, and S. Mao, “Explanation-guided back-
door attacks on model-agnostic rf fingerprinting,” in Proc. IEEE Conf.
Computer Communications (INFOCOM). IEEE, 2024, pp. 221–230.

[28] T. Zhao, J. Zhang, S. Mao, and X. Wang, “Explanation-guided backdoor
attacks against model-agnostic rf fingerprinting systems,” IEEE Trans.
Mobile Comput., 2024.

[29] T. Zhao, Z. Tang, T. Zhang, H. Phan, Y. Wang, C. Shi, B. Yuan, and
Y. Chen, “Stealthy backdoor attack on RF signal classification,” in Proc.
IEEE Int. Conf. Computer Communications and Networks (ICCCN).
IEEE, 2023, pp. 1–10.

[30] T. Zheng and B. Li, “Poisoning attacks on deep learning based wireless
traffic prediction,” in Proc. IEEE Conf. Computer Communications
(INFOCOM). IEEE, 2022, pp. 660–669.

[31] H. Xu, P. Zhou, R. Tan, M. Li, and G. Shen, “Limu-bert: Unleashing
the potential of unlabeled data for imu sensing applications,” in Proc.
of the 19th ACM Conf. on Embedded Networked Sensor Systems, 2021,
pp. 220–233.

[32] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
autoencoders are scalable vision learners,” in Proc. IEEE/CVF Conf. on
computer vision and pattern recognition, 2022, pp. 16 000–16 009.

[33] H. Qian, T. Tian, and C. Miao, “What makes good contrastive learning
on small-scale wearable-based tasks?” in Proc. ACM SIGKDD Conf. on
knowledge discovery and data mining, 2022, pp. 3761–3771.

[34] E. Eldele, M. Ragab, Z. Chen, M. Wu, C. K. Kwoh, X. Li, and C. Guan,
“Time-series representation learning via temporal and contextual con-
trasting,” arXiv preprint arXiv:2106.14112, 2021.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. on computer vision and pattern
recognition, 2016, pp. 770–778.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[37] S. Hanna, S. Karunaratne, and D. Cabric, “Open set wireless transmitter
authorization: Deep learning approaches and dataset considerations,”
IEEE Trans. on Cogn. Commun. Netw., vol. 7, no. 1, pp. 59–72, 2020.

[38] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the ORBIT
radio grid testbed for evaluation of next-generation wireless network
protocols,” in Proc. IEEE Wireless Communications and Networking
Conference, vol. 3. IEEE, 2005, pp. 1664–1669.

[39] S. Hanna, S. Karunaratne, and D. Cabric, “WiSig: A large-scale wifi
signal dataset for receiver and channel agnostic RF fingerprinting,” IEEE
Access, vol. 10, pp. 22 808–22 818, 2022.

[40] A. Elmaghbub and B. Hamdaoui, “LoRa device fingerprinting in the
wild: Disclosing RF data-driven fingerprint sensitivity to deployment
variability,” IEEE Access, vol. 9, pp. 142 893–142 909, 2021.

[41] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc. 8th
IEEE Int. Conf. Data Mining. IEEE, 2008, pp. 413–422.

[42] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“Strip: A defence against trojan attacks on deep neural networks,” in
Proc. 35th Annual Computer Security Applications Conf., 2019, pp. 113–
125.

[43] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against
backdooring attacks on deep neural networks,” in Proc. Int. Symp.
Research in Attacks, Intrusions, and Defenses. Springer, 2018, pp.
273–294.


	Introduction
	Background: SSL
	Related Work
	RF Fingerprinting PTMs.
	Backdoor Attacks.

	Attack Scenario and Threat Model
	Attack Scenario Description
	Threat Model
	Attacker's Goal
	Attacker's Capability


	Backdoor Methodology
	Overview
	Backdoor Design
	Substitute Dataset
	Predefined Triggers
	Output Representations

	Backdoor Training

	Experimental Evaluation and Analysis
	Experiment Setup
	Victim PTMs
	Datasets

	Evaluation Metrics
	Effectiveness
	Stealthiness
	Robustness

	Stealthiness Evaluation
	Model Utility
	Trigger Stealthiness

	Effectiveness Evaluation
	Robustness Evaluation
	Impacts of Different Modules
	PTM Size and Trigger-POR Pairs
	PORs Design Comparison


	Conclusion
	References

