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Auditing data accesses helps preserve privacy and ensures accountability by allowing one to determine who accessed (potentially

sensitive) information. A prior formal definition of register auditability was based on the values returned by read operations, without

accounting for cases where a reader might learn a value without explicitly reading it or gain knowledge of data access without being an

auditor.

This paper introduces a refined definition of auditability that focuses on when a read operation is effective, rather than relying on

its completion and return of a value. Furthermore, we formally specify the constraints that prevent readers from learning values they

did not explicitly read or from auditing other readers’ accesses.

Our primary algorithmic contribution is a wait-free implementation of amulti-writer, multi-reader register that tracks effective reads

while preventing unauthorized audits. The key challenge is ensuring that a read is auditable as soon as it becomes effective, which we

achieve by combining value access and access logging into a single atomic operation. Another challenge is recording accesses without

exposing them to readers, which we address using a simple encryption technique (one-time pad).

We extend this implementation to an auditable max register that tracks the largest value ever written. The implementation deals

with the additional challenge posed by the max register semantics, which allows readers to learn prior values without reading them.

The max register, in turn, serves as the foundation for implementing an auditable snapshot object and, more generally, versioned

types. These extensions maintain the strengthened notion of auditability, appropriately adapted from multi-writer, multi-reader

registers.

CCS Concepts: • Theory of computation→ Distributed algorithms.

Additional Key Words and Phrases: Auditability, Wait-free implementation, Synchronization power, Distributed objects, Shared

memory

1 INTRODUCTION

Auditing is a powerful tool for determining who had access to which (potentially sensitive) information. Auditability is

crucial for preserving data privacy, as it ensures accountability for data access. This is particularly important in shared,

remotely accessed storage systems, where understanding the extent of a data breach can help mitigate its impact.

1.1 Auditable Read/Write Registers

Auditability was introduced by Cogo and Bessani [8] in the context of replicated read/write registers. An auditable

register extends traditional read and write operations with an additional audit operation that reports which register

values have been read and by whom. The auditability definition by Cogo and Bessani is tightly coupled with their

multi-writer, multi-reader register emulation in a replicated storage system using an information-dispersal scheme.

An implementation-agnostic auditability definition was later proposed [5], based on collectively linearizing read,

write, and audit operations. This work also analyzes the consensus number required for implementing auditable

single-writer registers, showing that it scales with the number of readers and auditors. However, this definition assumes

that a reader only gains access to values that are explicitly returned by its read operations. This assumption does not
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account for situations where a reader learns the register’s value before it has officially returned, making the read

operation effective. Hence, a notable limitation of this definition is that a process with an effective read can refuse to

complete the operation, thereby avoiding detection by the audit mechanism.

Prior work has also overlooked the risk of non-auditors learning values without explicitly reading them or inferring

accesses of other processes. Even when processes follow their prescribed algorithms without active misbehavior, existing

auditable register implementations allow an “honest but curious” process to learn more than what its read operations

officially return. Additionally, extending auditability beyond read/write registers remained an unexplored territory.

1.2 Our Contributions and Techniques

In this work, we propose a stronger form of auditability for read/write registers, ensuring that all effective reads are

auditable and that non-auditors cannot infer the values read by other processes. We further extend these properties to

other data structures and propose new algorithms that fulfill these guarantees.

We define new properties that ensure operations do not leak information when processes are honest-but-curious

[13] (see Section 2). Firstly, we introduce an implementation-agnostic definition of an effective operation, which is

applicable, for instance, to read operations in an auditable register. An operation is effective if a process has determined

its return value in all executions indistinguishable to it. Secondly, we define uncompromised operations, saying, for

example, that in a register, readers do not learn which values were read by other readers or gain information about

values they do not read. This definition is extended beyond registers. For arbitrary data objects, we specify that an

operation is uncompromised if there is an indistinguishable execution where the operation does not occur.

Enforcing uncompromised operations in auditable objects poses a challenge since it is, in a sense, antithetical to

securely logging data accesses. Our primary algorithmic contribution (Section 3) is a wait-free, linearizable implementa-

tion of an auditable multi-writer, multi-reader register. Our implementation ensures that all effective reads are auditable

while preventing information leaks: reads are uncompromised by other readers, and cannot learn previous values —

unless they actually read them. As a consequence, the implementation is immune to a honest-but-curious attacker.

To achieve these properties, our algorithm carefully combines value access with access logging. Additionally, access

logs are encrypted using one-time pads known only to writers and auditors. The subtle synchronization required in

our implementation is achieved by using compare&swap and fetch&xor (in addition to ordinary reads and writes).

Such strong synchronization primitives are necessary since even simple single-writer auditable registers can solve

consensus [5]. The correctness proof of the algorithm, of basic linearizability properties as well as of advanced auditability

properties, is intricate and relies on a careful linearization function.

Our second algorithmic contribution is an elegant extension of the register implementation to other commonly-used

objects. We first extend our framework to a wait-free, linearizable implementation of an auditable multi-writer, multi-

reader max register [2], which returns the largest value ever written. The semantics of a max register, together with

tracking the number of operations applied to it (needed for logging accesses), may leak information to the reader about

values it has not effectively read. We avoid this leakage by adding a random nonce, serving to introduce some noisiness,

to the values written. (See Section 4.) As before, all effective reads are auditable, and no additional information is leaked.

In Section 5, we demonstrate how an auditable max register enables auditability in other data structures. Specifically,

we implement auditable extension of atomic snapshots [1] and more generally, of versioned types [11]. Many useful

objects, such as counters and logical clocks, are naturally versioned or can be made so with minimal modification.
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1.3 Related Work

Cogo and Bessani [8] present an algorithm to implement an auditable regular register, using 𝑛 ≥ 4𝑓 +1 atomic read/write

shared objects, 𝑓 of which may fail by crashing. Their high-level register implementation relies on information dispersal

schemes, where the input of a high-level write is split into several pieces, each written in a different low-level shared

object. Each low-level shared object keeps a trace of each access, and in order to read, a process has to collect sufficiently

many pieces of information in many low-level shared objects, which allows to audit the read.

In asynchronous message-passing systems where 𝑓 processes can be Byzantine, Del Pozzo, Milani and Rapetti [10]

study the possibility of implementing an atomic auditable register, as defined by Cogo and Bessani, with fewer than

4𝑓 + 1 servers. They prove that without communication between servers, auditability requires at least 4𝑓 + 1 servers, 𝑓
of which may be Byzantine. They also show that allowing servers to communicate with each other admits an auditable

atomic register with optimal resilience of 3𝑓 + 1.
Attiya, Del Pozzo, Milani, Pavloff and Rapetti [5] provides the first implementation-agnostic auditability definition.

Using this definition they show that auditing adds power to reading and writing, as it allows processes to solve consensus,

implying that auditing requires strong synchronization primitives. They also give several implementations that use

non-universal primitives (like swap and fetch&add), for a single writer and either several readers or several auditors

(but not both).

When faulty processes are malicious, accountability [6, 7, 14, 18] aims to produce proofs of misbehavior in instances

where processes deviate, in an observable way, from the prescribed protocol. This allows the identification and removal

of malicious processes from the system as a way to clean the system after a safety violation. In contrast, auditability

logs the processes’ actions and lets the auditor derive conclusions about the processes’ behavior.

In addition to tracking access to shared data, it might be desirable to give to some designated processes the ability to

grant and/or revoke access rights to the data. Frey, Gestin and Raynal [12] specify and investigate the synchronization

power of shared objects called AllowList and DenyList, allowing a set of manager processes to grant or revoke access

rights for a given set of resources.

2 DEFINITIONS

Basic notions. We use a standard model, in which a set of processes 𝑝1, . . . , 𝑝𝑛 , communicate through a shared

memory consisting of base objects. The base objects are accessed with primitive operations. In addition to atomic reads

and writes, our implementations use two additional standard synchronization primitives: compare&swap(𝑅, 𝑜𝑙𝑑, 𝑛𝑒𝑤)
atomically compares the current value of 𝑅 with 𝑜𝑙𝑑 and if they are equal, replaces the current value of 𝑅 with 𝑛𝑒𝑤 ;

fetch&xor(𝑅, 𝑎𝑟𝑔) atomically replaces the current value of 𝑅 with a bitwise XOR of the current value and 𝑎𝑟𝑔.1

An implementation of a (high-level) object 𝑇 specifies a program for each process and each operation of the object 𝑇 ;

when receiving an invocation of an operation, the process takes steps according to this program. Each step by a process

consists of some local computation, followed by a single primitive operation on the shared memory. The process may

change its local state after a step, and it may return a response to the operation of the high-level object.

Implemented (high-level) operations are denoted with capital letters, e.g., read, write, audit, while primitives

applied to base objects, appear in normal font, e.g., read and write.

A configuration 𝐶 specifies the state of every process and of every base object. An execution 𝛼 is an alternating

sequence of configurations and events, starting with an initial configuration; it can be finite or infinite. For an execution

1fetch&xor is part of the ISO C++ standard since C++11 [9].
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𝛼 and a process 𝑝 , 𝛼 |𝑝 is the projection of 𝛼 on events by 𝑝 . For two executions 𝛼 and 𝛽 , we write 𝛼
𝑝∼ 𝛽 when 𝛼 |𝑝 = 𝛽 |𝑝 ,

and say that 𝛼 and 𝛽 are indistinguishable to process 𝑝 .

An operation 𝑜𝑝 completes in an execution 𝛼 if 𝛼 includes both the invocation and response of 𝑜𝑝; if 𝛼 includes the

invocation of 𝑜𝑝 , but no matching response, then 𝑜𝑝 is pending. An operation 𝑜𝑝 precedes another operation 𝑜𝑝′ in 𝛼 if

the response of 𝑜𝑝 appears before the invocation of 𝑜𝑝′ in 𝛼 .

A history 𝐻 is a sequence of invocation and response events; no two events occur at the same time. The notions of

complete, pending and preceding operations extend naturally to histories.

The standard correctness condition for concurrent implementations is linearizability [15]: intuitively, it requires that

each operation appears to take place instantaneously at some point between its invocation and its response. Formally:

Definition 1. Let A be an implementation of an object 𝑇 . An execution 𝛼 of A is linearizable if there is a sequential

execution 𝐿 (a linearization of the operations on 𝑇 in 𝛼) such that:

• 𝐿 contains all complete operations in 𝛼 , and a (possibly empty) subset of the pending operations in 𝛼 (completed

with response events),

• If an operation 𝑜𝑝 precedes an operation 𝑜𝑝′ in 𝛼 , then 𝑜𝑝 appears before 𝑜𝑝′ in 𝐿, and

• 𝐿 respects the sequential specification of the high-level object.

A is linearizable if all its executions are linearizable.

An implementation is lock-free if, whenever there is a pending operation, some operation returns in a finite number

of steps of all processes. Finally, an implementation is wait-free if, whenever there is a pending operation by process 𝑝 ,

this operation returns in a finite number of steps by 𝑝 .

Auditable objects. An auditable register supports, in addition to the standard read and write operations, also an

audit operation that reports which values were read by each process. Formally, an audit has no parameters and it

returns a set of pairs, ( 𝑗, 𝑣), where 𝑗 is a process id, and 𝑣 is a value of the register. A pair ( 𝑗, 𝑣) indicates that process 𝑝 𝑗
has read the value 𝑣 .

Formally, the sequential specification of an auditable register enforces, in addition to the requirement on read and

write operations, that a pair appears in the set returned by an audit operation if and only if it corresponds to a

preceding read operation. In prior work [5], this if and only if property was stated as a combination of two properties

of the sequential execution: accuracy, if a read is in the response set of the audit, then the read is before the audit

(the only if part), and completeness, any read before the audit is in its response set (the if part).

We wish to capture in a precise, implementation-agnostic manner, the notion of an effective operation, which we will

use to ensure that an audit operation will report all effective operations. Assume an algorithm A that implements an

object 𝑇 . The next definition characterizes, in an execution in which a process 𝑝 invokes an operation, a point at which

𝑝 knows the value that the operation returns, even if the response event is not present.

Definition 2 (effective operation). An operation 𝑜𝑝 on object 𝑇 by process 𝑝 is 𝑣-effective after a finite execution prefix 𝛼

if, for every execution prefix 𝛽 indistinguishable from 𝛼 to 𝑝 (i.e., such that 𝛼
𝑝∼ 𝛽), 𝑜𝑝 returns 𝑣 in every extension 𝛽′ of 𝛽

in which 𝑜𝑝 completes.

Observe that in this definition, 𝛼 itself is also trivially an execution prefix indistinguishable to 𝑝 , and hence in any

extension 𝛼 ′ in which 𝑜𝑝 completes returns value 𝑣 . Observe as well that 𝑜𝑝 could already be completed in 𝛼 or not be

invoked (yet). However, the most interesting case is when 𝑜𝑝 is pending in 𝛼 .
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We next define the property that an operation on 𝑇 is not compromised in an execution prefix by a process. As we

will see, in our register algorithm, a read by 𝑝 is linearized as soon as it becomes 𝑣-effective, in a such way that in any

extension including a complete audit, 𝑝 is reported as a reader of 𝑣 by this audit. This, however, does not prevent a

curious reader 𝑝 from learning another value 𝑣 ′ for which none of its read operations is 𝑣 ′-effective. In such a situation,

the write operation with input 𝑣 ′ is said to be compromised by 𝑝 . The next definition states that this can happen only

if a read operation by 𝑝 becomes 𝑣 ′-effective. The definition is general, and applies to any object.

Definition 3 (uncompromised operation). Consider a finite execution prefix 𝛼 and an operation 𝑜𝑝 by process 𝑞 whose

invocation is in 𝛼 . We say that 𝑜𝑝 is uncompromised in 𝛼 by process 𝑝 if there is another finite execution 𝛽 such that

𝛼
𝑝∼ 𝛽 and 𝑜𝑝 is not invoked in 𝛽 .

A value 𝑣 is uncompromised by a reader 𝑝 if allwrite(𝑣) operations are uncompromised by 𝑝 , unless 𝑝 has an effective

read returning 𝑣 .

One-time pads. To avoid data leakage, we employ one-time pads [17, 19]. Essentially, a one-time pad is a random

string—known only to the writers and auditors—with a bit for each reader. To encrypt a message𝑚,𝑚 is bitwise XORed

with the pad obtaining a ciphertext 𝑐 . Our algorithm relies on an infinite sequence of one-time pads. A one-time pad is

additively malleable, i.e., when 𝑓 is an additive function, it is possible to obtain a valid encryption of 𝑓 (𝑚) by applying

a corresponding function 𝑓 ′ to the ciphertext 𝑐 corresponding to𝑚.

Attacks. We consider an honest-but-curious (aka, semi-honest and passive) [13] attacker that interacts with the

implementation of 𝑇 by performing operations, and adheres to its code. It may however stop prematurely and perform

arbitrary local computations on the responses obtained from base objects. For instance, for an auditable register, the

attacker can attempt to infer in a read operation the current or a past value of the register, without being reported in

audit operations.

3 AN AUDITABLE MULTI-WRITER, MULTI-READER REGISTER

We present a wait-free and linearizable implementation of a multi-writer, multi-reader register (Alg. 1), in which

effective reads are auditable. Furthermore, the implementation does not compromise other reads, as while performing a

read operation, a process is neither able to learn previous values, nor whether some other process has read the current

value. We ensure that a read operation is linearized as soon as, and not before it becomes effective. Audits hence report

exactly those reads that have made enough progress to infer the current value of the register. As a consequence, the

implementation is immune to an honest-but-curious attacker.

3.1 Description of the Algorithm

The basic idea of the implementation is to store in a single register 𝑅, the current value and a sequence number, as well

as the set of its readers, encoded as a bitset. Past values, as well as their reader set, are stored in other registers (arrays

𝑉 and 𝐵 in the code, indexed by sequence numbers), so auditors can retrieve them. Changing the current value from 𝑣

to𝑤 consists in first copying 𝑣 and its reader set to the appropriate registers 𝑉 [𝑠] and 𝐵 [𝑠], respectively (where 𝑠 is 𝑣 ’s

sequence number), before updating 𝑅 to a triple formed by𝑤 , a new sequence number, and an empty reader set. This is

done with a compare&swap in order not to miss changes to the reader set occurring between the copy and the update.

An auditor starts by reading 𝑅, obtaining the current value𝑤 , its set of readers, and its sequence number 𝑠 . Then it goes

over arrays 𝐵 and 𝑉 to retrieve previous values written and the processes that have read them.

5



Hagit Attiya, Antonio Fernández Anta, Alessia Milani, Alexandre Rapetti, and Corentin Travers

In an initial design of the implementation, a read operation obtains from 𝑅 the current value 𝑣 and the reader set,

adding locally the ID of the reader to this set before writing it back to 𝑅, using compare&swap. This simple design is

easy to linearize (each operation is linearized with a compare&swap or a read applied to 𝑅). However, besides the fact

that read and write are only lock-free, this design has two drawbacks regarding information leaking:

First, a reader can read the current value without being reported by audit operations, simply by not writing to the

memory after reading 𝑅, when it already knows the current value 𝑣 of the register. This step does not modify the state

of 𝑅 (nor of any other shared variables), and it thus cannot be detected by any other operation. Therefore, by following

its code, but pretending to stop immediately after accessing 𝑅, a reader is able to know the current value without ever

being reported by audit operations.

Second, each time 𝑅 is read by some process 𝑝 , it learns which readers have already read the current value. Namely,

while performing a read operation, a process can compromise other reads.

Alg. 1 presents the proposed implementation of an auditable register. We deflect the “crash-simulating” attack by

having each read operation apply at most one primitive to 𝑅 that atomically returns the content of 𝑅 and updates

the reader set. To avoid partial auditing, the reader set is encrypted, while still permitting insertion by modifying the

encrypted set (i.e., a light form of homomorphic encryption.). Inserting the reader ID into the encrypted set should

be kept simple, as it is part of an atomic modification of 𝑅. We apply to the reader set a simple cipher (the one-time

pad [17, 19]), and benefit from its additive malleability. Specifically, the IDs of the readers of the current value are

tracked by the last 𝑚 bits of 𝑅, where 𝑚 is the number of readers. When a new value with sequence number 𝑠 is

written in 𝑅, these bits are set to a random𝑚-bit string, rand𝑠 , only known by writers and auditors. This corresponds

to encrypting the empty set with a random mask. Process 𝑝𝑖 is inserted in the set by XORing the 𝑖th tracking bit with 1.

Therefore, retrieving the value stored in 𝑅 and updating the reader set can be done atomically by applying fetch&xor.

Determining set-membership requires the mask rand𝑠 , known only to auditors and writers.

The one-time pad, as its name indicates, is secure as long as each mask is used at most once. This means we need to

make sure that different sets encrypted with the same mask rand𝑠 are never observed by a particular reader, otherwise,

the reader may infer some set member by XORing the two ciphered sets. To ensure that, we introduce an additional

register SN, which stores only the sequence number of the current value. A read operation by process 𝑝𝑖 starts by

reading SN, and, if it has not changed since the previous read by the same process, immediately returns the latest

value read. Otherwise, 𝑝𝑖 obtains the current value 𝑣 and records itself as one of its readers by applying a fetch&xor(2𝑖 )

operation to 𝑅. This changes the 𝑖th tracking bit, leaving the rest of 𝑅 intact. Finally, 𝑝𝑖 updates SN to the current

sequence number read from 𝑅, thus ensuring that 𝑝𝑖 will not read 𝑅 again, unless its sequence number field is changed.

This is done with a compare&swap to avoid writing an old sequence number in 𝑆𝑁 .

Writing a new value𝑤 requires retrieving and storing the IDs of the readers of the current value 𝑣 for future audit,

writing𝑤 , the new sequence number 𝑠 + 1, and an empty reader set encrypted with a fresh mask rand𝑠+1 to 𝑅 before

announcing the new sequence number in SN . To that end, 𝑝 𝑗 first locally gets a new sequence number 𝑠 + 1, where
𝑠 is read from 𝑆𝑁 . It then repeatedly reads 𝑅, deciphers the tracking bits and updates shared registers 𝑉 [𝑠] and 𝐵 [𝑠]
accordingly until it succeeds in changing it to (𝑠 + 1,𝑤, rand𝑠+1) or it discovers a sequence number 𝑠′ ≥ 𝑠 + 1 in 𝑅. In

the latter case, a concurrent write(𝑤 ′) has succeeded, and may be seen as occurring immediately after 𝑝 𝑗 ’s operation,

which therefore can be abandoned. In the absence of a concurrent write, the compare&swap applied to 𝑅 may fail as

the tracking bits are modified by a concurrent read. This happens at most𝑚 times, as each reader applies at most one

fetch&xor to 𝑅 while its sequence number field does not change. Whether or not 𝑝 𝑗 succeeds in modifying 𝑅, we make
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sure that before write(𝑤 ) terminates, the sequence number 𝑆𝑁 is at least as large as the new sequence number 𝑠 + 1. In
this way, after that, write operations overwrite the new value𝑤 and read operations return𝑤 or a more recent value.

Because SN and 𝑅 are not updated atomically, their sequence number fields may differ. In fact, an execution of Alg. 1

alternates between normal 𝐸 phases, in which both sequence numbers are equal, and transition 𝐷 phases in which they

differ. A transition phase is triggered by a write(𝑤 ) with sequence number 𝑠 and ends when the write completes

or it is helped to complete by updating 𝑆𝑁 to 𝑠 . Care must be taken during a 𝐷 phase, as some read, which is silent,

may return the old value 𝑣 , while another, direct, read returns the value𝑤 being written. For linearization, we push

back silent read before the compare&swap applied to 𝑅 that marks the beginning of phase 𝐷 , while a direct read is

linearized with its fetch&xor applied to 𝑅.

An audit starts by reading 𝑅, thus obtaining the current value 𝑣 , and its sequence number 𝑠 ; it is linearized with this

step. It then returns the set of readers for 𝑣 (inferred from the tracking bits read from 𝑅) as well as for each previously

written value (which can be found in the registers 𝑉 [𝑠′] and 𝐵 [𝑠′], for 𝑠′ < 𝑠 .). In a 𝐷 phase, a silent read operation

may start after an audit reads 𝑅 while being linearized before this step, so we make sure that the 𝐷 phase ends before

the audit returns. This is done, as in direct read and write, by making sure that SN is at least as large as the sequence

number 𝑠 read from 𝑅. In this way, a silent read (this also holds for a write that is immediately overwritten) whose

linearization point is pushed back before that of an audit is concurrent with this audit, ensuring that the linearization

order respects the real time order between these operations.

Suppose that an audit by some process 𝑝𝑖 reports 𝑝 𝑗 as a reader of some value 𝑣 . This happens because 𝑝𝑖 directly

identifies 𝑝 𝑗 as a reader of 𝑣 from the tracking bits in 𝑅, or indirectly by reading the registers 𝑉 [𝑠] and 𝐵 [𝑠], where
𝑉 [𝑠] = 𝑣 . In both cases, in a read instance 𝑜𝑝 , reader 𝑝 𝑗 has previously applied a fetch&xor to 𝑅 while its value field is

𝑣 . Since the response of this fetch&xor operation completely determines the return value of 𝑜𝑝 , independently of future

or past steps taken by 𝑝 𝑗 , 𝑜𝑝 is effective. Therefore, only effective operations are reported by audit, and if an audit

that starts after 𝑜𝑝 is effective, it will discover that 𝑝 𝑗 read 𝑣 , again either directly in the tracking bits of 𝑅, or indirectly

after the reader set has been copied to 𝐵 [𝑠].

3.2 Proof of Correctness

Partitioning into phases. We denote by 𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙 and 𝑅.𝑏𝑖𝑡𝑠 the sequence number, value and 𝑚-bits string, re-

spectively, stored in 𝑅. We start by observing that the pair of values in (𝑅.𝑠𝑒𝑞, 𝑆𝑁 ) takes on the following sequence:

(0, 0), (1, 0), (1, 1), . . . , (𝑥, 𝑥 − 1), (𝑥, 𝑥), . . . Indeed, when the state of the implemented register changes to a new value

𝑣 , this value is written to 𝑅 together with a sequence number 𝑥 + 1, where 𝑥 is the current value of 𝑆𝑁 . 𝑆𝑁 is then

updated to 𝑥 + 1, and so on.

Initially, (𝑅.𝑠𝑒𝑞, 𝑆𝑁 ) = (0, 0). By invariants that can be proved on the algorithm, the successive values of 𝑅.𝑠𝑒𝑞 and 𝑆𝑁

are 0, 1, 2, . . ., 𝑆𝑁 ≥ 𝑥 − 1 when 𝑅.𝑠𝑒𝑞 is changed to 𝑥 , and when 𝑆𝑁 is changed to 𝑥 , 𝑅.𝑠𝑒𝑞 has previously been updated

to 𝑥 . Therefore, the sequence of successive values of the pair (𝑅.𝑠𝑒𝑞, 𝑆𝑁 ) is (0, 0), (1, 0), (1, 1), . . . , (𝑥, 𝑥 − 1), (𝑥, 𝑥), . . ..
We can therefore partition any execution into intervals 𝐸𝑥 and 𝐷𝑥 (for 𝐸qual and 𝐷ifferent), so that 𝑅.𝑠𝑒𝑞 = 𝑥 and

𝑆𝑁 = 𝑥 during 𝐸𝑥 , and 𝑅.𝑠𝑒𝑞 = 𝑥 and 𝑆𝑁 = 𝑥 − 1 during 𝐷𝑥 :

Lemma 1. A finite execution 𝛼 can be written, for an integer 𝑘 ≥ 0, either as 𝐸0𝜌1𝐷1𝜎1𝐸1 . . . 𝜌𝑘𝐷𝑘𝜎𝑘𝐸𝑘 or as

𝐸0𝜌1𝐷1𝜎1𝐸1 . . . 𝜎𝑘−1 𝐸𝑘−1𝜌𝑘𝐷𝑘 , where:

7
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Algorithm 1 Multi-writer,𝑚-reader auditable register implementation

shared registers:
R: a register supporting read, compare&swap, and

fetch&xor, initially (0, 𝑣0, rand0)
⊲ store a triple (sequence number, value,𝑚-bits string)

SN : a register supporting read and compare&swap,
initially 0

𝑉 [0.. + ∞] registers, initially [⊥, . . . ,⊥]
𝐵 [0.. + ∞][0..𝑚 − 1] Boolean registers, initially,

𝐵 [𝑠, 𝑗] = false for every (𝑠, 𝑗) : 𝑠 ≥ 0, 0 ≤ 𝑗 < 𝑚.

local variables: reader
𝑝𝑟𝑒𝑣_𝑣𝑎𝑙, 𝑝𝑟𝑒𝑣_𝑠𝑛: latest value read (⊥ initially)

and its sequence number (−1 initially)
local variables common to writers and auditors

rand0, rand1, . . .: sequence of random𝑚-bit strings

local variables: auditor
𝐴: audit set, initially ∅;
𝑙𝑠𝑎: latest “audited” seq. number, initially 0

1: function read( ) ⊲ code for reader 𝑝 𝑗 , 0 ≤ 𝑗 < 𝑚

2: 𝑠𝑛 ← SN .read()
3: if 𝑠𝑛 = 𝑝𝑟𝑒𝑣_𝑠𝑛 then return 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙

⊲ no new write since latest read operation

4: (𝑠𝑛, 𝑣𝑎𝑙, _) ← 𝑅.fetch&xor(2𝑗 )
⊲ fetch current value and insert 𝑗 in reader set

5: 𝑆𝑁 .compare&swap(𝑠𝑛 − 1, 𝑠𝑛) ⊲ help complete 𝑠𝑛th write

6: 𝑝𝑟𝑒𝑣_𝑠𝑛 ← 𝑠𝑛; 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 ← 𝑣𝑎𝑙 ; return 𝑣𝑎𝑙

7: function write(𝑣) ⊲ code for writer 𝑝𝑖 , 𝑖 ∉ {0, . . . ,𝑚 − 1}
8: 𝑠𝑛 ← SN .read() + 1
9: repeat
10: (𝑙𝑠𝑛, 𝑙𝑣𝑎𝑙, 𝑏𝑖𝑡𝑠) ← 𝑅.read()
11: if 𝑙𝑠𝑛 ≥ 𝑠𝑛 then break
12: 𝑉 [𝑙𝑠𝑛] .write(𝑙𝑣𝑎𝑙);
13: for each 𝑗 : 𝑏𝑖𝑡𝑠 [ 𝑗] ≠ rand𝑙𝑠𝑛 [ 𝑗] do

𝐵 [𝑙𝑠𝑛] [ 𝑗] .write(𝑡𝑟𝑢𝑒)
14: until 𝑅.compare&swap((𝑙𝑠𝑛, lval, 𝑏𝑖𝑡𝑠), (𝑠𝑛, 𝑣, rand𝑠𝑛))
15: 𝑆𝑁 .compare&swap(𝑠𝑛 − 1, 𝑠𝑛); return
16: function audit( )

17: (𝑟𝑠𝑛, 𝑟𝑣𝑎𝑙, 𝑟𝑏𝑖𝑡𝑠) ← 𝑅.read()
18: for 𝑠 = 𝑙𝑠𝑎, 𝑙𝑠𝑎 + 1, . . . , 𝑟𝑠𝑛 − 1 do
19: 𝑣𝑎𝑙 ← 𝑉 [𝑠] .read();
20: 𝐴← 𝐴 ∪ {( 𝑗, 𝑣𝑎𝑙) : 0 ≤ 𝑗 < 𝑚, 𝐵 [𝑠] [ 𝑗] .read() = true}
21: 𝐴← 𝐴 ∪ {( 𝑗, 𝑟𝑣𝑎𝑙) : 0 ≤ 𝑗 < 𝑚,𝑏𝑖𝑡𝑠 [ 𝑗] ≠ rand𝑟𝑠𝑛 [ 𝑗]}
22: 𝑙𝑠𝑎 ← 𝑠𝑛; 𝑆𝑁 .compare&swap(𝑟𝑠𝑛 − 1, 𝑟𝑠𝑛); return 𝐴

• 𝜌ℓ and 𝜎ℓ are the steps that respectively change the value of 𝑅.𝑠𝑒𝑞 and 𝑆𝑁 from ℓ − 1 to ℓ (𝜌ℓ is a successful

𝑅.compare&swap, line 14, 𝜎ℓ is also a successful SN .compare&swap, applied within a read, line 5, awrite, line 15,

or an audit, line 22).

• in any configuration in 𝐸ℓ , 𝑅.𝑠𝑒𝑞 = 𝑆𝑁 = ℓ , and in any configuration in 𝐷ℓ , 𝑅.𝑠𝑒𝑞 = ℓ = 𝑆𝑁 + 1.
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Termination. It is clear that audit and read operations are wait-free. We prove that write operations are also

wait-free, by showing that the repeat loop (lines 9-14) terminates after at most𝑚 + 1 iterations. This holds since each
reader may change 𝑅 at most once (by applying a 𝑅.fetch&xor, line 4) while 𝑅.𝑠𝑒𝑞 remains the same.

Lemma 2. Every operation terminates within a finite number of its own steps.

Proof sketch. The lemma clearly holds for read and audit operations. Let𝑤𝑜𝑝 be awrite operation, and assume,

towards a contradiction, that it does not terminate. Let 𝑠𝑛 = 𝑥 + 1 be the sequence number obtained at the beginning of

𝑤𝑜𝑝 at line 8, where 𝑥 is the value read from 𝑆𝑁 . We denote by (𝑠𝑟, 𝑣𝑟, 𝑏𝑟 ) the triple read from 𝑅 in the first iteration

of the repeat loop. It can be shown that 𝑥 ≤ 𝑠𝑟 . As 𝑠𝑟 < 𝑠𝑛 = 𝑥 + 1 (otherwise the loop breaks in the first iteration at

line 11, and the operation terminates), we have 𝑠𝑟 = 𝑥 .

As𝑤𝑜𝑝 does not terminate, in particular the compare&swap applied to 𝑅 at the end of the first iteration fails. Let

(𝑠𝑟 ′, 𝑣𝑟 ′, 𝑏𝑟 ′) be the value of 𝑅 immediately before this step is applied. This can be used to show that if 𝑠𝑟 ′ ≠ 𝑠𝑟 or

𝑣𝑟 ′ ≠ 𝑣𝑟 , then 𝑠𝑟 ′ > 𝑠𝑟 . Therefore, 𝑤𝑜𝑝 terminates in the next iteration as the sequence number read from 𝑅 in that

iteration is greater than or equal to 𝑠𝑛 (line 11). It thus follows that 𝑠𝑟 = 𝑠𝑟 ′, 𝑣𝑟 = 𝑣𝑟 ′, and 𝑏𝑟 ≠ 𝑏𝑟 ′: at least one reader

applies a fetch&xor to 𝑅 during the first iteration of repeat loop.

The same reasoning applies to the next iterations of the repeat loop. In each of them, the sequence number and

the value stored in 𝑅 are the same, 𝑠𝑟 and 𝑣𝑟 respectively (otherwise the loop would break at line 11), and thus a

reader applies a fetch&xor to 𝑅 before the compare&swap of line 14 (otherwise the compare&swap succeeds and𝑤𝑜𝑝

terminates). But it can be shown that each reader applies at most one fetch&xor to 𝑅 while it holds the same sequence

number, which is a contradiction. □

Linearizability. Let 𝛼 be a finite execution, and 𝐻 be the history of the read, write, and audit operations in 𝛼 .

We classify and associate a sequence number with some of read and write operations in 𝐻 as explained next. Some

operations that did not terminate are not classified, and they will later be discarded.

• A read operation 𝑜𝑝 is silent if it reads 𝑥 = 𝑝𝑟𝑒𝑣_𝑠𝑛 at line 2. The sequence number 𝑠𝑛(𝑜𝑝) associated with a

silent read operation 𝑜𝑝 is the value 𝑥 returned by the read from SN . Otherwise, if 𝑜𝑝 applies a fetch&xor to 𝑅,

it is said to be direct. Its sequence number 𝑠𝑛(𝑜𝑝) is the one fetched from 𝑅 (line 4).

• Awrite operation 𝑜𝑝 is visible if it applies a successful compare&swap to 𝑅 (line 14). Otherwise, if 𝑜𝑝 terminates

without applying a successful compare&swap on 𝑅 (by exiting the repeat loop from the break statement, line 11),

it is said to be silent. For both cases, the sequence number 𝑠𝑛(𝑜𝑝) associated with 𝑜𝑝 is 𝑥 + 1, where 𝑥 is the

value read from 𝑆𝑁 at the beginning of 𝑜𝑝 (line 8).

Note that all terminated read or write operations are classified as silent, direct, or visible. An audit operation 𝑜𝑝 is

associated with the sequence number read from 𝑅 at line 17.

We define a complete history 𝐻 ′ by removing or completing the operations that do not terminate in 𝛼 , as follows:

Among the operations that do not terminate, we remove every audit and every unclassified read or write. For a

silent read that does not terminate in 𝛼 , we add a response immediately after SN is read at line 2. The value returned is

𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 , that is the value returned by the previous read by the same process. For each direct read operation 𝑜𝑝 that

does not terminate in 𝛼 , we add a response with value 𝑣 defined as follows. Since 𝑜𝑝 is direct, it applies a fetch&xor on

𝑅 that returns a triple (𝑠𝑟, 𝑣𝑟, 𝑏𝑟 ); 𝑣 is the value 𝑣𝑟 in that triple. In 𝐻 ′, we place the response of non-terminating direct

read and visible write after every response and every remaining invocation of 𝐻 , in an arbitrary order.
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Finally, to simplify the proof, we add at the beginning of 𝐻 ′ an invocation immediately followed by a response of

a write operation with input 𝑣0 (the initial value of the auditable register.). This fictitious operation has sequence

number 0 and is visible.

Essentially, in the implemented register updating to a new value 𝑣 is done in two phases. 𝑅 is first modified to store 𝑣

and a fresh sequence number 𝑥 + 1, and then the new sequence number is announced in 𝑆𝑁 . Visible write, direct read,

and audit operations may be linearized with respect to the compare&swap, fetch&xor or read they apply to 𝑅. Special

care should be taken for silent read and write operations. Indeed, a silent read that reads 𝑥 from 𝑆𝑁 , may return

the previous value 𝑢 stored in the implemented register or 𝑣 , depending on the sequence number of the last preceding

direct read by the same process. Similarly, a silent write(𝑣 ′) may not access 𝑅 at all, or apply a compare&swap after

𝑅.𝑠𝑒𝑞 has already been changed to 𝑥 + 1. However, write(𝑣 ′) has to be linearized before write(𝑣), in such a way that 𝑣 ′

is immediately overwritten.

Hence, direct read, visible write, and audit are linearized first, according to the order in which they apply a

primitive to 𝑅. We then place the remaining operations with respect to this partial linearization. 𝐿(𝛼) is the total order
on the operations in 𝐻 ′ obtained by the following rules:

R1 For direct read, visible write, audit and some silent read operations we defined an associated step 𝑙𝑠 applied

by the operation. These operations are then ordered according to the order in which their associated step takes

place in 𝛼 . For a direct read, visible write, or audit operation 𝑜𝑝 , its associated step 𝑙𝑠 (𝑜𝑝) is respectively
the fetch&xor at line 4, the successful compare&swap at line 14, and the read at line 17 applied to 𝑅. For a

silent read operation 𝑜𝑝 with sequence number 𝑠𝑛(𝑜𝑝) = 𝑥 , if 𝑆𝑁 .read (line 2) is applied in 𝑜𝑝 during 𝐸𝑥 (that

is, 𝑅.𝑠𝑒𝑞 = 𝑥 when this read occurs), 𝑙𝑠 (𝑜𝑝) is this read step. The other silent read operations do not have a

linearization step, and are not ordered by this rule. They are instead linearized by Rule R2.

Recall that 𝜌𝑥+1 is the successful compare&swap applied to 𝑅 that changes 𝑅.𝑠𝑒𝑞 from 𝑥 to 𝑥 + 1 (Lemma 1). By rule R1,

the visible write with sequence number 𝑥 + 1 is linearized at 𝜌𝑥+1.

R2 For every 𝑥 ≥ 0, every remaining silent read 𝑜𝑝 with sequence number 𝑠𝑛(𝑜𝑝) = 𝑥 is placed immediately

before the unique visible write operation with sequence number 𝑥 + 1. Their relative order follows the order in
which their read step of 𝑆𝑁 (line 2) is applied in 𝛼 .

R3 Finally, we place for each 𝑥 ≥ 0 every silent write operation 𝑜𝑝 with sequence number 𝑠𝑛(𝑜𝑝) = 𝑥 + 1. They
are placed after the silent read operations with sequence number 𝑥 ordered according to rule R2, and before

the unique visible write operation with sequence number 𝑥 + 1. As above, their respective order is determined

by the order in which their read step of 𝑆𝑁 (line 8) is applied in 𝛼 .

Rules R2 and R3 are well-defined, is we can prove the existence and uniqueness of a visible write with sequence

number 𝑥 , if there is an operation 𝑜𝑝 with 𝑠𝑛(𝑜𝑝) = 𝑥 .

We can show that the linearization 𝐿(𝛼) extends the real-time order between operations, and that the read and

write operations satisfy the sequential specification of a register.

Audit Properties. For the rest of the proof, fix a finite execution 𝛼 . The next lemma helps to show that effective

operations are audited; it demonstrates how indistinguishability is used in our proofs.

Lemma 3. A read operation 𝑟𝑜𝑝 that is invoked in 𝛼 is in 𝐿(𝛼) if and only if 𝑟𝑜𝑝 is effective in 𝛼 .

Proof. If 𝑟𝑜𝑝 completes in 𝛼 , then it is effective and it is in 𝐿(𝛼). Otherwise, 𝑟𝑜𝑝 is pending after 𝛼 . Let 𝑝 𝑗 be the

process that invokes 𝑟𝑜𝑝 . We can show:
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Claim 4. 𝑟𝑜𝑝 is effective after 𝛼 if and only if either

(1) 𝑝 𝑗 has read 𝑥 from SN and 𝑥 = 𝑝𝑟𝑒𝑣_𝑠𝑛 (line 2) or

(2) 𝑝 𝑗 has applied fetch&xor to 𝑅 (line 4).

Proof. First, let 𝛼 ′ be an arbitrary extension of 𝛼 in which 𝑟𝑜𝑝 returns some value 𝑎, 𝛽 a finite execution indistin-

guishable from 𝛼 to 𝑝 𝑗 , and 𝛽′ one of its extensions in which 𝑟𝑜𝑝 returns some value 𝑏. We show that if 𝛼 satisfies (1)

or (2), then 𝑎 = 𝑏. (1) If in 𝛼 after invoking 𝑟𝑜𝑝 , 𝑝 𝑗 reads 𝑥 = 𝑝𝑟𝑒𝑣_𝑠𝑛 from SN at line 2, then 𝑟𝑜𝑝 returns 𝑎 = 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙

in 𝛼 ′. Since 𝛼
𝑝 𝑗∼ 𝛽 , 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 = 𝑎 and 𝑝𝑟𝑒𝑣_𝑠𝑛 = 𝑥 when 𝑟𝑜𝑝 starts in 𝛽 , and 𝑝 𝑗 reads also 𝑥 from 𝑆𝑁 . Therefore, 𝑟𝑜𝑝

returns 𝑏 = 𝑎 in 𝛽′. (2) If 𝑝 𝑗 applies a fetch&xor to 𝑅 (line 4) while performing 𝑟𝑜𝑝 in 𝛼 , then 𝑟𝑜𝑝 returns 𝑎 = 𝑣 (line 6),

where 𝑣 is the value fetched from 𝑅.𝑣𝑎𝑙 in 𝛼 ′. Since 𝛼
𝑝 𝑗∼ 𝛽 , 𝑝 𝑗 also applies a fetch&xor to 𝑅 while performing 𝑟𝑜𝑝 in 𝛽 ,

and fetches 𝑣 from 𝑅.𝑣𝑎𝑙 . Therefore 𝑟𝑜𝑝 also returns 𝑣 in 𝛽′.

Conversely, suppose that neither (1) nor (2) hold for 𝛼 . That is, 𝑝 𝑗 has not applied a fetch&xor to 𝑅 and, if 𝑥 has been

read from SN , 𝑥 ≠ 𝑝𝑟𝑒𝑣_𝑠𝑛. We construct two extensions 𝛼 ′ and 𝛼 ′′ in which 𝑟𝑜𝑝 returns 𝑣 ′ ≠ 𝑣 ′′, respectively. Let 𝑋

be the value of 𝑆𝑁 at the end of 𝛼 , and 𝑝𝑖 be a writer. In 𝛼 ′, 𝑝𝑖 first completes its pending write if it has one, before

repeatedly writing the same value 𝑣 ′ until performing a visible write(𝑣 ′). Finally, 𝑝 𝑗 completes 𝑟𝑜𝑝 . Since 𝑝𝑖 is the only

writer that takes steps in 𝛼 , it eventually has a visible write(𝑣 ′), that is in which 𝑅.𝑣𝑎𝑙 is changed to 𝑣 ′. Note also that

when this happens, SN > 𝑋 . The extension 𝛼 ′′ is similar, except that 𝑣 ′ is replaced by 𝑣 ′′.

Since conditions (1) and (2) do not hold, 𝑝𝑖 ’s next step in 𝑟𝑜𝑝 is reading 𝑆𝑁 or issuing 𝑅.fetch&xor. If 𝑝 𝑗 reads 𝑆𝑁

after resuming 𝑟𝑜𝑝 , it gets a value 𝑥 > 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 . Thus, in both cases, 𝑝 𝑗 accesses 𝑅 in which it reads 𝑅.𝑣𝑎𝑙 = 𝑣 ′ (or

𝑅.𝑣𝑎𝑙 = 𝑣 ′′). Therefore, 𝑟𝑜𝑝 returns 𝑣 ′ in 𝛼 ′ and 𝑣 ′′ in 𝛼 ′′. □

Now, if (1) holds (𝑝 𝑗 reads 𝑥 = 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 from 𝑆𝑁 at line 2), then 𝑟𝑜𝑝 is classified as a silent read, and it appears in

𝐿(𝛼), by rule 𝑅1 if 𝑅.𝑠𝑒𝑞 = 𝑥 when 𝑆𝑁 is read or rule 𝑅2, otherwise. If (2) holds (𝑝 𝑗 applies a fetch&xor to 𝑅), then 𝑜𝑝 is

a direct read, and linearized in 𝐿(𝛼) by rule 𝑅1.

If neither (1) nor (2) hold, then 𝑝 𝑗 has either not read 𝑆𝑁 , or read a value ≠ 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 from 𝑆𝑁 but without yet

accessing 𝑅. In both cases, 𝑜𝑝 is unclassified and hence not linearized. □

We can prove that an audit 𝑎𝑜𝑝 includes a pair ( 𝑗, 𝑣) in its response set if and only if a read operation by process 𝑝 𝑗

with output 𝑣 is linearized before it. Since a read is linearized if and only it is effective (Lemma 3), any audit operation

that is linearized after the read is effective, must report it. This implies:

Lemma 5. If an audit operation 𝑎𝑜𝑝 is invoked and returns in an extension 𝛼 ′ of 𝛼 , and 𝛼 contains a 𝑣-effective read

operation by process 𝑝 𝑗 , then ( 𝑗, 𝑣) is contained in the response set of 𝑎𝑜𝑝 .

Lemma 6 shows that writes are uncompromised by readers, namely, a read cannot learn of a value written, unless it

has an effective read that returned this value. Lemma 7 shows that reads are uncompromised by other readers, namely,

they do not learn of each other.

Lemma 6. Assume 𝑝 𝑗 only performs read operations. Then for every value 𝑣 either there is a read operation by 𝑝 𝑗 in 𝛼

that is 𝑣-effective, or there is 𝛼 ′, 𝛼 ′
𝑝 𝑗∼ 𝛼 in which no write has input 𝑣 .

Proof. If 𝑣 is not an input of some write operation in 𝛼 , the lemma follows by taking 𝛼 ′ = 𝛼 . If there is no visible

write(𝑣) operation in 𝛼 , then, since a silent write(𝑣) does not change 𝑅.𝑣𝑎𝑙 to 𝑣 , the lemma follows by changing its

input to some value 𝑣 ′ ≠ 𝑣 to obtain an execution 𝛼 ′
𝑝 𝑗∼ 𝛼

11
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Let 𝑤𝑜𝑝 be a visible write(𝑣) operation in 𝛼 . Since it is visible, 𝑤𝑜𝑝 applies a compare&swap to 𝑅 that changes

(𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) to (𝑥, 𝑣) where 𝑥 is some sequence number. If 𝑝 𝑗 applies a fetch&xor to 𝑅 while 𝑅.𝑣𝑎𝑙 = 𝑣 , then the

corresponding read operation 𝑟𝑜𝑝 it is performing is direct and 𝑣-effective. Otherwise, 𝑝 𝑗 never applies a fetch&xor to

𝑅 while 𝑅.𝑣𝑎𝑙 = 𝑣 . 𝑅 is the only shared variable in which inputs of write are written and that is read by 𝑝 𝑗 . Hence, the

input of𝑤𝑜𝑝 can be replaced by another value 𝑣 ′ ≠ 𝑣 , creating an indistinguishable execution 𝛼 ′ without a write with

input 𝑣 . □

Lemma 7. Assume 𝑝 𝑗 only performs read operations, then for any reader 𝑝𝑘 , 𝑘 ≠ 𝑗 , there is an execution 𝛼 ′
𝑝 𝑗∼ 𝛼 in which

no read by 𝑝𝑘 is 𝑣-effective, for any value 𝑣 .

Proof. The lemma clearly holdes if there is no 𝑣-effective read by process 𝑝𝑘 . So, assume there is a 𝑣-effective read

operation 𝑟𝑜𝑝 by 𝑝𝑘 . Let 𝛼
′
be the execution in which we remove all 𝑣-effective read operations performed by 𝑝𝑘 that

are silent. Such operations do not change any shared variables, and therefore, 𝛼 ′
𝑝 𝑗∼ 𝛼 .

So, let 𝑟𝑜𝑝 be a direct, 𝑣-effective read by 𝑝𝑘 . When performing 𝑟𝑜𝑝 , 𝑝𝑘 applies fetch&xor to 𝑅 (line 4), when

(𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) = (𝑥, 𝑣), for some sequence number 𝑥 . This step only changes the 𝑘th tracking bit of 𝑅 unchanged to,

say, 𝑏. Recall that 𝑅 is accessed (by applying a fetch&xor) at most once by 𝑝 𝑗 while 𝑅.𝑠𝑒𝑞 = 𝑥 . If no fetch&xor by

𝑝 𝑗 is applied to 𝑅 while 𝑅.𝑠𝑒𝑞 = 𝑥 , or one is applied before 𝑝𝑘 ’s, 𝑟𝑜𝑝 can be removed without being noticed by 𝑝 𝑗 .

Suppose that both 𝑝𝑘 and 𝑝 𝑗 apply a fetch&xor to 𝑅 while 𝑅.𝑠𝑒𝑞 = 𝑥 , and that 𝑝 𝑗 ’s fetch&xor is after 𝑝𝑘 ’s. Let 𝛼
′
𝑥,𝑏

be

the execution identical to 𝛼 ′, except that (1) the 𝑘th bit of 𝑟𝑎𝑛𝑑𝑥 is 𝑏 and, (2) 𝑟𝑜𝑝 is removed. Therefore, 𝛼 ′
𝑥,𝑏

𝑝 𝑗∼ 𝛼 ′, and

since 𝛼 ′
𝑝 𝑗∼ 𝛼 , we have that 𝛼 ′

𝑥,𝑏

𝑝 𝑗∼ 𝛼 . □

Theorem 8. Alg. 1 is a linearizable and wait-free implementation of an auditable multi-writer, multi-reader register.

Moreover,

• An audit reports ( 𝑗, 𝑣) if and only if 𝑝 𝑗 has an 𝑣-effective read operation in 𝛼 .

• a write is uncompromised by a reader 𝑝 𝑗 , unless 𝑝 𝑗 has a 𝑣-effective read.

• a read by 𝑝𝑘 is uncompromised by a reader 𝑝 𝑗 ≠ 𝑝𝑘 .

4 AN AUDITABLE MAX REGISTER

This section shows how to extend the register implementation of the previous section into an implementation of a max

register with the same properties. A max register provides two operations: writeMax(𝑣) which writes a value 𝑣 and

read which returns a value. Its sequential specification is that a read returns the largest value previously written. An

auditable max register also provides an audit operation, which returns a set of pairs ( 𝑗, 𝑣). As in the previous section,

reads are audited if and only if they are effective, and readers cannot compromise other writeMax operations, unless

they read them, or other read operations.

Alg. 2 uses essentially the same read and audit as in Alg. 1. The writeMax operation is also quite similar, with the

following differences (lines in blue in the pseudo-code). In Alg. 1, a write(𝑤 ) obtains a new sequence number 𝑠 + 1 and
then attempts to change 𝑅 to (𝑠 + 1,𝑤, 𝑟𝑎𝑛𝑑𝑠+1). The operation terminates after it succeeds in doing so, or if it sees in 𝑅

a sequence number 𝑠′ ≥ 𝑠 + 1. In the latter case, a concurrent write(𝑤 ′) has succeeded and may be seen as overwriting

𝑤 , so write(𝑤 ) can terminate, even if𝑤 is never written to 𝑅. The implementation of writeMax uses a similar idea,

except that (1) we make sure that the successive values in 𝑅 are non-decreasing and (2) a writeMax(𝑤 ) with sequence

number 𝑠 + 1 is no longer abandoned when a sequence number 𝑠′ ≥ 𝑠 + 1 is read from 𝑅, but instead when 𝑅 stores a

value𝑤 ′ ≥ 𝑤 .
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Algorithm 2 Auditable Max Register

shared registers
𝑅, SN ,𝑉 [0.. + ∞], 𝐵 [0.. + ∞][0..𝑚 − 1] as in Alg. 1

𝑀 : a (non-auditable) max register, initially 𝑣0 = (𝑤0, 𝑁0)
local variables: writer, reader, auditor, as in Alg. 1

21: function read( ), audit( ): same as in Alg 1

22: function writeMax(𝑤 )

23: 𝑣 ← (𝑤, 𝑁 ), where 𝑁 is a fresh random nonce

24: 𝑀.writeMax(𝑣); 𝑠𝑛 ← SN .read() + 1;
25: repeat
26: (𝑙𝑠𝑛, 𝑙𝑣𝑎𝑙, 𝑏𝑖𝑡𝑠) ← 𝑅.read()
27: if 𝑙𝑣𝑎𝑙 ≥ 𝑣 then 𝑠𝑛 ← 𝑙𝑠𝑛; break
28: if 𝑙𝑠𝑛 ≥ 𝑠𝑛 then
29: SN .compare&swap(𝑠𝑛 − 1, 𝑠𝑛);
30: 𝑠𝑛 ← SN .read() + 1; continue
31: 𝑚𝑣𝑎𝑙 ← 𝑀.read()
32: 𝑉 [𝑙𝑠𝑛] .write(𝑙𝑣𝑎𝑙 .𝑣𝑎𝑙𝑢𝑒);
33: 𝐵 [𝑙𝑠𝑛] [ 𝑗] .write(true) ∀𝑗 , s.t. 𝑏𝑖𝑡𝑠 [ 𝑗] ≠ 𝑟𝑎𝑛𝑑𝑙𝑠𝑛 [ 𝑗]
34: until 𝑅.compare&swap((𝑙𝑠𝑛, 𝑙𝑣𝑎𝑙, 𝑏𝑖𝑡𝑠), (𝑠𝑛,𝑚𝑣𝑎𝑙, 𝑟𝑎𝑛𝑑𝑠𝑛))
35: SN .compare&swap(𝑠𝑛 − 1, 𝑠𝑛); return

There is however, a subtlety that must be taken care of. A reader may obtain a value 𝑣 with sequence number 𝑠 , and

later read a value 𝑣 + 2 with sequence number 𝑠′ > 𝑠 + 1. This leaks to the reader that some writeMax operations

occur in between its read operations, and in particular, that a writeMax(𝑣 + 1) occurred, without ever effectively
reading 𝑣 + 1.

To deal with this problem, we append a random nonce 𝑁 to the argument of a writeMax operation, where 𝑁 is

a random number. The pair (𝑤, 𝑁 ) is used as the value written 𝑣 was used in Alg. 1. The pairs (𝑤, 𝑁 ) are ordered
lexicographically, that is, first by their value𝑤 and then by their nonce 𝑁 . Thus, the reader cannot guess intermediate

values. The code for read and audit is slightly adjusted in Alg. 2 versus Alg. 1, to ignore the random nonce 𝑁 from the

pairs when values are returned.

In the algorithm, a (non-auditable) max-register 𝑀 is shared among the writers. A writeMax(𝑤 ) by 𝑝 starts by

writing the pair 𝑣 = (𝑤, 𝑁 ) of the value 𝑤 and the nonce 𝑁 to 𝑀 , before entering a repeat loop. Each iteration is an

attempt to store in 𝑅 the current value𝑚𝑣𝑎𝑙 of𝑀 , and the loop terminates as soon as 𝑅 holds a value equal to or larger

than𝑚𝑣𝑎𝑙 . Like in Alg. 1, 𝑅 holds a triplet (𝑠, 𝑣𝑎𝑙, 𝑏𝑖𝑡𝑠) where 𝑠 is 𝑣𝑎𝑙 ’s sequence number, 𝑣𝑎𝑙 is the current value, and

𝑏𝑖𝑡𝑠 is the encrypted set of readers of 𝑣𝑎𝑙 . Before attempting to change 𝑅, 𝑣𝑎𝑙 and the set of readers, once deciphered,

are stored in the registers 𝑉 [𝑠] and 𝐵 [𝑠], from which they can be retrieved with audit.

In each iteration of the repeat loop, the access pattern of write in Alg. 1 to the shared register SN and 𝑅 is preserved.

After obtaining a new sequence number 𝑠 + 1, where 𝑠 is the current value of 𝑆𝑁 (line 24 for the first iteration, line 30

otherwise), a triple (𝑙𝑠𝑛, 𝑙𝑣𝑎𝑙, 𝑏𝑖𝑡𝑠) is read from 𝑅. If 𝑙𝑣𝑎𝑙 ≥ 𝑣 , the loop breaks as a value that is equal to or larger than 𝑣

has already been written. As in Alg. 1, before returning we make sure that the sequence number in 𝑆𝑁 is at least as

large as 𝑙𝑠𝑛, the sequence number in 𝑅.

5 AUDITABLE SNAPSHOT OBJECTS AND VERSIONED TYPES

We show how an auditable max register (Section 4) can be used to make other object types auditable.
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5.1 Making Snapshots Auditable

We start by showing how to implement an auditable 𝑛-component snapshot object, relying on an auditable max register.

Each component has a state, initially ⊥, and a different designated writer process. A view is an 𝑛-component array, each

cell holding a value written by a process in its component. A atomic object [1] provides two operations: update(𝑣) that
changes the process’s component to 𝑣 , and scan that returns a view. It is required that in any sequential execution, in

the view returned by a scan, each component contains the value of the latest update to this component (or ⊥ if there

is no previous update). As for the auditable register, an audit operation returns a set of pairs ( 𝑗, 𝑣𝑖𝑒𝑤). In a sequential

execution, there is such a pair if and only if the operation is preceded by a scan by process 𝑝 𝑗 that returns 𝑣𝑖𝑒𝑤 . Here,

we want that audits report exactly those scans that have made enough progress to infer the current 𝑣𝑖𝑒𝑤 of the object.

Denysuk and Woeffel [11] show that a strongly-linearizable max register can be used to transform a linearizable

snapshot into its strongly linearizable counterpart. As we explain next, with the same technique, non-auditable snapshot

objects can be made auditable. Algorithm 3 adds an audit operation to their algorithm. Their implementation is

lock-free, as they rely on a lock-free implementation of a max register. Algorithm 3 is wait-free since we use the

wait-free max-register implementation of Section 4.

Let 𝑆 be a linearizable, but non-auditable snapshot object. The algorithm works as follows: each new state (that is,

whenever one component is updated) is associated with a unique and increasing version number. The version number is

obtained by storing a sequence number 𝑠𝑛𝑖 in each component 𝑖 of 𝑆 , in addition to its current value. Sequence number

𝑠𝑛𝑖 is incremented each time the 𝑖th component is updated (line 2). Summing the sequence numbers of the components

yields a unique and increasing version number (𝑣𝑛) for the current view.

The pairs (𝑣𝑛, 𝑣𝑖𝑒𝑤), where 𝑣𝑛 is a version number and 𝑣𝑖𝑒𝑤 a state of the auditable snapshot, are written to an

auditable max register𝑀 . The pairs are ordered according to the version number, which is a total order since version

numbers are unique. Therefore, the latest state can be retrieved by reading𝑀 , and the set of past scan operations can

be obtained by auditing𝑀 (line 10). The current view of the auditable snapshot is stored in 𝑆 .

In an update(𝑣), process 𝑝𝑖 starts by updating the 𝑖th component of 𝑆 with 𝑣 and incrementing the sequence number

field 𝑠𝑛𝑖 . It then scans 𝑆 , thus obtaining a new view of 𝑆 that includes its update. The view 𝑣𝑖𝑒𝑤 of the implemented

auditable snapshot is obtained by removing the sequence number in each component (line 4). The version number 𝑣𝑛

associated with this view is the sum of the sequence numbers. It then writes (𝑣𝑛, 𝑣𝑖𝑒𝑤 ) to the max-register𝑀 (line 5). A

scan operation reads a pair (𝑣𝑛, 𝑣𝑖𝑒𝑤) from𝑀 and returns the corresponding 𝑣𝑖𝑒𝑤 (line 7). Since𝑀 is auditable, the

views returned by the processes that have previously performed a scan can thus be inferred by auditing𝑀 (line 10).

The audit and scan operations interact with the implementation by applying a single operation (audit and read,

respectively) to the auditable max register 𝑀 . The algorithm therefore lifts the properties of the implementation of

𝑀 to the auditable snapshot object. In particular, when the implementation presented in Section 4 is used, effective

scan operations are auditable, scan operations are uncompromised by other scanners, and update operations are

uncompromised by scanners.

5.2 Proof of Correctness

Let 𝛼 be a finite execution of Algorithm 3. To simplify the proof, we assume the inputs of update by the same process

are unique.
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Algorithm 3 𝑛-component auditable snapshot objects.

shared registers
M: auditable max register, initially (0, [⊥, . . . ,⊥])
S: (non-auditable) snapshot object,

initially [(0,⊥), . . . , (0,⊥)]
local variable: writer 𝑝𝑖 , 1 ≤ 𝑖 ≤ 𝑛

𝑠𝑛𝑖 local sequence number, initially 0

1: function update(𝑣) ⊲ code for writer 𝑝𝑖 , 𝑖 ∈ {1, . . . , 𝑛}
2: 𝑠𝑛𝑖 ← 𝑠𝑛𝑖 + 1; 𝑆.update𝑖 ((𝑠𝑛𝑖 , 𝑣))
3: 𝑠𝑣𝑖𝑒𝑤 ← 𝑆.scan(); 𝑣𝑛 ← ∑

1≤ 𝑗≤𝑛 𝑠𝑣𝑖𝑒𝑤 [ 𝑗] .𝑠𝑛
4: 𝑣𝑖𝑒𝑤 ← the 𝑛-component array of the values in 𝑠𝑣𝑖𝑒𝑤

5: 𝑀.writeMax((𝑣𝑛, 𝑣𝑖𝑒𝑤)); return
6: function scan( )

7: (_, 𝑣𝑖𝑒𝑤) ← 𝑀.read(); return 𝑣𝑖𝑒𝑤

8: function audit( )

9: MA← 𝑀.audit();
10: return {( 𝑗, 𝑣𝑖𝑒𝑤) : ∃ an element ( 𝑗, (∗, 𝑣𝑖𝑒𝑤)) ∈ MA}

We assume that the implementation of𝑀 is wait-free and linearizable. In addition, it guarantees effective linearizability

and that read operations are uncompromised by other readers. We also assume that the implementation of 𝑆 is

linearizable and wait-free (e.g.,[1]). Inspection of the code shows that update, scan and audit operations are wait-free.

Since 𝑆 and𝑀 are linearizable and linearizability is composable, 𝛼 can be seen as a sequence of steps applied to 𝑆 or

𝑀 . In particular, we associate with each high-level operation 𝑜𝑝 a step 𝜎 (𝑜𝑝) applied by 𝑜𝑝 either to 𝑆 or to 𝑀 . The

linearization 𝐿(𝛼) of 𝛼 is the sequence formed by ordering the operations according to the order their associated step

occurs in 𝛼 .

For a scan and an audit operation 𝑜𝑝 , 𝜎 (𝑜𝑝) is, respectively, the read and the audit steps applied to𝑀 . If 𝑜𝑝 is an

update with input 𝑥 by process 𝑝𝑖 , then let 𝑣𝑛𝑥 be the sum of the sequence numbers 𝑠𝑛 in each component of 𝑆 after

update(𝑥) has been applied to 𝑆 by 𝑝𝑖 . 𝜎 (𝑜𝑝) is the first write to𝑀 of a pair (𝑣𝑛, 𝑣𝑖𝑒𝑤) with 𝑣𝑛 ≥ 𝑣𝑛𝑥 and 𝑣𝑖𝑒𝑤 [𝑖] = 𝑥 .

If there is no such write, 𝑜𝑝 is discarded.

We first show that the linearization 𝐿(𝛼) respects the real-time order between operations.

Lemma 9. If an operation 𝑜𝑝 completes before an operation 𝑜𝑝′ is invoked in 𝛼 , then 𝑜𝑝 precedes 𝑜𝑝′ in 𝐿(𝛼).

Proof. We show that that the linearization point of any operation 𝑜𝑝 is inside its execution interval; the claim is

trivial for scan or audit operations.

Suppose that 𝑜𝑝 is an update by a process 𝑝𝑖 with input 𝑥 . The sum of the sequence numbers in the components

of 𝑆 increases each time an update is applied to it. Hence, any pair (𝑣𝑛, 𝑣𝑖𝑒𝑤) written to𝑀 before 𝑝𝑖 has updated its

component of 𝑆 to 𝑥 is such that 𝑣𝑛 < 𝑣𝑛𝑥 . Therefore 𝜎 (𝑜𝑝), if it exists, is after 𝑜𝑝 starts. If 𝑜𝑝 terminates, then it scans

𝑆 after updating the 𝑖th component of 𝑆 to 𝑥 . The 𝑣𝑖𝑒𝑤 it obtains and its associated version number satisfy 𝑣𝑖𝑒𝑤 [𝑖] = 𝑥

and 𝑣𝑛 ≥ 𝑣𝑛𝑥 . This pair is written to𝑀 . If 𝜎 (𝑜𝑝) is not this step, then 𝜎 (𝑜𝑝) occurs before 𝑜𝑝 terminates. If 𝑜𝑝 does not

terminate and 𝜎 (𝑜𝑝) does exist, it occurs after 𝑜𝑝 starts and thus within 𝑜𝑝’s execution interval. □

Lemma 10. Each component 𝑖 of the view returned by a scan is the input of the last update by 𝑝𝑖 linearized before the

scan in 𝐿(𝛼).
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Proof. Consider a scan operation 𝑠𝑜𝑝 that returns 𝑣𝑖𝑒𝑤 , with 𝑣𝑖𝑒𝑤 [𝑖] = 𝑥 . This view is read from the max register

𝑀 and has version number 𝑣𝑛. Let 𝑜𝑝 be the last update by 𝑝𝑖 linearized before 𝑠𝑜𝑝 in 𝐿(𝛼), let 𝑦 be its input and

𝑣𝑛𝑦 the version number (that is the sum of the sequence number stored in each component) of 𝑆 immediately after

𝑆.update(𝑦) is applied by 𝑝𝑖 .

We denote by 𝜎𝑢 this low level update. Since the version number increases with each update, every pair (𝑣𝑛′, 𝑣𝑖𝑒𝑤 ′)
written into𝑀 before 𝜎𝑢 is such that 𝑣𝑛′ < 𝑣𝑛𝑦 . Also, every pair (𝑣𝑛′, 𝑣𝑖𝑒𝑤 ′) written to𝑀 after 𝜎𝑢 and before 𝑠𝑜𝑝 is

linearized satisfies 𝑣𝑛′ ≥ 𝑣𝑛𝑦 =⇒ 𝑣𝑖𝑒𝑤 ′ [𝑖] = 𝑦. Indeed, if 𝑣𝑛′ ≥ 𝑣𝑛𝑦 , 𝑣𝑖𝑒𝑤
′
is obtained by a scan of 𝑆 applied after the

𝑖-th component is set to 𝑦. Hence, 𝑣𝑖𝑒𝑤 ′ [𝑖] = 𝑦 because we assume that 𝑜𝑝 is the last update by 𝑝𝑖 linearized before

𝑠𝑜𝑝 in 𝐿(𝛼).
Finally, step 𝜎 (𝑜𝑝) is a write of pair (𝑣𝑛′, 𝑣𝑖𝑒𝑤 ′) to 𝑀 with 𝑣𝑛′ ≥ 𝑣𝑛𝑦 and 𝑣𝑖𝑒𝑤 ′ [𝑖] = 𝑦. 𝜎 (𝑜𝑝) occurs after 𝜎𝑢 and

before the max register𝑀 is read by 𝑠𝑜𝑝 . It thus follows that the pair (𝑣𝑛, 𝑣𝑖𝑒𝑤) read from𝑀 in 𝑠𝑜𝑝 satisfies 𝑣𝑛 ≥ 𝑣𝑛𝑦

and has been written after 𝜎𝑦 . Hence, 𝑣𝑖𝑒𝑤 [𝑖] = 𝑦 = 𝑥 . We conclude that each component 𝑖 of the view returned by a

scan is the input of the last update by 𝑝𝑖 linearized before the scan in 𝐿(𝛼). □

Lemma 11. An audit reports ( 𝑗, 𝑣𝑖𝑒𝑤) if and only if 𝑝 𝑗 has a 𝑣𝑖𝑒𝑤-effective
2
scan in 𝛼 . Each update(𝑣) is uncompromised

by a scanner 𝑝 𝑗 unless it has a 𝑣𝑖𝑒𝑤-effective scanwith one component of 𝑣𝑖𝑒𝑤 equal to 𝑣 . Each scan by 𝑝𝑘 is uncompromised

by a scanner 𝑝 𝑗 ≠ 𝑝𝑘 .

Proof. A scan applies a single operation on shared objects, namely a read on 𝑀 . It is linearized with this step,

which determines the view it returns. Therefore, a scan is linearized if and only if it is effective. Hence ( 𝑗, 𝑣𝑖𝑒𝑤 ) is

reported by an audit if and only if 𝑝 𝑗 has a 𝑣𝑖𝑒𝑤-effective scan.

Let 𝑣 be the input of an update operation by some process 𝑝𝑖 . If there is no 𝑣𝑖𝑒𝑤 with 𝑣𝑖𝑒𝑤 [𝑖] = 𝑣 written to𝑀 (line

5), update(𝑣) can be replaced by update(𝑣 ′), 𝑣 ′ ≠ 𝑣 in an execution 𝛼 ′, 𝛼
𝑝 𝑗∼ 𝛼 ′. Otherwise, note that each 𝑠𝑣𝑖𝑒𝑤 for

which 𝑝 𝑗 has a 𝑠𝑣𝑖𝑒𝑤-effective scan, we have 𝑠𝑣𝑖𝑒𝑤 [𝑖] ≠ 𝑣 . Suppose that 𝑣𝑖𝑒𝑤 , with 𝑣𝑖𝑒𝑤 [𝑖] = 𝑣 is written to𝑀 in 𝛼 .

Then we can replace 𝑣𝑖𝑒𝑤 with an array 𝑣𝑖𝑒𝑤 ′, identical to 𝑣𝑖𝑒𝑤 except that 𝑣𝑖𝑒𝑤 ′ [𝑖] = 𝑣 ′ ≠ 𝑣 an execution 𝛼 ′
𝑝 𝑗∼ 𝛼 .

This is because the write of 𝑣𝑖𝑒𝑤 is not compromised by 𝑝 𝑗 in𝑀 . By repeating this procedure until all writes to𝑀 of

𝑣𝑖𝑒𝑤s with 𝑣𝑖𝑒𝑤 [𝑖] = 𝑣 have been eliminated leads to an execution 𝛽, 𝛽
𝑝 𝑗∼ 𝛼 in which there is no update(𝑣). □

Theorem 12. Alg. 3 is a wait-free linearizable implementation of an auditable snapshot object which audits effective

scan operations, in which scan and update are uncompromised by scanners.

5.3 Versioned Objects

Snapshot objects are an example of a versioned type [11], whose successive states are associated with unique and

increasing version numbers. Furthermore, the version number can be obtained from the object itself, without resorting

to external synchronization primitives. Essentially the same construction can be applied to any versioned object.

An object 𝑡 ∈ T is specified by a tuple (𝑄,𝑞0, 𝐼 ,𝑂, 𝑓 , 𝑔), where 𝑄 is the state space, 𝐼 and 𝑂 are respectively the

input and output sets of update and read operations. 𝑞0 is the initial state and functions 𝑓 : 𝑄 → 𝑂 and 𝑔 : 𝐼 ×𝑄 → 𝑄

describes the sequential behavior of read and update. A read() operation leaves the current state 𝑞 unmodified and

returns 𝑓 (𝑞). An update(𝑣), where 𝑣 ∈ 𝐼 changes the state 𝑞 to 𝑔(𝑣, 𝑞) and does not return anything.

A linearizable versioned implementation of a type 𝑡 ∈ T can be transformed into a strongly-linearizable one [11],

as follows. Let 𝑡 = (𝑄,𝑞0, 𝐼 ,𝑂, 𝑓 , 𝑔) be some type in T . Its versioned variant 𝑡 ′ = (𝑄 ′, 𝑞′
0
, 𝐼 ′,𝑂′, 𝑓 ′, 𝑔′) has 𝑄 ′ = 𝑄 × N,

2
Namely, 𝑝𝑖 has a scan operation that returns 𝑣𝑖𝑒𝑤 in all indistinguishable executions.
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𝑞′
0
= (𝑞0, 0), 𝐼 ′ = 𝐼 , 𝑂 ′ = 𝑂 × N, 𝑓 ′ : 𝑄 ′ → 𝑂 × N and 𝑔′ : 𝐼 × 𝑄 ′ → 𝑄 ′. That is, the state of 𝑡 ′ is augmented

with a version number, which increases with each update and is returned by each read: 𝑓 ′ ((𝑞, 𝑣𝑛)) = (𝑓 (𝑞), 𝑣𝑛) and
𝑔′ ((𝑞, 𝑣𝑛)) = (𝑔(𝑞), 𝑣𝑛′) with 𝑣𝑛 < 𝑣𝑛′.

A versioned implementation of a type 𝑡 ∈ T can be transformed into an auditable implementation of the same

type using an auditable register. The construction is essentially the same as presented in Algorithm 3. In the auditable

variant 𝑇𝑎 of 𝑇 , to perform an update(𝑣), a process 𝑝 first update the versioned implementation 𝑇 before reading it. 𝑝

hence obtains a pair (𝑜, 𝑣𝑛) that it writes to the auditable max register𝑀 . For a read, a process returns what it reads

from 𝑀 . As read amounts to read 𝑀 , to perform an audit a process simply audit the max-register 𝑀 . As we have

seen for snapshots, 𝑇𝑎 is linearizable and wait-free. Moreover, 𝑇𝑎 inherits the advanced properties of the underlying

max-register: If𝑀 is implemented with Algorithm 2, then it correctly audits effective read, and read and update are

uncompromised.

Theorem 13 (versioned types are auditable). Let 𝑡 ∈ T , and let 𝑇 be a versioned implementation of 𝑡 that is

linearizable and wait-free. There exists a wait-free, linearizable and auditable implementation of 𝑡 from 𝑇 and auditable

max-registers in which read and update are uncompromised by readers and audit reports only effective read operations.

6 DISCUSSION

This paper introduces novel notions of auditability that deal with curious readers. We implement a wait-free linearizable

auditable register that tracks effective reads while preventing unauthorized audits by readers. This implementation is

extended into an auditable max register, which is then used to implement auditable atomic snapshots and versioned

types.

Many open questions remain for future research. An immediate question is how to implement an auditable register

in which only auditors can audit, i.e., reads are uncompromised by writers. A second open question is how to extend

auditing to additional objects. These can include, for example, partial snapshots [4] in which a reader can obtain an

“instantaneous” view of a subset of the components. Another interesting object is a clickable atomic snapshot [16], in

particular, variants that allow arbitrary operations on the components and not just simple updates (writes).

The property of uncompromising other accesses can be seen as an internal analog of history independence, recently

investigated for concurrent objects [3]. A history-independent object does not allow an external observer, having access

to the complete system state, to learn anything about operations applied to the object, but only its current state. Our

definition, on the other hand, does not allow an internal observer, e.g., a reader that only reads shared base objects, to

learn about other read and write operations applied in the past. An interesting intermediate concept would allow

several readers collude and to combine the information they obtain in order to learn more than what they are allowed to.
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A ADDITIONAL PROOFS FOR ALGORITHM 1 (AUDITABLE REGISTER)

Simple code inspection (line 5, line 14, and line 22) shows:

Invariant 14. The successive values of 𝑆𝑁 are 0, 1, 2, . . ..

Invariant 15. The successive values of 𝑅.𝑠𝑒𝑞 are strictly increasing.

Proof. The proof is by induction on the length of the execution; the invariant clearly holds for an empty execution.

Consider a step that changes 𝑅.𝑠𝑒𝑞 to 𝑥 , which only happens when a successful compare&swap is applied by some

process 𝑝 , in line 14. Before this step is applied, 𝑝 reads 𝑅 (line 8) to make sure that 𝑅.𝑠𝑒𝑞 is strictly smaller than 𝑥
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(otherwise, the repeat loop terminates without applying a compare&swap to 𝑅 (line 11)). If the compare&swap of line 14

succeeds, 𝑅.𝑠𝑒𝑞 has not been modified since it was last read by 𝑝 , and its value increases to 𝑥 . □

Lemma 16. After any finite execution 𝛼 , and for any integer 𝑥 ≥ 0, (1) 𝑆𝑁 = 𝑥 =⇒ 𝑅.𝑠𝑒𝑞 ≥ 𝑥 and, (2) 𝑅.𝑠𝑒𝑞 = 𝑥 =⇒
𝑆𝑁 ≥ 𝑥 − 1.

Proof. The proof is by induction on the length of 𝛼 , and both claims trivially hold after the empty execution, since

𝑅.𝑠𝑒𝑞 = 𝑆𝑁 = 0 in the initial configuration. Assume that both claims hold after a finite prefix 𝛼 , and consider the first

step that modifies 𝑅.𝑠𝑒𝑞 or SN .

If the step modifies SN , then it is a successful compare&swap applied by some process 𝑝 when performing a read

(line 5), a write (line 15), or an audit (line 22). Let 𝑥 be the new value of 𝑆𝑁 after the compare&swap is applied. If

𝑝 is performing a read or an audit, 𝑝 has previously read 𝑥 from 𝑅.𝑠𝑒𝑞 (line 4 or line 17). Since the values of 𝑅.𝑠𝑒𝑞

do not decrease, 𝑅.𝑠𝑒𝑞 ≥ 𝑥 after the successful compare&swap applied to 𝑆𝑁 by 𝑝 . If 𝑝 is performing a write, it has

previously read 𝑥 from 𝑅.𝑠𝑒𝑞 (line 10) or has changed its value to 𝑥 (line 14) by applying a successful compare&swap.

Since successive values of 𝑅.𝑠𝑒𝑞 are increasing (Invariant 15), 𝑅.𝑠𝑒𝑞 ≥ 𝑥 after 𝑝 changes 𝑆𝑁 to 𝑥 . (2) also holds since it

holds before this step, and continues to hold because the value of 𝑆𝑁 increases.

If the step sets 𝑅.𝑠𝑒𝑞 to 𝑥 , then it is a successful compare&swap applied to 𝑅 by some process 𝑝 while performing a

write operation (line 14). Before applying this compare&swap, 𝑝 reads 𝑥 − 1 from 𝑆𝑁 (line 8). Since successive values

of 𝑆𝑁 are increasing (Invariant 14), 𝑆𝑁 ≥ 𝑥 − 1 after this step. (1) also holds after this step since 𝑅.𝑠𝑒𝑞 is changed to a

value larger than 𝑥 . □

Lemma 17. Let 𝜎, 𝜎′ be two fetch&xor applied to 𝑅 by the same reader 𝑝 . Let (𝑠𝑟, 𝑣𝑟, 𝑏𝑟 ) and (𝑠𝑟 ′, 𝑣𝑟 ′, 𝑏𝑟 ′) be the values
of 𝑅 immediately before these steps are applied, respectively, then 𝑠𝑟 ≠ 𝑠𝑟 ′.

Proof. Suppose that 𝜎 is applied before 𝜎′. By the code, they are applied when 𝑝 is performing two distinct read

operations denoted 𝑟𝑜𝑝 and 𝑟𝑜𝑝′ respectively. By line 4, after 𝜎 , the value of the local variable 𝑠𝑛 at process 𝑝 is 𝑠𝑟 and

by Lemma 16, 𝑆𝑁 ≥ 𝑠𝑟 − 1. Then, 𝑝 applies a compare&swap (line 5) with parameter (𝑠𝑟 − 1, 𝑠𝑟 ). After this step, the
value of 𝑆𝑁 is thus ≥ 𝑠𝑟 , as successive value of 𝑆𝑁 are increasing. Note also that the local variable 𝑝𝑟𝑒𝑣_𝑠𝑛 is set to 𝑠𝑟 .

In 𝑟𝑜𝑝′, 𝑝 reads from 𝑆𝑁 (line 2) a value 𝑠𝑛′ > 𝑠𝑟 . Otherwise, 𝑠𝑛′ = 𝑝𝑟𝑒𝑣_𝑠𝑛 and no fetch&xor is applied to 𝑅. But this

means by Lemma 16 that the sequence number stored in 𝑅 is also strictly greater than 𝑠𝑟 . Therefore, as the successive

sequence number stored in 𝑅 are increasing, 𝑠𝑟 ′ > 𝑠𝑟 . □

The next lemma shows that every value is associated with a unique sequence number in 𝑅.

Lemma 18. Let 𝛼 be a finite execution. There exists 𝑘 ≥ 0 and inputs of write operations 𝑣1, . . . , 𝑣𝑘 such that the sequence

of values of the first two fields (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) of 𝑅 is (0, 𝑣0), (1, 𝑣1), . . . , (𝑘, 𝑣𝑘 ).

Proof. Note that the initial value of 𝑅 is (0, 𝑣0). Suppose that there exists inputs of write operations 𝑣1, . . . , 𝑣ℓ such

that the first ℓ + 1 values of the couple (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) are (0, 𝑣0), . . . , (ℓ, 𝑣ℓ ). If (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) no longer changes after it

is set to (ℓ, 𝑣ℓ ), the Lemma is true. Otherwise, let us consider the first step 𝜎 that changes 𝑅 from (ℓ, 𝑣ℓ , 𝑏) to some

triple (ℓ′, 𝑣 ′, 𝑏′) with (ℓ, 𝑣ℓ ) ≠ (ℓ′, 𝑣 ′). This step is a successful compare&swap applied during a write whose input is

𝑣 ′ by some process 𝑝 at line 14, since this is the only place in which 𝑅.𝑠𝑒𝑞 or 𝑅.𝑣𝑎𝑙 is changed (each fetch&xor applied

to 𝑅 by a reader changes only one of the last𝑚 bits of 𝑅, leaving the first two fields unmodified). By the code, at the
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beginning of this write, 𝑝 reads ℓ′ − 1 from 𝑆𝑁 (line 8). Hence, it follows from Lemma 16 that immediately after this

read, ℓ′ − 1 ≤ 𝑅.𝑠𝑒𝑞.

Before (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) is changed to (ℓ′, 𝑣 ′), 𝑅 is read (line 10). The triple returned is (ℓ, 𝑣ℓ , 𝑏), since otherwise the
compare&swap is not successful as it is the first step in which (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) changes from (ℓ, 𝑣ℓ ) to a different value.

Note that ℓ < ℓ′, since otherwise 𝑝 exits the repeat loop without applying a compare&swap to 𝑅 (line 11).

Moreover, as the read of 𝑆𝑁 (line 8, after which we have ℓ′ − 1 ≤ 𝑅.𝑠𝑒𝑞) occurs before (ℓ, 𝑣ℓ , 𝑏) is read from 𝑅, and as

sequence numbers in 𝑅 are increasing (Invariant 15), then ℓ′ − 1 ≤ ℓ . Hence ℓ′ − 1 ≤ ℓ < ℓ′, from which we conclude

that ℓ′ = ℓ + 1. Therefore, after step 𝜎 , the new value of (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) is (ℓ + 1, 𝑣ℓ+1), where 𝑣ℓ+1 = 𝑣 ′ is the input of 𝑝’s

write operation. □

Lemma 19. Let 𝑥 ≥ 0 such that there is in 𝐻 ′ a read or write operation associated with sequence number 𝑥 . There exists

a unique visible write operation𝑤𝑜𝑝 with sequence number 𝑠𝑛(𝑤𝑜𝑝) = 𝑥 .

Proof. The lemma is true for 𝑥 = 0. For 𝑥 > 1, let us first suppose that there exists a silent write operation 𝑜𝑝 by

some process 𝑝 with 𝑠𝑛(𝑜𝑝) = 𝑥 . As 𝑜𝑝 is silent, 𝑝 reads from 𝑅 a sequence number 𝑙𝑠𝑛 ≥ 𝑥 at line 11. It follows from

Lemma 18 that before this read, the field 𝑅.𝑠𝑒𝑞 of 𝑅 has been set to 𝑥 . If 𝑜𝑝 is a silent read operation, 𝑠𝑛(𝑜𝑝) is the
sequence number read from 𝑆𝑁 at line 2 and also the sequence number read from 𝑅 in some previous read operation

(𝑠𝑛 = 𝑝𝑟𝑒𝑣_𝑠𝑛, line 3). Hence, as in the case of a silent write, 𝑅.𝑠𝑒𝑞 = 𝑥 before 𝑆𝑁 is read in 𝑜𝑝 .

By Lemma 18, there exists a unique value 𝑣𝑥 such that while 𝑅.𝑠𝑒𝑞 = 𝑥 , we have 𝑅.𝑣𝑎𝑙 = 𝑣𝑥 . To change (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙)
to (𝑥, 𝑣𝑥 ), a successful compare&swap is applied to 𝑅 at line 14 by some process 𝑝′ while performing a write(𝑣𝑥 )

operation 𝑜𝑝′. 𝑜𝑝′ is visible and by definition 𝑠𝑛(𝑜𝑝′) = 𝑥 . For uniqueness, suppose that there is another visible

write operation 𝑜𝑝′′ with 𝑠𝑛(𝑜𝑝′′) = 𝑥 . The compare&swap applied to 𝑅 by this operation has arguments of the

form (_, 𝑙𝑠𝑛, _), (_, 𝑥, _) with 𝑙𝑠𝑛 < 𝑥 (otherwise, the repeat loop terminate with the break statement at line 11). But

once 𝑅.𝑠𝑒𝑞 is changed to 𝑥 , such a compare&swap cannot succeed as sequence numbers stored in 𝑅.𝑠𝑒𝑞 are increasing

(Invariant 15). □

Lemma 20. If an operation (read, write or audit) 𝑜𝑝 terminates in 𝐻 ′, then SN ≥ 𝑠𝑛(𝑜𝑝).

Proof. If 𝑜𝑝 is a direct read, a write or an audit, this follows from the compare&swap applied to 𝑆𝑁 before the

operation returns (line 5, line 15 or line 22) that tries to change the value of 𝑆𝑁 from 𝑠𝑛 − 1 to 𝑠𝑛. In each case, the

value of the local variable 𝑠𝑛 is the sequence number 𝑠𝑛(𝑜𝑝) associated with 𝑜𝑝 . Moreover, when this compare&swap

is applied, 𝑆𝑁 ≥ 𝑠𝑛(𝑜𝑝) − 1. Indeed, if 𝑜𝑝 is a write, SN = 𝑠𝑛(𝑜𝑝) − 1 when it is read at the beginning of 𝑜𝑝 (line 8). In

the other cases, 𝑠𝑛(𝑜𝑝) is fetched or read from 𝑅.𝑠𝑒𝑞, therefore, by Lemma 16, 𝑆𝑁 ≥ 𝑠𝑛(𝑜𝑝) − 1 immediately after this

step. Since 𝑆𝑁 is increasing (Invariant 14), 𝑆𝑁 ≥ 𝑠𝑛(𝑜𝑝) − 1 when 𝑆𝑁 .compare&swap(𝑠𝑛(𝑜𝑝) − 1, 𝑠𝑛(𝑜𝑝)) is applied,
and hence 𝑆𝑁 ≥ 𝑠𝑛(𝑜𝑝) after this step whether or not the compare&swap fails.

If 𝑜𝑝 is a silent read, 𝑠𝑛(𝑜𝑝) is the value read from SN at the beginning of the operation (line 2. Since the values

stored in SN are increasing, SN ≥ 𝑠𝑛(𝑜𝑝) when 𝑜𝑝 terminates. □

Lemma 21. If the response of an operation 𝑜𝑝 precedes the invocation of 𝑜𝑝′ in 𝐻 ′, then 𝑜𝑝 precedes 𝑜𝑝′ in 𝐿(𝛼).

Proof. Assume, towards a contradiction, that 𝑜𝑝 completes before the invocation of 𝑜𝑝′ in 𝛼 , but 𝑜𝑝′ is placed

before 𝑜𝑝 in 𝐿(𝛼). We examine several cases, according to the linearization rules used to place 𝑜𝑝 and 𝑜𝑝′ in 𝐿(𝛼):

• Both 𝑜𝑝 and 𝑜𝑝′ are linearized using rule 𝑅1. 𝑜𝑝 and 𝑜𝑝′ are ordered in 𝛼 following the order in which a step in

their execution interval occur in 𝛼 . It is thus not possible that 𝑜𝑝′ is placed before 𝑜𝑝 in 𝐿(𝛼).
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• 𝑜𝑝 is linearized using rule 𝑅1, and 𝑜𝑝′ using rule 𝑅2 or 𝑅3. Let 𝑥 = 𝑠𝑛(𝑜𝑝) be the sequence number of 𝑜𝑝 , and 𝑙𝑠 ,

its linearization step. This step either changes 𝑅.𝑠𝑒𝑞 to 𝑥 (step 𝜌𝑥 ) if 𝑜𝑝 is a visible write or 𝑅.𝑠𝑒𝑞 = 𝑥 when it

is applied (if 𝑜𝑝 is a silent read linearized with rule 𝑅1, SN = 𝑅.𝑠𝑒𝑞 = 𝑥 when SN is read.). As 𝑙𝑠 occurs in the

execution interval of 𝑜𝑝 and 𝑅.𝑠𝑒𝑞 is increasing, 𝑅.𝑠𝑒𝑞 ≥ 𝑥 and, by Lemma 20 𝑆𝑁 ≥ 𝑥 when 𝑜𝑝 terminates.

As 𝑜𝑝′ starts after 𝑜𝑝 terminates, and as both SN and 𝑅.𝑠𝑒𝑞 are increasing, we still have 𝑅.𝑠𝑒𝑞 ≥ 𝑥 and 𝑆𝑁 ≥ 𝑥

when 𝑜𝑝′ starts. Hence, 𝑜𝑝′ reads 𝑥 ′ ≥ 𝑥 from 𝑆𝑁 (line 2 or line 8), and, following rules 𝑅2/𝑅3 is linearized
immediately before 𝜌𝑥 ′+1 (which changes 𝑅.𝑠𝑒𝑞 to 𝑥 ′ + 1 > 𝑥). It thus appears in 𝐿(𝛼) after every operation

with sequence number 𝑥 linearized with rule 𝑅1.

• 𝑜𝑝 is linearized using rule 𝑅2 or 𝑅3, and 𝑜𝑝′ using rule 𝑅1. Let 𝑥 be the value read from 𝑆𝑁 in 𝑜𝑝 (line 2 or line 8).

As 𝑜𝑝 is not placed using rule 𝑅1, 𝑅.𝑠𝑒𝑞 ≥ 𝑥 + 1 when 𝑜𝑝 terminates. Indeed, if 𝑜𝑝 is silent read 𝑅.𝑠𝑒𝑞 ≥ 𝑥 + 1
when 𝑆𝑁 is read. Otherwise, 𝑜𝑝 is a silent write, and thus 𝑅.𝑠𝑒𝑞 has already been updated to a value ≥ 𝑥 + 1
when a read (line 10) or a compare&swap (line 14) to 𝑅 is applied in 𝑜𝑝 . Therefore, the linearization step of 𝑜𝑝′

is applied to a configuration in which 𝑅.𝑠𝑒𝑞 ≥ 𝑥 + 1, and thus occurs after 𝜌𝑥+1. Hence 𝑜𝑝 is placed in 𝐿(𝛼)
after the visible write with sequence number 𝑥 + 1, whereas 𝑜𝑝′ is placed before by definition of rules 𝑅2/𝑅3,

which is a contradiction.

• Rule 𝑅1 is not used to linearize 𝑜𝑝 and 𝑜𝑝′. Let 𝑥 and 𝑥 ′ be the values of SN read at the beginning of 𝑜𝑝 and

𝑜𝑝′ respectively. As 𝑜𝑝 precedes 𝑜𝑝′ in 𝛼 , 𝑥 ≤ 𝑥 ′. If 𝑥 < 𝑥 ′, 𝑜𝑝′ is placed after the visible write with sequence

number 𝑥 + 1, and 𝑜𝑝 before this write in 𝐿(𝛼). If 𝑥 = 𝑥 ′, we remark that 𝑜𝑝 cannot be a write operation.

Indeed, if 𝑜𝑝 is a write, 𝑠𝑛(𝑜𝑝) = 𝑥 + 1, and therefore by Lemma 20, 𝑆𝑁 ≥ 𝑥 + 1 when 𝑜𝑝 terminates and hence

also when 𝑜𝑝′ starts. Hence, 𝑜𝑝 and 𝑜𝑝′ are placed using the same rule or 𝑜𝑝 is placed using rule R2 and 𝑜𝑝′,

rule 𝑅3. In the latter case, 𝑜𝑝 is placed before 𝑜𝑝′ by rule 𝑅3. In the former case, 𝑜𝑝 cannot appear after 𝑜𝑝′ in

𝐿(𝛼) as they are relatively ordered with respect to the order in which a step taken in their execution interval

occurs in 𝛼 . □

Lemma 22. If a read operation 𝑟𝑜𝑝 in 𝐻 ′ returns 𝑣 , then 𝑣 is the input of the last write that precedes 𝑟𝑜𝑝 in 𝐿(𝛼).

Proof. Let 𝑥 = 𝑠𝑛(𝑟𝑜𝑝). Suppose that 𝑟𝑜𝑝 is direct, then 𝑣 = 𝑣𝑥 , the value fetched from 𝑅 at line 4 and we have

𝑥 = 𝑅.𝑠𝑒𝑞 when this fetch&xor is applied. (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) is changed to (𝑥, 𝑣𝑥 ) by a compare&swap (line 14) applied in

a write operation with input 𝑣𝑥 , and by Lemma 18, this step is unique. Let 𝑤𝑜𝑝 be the operation that applies this

compare&swap.𝑤𝑜𝑝 is a visiblewrite, linearized according to rule 𝑅1 before 𝑜𝑝 , with the step 𝜌𝑥 (the compare&swap

that changes (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) to (𝑥, 𝑣𝑥 )). Note that there is no visible write operation placed between 𝑤𝑜𝑝 and 𝑟𝑜𝑝 in

𝐿(𝛼) (otherwise 𝑟𝑜𝑝 will not read 𝑥 from 𝑅.𝑠𝑒𝑞 at line 4), and thus every silent write is placed (according to rule R3)

before𝑤𝑜𝑝 or after 𝑟𝑜𝑝 . 𝑟𝑜𝑝 thus returns the input of the last write that precedes it in 𝐿(𝛼).
Otherwise, suppose that 𝑟𝑜𝑝 is silent. By the code, 𝑟𝑜𝑝 is preceded by a direct read operation 𝑑𝑜𝑝 performed by the

same process, which returns the same value, and with the same sequence number 𝑥 . Let𝑤𝑜𝑝 be the lastwrite operation

that precedes𝑑𝑜𝑝 in 𝐿(𝛼). As shown above, the input of𝑤𝑜𝑝 is 𝑣𝑥 = 𝑣 and𝑤𝑜𝑝 is the unique visiblewritewith sequence

number 𝑥 . If no visible write is placed between𝑤𝑜𝑝 and 𝑟𝑜𝑝 , then there is also no silent write between𝑤𝑜𝑝 and 𝑟𝑜𝑝

in 𝐿(𝛼) (as rule 𝑅3 places a silent write immediately before a visible write). Assume, towards a contradiction, that

there is a visible write(𝑣𝑥 ′ ) between𝑤𝑜𝑝 and 𝑟𝑜𝑝 in 𝐿(𝛼), with 𝑠𝑒𝑞(𝑤𝑜𝑝′) = 𝑥 ′. By Lemma 18, 𝑥 ′ > 𝑥 . If 𝑟𝑜𝑝 is placed

using rule 𝑅1, 𝜌𝑥 ′ occurs before 𝑆𝑁 is read by 𝑟𝑜𝑝 (line 2). As 𝑟𝑜𝑝 is placed using rule 𝑅1, we thus have 𝑅.𝑠𝑒𝑞 = 𝑆𝑁 ≥ 𝑥 ′

when this read is applied since 𝑅.𝑠𝑒𝑞 is non-decreasing. Therefore, 𝑠𝑛(𝑟𝑜𝑝) ≠ 𝑥 , which is a contradiction. 𝑟𝑜𝑝 is thus
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placed using rule 𝑅2. It is thus before the visiblewrite with sequence number 𝑥 + 1, and hence there is no visiblewrite

between𝑤𝑜𝑝 (which the visible write with sequence number 𝑥 ) and 𝑟𝑜𝑝 . □

Lemma 23. If an read operation 𝑟𝑜𝑝 by process 𝑝 𝑗 returns 𝑣 and appears before an audit operation 𝑎𝑜𝑝 in 𝐿(𝛼), then
( 𝑗, 𝑣) is contained in the response set of 𝑎𝑜𝑝 .

Proof. If 𝑟𝑜𝑝 is silent, then it is preceded by a direct read 𝑟𝑜𝑝′ by the same process, which returns the same value.

In that case, we consider 𝑟𝑜𝑝′ instead of 𝑟𝑜𝑝 . So, assume 𝑟𝑜𝑝 is direct. Let 𝑥𝑟 and 𝑥𝑎 denote respectively 𝑠𝑛(𝑟𝑜𝑝) and
𝑠𝑛(𝑎𝑜𝑝). Since both 𝑎𝑜𝑝 and 𝑟𝑜𝑝 are linearized by rule 𝑅1, 𝑥𝑟 ≤ 𝑥𝑎 since 𝑟𝑜𝑝 precedes 𝑎𝑜𝑝 in 𝐿(𝛼).

If 𝑥𝑟 = 𝑥𝑎 = 𝑥 , the fetch&xor applied by 𝑟𝑜𝑝 is before 𝑅 is read in 𝑎𝑜𝑝 at line 17. As 𝑥𝑟 = 𝑥𝑎 = 𝑥 , this read step

returns a triple (𝑥, 𝑟𝑣, 𝑟𝑏) where 𝑟𝑏 [ 𝑗] ≠ 𝑟𝑎𝑛𝑑𝑥 [ 𝑗] and 𝑟𝑣 = 𝑣 . Therefore, ( 𝑗, 𝑣) is included in the audit set 𝐴 (line 21).

If 𝑥𝑟 < 𝑥𝑎 , consider the visible write operation in which 𝑅.𝑠𝑒𝑞 is changed from 𝑥𝑟 to 𝑥𝑟 + 1 (step 𝜌𝑥𝑟+1). Before

applying this step, a writer 𝑝 sets 𝐵 [𝑥𝑟 ] [ 𝑗] to true and 𝑉 [𝑥𝑟 ] to 𝑣 (line 13). Indeed, if 𝑅.𝑏𝑖𝑡𝑠 is modified by 𝑝 𝑗 after 𝑝

reads 𝑅 at line 10, the compare&swap at line 14 trying to change 𝑅.𝑠𝑒𝑞 to 𝑥𝑟 + 1 fails. Note also that by Lemma 18 no

other value 𝑣 ′ ≠ 𝑣 is written to 𝐵 [𝑥𝑟 ]. By the code, 𝐵 [𝑥𝑟 ] [ 𝑗] is read in an audit operation only after 𝑅.𝑠𝑒𝑞 is seen to be

larger than or equal 𝑥𝑟 + 1 at line 17. Hence, 𝐵 [𝑥𝑟 ] [ 𝑗] and 𝑉 [𝑠] are read by 𝑎𝑜𝑝 or by a preceding audit of the same

process after 𝜌𝑥𝑟+1. It thus follows that ( 𝑗, 𝑣) is added to the audit set 𝐴 before 𝑎𝑜𝑝 returns. □

Lemma 24. If a pair ( 𝑗, 𝑣) is contained in the response set of an audit operation 𝑎𝑜𝑝 , then there is a read operation by

process 𝑝 𝑗 that returns 𝑣 and appears before 𝑎𝑜𝑝 in 𝐿(𝛼).

Proof. Let 𝑥 = 𝑠𝑛(𝑎𝑜𝑝). One way for the pair ( 𝑗, 𝑣) to be included in the response set 𝐴 of 𝑎𝑜𝑝 , is if 𝑗 is extracted

from the bit-string read from 𝑅 at line 21. Let (𝑟𝑠, 𝑟𝑣, 𝑟𝑏) be the triple read from 𝑅 at line 17. Note that 𝑥 = 𝑠𝑛(𝑜𝑝) = 𝑟𝑠 .

Hence, 𝑅 is previously changed to (𝑥, 𝑟𝑣 = 𝑣𝑥 , 𝑟𝑎𝑛𝑑𝑥 ) (in step 𝜌𝑥 ). Since 𝑟𝑏 [ 𝑗] ≠ 𝑟𝑎𝑛𝑑𝑥 [ 𝑗], a fetch&xor by 𝑝 𝑗 is applied
to 𝑅 after 𝜌𝑥 and before 𝑅 is read by 𝑎𝑜𝑝 . This fetch&xor is applied during a read by 𝑝 𝑗 that returns 𝑣𝑥 = 𝑣 . This read

is direct, and like 𝑎𝑜𝑝 , is linearized by rule 𝑅1, implying it precedes 𝑎𝑜𝑝 in 𝐿(𝛼).
Otherwise, 𝑎𝑜𝑝 reads 𝑡𝑟𝑢𝑒 from a Boolean register 𝐵 [𝑠] [ 𝑗] (line 20), for some 𝑠 < 𝑥 . Before 𝐵 [𝑠] [ 𝑗] is read, a write

operation by some process 𝑝𝑖 sets 𝐵 [𝑠] [ 𝑗] to true (line 13). By the code, 𝑝𝑖 has previously read a triple (𝑠, 𝑣 ′, 𝑟𝑏) from
𝑅 ( where 𝑟𝑏 [ 𝑗] ≠ 𝑟𝑎𝑛𝑑𝑠 [ 𝑗]. Therefore, as above, 𝑝 𝑗 applies a fetch&xor to 𝑅 when 𝑅.𝑠𝑒𝑞 = 𝑠 in a read operation 𝑟𝑜𝑝 .

This operation is a direct read that returns 𝑣 ′ (since by Lemma 18, 𝑅.𝑠𝑒𝑞 = 𝑠′ =⇒ 𝑅.𝑣𝑎𝑙 = 𝑣 ′), and its place in 𝐿(𝛼) is
determined by its linearization step 𝑙𝑠 , which is the fetch&xor applied to 𝑅. On the other hand, the linearization step of

𝑎𝑜𝑝 is the read of 𝑅 (line 17), and 𝑠 < 𝑥 = 𝑅.𝑠𝑒𝑞, when this step occurs. Therefore, 𝑅 is read in 𝑎𝑜𝑝 after 𝜌𝑠+1, that is

after 𝑅.𝑠𝑒𝑞 is changed from 𝑠 to 𝑠 + 1. Before this step is applied, 𝐵 [ 𝑗] [𝑠] is set to true (line 13), and hence the direct

read 𝑟𝑜𝑝 is linearized before 𝑎𝑜𝑝 . □

B CORRECTNESS PROOF FOR ALGORITHM 2 (AUDITABLE MAX REGISTER)

The proof is divided into four parts. First we check that executions of the max register algorithm have a simple structure,

as for the register implementation. Each execution 𝛼 may be partitioned into phases, in which sequence numbers in

registers SN and 𝑅 are Equal or Differ by one. Phases are associated with unique increasing values, which are the only

values that can be returned by read operations. The second part then shows, essentially along the lines of the proof

of wait-freedom of Algorithm 1, that read, writeMax and audit operations are wait-free. Relying on the structural

lemmas of the first part, we prove in part three that each execution 𝛼 is linearizable. The basis of the linearization
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𝐿(𝛼) is a linearization 𝐿(𝛽) of an execution 𝛽 of Algorithm 1 indistinguishable from 𝛼 for any reader or auditor. The

construction allows to lift the strong auditing properties of Algorithm 1 to the max register implementation. The fourth,

and last, part of the proof establishes that read and writeMax operations are uncompromised by the readers. Until the

last part, pairs (𝑣𝑎𝑙𝑢𝑒𝑠, 𝑛𝑜𝑛𝑐𝑒) are considered as single opaque values, ordered lexicographically.

Partition into phases. Recall that 𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙 denote respectively the sequence number and the value stored in 𝑅. We

observe that the sequence numbers in SN and 𝑅.𝑠𝑒𝑞 follow the same pattern as in Algorithm 1, namely the successive

values of (𝑅.𝑠𝑒𝑞, SN ) are (0, 0), (1, 0), (1, 1), (2, 1), . . .
Indeed, when SN is changed, it is incremented by one (line 30, line 35) and whenever 𝑅.𝑠𝑒𝑞 is changed to 𝑥 + 1, 𝑥 has

previously been read from SN (at line 24 or line 30). In fact, in Algorithm 2, each iteration of the repeat loop behaves as

a write instance of Algorithm 1. A sequence number 𝑥 is first read from SN (in line 24 for the first iteration, line 30

otherwise), then if 𝑅.𝑠𝑒𝑞 < 𝑥 + 1 (line 26), an attempt to changes 𝑅.𝑠𝑒𝑞 to 𝑥 + 1 (together with 𝑅.𝑣𝑎𝑙 and 𝑅.𝑏𝑖𝑡𝑠) is made

by applying a compare&swap (line 34) before, if successful, making sure that SN ≥ 𝑥 + 1 (line 35). Lemma 1 thus still

holds. It is restated below for convenience:

Lemma 25. A finite execution 𝛼 can be written either as 𝐸0𝜌1𝐷1𝜎1𝐸1 . . . 𝜌𝑘𝐷𝑘𝜎𝑘𝐸𝑘 or as 𝐸0𝜌1𝐷1𝜎1𝐸1 . . . 𝜎𝑘−1𝐸𝑘−1𝜌𝑘𝐷𝑘 ,

for some integer 𝑘 ≥ 0, where:

• 𝜌ℓ and 𝜎ℓ are the steps that respectively change the value of 𝑅.𝑠𝑒𝑞 and SN from ℓ − 1 to ℓ (𝜌ℓ is a successful

compare&swap line 34, 𝜎ℓ is also a successful compare&swap, applied within a read, line 5, a write, line 30 or

line 35, or an audit, line 22).

• in any configuration in 𝐸ℓ , 𝑅.𝑠𝑒𝑞 = SN = ℓ , and in any configuration in 𝐷ℓ , 𝑅.𝑠𝑒𝑞 = ℓ = SN + 1.

Whenever 𝑅.𝑣𝑎𝑙 is changed to 𝑣 , 𝑣 has previously been read from the max register𝑀 (line 31). Therefore, is easy to

see that:

Invariant 26. The successive values of 𝑅.𝑣𝑎𝑙 are strictly increasing.

During two consecutive phases 𝐷𝑥𝐸𝑥 , neither the sequence number nor the value stored in 𝑅 change, and as we have

just seen, 𝑅.𝑣𝑎𝑙 is increasing, at most one unit ahead of SN . Therefore, similarly to Lemma 18 for Algorithm 1, we have

Lemma 27. Let 𝛼 be a finite execution. There exists 𝑘 ≥ 0 and 𝑣1 < . . . < 𝑣𝑘 such that the sequence of values of the fields

(𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) is (0, 𝑣0), (1, 𝑣1), . . . , (𝑘, 𝑣𝑘 ).

Wait-freedom. The code of read and audit operations is the same in Algorithm 1 and in Algorithm 2, so they are

wait-free as shown in Appendix A. For a writeMax operation 𝑜𝑝 , as for write, concurrent read operations may

prevent 𝑜𝑝 from successfully applying a compare&swap to 𝑅 and hence from exiting the repeat loop. This happens at

most𝑚 times, where𝑚 is the number of readers, as implied by Lemma 17 which still holds. Unlike forwrite operations,

the repeat loop continues (skipping the remainder of the current iteration) if the current sequence number 𝑠𝑛 has

already been associated with a value (𝑅.𝑠𝑒𝑞 ≥ 𝑠𝑛, line 30). However, we show that this can happen a constant number

of times before 𝑅.𝑣𝑎𝑙 becomes greater than the input of 𝑜𝑝 .

Lemma 28 (wait-freedom of writeMax). Every writeMax operation terminates within a finite number of its own steps.

Proof. Let𝑤𝑜𝑝 be a writeMax operation by some process 𝑝 with input𝑤 , and assume towards a contradiction,

that it does not terminate in some infinite execution 𝛼 .
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We claim that after 𝑤 is written to 𝑀 in line 24, (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) changes at most once. To see why, let (ℓ, 𝑣ℓ ) be the
value of (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) immediately after 𝑝 writes𝑤 to𝑀 . By Lemma 27, if (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) is next changed at least twice,

its two subsequent values are (ℓ + 1, 𝑣ℓ+1) and (ℓ + 2, 𝑣ℓ+2) with 𝑣ℓ < 𝑣ℓ+1 < 𝑣ℓ+2. Let 𝑞 be the process that changes

(𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) from (ℓ + 1, 𝑣ℓ+1) to (ℓ + 2, 𝑣ℓ+2) by applying a successful compare&swap in line 34. Before applying this

compare&swap, 𝑞 in that order reads (ℓ + 1, 𝑣ℓ+1) from 𝑅 (line 26) and 𝑣ℓ+2 from𝑀 (line 31). Each of these steps occur

after 𝑤 is written to 𝑀 by 𝑝 . Because 𝑀 is a max register, 𝑣ℓ+2 ≥ 𝑤 , and therefore, 𝑅.𝑣𝑎𝑙 ≥ 𝑤 after (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) has
been changed to (ℓ + 2, 𝑣ℓ+2). Since𝑤𝑜𝑝 does not terminate, and 𝑝 reads 𝑅 (line 26) in each iteration of repeat loop, it

eventually discovers that 𝑅.𝑣𝑎𝑙 ≥ 𝑤 , and exits the loop with the break statement (line 27): a contradiction.

Let therefore (ℓ′, 𝑣ℓ ′ ) be the final value of (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙). After 𝑅.𝑠𝑒𝑞 is set to ℓ′, by Lemma 25, SN ∈ {ℓ′ − 1, ℓ′}. In
the first iteration in which 𝑝 reads (ℓ′, 𝑣ℓ ′ ) from 𝑅 (line 26), if ℓ′ ≥ 𝑥 + 1, where 𝑥 is the last value read from SN by 𝑝

before this iteration, 𝑝 reads therefore ℓ′ − 1 or ℓ′ from SN (line 30). If ℓ′ − 1 is read, then in the following iteration, if SN

has not meanwhile been changed to ℓ′, the compare&swap applied to SN succeeds, and 𝑝 finally reads ℓ′ from SN . To

summarize, there is a configuration 𝐶 in 𝛼 after which the following always holds (1) 𝑅.𝑠𝑒𝑞 = ℓ′ = SN , 𝑅.𝑣𝑎𝑙 = 𝑣ℓ ′ < 𝑤

and (2) for process 𝑝 , 𝑠𝑛 = ℓ′ + 1.
The rest of the proof is the same as the proof of wait-freedom for write operation in Algorithm 1. Consider an

iteration of the repeat loop that starts after 𝐶 , and let (𝑠𝑟1, 𝑣𝑟1, 𝑏𝑟1) be the triple read from 𝑅 in this iteration. Note that

𝑠𝑟1 = ℓ′ < 𝑠𝑛 = ℓ′ + 1 and 𝑣𝑟1 = 𝑣ℓ ′ < 𝑤 . Therefore, 𝑝 applies a compare&swap to 𝑅 at the end of this iteration (line 34),

which fails since𝑤𝑜𝑝 does not terminate. Let (𝑠𝑟2, 𝑣𝑟2, 𝑏𝑟2) be the value of 𝑅 immediately before this compare&swap

is applied. Since 𝑅.𝑠𝑒𝑞 and 𝑅.𝑣𝑎𝑙 no longer change, 𝑏𝑟2 ≠ 𝑏𝑟1: at least one reader applies a fetch&xor to 𝑅 during this

iteration of the repeat loop. The same reasoning applies to the next iterations. In each of them, 𝑅.𝑠𝑒𝑞 and 𝑅.𝑣𝑎𝑙 are the

same, and thus a reader applies a fetch&xor before the compare&swap of line 34. By Lemma 17, each reader applies at

most once fetch&xor to 𝑅 while it holds the same sequence number: a contradiction. □

Linearizability. Let 𝛼 be a finite execution, and 𝐻 be the history of the read, writeMax and audit operations in 𝛼 .

We define an execution 𝛽 of Algorithm 1 that is indistinguishable from 𝛼 for any reader and any auditor. This is

made possible by the fact that read and audit share the same code in both Algorithm 1 and Algorithm 2. To linearize

𝛼 , we start from 𝐿(𝛽) (which contains every terminated read and audit of 𝛼), replace each write with a writeMax

with the same input, and then place the remaining terminated writeMax operations. These last operations are silent,

since their input is never read.

The construction of execution 𝛽 is as follows. By Lemma 25 and Lemma 27, there exists values 𝑣1 < . . . < 𝑣𝑘

such that 𝛼 can be written as 𝛼 = 𝐸0𝜌1𝐷1𝜎1𝐸1 . . . 𝜌𝑘𝐷𝑘𝜎𝑘𝐸𝑘 or 𝛼 = 𝐸0𝜌1𝐷1𝜎1𝐸1 . . . 𝜌𝑘𝐷𝑘 𝜎𝑘𝐸𝑘𝐷𝑘 . Let 𝑞1, . . . , 𝑞𝑘 be

the (not necessarily distinct) processes that apply steps 𝜌1, . . . , 𝜌𝑘 , respectively. Recall that 𝜌𝑥 changes (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙)
from (𝑥 − 1, 𝑣𝑥−1) to (𝑥, 𝑣𝑥 ). Before applying 𝜌𝑥 , process 𝑞𝑥 reads 𝑥 from SN (in line 24 or line 30), reads a triple

(𝑥 − 1, 𝑣𝑥−1, 𝑏𝑥−1) from 𝑅 (in line 26), writes 𝑣𝑥−1 to 𝑉 [𝑥 − 1] and depending on 𝑏𝑥−1, appropriately sets to true some

registers in the array 𝐵 [𝑥 − 1] (line 33). This sequence of steps is denoted 𝐴𝑥 . A key observation is that 𝐴𝑥𝜌𝑥 is the

sequence of steps applied by 𝑞𝑥 in a visible write operation with input 𝑣𝑥 in some execution of Algorithm 1.

𝛽 is the execution obtained by removing from 𝛼 every step by writeMax operations, except, for each 𝑥, 1 ≤ 𝑥 ≤ 𝑘 ,

steps 𝐴𝑥 , 𝜌𝑥 and 𝜎𝑥 . Indeed, removed steps are failed attempts to modify 𝑅 or SN or are reads and writes to𝑀 , which is

not accessed by reader and auditor. They are therefore invisible for readers and auditors. A removed step may be also a

write(𝑣𝑥 ) to 𝑉 [𝑥] or setting some register 𝐵 [𝑥] [ 𝑗] to true. This is indiscernible for the auditors, since 𝑉 [𝑥] and the

𝐵 [𝑥] are set to their final value by 𝑞𝑥 when applying 𝐴𝑥 , and no auditors access 𝑉 [𝑥] and 𝐵 [𝑥] before 𝜌𝑥 .
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We then remove all invocations and responses of writeMax operations and, instead, we place for each 𝑥, 1 ≤ 𝑥 ≤ 𝑘 ,

an invocation of write(𝑣𝑥 ) by 𝑞𝑥 immediately before 𝐴𝑥 , and a matching response (except perhaps for 𝑥 = 𝑘)

immediately after 𝜎𝑥 . Finally, in 𝛽 , each step 𝜎𝑥 is applied by 𝑞𝑥 . We obtain:

Claim 29. 𝛽 is a valid execution of Algorithm 1 and, if 𝑝 is a reader or an auditor, then 𝛼
𝑝∼ 𝛽 .

There are exactly 𝑘 write operations in 𝛽 : write(𝑣1), . . . ,write(𝑣𝑘 ). For each 𝑥, 1 ≤ 𝑥 ≤ 𝑘 , write(𝑣𝑥 ) is classified
as visible, since it applies a successful compare&swap to 𝑅, and 𝑠𝑛(write(𝑣𝑥 )) = 𝑥 . As shown in Section 3.2, the

linearization 𝐿(𝛽) of 𝛽 includes in particular the operations write(𝑣1), . . . ,write(𝑣𝑘 ) in that order.

A writeMax operation 𝑜𝑝 with input𝑤 is classified as visible if there exists 𝑥, 1 ≤ 𝑥 ≤ 𝑘 such that𝑤 = 𝑣𝑥 and step

𝜌𝑥 is in the execution interval of 𝑜𝑝 . Otherwise, if 𝑜𝑝 terminates, it is classified as silent. Note that for each 𝑥, 1 ≤ 𝑥 ≤ 𝑘 ,

a visible writeMax exists, since a writeMax(𝑣𝑥 ) is invoked before 𝑅.𝑣𝑎𝑙 is changed to 𝑣𝑥 . This writeMax operation

cannot terminate before 𝑅.𝑣𝑎𝑙 ≥ 𝑣𝑥 or before applying the compare&swap 𝜌𝑥 that changes 𝑅.𝑣𝑎𝑙 to 𝑣𝑥 .

The next two technical lemmas will be used for showing that 𝐿(𝛼) extends the real-time order between operations.

Lemma 30. If operation writeMax(𝑣𝑥 ) is visible, then 𝜎𝑥 is in the execution interval of 𝑜𝑝 .

Proof. 𝜎𝑥 is the successful compare&swap that changes SN from 𝑥 − 1 to 𝑥 . By definition, 𝜌𝑥 is in the execution

interval of 𝑜𝑝 . Since 𝜎𝑥 follows 𝜌𝑥 in 𝛼 , the lemma is true if 𝑜𝑝 does not terminate.

If 𝑜𝑝 terminates, then since its input is 𝑣𝑥 , it reads a value 𝑣 ≥ 𝑣𝑥 from 𝑅 or applies a successful compare&swap

that changes 𝑅.𝑣𝑎𝑙 to 𝑣 ≥ 𝑣𝑥 (line 34). Since the successive values of 𝑅.𝑣𝑎𝑙 are 𝑣0 < 𝑣1 < . . . < 𝑣𝑘 , 𝑣 ∈ {𝑣𝑥 , . . . , 𝑣𝑘 }. If
𝑣 ∈ {𝑣𝑥+1, . . . , 𝑣𝑘 }, it follows from Lemma 25 that SN ≥ 𝑥 when 𝑅 is read or the compare&swap of line 34 applied. 𝜎𝑥

therefore occurs before this step. Since 𝜌𝑥 is in the execution interval of 𝑜𝑝 and precedes 𝜎𝑥 , 𝜎𝑥 is also in the execution

interval of 𝑜𝑝 .

Suppose now that 𝑣 = 𝑣𝑥 . If the repeat loop terminates after 𝑅 is read (break statement of line 27), 𝑅.𝑠𝑒𝑞 ≥ 𝑥 when

this read is applied (Lemma 25) and hence 𝑠𝑛 ≥ 𝑥 at the end of the loop. Similarly, if the loop terminates after applying a

successful compare&swap that changes 𝑅.𝑣𝑎𝑙 to 𝑣𝑥 , this step by Lemma 25 also changes 𝑅.𝑠𝑒𝑞 to 𝑥 and therefore 𝑠𝑛 = 𝑥

at the end of the loop. In both cases, the compare&swap in line 35 tries to changes SN from 𝑥 − 1 to 𝑥 . If it succeeds, 𝜎𝑥
is in the execution interval occurs. If not, 𝜎𝑥 has already occurred, and, since it follows step 𝜌𝑥 which is in the execution

interval of 𝑜𝑝 , 𝜎𝑥 is also in this interval. □

Lemma 31. Let 𝑜𝑝 be a silent writeMax with input𝑤 satisfying 𝑣𝑥−1 < 𝑤 ≤ 𝑣𝑥 , for some 𝑥, 1 ≤ 𝑥 ≤ 𝑘 . The last step of

𝑜𝑝 follows 𝜌𝑥 in 𝛼 .

Proof. 𝜌𝑥 is the successful compare&swap that changes 𝑅.𝑣𝑎𝑙 from 𝑣𝑥−1 to 𝑣𝑥 . Let 𝑝 be the process that performs

𝑜𝑝 . Since 𝑜𝑝 terminates, there exists 𝑣 ≥ 𝑤 such that 𝑝 reads 𝑣 from 𝑅.𝑣𝑎𝑙 or successfully applies a compare&swap that

changes 𝑅.𝑣𝑎𝑙 to 𝑣 . In both cases, since the successive values of 𝑅.𝑣𝑎𝑙 are 𝑣0 < 𝑣1, < . . . < 𝑣𝑘 , 𝑣 ≥ 𝑣𝑥 . Therefore, in the

first case 𝜌𝑥 precedes the read of 𝑅 in 𝑜𝑝 . In the second case, the successful compare&swap is either 𝜌𝑥 or 𝜌𝑥 ′ for some

𝑥 ′ ≥ 𝑥 . This is not the last step in 𝑜𝑝 , since 𝑝 tries to update SN before returning (line 35). □

Let 𝐻 ′ be the complete history obtained by completing or removing non-terminated operations in 𝐻 as follows:

read and audit operations that do not appear in 𝐿(𝛽) are removed. These operations do not terminate in 𝛽 , and

thus, also in 𝛼 , since 𝛼
𝑝∼ 𝛽 for any auditor or reader 𝑝 . For every non-terminated read or audit operation 𝑜𝑝 that

appears in 𝐿(𝛽), we add a response for 𝑜𝑝 , as in the sequential execution 𝐿(𝛽), at the end of 𝐻 . For every 𝑥, 1 ≤ 𝑥 ≤ 𝑘 ,
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and non-terminated visible writeMax(𝑣𝑥 ), we add a response at the end of 𝐻 , in arbitrary order. Every unclassified

writeMax operation is removed.

To define 𝐿(𝛼), we start (1) from 𝐿(𝛽). We then (2) replace for each 𝑥, 1 ≤ 𝑥 ≤ 𝑘 , write(𝑣𝑥 ) by the set of visible

writeMax(𝑣𝑥 ) operations, ordered arbitrarily. Finally, we (3) place each remaining silent writeMax(𝑤 ) operation

𝑜𝑝 , respecting the real time precedence between 𝑜𝑝 and already placed operations, and after writeMax(𝑣𝑥 ), where

𝑣𝑥−1 < 𝑤 ≤ 𝑣𝑥 .

For each 𝑥, 1 ≤ 𝑥 ≤ 𝑘 , write(𝑣𝑥 ) is a visible write with sequence number 𝑥 . It is thus linearized in 𝐿(𝛽) with 𝜌𝑥

(Rule R1, Section 3.2). Since 𝜌𝑥 is in the execution interval of visible writeMax(𝑣𝑥 ) operations, step (2) does not break

the real-time precedence with operations linearized in 𝐿(𝛽) with one of their steps.

For step (3), silent writeMax operations are first sorted by their real time order. They are then placed one after

the other as follows. Operation writeMax(𝑤 ), with 𝑣𝑥−1 < 𝑤 ≤ 𝑣𝑥 is placed after 𝜌𝑥 , that is, after visible operations

writeMax(𝑣𝑥 ), and immediately after every already-placed operation that precedes it in 𝛼 . This always possible, since

by Lemma 31, 𝑜𝑝 does not terminate before 𝜌𝑥 .

Lemma 32. Let 𝑜𝑝 , 𝑜𝑝′ be two operations in 𝐻 ′. If 𝑜𝑝 ends before 𝑜𝑝′ starts in 𝛼 , 𝑜𝑝 precedes 𝑜𝑝′ in 𝐿(𝛼).

Proof. The lemma is true if 𝑜𝑝 or 𝑜𝑝′ is a silent writeMax, since each silent writeMax is placed in 𝐿(𝛼) before
every operation it precedes, and after every operation it follows in the real-time order. The lemma is also true if 𝑜𝑝 and

𝑜𝑝′ are read or audit operations. Indeed, 𝑜𝑝 ends before 𝑜𝑝′ starts also in 𝛽 , and therefore appears before 𝑜𝑝′ in 𝐿(𝛽),
and thus also in 𝐿(𝛼). We examine the remaining cases next:

• 𝑜𝑝 and 𝑜𝑝′ are two visible writeMax. Let 𝑣𝑥 and 𝑣𝑥 ′ be their respective inputs. By definition, 𝜌𝑥 and 𝜌𝑥 ′ are

in the execution interval of 𝑜𝑝 and 𝑜𝑝′, respectively. Therefore, 𝑥 < 𝑥 ′ and 𝑣𝑥 < 𝑣𝑥 ′ , since 𝑜𝑝 ends before

𝑜𝑝′ starts. In 𝐿(𝛽), write(𝑣𝑥 ) and write(𝑣𝑥 ′ ) are linearized according to the order in which their associated

linearization steps occur in 𝛽 (rule R1). These steps are 𝜌𝑥 and 𝜌𝑥 ′ . Therefore, write(𝑣𝑥 ) is before write(𝑣𝑥 ′ )
in 𝐿(𝛽), and hence by step (2) of the construction of 𝐿(𝛼), writeMax(𝑣𝑥 ) precedes also writeMax(𝑣𝑥 ′ ) in
𝐿(𝛼).

• 𝑜𝑝 is a read or an audit and 𝑜𝑝 is a visible writeMax. Since 𝑜𝑝 is linearized in 𝐿(𝛽), it has a sequence number

𝑥 = 𝑠𝑛(𝑜𝑝), which is the value read from SN (line 2) if 𝑜𝑝 is a silent read, fetched or read from 𝑅 (line 4) if 𝑜𝑝 is

a direct read or an audit. Let 𝑣𝑥 ′ be the input of 𝑜𝑝 . Since 𝑜𝑝 ends before 𝑜𝑝′ starts, and by definition of visible

writeMax, 𝜌𝑥 ′ is in the execution interval of 𝑜𝑝′, SN is read or 𝑅 fetched/read before 𝜌𝑥 ′ . Hence 𝑠𝑛(𝑜𝑝) < 𝑥 ′,

and it thus follows that 𝑜𝑝 is placed before the write operation with input 𝑣𝑥 ′ in 𝐿(𝛽). Therefore, by step (2) of

the construction of 𝐿(𝛼), 𝑜𝑝 precedes 𝑜𝑝′ in 𝐿(𝛼).
• 𝑜𝑝 is a visible writeMax and 𝑜𝑝′ is a read or an audit. As in the previous case, let 𝑣𝑥 be the input of 𝑜𝑝 , and

let 𝑥 ′ = 𝑠𝑛(𝑜𝑝). If 𝑜𝑝′ has a linearization step 𝑙𝑠 (𝑜𝑝′), that is 𝑜𝑝′ is an audit, a direct read or a silent read

in which SN .read is applied during 𝐸𝑥 ′ , 𝑙𝑠 (𝑜𝑝′) follows 𝜌𝑥 in 𝛼 and thus also in 𝛽 . Hence 𝑜𝑝′ appears after

write(𝑣𝑥 ) in 𝐿(𝛽). Therefore, by step (2) of the construction, 𝑜𝑝′ is after 𝑜𝑝 in 𝐿(𝛼).
It remains to examine the case in which 𝑜𝑝′ is a silent read without a linearization step. This means that SN is

read in 𝑜𝑝 (in line 2) during phase 𝐷𝑥 ′+1. Since 𝜌𝑥 and, by Lemma 30, also 𝜎𝑥 are included in 𝑜𝑝’s execution

interval, phase 𝐷𝑥 is contained in 𝑜𝑝’s execution interval. Since 𝑜𝑝 ends before 𝑜𝑝′ starts, we therefore have

𝑥 < 𝑥 ′ + 1. 𝑜𝑝′ is placed in 𝐿(𝛽) according to rule 𝑅2 immediately before the write operation write(𝑣𝑥 ′+1).

Since 𝑥 < 𝑥 ′ + 1, 𝑜𝑝′ is placed after write(𝑣𝑥 ) in 𝐿(𝛽), and thus after 𝑜𝑝 = writeMax(𝑣𝑥 ) in 𝐿(𝛼). □
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We next prove that 𝐿(𝛼) is a sequential execution of an auditable max register.

Lemma 33. If a read operation 𝑟𝑜𝑝 by some process 𝑝 in 𝐻 ′ returns 𝑣 , then 𝑣 is the largest input of a writeMax that

precedes 𝑟𝑜𝑝 in 𝐿(𝛼).

Proof. Let 𝑣𝑥 be the input of the last visible writeMax that precedes 𝑟𝑜𝑝 in 𝐿(𝛼). We claim that 𝑣𝑥 is the largest

input of the (silent or visible) writeMax that precedes 𝑟𝑜𝑝 in 𝐿(𝛼). Let𝑤 be the input of a silent writeMax operation

𝑤𝑜𝑝 that precedes 𝑜𝑝 in 𝐿(𝛼). By step (3) of the construction of the linearization,𝑤𝑜𝑝 is preceded in 𝐿(𝛼) by a visible

writeMax operation with input 𝑣𝑥 ′ ≥ 𝑤 . Therefore, 𝑣𝑥 ≥ 𝑤 and the claim follows.

SincewriteMax(𝑣𝑥 ) is the lastwriteMax operation that precedes 𝑟𝑜𝑝 in 𝐿(𝛼),write(𝑣𝑥 ) is the lastwrite operation

that precedes 𝑟𝑜𝑝 in 𝐿(𝛽). Since 𝐿(𝛽) is a linearization of an execution 𝛽 of register implementation (Algorithm 1), 𝑟𝑜𝑝

returns 𝑣𝑥 in execution 𝛽 . Therefore, since 𝛼
𝑝∼ 𝛽 , 𝑟𝑜𝑝 returns 𝑣𝑥 in execution 𝛼 . □

Lemma 34. A pair ( 𝑗, 𝑣) is contained in the response set of an audit operation 𝑎𝑜𝑝 if and only if there is a read operation

by process 𝑝 𝑗 that returns 𝑣 and appears before 𝑎𝑜𝑝 in 𝐿(𝛼).

Proof. Let 𝑜𝑝 be a read operation by process 𝑝 𝑗 that returns 𝑣 and precedes 𝑎𝑜𝑝 in 𝐿(𝛼). Let 𝑞 be the process that

invokes 𝑎𝑜𝑝 . By construction, 𝑜𝑝 precedes 𝑎𝑜𝑝 also in 𝐿(𝛽). Since 𝛼 𝑝 𝑗∼ 𝛽 , 𝑜𝑝 returns 𝑣 in 𝛽 , and, as seen in the proof

of Algorithm 1 (Lemma 23), the response set of 𝑎𝑜𝑝 in 𝛽 contains ( 𝑗, 𝑣). Since 𝛼 𝑞∼ 𝛽 , the response set of 𝑎𝑜𝑝 contains

( 𝑗, 𝑣) also in 𝛼 .

Reciprocally, suppose that ( 𝑗, 𝑣) is included in the response set of an audit operation 𝑎𝑜𝑝 by some process 𝑞. Since

𝛼
𝑞∼ 𝛽 , 𝑎𝑜𝑝 reports ( 𝑗, 𝑣) also in execution 𝛽 , and therefore, there exists a read operation 𝑟𝑜𝑝 by 𝑝 𝑗 that precedes 𝑎𝑜𝑝 in

𝐿(𝛽) and returns 𝑣 (Lemmal 24). By construction, 𝑟𝑜𝑝 also precedes 𝑎𝑜𝑝 in 𝐿(𝛼), and since 𝛽
𝑝 𝑗∼ 𝛼 , returns 𝑣 in 𝛼 . □

Auditabilty and uncompromised operation instances. The characterization (recalled below) of effective read operations,

established in Section 3.2 for Algorithm 1 holds, as the proof can be easily adapted.

Claim 35. A read operation 𝑟𝑜𝑝 by 𝑝 𝑗 is 𝑣-effective in 𝛼 if and only if it has returned 𝑣 or it is pending and either (1) 𝑝 𝑗

has read 𝑥 from SN , 𝑥 = 𝑝𝑟𝑒𝑣_𝑠𝑛 (line 2) and 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 = 𝑣 or (2) 𝑝 𝑗 has applied fetch&xor to 𝑅 (line 4), from which it

reads 𝑣 from 𝑅.𝑣𝑎𝑙 .

Essentially, audit properties are lifted from the auditable register implementation, thanks to the construction of 𝐿(𝛼)
from a linearization 𝐿(𝛽) of an execution of that algorithm.

Lemma 36. A read operation 𝑟𝑜𝑝 that is invoked in 𝛼 is in 𝐿(𝛼) if and only if 𝑟𝑜𝑝 is effective in 𝛼 .

Proof. Suppose that read operation 𝑟𝑜𝑝 by 𝑝 𝑗 is effective in 𝛼 . 𝑟𝑜𝑝 is also effective in 𝛽 since 𝛼
𝑝 𝑗∼ 𝛽 and being

effective is a local property. Indeed, it follows from the characterization (Claim 35) that to determine if a given read

operation by some process 𝑞 is effective, it is enough to examine the steps of 𝑞. The same lemma holds for the register

implementation (Lemma 3), and hence 𝑟𝑜𝑝 is in 𝐿(𝛽). Since 𝐿(𝛼) extends 𝐿(𝛽), 𝑟𝑜𝑝 is in 𝐿(𝛼) as well.
Conversely, suppose that 𝑟𝑜𝑝 is in 𝐿(𝛼). By construction, it is also in 𝐿(𝛽) and hence 𝑟𝑜𝑝 is effective in 𝛽 by Lemma 3.

Since 𝛽
𝑝 𝑗∼ 𝛼 , as explained above, 𝑟𝑜𝑝 is effective in 𝛼 . □

As in the proof of Algorithm 1, Lemma 34 and Lemma 36 imply:

Lemma 37. If an audit operation 𝑎𝑜𝑝 is invoked and returns in an extension 𝛼 ′ of 𝛼 , and 𝛼 contains a 𝑣-effective read

operation by process 𝑝 𝑗 , then ( 𝑗, 𝑣) is contained in the response set of 𝑎𝑜𝑝 .
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So far, we have ignored the nonce 𝑁 adjoined to input𝑤 of writeMax operations, treating (𝑤, 𝑁 ) as a single opaque
value. We now use them to prove that a reader cannot compromise a writeMax(𝑣), unless it actually reads 𝑣 .

Lemma 38 (uncompromised writeMax). For every value𝑤 , and every reader 𝑝 𝑗 either there is a read operation by 𝑝 𝑗

in 𝛼 that is𝑤-effective, or there exists 𝛼 ′, 𝛼 ′
𝑝 𝑗∼ 𝛼 in which no writeMax has input𝑤 .

Proof. Suppose that 𝑝 𝑗 has no𝑤-effective read in 𝛼 . If there is nowriteMax operation with input𝑤 , taking 𝛼 = 𝛼 ′

proves the lemma.

Assume that𝑤 is the input of a writeMax operation 𝑜𝑝 in 𝛼 . Let 𝑢 be the largest input of writeMax in 𝛼 smaller

than𝑤 , and let 𝑁 be the nonce associated to it. Execution 𝛼 ′ is the same as execution 𝛼 , except that the input of 𝑜𝑝

is 𝑢, and the nonce is 𝑁 ′ where 𝑁 < 𝑁 ′. Note that (𝑢, 𝑁 ) < (𝑢, 𝑁 ′) < (𝑤, 𝑁 ), since pairs (𝑣𝑎𝑙𝑢𝑒, 𝑛𝑜𝑛𝑐𝑒) are ordered
lexicographically. Also, for any other pair 𝑣 = (𝑉𝑎𝑙,𝑀) in 𝛼 , (𝑉𝑎𝑙,𝑀) < (𝑢, 𝑁 ′) or (𝑤, 𝑁 ) < (𝑉𝑎𝑙,𝑀). Therefore,
any comparison between (𝑢, 𝑁 ′) and another pair 𝑣 has the same outcome as a comparison between (𝑤, 𝑁 ) and 𝑣 .

Since in Algorithm 2 the pairs (value,nonce) are only tested for equality or compared, the sequence (0, 𝑣0), . . . (𝑘, 𝑣𝑘 )
of (sequence number, pair) successively stored in (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) is the same in 𝛼 and 𝛼 ′, except if in 𝛼 , 𝑣𝑥 = (𝑤, 𝑁 ) for
some 𝑥, 1 ≤ 𝑥 ≤ 𝑘 . In that case, 𝑣𝑥 = (𝑢, 𝑁 ′) in 𝛼 ′.

If (𝑤, 𝑁 ) is never written to 𝑅, neither is (𝑢, 𝑁 ′) and therefore 𝛼
𝑝 𝑗∼ 𝛼 ′. If (𝑤, 𝑁 ) is written to 𝑅, 𝑝 𝑗 does not apply a

fetch&xor to 𝑅 while 𝑅.𝑣𝑎𝑙 = (𝑤, 𝑁 ), since otherwise the corresponding read is 𝑤-effective. Therefore, 𝑝 𝑗 does not

apply a fetch&xor to 𝑅 in 𝛼 ′ while 𝑅.𝑣𝑎𝑙 = (𝑢, 𝑁 ′) and hence 𝛼
𝑝 𝑗∼ 𝛼 ′. If 𝛼 ′ has no writeMax with input𝑤 , this proves

the lemma. Otherwise, the same construction, applied to 𝛼 ′ leads to an execution 𝛼 ′′, 𝛼
𝑝 𝑗∼ 𝛼 ′

𝑝 𝑗∼ 𝛼 ′′ which has one less

writeMax operation with input𝑤 . This can be repeated until every writeMax(𝑤 ) has been eliminated. □

Lemma 39 (uncompromised read). Let 𝑝 𝑗 ≠ 𝑝𝑘 be two readers. There is an execution 𝛼 ′
𝑝 𝑗∼ 𝛼 in which no read by 𝑝𝑘 is

𝑣-effective.

Proof. The same lemma holds for the register implementation (Lemma 7). Hence, there exists an execution 𝛽′, 𝛽′
𝑝 𝑗∼ 𝛽

of Algorithm 2 in which no read by 𝑝𝑘 is 𝑣-effective. Since 𝛽
𝑝 𝑗∼ 𝛼 , we have that 𝛽′

𝑝 𝑗∼ 𝛼 , implying the lemma. □

We conclude:

Theorem 40. Algorithm 2 is a wait-free, linearizable implementation of an auditable, multi-writer max register. Moreover,

in any execution 𝛼 , an audit reports ( 𝑗, 𝑣) if and only if 𝑝 𝑗 has a 𝑣-effective read in 𝛼 , each write(𝑣) is uncompromised by

a reader 𝑝 𝑗 unless it has a 𝑣-effective read and, each read by 𝑝𝑘 is uncompromised by a reader 𝑝 𝑗 ≠ 𝑝𝑘 .

28


	Abstract
	1 Introduction
	1.1 Auditable Read/Write Registers
	1.2 Our Contributions and Techniques
	1.3 Related Work

	2 Definitions
	3 An Auditable Multi-writer, Multi-reader Register
	3.1 Description of the Algorithm
	3.2 Proof of Correctness

	4 An Auditable Max Register
	5 Auditable Snapshot Objects and Versioned Types
	5.1 Making Snapshots Auditable
	5.2 Proof of Correctness
	5.3 Versioned Objects

	6 Discussion
	Acknowledgments
	References
	A Additional Proofs for Algorithm ?? (Auditable Register)
	B Correctness Proof for Algorithm ?? (Auditable Max Register)

