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Abstract—Secure and reliable communications are crucial
for Intelligent Transportation Systems (ITSs), where Vehicle-to-
Infrastructure (V2I) communication plays a key role in enabling
mobility-enhancing and safety-critical services. Current V2I au-
thentication relies on credential-based methods over wireless
Non-Line-of-Sight (NLOS) channels, leaving them exposed to
remote impersonation and proximity attacks. To mitigate these
risks, we propose a unified Multi-Channel, Multi-Factor Au-
thentication (MFA) scheme that combines NLOS cryptographic
credentials with a Line-of-Sight (LOS) visual channel. Our
approach leverages a challenge–response security paradigm: the
infrastructure issues “challenges” and the vehicle’s headlights
respond by flashing a structured sequence containing encoded
security data. Deep learning models on the infrastructure side
then decode the embedded information to authenticate the vehi-
cle. Real-world experimental evaluations demonstrate high test
accuracy, reaching an average of 95% and 96.6%, respectively,
under various lighting, weather, speed, and distance conditions.
Additionally, we conducted extensive experiments on three state-
of-the-art deep learning models, including detailed ablation
studies for decoding flashing sequence. Our results indicate that
the optimal architecture employs a dual-channel design, enabling
simultaneous decoding of the flashing sequence and extraction of
vehicle spatial and locational features for robust authentication.

Index Terms—ITS, V2I, Security, Multi-Factor Authentication,
Computer Vision, SlowFast CNN.

I. INTRODUCTION

THE future of transportation is not only green or au-
tonomous, it is also connected, intelligent, and increas-

ingly vulnerable to cyber threats [1, 2]. As vehicles contin-
uously exchange critical information with their surroundings,
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establishing secure and trustworthy communication becomes
essential for both mobility and safety. Examples include
Vehicle-to-Vehicle (V2V) communication, where nearby ve-
hicles share data to coordinate movement and avoid collisions
[3], and Vehicle-to-Infrastructure (V2I) communication, where
vehicles interact with the road infrastructure to request and
receive traffic signal timings [4]. Focusing on V2I applications,
we consider a scenario in which vehicles must authenticate
themselves to access restricted lanes or road segments, such as
high-occupancy vehicle lanes, airport zones or military areas,
or, more generally, receive services. This use case typically
involves secure exchanges with the road infrastructure to verify
the vehicle’s identity and authorization status before granting
access to the controlled area or enabling a specific service.
The vehicle authentication process, which involves proving the
identity of the vehicle, is crucial to ensuring both safety and
security [5, 6].

A. Motivations

Vulnerabilities in authentication processes arise due to the
inherent characteristics of wireless communication channels.
In particular, adversaries can exploit them to impersonate ve-
hicles, manipulate signal priorities, or inject false information
into the network. These attacks can compromise the integrity
and security of services and restricted zones, posing significant
safety risks [7, 8, 9]. Current V2I authentication schemes,
which predominantly focus on credential verification rather
than confirming the authenticity and trustworthiness of entities,
fail to mitigate these threats [10, 11, 12]. Recently, researchers
explored the use of side communication channels, particularly
Line-of-Sight (LOS) channels, to exchange authentication data
between vehicles and increase security [13].

B. Our contribution

We propose a unified Multi-Channel and Multi-Factor Au-
thentication (MFA) scheme that introduces a comprehensive
and novel authentication framework, which we also validate
through experimental testing. Our scheme fully integrates
LOS communication and its corresponding challenge-response
mechanism. The multi-channel approach ensures that the com-
municating entity is a real vehicle, as visual confirmation pro-
vides an additional layer of authentication based on physical
presence. Finally, we assess its robustness through a compre-
hensive real-world evaluation using a SlowFast network model
to detect vehicle response.

Our key contributions are the following.
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• Designed Security Scheme: We introduce a novel security
scheme that strengthens vehicle authentication in V2I
communication scenarios, addressing threats from both
remote and physically present attackers.

• Realization and Evaluation of the LOS Mechanism:
The LOS channel is implemented using visible light,
where the vehicle flashes its headlights in response to
a challenge generated by the road infrastructure. We
validated this mechanism through hardware-in-the-loop
experiments, starting with an RC-car and subsequently
in a real-world vehicle environment.

• Computer vision model: We conducted an analysis to
guide the design of the neural network architecture for vi-
sual channel-based authentication. The flashing sequence
is classified using a computer vision system based on
SlowFast, a two-stream action recognition architecture
consisting of two Convolutional Neural Networks (CNNs)
networks. This approach offers high classification accu-
racy and strong generalization capabilities.

The results demonstrated the feasibility of using the proposed
scheme for vehicle authentication in real-world scenarios,
taking into account variables such as different lighting condi-
tions, environments, weather, speeds, distances, and even the
presence of other vehicles.

C. Organization of the Paper

The paper is organized as follows. In Section II, we review
related work on V2I authentication, with a focus on MFA
methods using visual channels. Section III defines the attack
model and threat scenarios motivating a robust V2I authentica-
tion scheme. In Section IV, we present our scheme, detailing
its components, including the LOS-enabled challenge-response
mechanism and the security frame. Section V analyzes the
security properties of the scheme and how it addresses key
threats. Section VI outlines the experimental implementa-
tion, including hardware, data collection in two testbeds,
and the deep learning-based vision model. Section VI-D and
Section VI-G analyze the experimental results and assess
performance. Finally, Section VII summarizes the work and
discusses future directions.

II. RELATED WORK

MFA authentication in V2I communication has gained sig-
nificant research interest in the past decade. Previous work
explores MFA schemes for V2I contexts [14], in addition to
vehicle light recognition for autonomous systems [15]. The
following studies provide key foundations that inform our
work.

Our work is based on the method of Suo and Sarma [16],
which counteracts impersonation and message fabrication by
using LOS communication as a second factor. Their approach
requires vehicles to respond to a Non-Line-of-Sight (NLOS)
challenge through a directional LOS channel, making the
impersonation of stationary adversaries difficult. A core inno-
vation is the use of vehicle movement for validation, enforcing
physical constraints to confirm legitimacy. In contrast, we
eliminate LOS bottlenecks by using lightweight visual patterns

and avoid reliance on infrared LEDs or custom hardware. Us-
ing native vehicle visuals, we improve practicality and reduce
costs. Furthermore, our real-world tests with the SlowFast
network address open challenges such as timing accuracy and
authentication at varying speeds.

Based on this, Dwyer et al. [17] propose an MFA ap-
proach using QR codes transmitted via the LOS channel
and recognized by infrastructure-side cameras using neural
networks [18]. However, their method requires front-facing
displays in vehicles, raising cost concerns. Our system instead
uses existing visual elements and custom patterns to reduce
hardware dependencies.

Alsoliman et al. [13] present a vision-based MFA and local-
ization scheme for Autonomous Vehicle (AV)s, using vehicle
headlights and cameras onboard to transmit and verify nonce-
based authentication messages. This approach inspired both
Suo and Sarma [16] and our own scheme, which we improved
and further validated in dynamic real-world scenarios.

Arfaoui et al. [19] survey physical layer security tech-
niques in Visible Light Communication (VLC), highlighting
the advantages of LOS-based channels for confidentiality and
authentication. Although theoretical and system-agnostic, their
principles of spatial modulation, artificial noise, and beam-
forming influence our practical use of light as a secure side
channel.

Singh et al. [20] introduce a hybrid V-VLC/V-Radio Fre-
quency (RF) model for intersections, dynamically switching
channels based on quality. Their method improves outage
and delay metrics through stochastic analysis, but is based
on dual transceivers and complex switching. Our design, on
the contrary, uses a fixed visual challenge-response without
additional hardware, enabling lightweight authentication in
dynamic conditions.

Rowan et al. [21] propose a secure V2V framework using
VLC, acoustic channels, and blockchain PKI for secondary
key exchange. Although resistant to RF jamming, their method
targets low-throughput V2V contexts and requires blockchain-
based key management. Our work avoids such complexity,
achieving secure V2I authentication through native light sig-
nals and a streamlined scheme.

Shaaban and Faruque [22] examine VLC secrecy in platoon-
ing via LED semiangle tuning and spatial zone definition to
reduce eavesdropping. Their strategy, while effective in static
formations, demands fine calibration. Our solution provides
robustness in dynamic V2I settings without tuning, offering
flexible deployment through visual sensing and existing lights.

III. ATTACK MODEL

Our proposed scheme focuses on vehicle authentication in
the four critical scenarios shown in Figure 1, where authenti-
cation failures could lead to operational, security, and safety
risks. These scenarios, based on the guidelines provided by
5G Automotive Associations (5GAA) [23], include standard
V2I communications, in which vehicles interact with the
road infrastructure (Figure 1.1), access to restricted areas
(Figure 1.2), use of reserved lanes (Figure 1.3), and signal
preemption, as an example of required service, used to override



(1) V2I Communications. (2) Restricted Area. (3) Reserved Lane. (4) Signal Preemption.

Fig. 1: Critical Intelligent Transportation System (ITS) scenarios requiring authentication mechanisms, with attacker devices
and channels controlled by attackers highlighted in red.

normal traffic light operation and allows vehicles to bypass
traffic (Figure 1.4). In all of these cases, authentication is
critical to prevent unauthorized impersonation and potential
attacks.

To explore potential threat scenarios, we use the STRIDE
framework [24], which classifies threats according to their
nature and impact. STRIDE categorizes security threats into
six types: Spoofing (S), Tampering (T), Repudiation (R),
Information Disclosure (I), Denial of Service (DoS), and
Elevation of Privilege (E). In addition, it provides a struc-
tured methodology for identifying the most critical risks and
determining appropriate mitigation strategies.

Moreover, we adopt the Dolev-Yao (DY) model [25] to
define the capabilities of an adversary in our security analysis.
This model assumes a powerful attacker who can intercept,
modify, and inject messages within the network. Unlike tradi-
tional computer networks, vehicle communication infrastruc-
ture introduces a peculiar threat landscape in which attackers
can operate remotely or in close physical proximity to critical
infrastructure such as Roadside Units (RSUs) or cameras. This
dual attack modality, where adversaries can exploit crypto-
graphic weaknesses from a distance or physically interfere
with communication channels, poses distinct challenges to
authentication and security.

Based on these attacker capabilities, our analysis identifies
the following three key threats that must be taken into account.
In parentheses, the STRIDE [24] categories of threats involved.

• Remote Impersonation Attacks (S, T): Attackers remotely
impersonate vehicles by injecting falsified messages into
the network, exploiting weaknesses in the authentication
scheme. For example, in (Figure 1.1), attackers can
disrupt operations by intercepting or modifying messages,
leading to safety and operational risks.

• Proximity-Based Attacks (S, E, T): Proximity-based at-
tacks occur when an attacker or a vehicle operates near
critical infrastructure, such as an RSU or surveillance
system, to impersonate an authorized vehicle. This type
of attack is particularly critical in scenarios that require
access to restricted areas, such as military bases or
airports (Figure 1.2), and the use of a reserved lane
(Figure 1.3), such as bus or High-Occupancy Vehicle
(HOV) lanes. By exploiting authentication weaknesses,

attackers can impersonate legitimate vehicles, gaining
unauthorized access to restricted areas or reserved lanes.
These attacks disrupt operational efficiency, compromise
security, and undermine trust in the system.

• Traffic Signal Preemption Attacks (S,T,D): In scenarios
such as those shown in (Figure 1.4), these attacks occur
when malicious entities spoof vehicle identities to manip-
ulate traffic signals, gain unauthorized priority access, and
disrupt normal traffic operations (see, e.g., [26]). These
attacks can compromise the effectiveness of emergency
response, create security risks, and cause widespread traf-
fic congestion. In addition, they may interfere with green
wave systems, further amplifying traffic disruptions.

IV. MULTI-CHANNEL MULTI-FACTOR SCHEME

Our proposed authentication process introduces an authenti-
cation process with a fully implemented LOS communication
and response mechanism. The scheme integrates multiple
factors across NLOS and LOS channels as shown in Figure 2
and consists of the following three phases.

• NLOS Phase: the vehicle uses the NLOS channel to
transmit its unique security credential to a Registration
Authority (RA) over a Transport Layer Security (TLS)-
protected channel, as defined in IEEE 1609.2.1 [27]. This
serves as the first authentication factor (something you
know). For example, the exchange of security credentials
can be carried out with the support of Public Key Infras-
tructure (PKI) [28, 29].

• LOS Phase: After verifying the first authentication factor,
the infrastructure requests a second one (e.g., something
you are or something you know). The RSU then sends
the vehicle a randomized challenge, which the vehicle
answers through the optical channel.

• Check Phase: The RA verifies the correctness of the
response. Upon successful validation, an authentication
token is issued to the vehicle.

A. Challenge-Response mechanism

A key novelty of the proposed scheme is the implemen-
tation of the challenge-response mechanism. This involves
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Fig. 2: Two-channels (NLOS and LOS) authentication process.

generating security frames, structured sequences that the ve-
hicle must follow to correctly respond to the challenge of
the infrastructure. These frames define the response format
within the challenge-response mechanism. As the response is
sent over the LOS channel, the frames must be physically
encoded. Various methods are possible; in our case, the
vehicle’s headlights reproduce the frame patterns by flashing
(Section IV-B). Since headlights are standard equipment, no
additional hardware is needed. The flashed response is then
captured by visual sensors, such as cameras, at the other end
of the LOS channel.

The vehicle’s headlights naturally encode the binary values
of the security frames: a headlight turned on represents bit 1,
and a headlight turned off represents bit 0. As a result, using
both headlights in a single flash allows the transmission of four
possible values: 11, 10, 01, or 00. As illustrated in Figure 3,
in our implementation, the security frame is composed of 14
bits and divided into two parts.

• Preamble: is composed of the sequence 11−00, where 11
represents the start of the message and 00 is the interrupt
sequence. Notifies the camera when to begin to detect the
payload.

• Payload: this is the actual data field and is composed of 5
flashes: 3 containing the information (different from 00)
and 2 interrupts (00).

Therefore, the possible sequences are 27 (33) in total. The
length of the frame and of its parts has been obtained as a
trade-off between security constraints and timing for authenti-
cation, in order to finish the challenge-response process before
the vehicle moves out of the coverage area by the camera.

Choice of the length of the security frame: To determine an
acceptable length, we derived an equation that relates the bit
length n, the time available for authentication, vehicle speed
and computation and transmission time.

• The available time for authentication Tauth is determined
by the time it takes a vehicle to travel the given distance
d, given in meters (before overcoming the camera), at the
given speed v, meters/seconds: Tauth =

d
v

• The total latency Tlatency for the authentication process is
the sum of the time t f to transmit n bits and the computa-
tion time tc, both expressed in seconds: Tlatency = n ·t f +tc

• To balance latency and the available time for authentica-
tion, we set Tlatency equal to Tauth, that can be solved for
n as

n ≤
d
v − tc

t f
,

where n represents the maximum possible number of bits
that can be flashed.

11

Preamble Payload

datafixed start

Fixed

Variable

data datainterrupt interrupt

00 00 00
11/10/01 11/10/01 11/10/01

Fig. 3: The 14-bit security frame and its components.

Test bed: Another crucial parameter is the duration of the
flash (t f ). According to the target scenario, it is possible to find
an optimal t f balance between performance and reliability. Us-
ing this duration, we can implement the previously presented
n=14-bit flashing scheme (7 vehicle flashes total) and maintain
the sequence close to the flash of one second ( n

2 · t f ).
We consider, for example, a vehicle at a distance of 25

meters from the camera and traveling at a speed of 8.3 m/s,
the vehicle has a maximum available time to complete the
authentication process (Tauth) of approximately 3 seconds using
this scheme. At a higher speed of 16.6 m/s, the same distance
results in an available Tauth of 1.5 seconds. Despite these
variations, we identify in our configuration that the optimal
flash duration is t f = 0.15 seconds, which performs reliably in
both cases.

B. The Optical Camera Communication channel

Our scheme uses the Optical Camera Communication
(OCC) model as the LOS channel, similar to the one described
in [13], where, however, it was used in a different visual
authentication context. In OCC, we use On-Off Keying (OOK)
modulation, as it requires a single narrowband frequency. Our
design, apart from introducing a novel authentication scheme,
adopts distinct trade-offs in timing and security constraints, as
illustrated below.

Channel Model Parameters: In [13], the OCC channel is
modeled with a camera exposure time (Te), inversely propor-
tional to the frame rate (FPS), where Te =

1
FPS . The pulse width

of a transmitted symbol (PWs) satisfies PWs < Te, ensuring
efficient transmission without overlap. A key design factor
is the duty cycle (DC), where DCmin =

PWs
Te

, representing the
minimum active light duration. Moreover, a guard width (PWg)
is incorporated to prevent inter-symbol interference, ensuring
PWs +PWg < Te. In contrast, our approach deviates from [13]
by prioritizing practical implementation with standard vehicle
headlights. In our work, we focus on minimizing the flash
duration (t f ), to align with the operational capabilities of
the headlight. Our design choices emphasize practicality and
adaptability, resulting in a cost-effective, real-world solution
that can meet both timing and security requirements while
integrating authentication into existing vehicle infrastructure.



Synchronization and Guard Bands: The synchronization
strategy in [13] is based on precise timing to prevent misalign-
ment of the symbols. Transmission times (Ti) are calculated
as Ti = sti+1 − (PWs +PWg), where sti+1 is the start time of
the frame at time i+1, ensuring symbols are transmitted just
before the next frame starts. Although this minimizes attack
windows, it imposes strict timing constraints. In contrast, our
proposal addresses synchronization differently by structuring
the preamble (11-00) and interrupts (00) directly into the
flashing frame, avoiding dependence on strict frame synchro-
nization. For example, embedding multiple interrupts within
the payload ensures symbol distinction even under challenging
conditions.

Capturing and Processing the Optical Challenge Response:
The flashing can be captured by a camera mounted on an
RSU, which processes the optical signal to extract the security
frame. To detect and interpret the response to the challenge,
we employed an Artificial Intelligence (AI)-based approach,
leveraging a SlowFast network [30] for robust feature extrac-
tion and classification.

V. SECURITY ANALYSIS

We evaluate our scheme using the attack model defined in
Section III.

• Remote Impersonation Attacks (S, T): Attackers may
inject falsified messages to impersonate vehicles, exploit-
ing weaknesses in the authentication scheme. Our dual-
channel approach mitigates this threat by combining:
– PKI-based NLOS communication, encrypted with TLS

(per IEEE 1609.2, assuming a trusted RA), for crypto-
graphic security.

– LOS visual verification, requiring physical presence.
Authentication requires a valid visual response to a
challenge, ensuring that only physically present vehicles
are authenticated. Remote attackers who lack physical
presence and the correct response cannot succeed. The
integrity of the response depends on maintaining a LOS
link between the vehicle and the camera. Our short
execution times simplify this, making the system both
practical and efficient.

• Proximity-Based Attacks (S, E, T): Such attacks are criti-
cal in restricted-access environments. Our dual-channel
scheme counters spoofing and tampering by requiring
both credential validation and physical presence before
issuing authentication tokens. This ensures that only
legitimate entities gain access to services. The integration
of cryptographic and physical verification limits the risk
of privilege escalation within the network.

• Signal Preemption Exploitation (S, T, D): In green wave
systems, attackers can manipulate signal priorities to
disrupt traffic flow. Although our approach cannot fully
eliminate Denial of Service (DoS) risks, it minimizes their
effect through lightweight LOS authentication, enabling
fast processing under load. Attempts to disrupt the camera
(e.g., obstruction or light interference) affect only single-
vehicle authentication. As no token is issued without

successful verification, such attacks remain isolated and
do not affect the broader system.

VI. IMPLEMENTATION SETUP

Our implementation consists of two testbeds: the first devel-
oped at Massachusetts Institute of Technology (MIT) with an
RC-car and the second developed at Arizona State University
(ASU) with a real-car. For each testbed, we describe the
dataset creation process and the architecture of the deep learn-
ing classification model used to evaluate our MFA scheme.

A. Testbeds setup

In both testbed setups, we simulated an RSU using an
NVIDIA Jetson AGX Orin Developer Kit (P3730) paired with
an Intel RealSense Depth Camera D455 (Figure 5). The system
was positioned at an elevated height between 1 (RC-car) and
3.5 (real car) meters above ground level.

1) RC-car testbed: This setup consists of an RC-car
(Traxxas 4W model 58014-4) equipped with an Adafruit
M4 Circuit Python-Powered Internet RGB Matrix Display,
containing the flashing code, as shown in Figure 4. The display
consisted of a 64×32 RGB Light-Emitting Diode (LED) matrix
panel, positioned at the front of the vehicle to simulate dual
headlights.

2) Real-car testbed: it is a real-world test environment,
including public roads and parking lots. It consists of a
Chevrolet Malibu equipped with additional headlights to flash
the security frame (Figure 4). We tested two types of head-
lights with different shapes:

• Xprite 7" LED Round Headlights and
• TRUE MODS 5×7 7×6 Inch H6054 Black LED head-

lights H4 sealed beam,
To control the flashing sequences, we designed an electronic
circuit using an Arduino Nano microcontroller. This acted as
an intermediary between the vehicle’s infotainment system
(emulated by a computer) and the headlights. The circuit in-
corporated MOSFET and other components to regulate power
and signal transmission. The Arduino Nano was chosen for its
compact form factor, while an external 12V lead-acid battery
powered the headlights. The system communicated via UART
and received commands through a serial monitor to trigger the
appropriate flashing sequences.

B. Datasets Creation

To generate datasets for our model, we recorded videos
of the authentication process on each testbed. During testing,
the vehicle remained in motion in both testbeds. In addition,
to account for the variability in the real-world, as shown in
Figure 6, we captured videos during the day and night under
different lighting conditions.

1) RC-car testbed: Using the RC-car, we conducted tests
on two public urban roads and one intersection. To faithfully
replicate real-world conditions, the RSU and the vehicle were
placed in a safe location, close to a heavily crowded public
road. The camera recorded videos up to 7 seconds long, captur-
ing the vehicle in motion as it responded to the RSU challenge



Fig. 4: Implementation of our vehicle setup with RC-car and real-car, showcasing different headlight configurations.

Vehicle 
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Camera
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Fig. 5: The Phase 2 road set up: RSU simulation with camera
and edge computer.

using its headlights. The distance between the vehicle and the
camera ranged from 0 to 20 meters. We collected a dataset
of 3,242 videos, including 1,717 recorded during the day and
1,525 recorded at night. The dataset covers 28 classes, derived
from the deep learning model classification process, including
27 security sequences and one all-zero class. These classes
are numbered from 1 to 27, with the all zero class assigned to
number 29. Each class contains between 100 and 150 videos,
with at least 50 daytime and 50 nighttime videos per class.
Figure 7 illustrates the class distribution of the dataset.

2) Real-car testbed: We conducted realistic and impactful
tests by recording videos with a real vehicle moving on
a public road and in a parking lot. Compared to the RC-
car testbed, in this case, the distance between the vehicle
and the camera ranged from 0 to 50 meters. In this more
realistic test environment, the camera recorded videos of a
maximum length of 4 seconds, reducing the video dimension
and focusing only on the execution of the security frame.
We collected a dataset of 975 videos, including 420 recorded
during the day and 555 recorded at night. The dataset covers 29
classes, one more than the RC-car dataset, numbered from 1 to
29. Specifically, we introduced class number 28 to represent
random flashing patterns that do not conform to predefined
security frames, emulating potential real-world anomalies or
unexpected vehicle behavior. Each class contains between
30 and 37 videos, with a distribution that varies between
daytime and nighttime recordings. Figure 8 illustrates the class
distribution of the dataset.

C. Headlight Flashing Classification Model Architecture

To classify the flashing sequences of the headlights in each
of the two testbeds we described above, we employed a deep

learning approach based on a SlowFast CNN architecture
[30]. The model was chosen for its efficiency in processing
spatio-temporal features in videos, making it well-suited for
recognizing structured patterns in flashing sequences The
SlowFast network consists of two parallel pathways: a slow
pathway that captures spatial semantics at a lower frame rate,
and a fast pathway that operates at a higher frame rate to detect
rapid motion features. This dual-pathway design enables the
model to effectively recognize both short-term and long-term
temporal dependencies in the headlight flashing sequences. In
Table I, we report the most relevant parameter we used to
design our model.

TABLE I: Summary of SlowFast Model Parameters.

Parameter Value
Model Architecture SlowFast R50
Pretrained Dataset Kinetics-400
Backbone Dual ResNet-50 Streams
Input Frames 32
Normalization [0,1] Range
Slow Pathway Sampling Factor
(α)

4

Final Layer Fully Connected (Modified)
Dropout Rate 0.2
Training/Validation Split 80% / 20%
Optimizer Adam
Initial Learning Rate 1×10−4

Learning Rate Scheduler Warm-up (2 epochs) + Cosine An-
nealing

Loss Function Categorical Cross-Entropy
Mixed-Precision Training Yes (Gradient Scaling)
Number of Epochs 32
Batch Size 4

1) Workflow: Our implementation used the pre-trained
SlowFast R50 model from the PyTorchVideo library [31]. The
backbone of the model consists of two ResNet-50 streams,
which provide a strong feature extraction capability. The
model was pretrained on Kinetics-400 [32], a large-scale
action recognition dataset, which significantly accelerated the
learning process by providing useful low-level features. We
modified the final projection layer, replacing it with a fully
connected layer that maps the extracted features to the number
of flashing classes in our dataset. A dropout layer with a
probability of 0.2 was added to prevent overfitting and improve
generalization.

2) Dataset preparation: The dataset was split into 80 per-
cent training and 20 percent validation, ensuring that the model
learned effectively from diverse sequences while preventing
overfitting. No separate test set was used in this phase. Each



(a) Urban Road: day/sunny. (b) Urban Intersection:
day/cloudy.

(c) Urban Road: night. (d) Urban Intersection: day/sunny.

(e) Public Road: day/sunny. (f) Public Road: night. (g) Parking Lot: day/sunny. (h) Parking Lot: sunset/night.

Fig. 6: Overview of our primary day/night dataset scenarios. The first row corresponds to Phase 1, and the second to Phase 2.

Fig. 7: Class distribution for the RC-car dataset.

Fig. 8: Class distribution for the real-car dataset.

video was preprocessed to extract 32 frames, evenly sampled
along its duration. The frames were normalized to the [0,1]
range and converted to tensor format. To construct the Slow-
Fast input pathways, the Fast pathway received the full frame
sequence, while the Slow pathway received a subsampled
version with an alpha factor of 4, ensuring that it captured
long-term temporal dependencies. This strategy allows the
model to balance fine-grained motion detection with a broader
contextual understanding of the flashing sequences. Unlike
conventional object detection approaches, we did not use any
bounding boxes to isolate the headlights; instead, the entire
video clip was fed into the network without any additional

data augmentation.
3) Model Generation: The model was trained with Adam

Optimizer with an initial learning rate of 1×10−4. A variable
learning rate was implemented, where the first two epochs
served as a warm-up period, during which the learning rate
gradually increased. Afterwards, a cosine annealing scheduler
was applied to smoothly decay the learning rate, improving
stability and convergence. The loss function was categorical
cross-entropy. Mixed-precision training was used using gradi-
ent scaling to optimize memory efficiency and computational
speed on the GPU. The training spanned 32 epochs, with a
batch size of 4 to accommodate GPU memory constraints.
The accuracy of the validation was monitored at each epoch,
and the model checkpoints were saved to preserve the best-
performing weights.

D. Results

Let us now compare the results we obtained on both
the considered testbeds, RC-car and real-car, to evaluate the
proposed MFA scheme. In particular, we measure data loss
and accuracy on the training dataset. Then, in both cases
we conducted separate testing rounds per dataset. Table II
provides a comparison of the parameters and results.

• RC-car testbed It reached the best results at 14 epochs.
The model achieved test accuracies of 95.29%, 94.47%,
96.11%, 94.67%, and 94.67%, respectively. The model
achieved a recall of 0.95, and F1-score of 0.96 across 28
classes.

• Real-car testbed It reached the best results at 32 epochs.
The model achieved test accuracies of 97.89%, 95.77%,
97.89%, 94.37%, and 97.18%, respectively. The model
achieved a recall of 0.96, and F1-score of 0.96 across 29
classes.

In both testbeds, the model demonstrated consistently high
performance with minimal accuracy fluctuations across dif-
ferent test splits. The average accuracy converged to approxi-



TABLE II: Comparison between Phase 1 and 2.

Implementation Phase 1 (RC-car) Phase 2 (Real-car)
Vehicle RC-car Chevrolet Malibu
Light source LED screen LED Headlights
RSU camera Intel RealSense D455
Edge Computer NVIDIA Jetson AGX Orin
Vehicle-RSU distance 0-20 m 0-50 m
Single flash duration 0.15 s
Day/night videos Yes
Settings 3 2
Classes 28 (27 + 0 s) 29 (27 + 0 s + ran-

dom flash)
Video length 2-6 s 1-3 s
Collected videos 3242 975
ML model CNN
Best accuracy on test set 96.1% 97.9%
Average accuracy on test 95% 96.6%

mately 95.04% (RC-car) and 96.6% (real-car), highlighting its
reliability in challenging scenarios.

• RC-car: The model effectively handled sudden light
changes, close traffic, varying external lights, and dis-
tances up to 20 meters.

• Real-car: The model showed robustness to day/night
transitions and distances up to 50 meters.

In our context, a misclassification includes both true nega-
tives (TN), where a vehicle flashes the correct pattern but it
is misclassified, and false positives (FP) on invalid attempts,
where a vehicle flashes an incorrect pattern and the model
correctly detects it. In the real-car implementation, across five
test rounds totaling 730 video clips, the model misclassified
approximately 3.40% of attempts. These include both TN
cases, where valid flashes were rejected, and FP cases on
invalid flashes that were rightly flagged.
Training Dynamics: Figure 9a and Figure 9c show how
validation accuracy steadily improves over training epochs,
stabilizing near 95%, where it achieves the best accuracy on
the sets. Figure 9b and Figure 9d illustrate the corresponding
training and validation loss curves, both converging to minimal
values, indicating effective learning with limited overfitting.
The small gap between training and validation curves further
suggests strong generalization across different environments.

E. Models Comparison

We compare the performance of three distinct visual-based
authentication models used for our same purpose: Dwyer et
al. [17], a 3D CNN initially developed by us, and our final
SlowFast CNN. Each model is evaluated based on accuracy
and pattern recognition speed.

Each model employs different methods for recognizing
authentication patterns, resulting in varying degrees of ef-
fectiveness. The first model by Dwyer et al. [17] introduces
an MFA scheme conceptually similar to ours but based on
QR codes displayed by vehicles. As shown in the upper
part of Figure 11, this model processes raw video input,
utilizes YOLO Object detection to detect the vehicle, and
YOLOv8 algorithm to read QR codes displayed by vehicles,
and subsequently generates an output in the form of a matrix

(a) RC-car dataset training and
validation accuracy curves.

(b) RC-car dataset training and
validation loss curves.

(c) Real-car dataset training and
validation accuracy curves.

(d) Real-car dataset training and
validation loss curves.

Fig. 9: Loss and accuracy curves of our tests.

array representing the recognized authentication pattern. As
stated in the article, this approach achieved variable accuracy,
ranging from 42% to 100% according to the dimension of the
QR code and the distance (over 7 m the declared accuracy
was 0%). However, the authors did not explicitly report the
pattern recognition times. Therefore, we conducted a test using
the same YOLOv8 model on our machine (Intel i9-12900KF
3.19 GHz, 128 GB RAM) and found that the complete pattern
recognition process takes between 75 ms and 100 ms, or more
in some cases.

In our initial experiments, we developed a 3-layer 3D
CNN, designed to decode security messages encoded within
vehicle headlight flashing sequences. As shown in Figure 11,
this model leverages spatiotemporal convolutions (3D) to
effectively capture both the temporal dynamics and spatial
characteristics of flashing patterns. It achieved stable and
relatively high accuracy of 85.6%, with a rapid and consistent
recognition speed of approximately 1 millisecond on the RC-
car dataset tested with the same previous machine. While
this demonstrates potential for real-time authentication, its
accuracy significantly deteriorated on the real-car dataset.

To address this limitation, we advanced to the SlowFast
CNN architecture, specifically designed to concurrently ana-
lyze slow (spatial) and fast (temporal) streams of information.
As shown in Figure 11. the pretrained network and the dual-
pathway design enables the model to simultaneously interpret
detailed visual features and rapidly changing patterns. As a
consequence, this model significantly outperformed previous
approaches, achieving higher accuracy and reduced latency
when tested on a machine with lower computational power
compared to the previous one. It also demonstrated strong
generalization capabilities across both RC-car and real-car
datasets. In summary, as illustrated in Figure 11, our Slow-
Fast CNN model provides an optimal balance between high
accuracy and fast, reliable processing, making it well-suited
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Fig. 11: Performance comparison among the visual-based
authentication models.

for practical deployment in real-world vehicular authentication
scenarios.

F. Model Ablation

Based on the network in Figure 12a and the ablation per-
formed in [30], where the authors evaluated the impact of the
Fast and Slow pathways to highlight their complementary na-
ture, we followed a similar approach for our model. However,
we first removed the Slow pipeline, since in our scenario the
Fast part captures critical flashing operations, while contextual
semantics is less relevant. To perform this modification, we
supplied a zero-filled tensor to the Slow branch during training
and testing. Additionally, we adapted the data preprocessing
and input collation procedures to exclude any handling of Slow
pathway data, ensuring that only the Fast stream was actively
utilized by the model.

(a) Illustration of the SlowFast network architecture for video
recognition [30].

(b) Ablation study comparing validation accuracy for Fast-only,
No-Lateral, and full SlowFast networks.

Fig. 12: (a) Overview of the SlowFast architecture, show-
ing the slow and fast pathways. (b) Ablation study results
demonstrating the importance of both pathways and lateral
connections.

Secondly, we disabled the lateral connections from the Fast
to the Slow pipeline during training to evaluate the indepen-
dence and contribution of each component. In the original
architecture, these lateral connections are implemented as con-
volutional layers that fuse high-temporal-resolution features
from the Fast pathway into the Slow pathway at specific
depths. To eliminate their influence, we manually zeroed their
weights and biases and froze them to prevent further updates
during training. This ensured that no information flowed from
the Fast stream into the Slow stream, allowing us to assess
how well the two branches perform without mutual support or
shared features.

Figure 12 highlights the contribution of each architectural
component to the overall performance of the model. The
complete SlowFast network achieves nearly 97% validation ac-
curacy by epoch 25. The Fast-only variant shows a consistent
performance gap compared to the full model, with a final delta
of ∆19.4% at epoch 25 and then started to degrade. This gap
indicates that, while the Fast pathway is essential for capturing
rapid temporal features, the contextual information from the
Slow branch significantly improves model understanding. The
No-Lateral variant underperforms the Fast-only model in most
epochs, ending with a gap of ∆29.3% from the full architec-



Detected:  1 0Detected:  1 0 Detected:  1 0

Expected:  0 1

(a) Class 15 (10-10-01) misclassified as class 14 (10-10-10).

Detected:  1 1 Detected:  1 1

Expected:  0 1

Detected:  1 0

Expected:  1 1

(b) Class 3 (11-11-01) misclassified as class 4 (11-10-11).

Fig. 13: Misclassifications examples. Note: The patterns are flashed from the vehicle’s perspective. Therefore, binary values
such as 10 and 01 are interpreted by the camera in reverse (i.e., 10 is seen as 01 and vice versa).

ture. This suggests that lateral connections, which allow the
Fast pathway to enrich the Slow pathway, play a crucial role
in learning spatio-temporal relationships and improving feature
representation in our application.

G. Discussion

Both testbeds demonstrate the robustness and effectiveness
of the proposed headlight flash classification approach. Our
method reliably operates under diverse conditions, including
day and night, varying distances, different headlight shapes
(round or rectangular), and even random flashing, highlighting
its strong potential for real-world applicability. By not relying
on bounding boxes or strict lighting constraints, the model
remains resilient to variations in vehicle types, headlight
shapes, and environmental lighting. These results suggest
that the proposed approach can be effectively generalized in
different contexts, paving the way for a practical and secure
V2I authentication system that is accurate and efficient.

As in [30], Fig. 14 illustrates the per-class Average Precision
(AP) computed over 29 classes in the real-car testbed. The
AP for each class was calculated based on our test set by
measuring the ratio of true positives to the sum of true
positives and false negatives. The mean Per-class Accuracy
(mPA), obtained by averaging the AP values across all classes,
ensures that the model’s performance is not dominated by
more frequent classes but fairly represents all flashing patterns.
As shown, the model consistently achieves high AP values in
most classes, further supporting the strong recall and F1 scores
previously reported. This comprehensive evaluation confirms
the robustness and balanced reliability of the model.

A detailed analysis of each testbed reveals several simi-
larities in misclassifications. Incorrect predictions often occur
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Fig. 14: Per-class Average Precision (AP) across 29 classes in
the real-car testbed.

between classes that differ only slightly in flash patterns or
share similar temporal structures. As shown in Figure 13, for
example, in the RC-car testbed some sequences labeled as
class 15 (10-10-01 were misclassified as class 14 (10-10-10).
Similarly, in the real-car testbed, sequences from class 3 (11-
11-01) were misclassified as class 4 (11-10-11). This confusion
typically occurs when headlight flashing patterns significantly
overlap, underscoring the challenge of distinguishing closely
related classes. Nevertheless, the misclassification rate remains
low, demonstrating that the proposed SlowFast-based model
effectively captures the essential spatio-temporal features of
headlight flashes.

A relevant finding from our experiments is the difference
in inference speed between the two testbeds. On average,
each video in the RC-car testbed is processed in about 1
ms. Although occasional outliers exceed this time, they have
little effect on overall performance. The real-world real-car
testbed also shows significant gains over the previous CNN



Fig. 15: Comparison of message decoding latencies between
the different models.

model, with an average processing time of 3.8 ms and most
videos completing in just a few milliseconds. Even when
inference time reaches several tenths of a second in rare cases,
system performance remains stable. These fast inference times
make the system suitable for near-real-time applications. This
efficiency stems from the dual-path design of the SlowFast
architecture. The fast path captures quick motion by sampling
frames at high temporal resolution, while the slow path ex-
tracts broader context from frames at lower rates. This balance
enables the model to detect both short- and long-term patterns
without high computational cost.

As shown in Figure 15, SlowFast significantly outperforms
Dwyer’s model in sequence detection latency, achieving lower
and more consistent times. While Dwyer’s model shows a
wider latency range, especially for vehicle detection (75–140
ms), it performs competitively in image cropping. However, its
sequence detection latency is higher. The 3D CNN shows low
latency but supports fewer applications. The figure highlights
how our real-car implementation of SlowFast maintains sub-5
ms performance with minimal variation, proving its suitability
for time-critical vehicular tasks. Summing all three stages,
vehicle detection, cropping, and sequence detection, Dwyer’s
model averages 75–100 ms, far exceeding SlowFast (1.6 ms)
and the 3D CNN (just over 1 ms). This clear gap reinforces
the value of our architecture for real-world, near-real-time
deployment.

Finally, we present a summarized comparison of the two
evaluated networks, 3D CNN and SlowFast, as shown in the
Table III.

H. Handling multiple vehicles and high traffic conditions

To manage scenarios in which multiple vehicles simultane-
ously flash their headlights, whether for authentication or other
purposes, we propose introducing a preliminary system for
spatial tracking and Region of Interest (ROI) extraction before
classification. This system detects each vehicle within the
camera field of view and isolates the relevant regions showing
headlight activity. Specifically, an object detector with a Multi-
Object Tracking (MOT) algorithm (for example, an object
detector YOLO [33] with a MOT tracker like ByteTrack [34])
is used to identify bounding boxes for each detected vehicle.

Once a bounding box is established, the system monitors
the vehicle’s headlights over time to confirm if it is actively
flashing.

After identifying vehicles that are flashing, we generate
a subclip or spatio-temporal ROI for each bounding box.
Each subclip captures only the frames and spatial regions
corresponding to that vehicle’s headlights, effectively filtering
out interference from nearby vehicles. This approach ensures
strong isolation, as each instance of our classification model,
e.g., the SlowFast network, processes only one vehicle at
a time, significantly reducing noise and ambiguity. In this
way, the entire system forms a two-stage pipeline, which first
detects and identifies the ROI sequences for each flashing
vehicle, and then applies a video classification network to
recognize the LOS channels.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a unified NLOS and LOS MFA
solution for vehicle authentication, particularly for applications
such as signal preemption at intersections and lane access
control. Our security scheme is designed to mitigate remote
and local attacks. Using a camera and a CNN model for the
classification of flashing headlight sequences enables efficient
real-time pattern recognition. By integrating LOS and NLOS
channels into a unified MFA framework, our approach in-
creases the security of V2I communications without imposing
computational overhead. Unlike existing solutions that rely
solely on cryptographic authentication, our approach relies
on an additional layer of physical verification, making re-
mote spoofing and unauthorized access harder. These results
demonstrate that our approach is conceptually robust and
experimentally validated.

To further develop our current approach, several challenges
must be addressed. Firstly, our scheme should be formalized
into a protocol. The communication protocol between the
vehicle and the road infrastructure must be designed, defined,
and then tested for security. Secondly, a key focus will be on
scalability in traffic scenarios, where multiple vehicles may
seek authentication simultaneously. This requires optimizing
system performance to handle real-world conditions efficiently.
To address scalability in high traffic scenarios (as described in
Section VI-H), our approach can incorporate spatial tracking
and ROI extraction to ensure that each flashing vehicle is pro-
cessed independently, maintaining system performance even
when multiple vehicles request authentication simultaneously.

In addition, real-world road experimentation is essential to
validate the performance of the system under various weather
and environmental conditions, which are currently constrained
by hardware limitations in our test environment. Improving
sensor capabilities and hardware adaptability will be crucial
for broader applicability. Beyond urban intersections, our aim
is to extend our solution to other sensitive authentication
scenarios, such as AV access to airports, military zones,
and dedicated lanes. These environments require heightened
security and stricter authentication mechanisms, making them
ideal testbeds to evaluate the robustness of our approach.



TABLE III: Comparison of Neural Network Architectures for Headlight Flash Classification

Component 3D CNN SlowFast CNN
Input Video clips resized to uniform dimensions. Each

clip is processed as a full spatiotemporal tensor.
32 frames extracted from video. Fast pathway
receives full frame rate; slow pathway receives
every 4th frame (α= 4).

Architecture 3 convolutional blocks with:
• 3D Conv (3×3×3), padding=1
• ReLU
• MaxPooling (2×2×2)

Followed by:
• Dense layer (512 units, ReLU)
• Output layer (28 classes)

Dual-pathway ResNet-50:
• Slow Pathway: lower temporal resolution,

high spatial
• Fast Pathway: higher temporal resolution,

low channel depth
Lateral fusion from Fast → Slow. Final FC layer
adapted to 28 or 29 classes.

Pretraining None Pretrained on Kinetics-400
Dropout Not used Dropout before final layer (rate = 0.2)
Optimizer AdamW Adam
Learning Rate 5×10−4 1×10−4 (with warm-up and cosine annealing)
Batch Size 8 4
Epochs 15 32
Scheduler Linear scheduler 2-epoch warm-up + cosine annealing
Initialization Xavier initialization Pretrained weights + FC layer initialized randomly
Output Classes 28 classes (RC-car) 28 (RC-car) or 29 (real-car, includes random flash

class)

By tackling these challenges, we aim to increase the scal-
ability, adaptability, and security of our solution, paving the
way for a broader deployment in ITS.
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