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The Planted Orthogonal Vectors Problem

David Kühnemann∗ Adam Polak† Alon Rosen‡

Abstract

In the k-Orthogonal Vectors (k-OV) problem we are given k sets, each containing n binary
vectors of dimension d = no(1), and our goal is to pick one vector from each set so that at each
coordinate at least one vector has a zero. It is a central problem in fine-grained complexity,
conjectured to require nk−o(1) time in the worst case.

We propose a way to plant a solution among vectors with i.i.d. p-biased entries, for appro-
priately chosen p, so that the planted solution is the unique one. Our conjecture is that the
resulting k-OV instances still require time nk−o(1) to solve, on average.

Our planted distribution has the property that any subset of strictly less than k vectors has
the same marginal distribution as in the model distribution, consisting of i.i.d. p-biased random
vectors. We use this property to give average-case search-to-decision reductions for k-OV.

1 Introduction

The security of cryptographic systems crucially relies on heuristic assumptions about average-
case hardness of certain computational problems. Sustained cryptanalysis alongside technological
advances such as large-scale quantum computers, put these hardness assumptions under constant
risk of being invalidated. It is therefore desirable to try to design cryptographic schemes based on
new computational problems, preferably ones whose hardness is well-studied.

The field of computational complexity developed over the last fifty years a good understanding
of hardness of certain problems – e.g., SAT is widely believed to require at least superpolynomial,
maybe even exponential time [19] – however these are worst-case problems, and hence unsuitable
for direct use as a basis for cryptography.

Fine-grained complexity [18] is a younger branch of computational complexity that studies
“hardness of easy problems”, i.e., problems known to be solvable in polynomial time but sup-
posedly not faster than some specified polynomial, say not faster than in cubic time. It gives
rise to fine-grained cryptography [5, 15, 17]; the idea that it might be possible to build cryptogra-
phy, notably public-key encryption, based on conjectured average-case hardness of polynomial-time
problems studied in fine-grained complexity. These problems are easier than NP-hard ones, but for
polynomials of sufficiently high degree may still be hard enough to give honest parties an adequate
advantage over malicious attackers.
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1.1 The k-Orthogonal Vectors Problem

The Orthogonal Vectors (OV) problem [20], together with its generalization k-OV, is one of the
three main hard problems studied in fine-grained complexity, alongside 3SUM and APSP [18].
Arguably, among the three, OV is the one whose (worst-case) hardness we understand the most –
in particular because it is implied by the Strong Exponential Time Hypothesis (SETH) [11], which
is about the very well studied SAT problem.

We say that vectors u1, ..., uk ∈ {0, 1}d are orthogonal if, for all j ∈ [d],
∏k

ℓ=1 uℓ[j] = 0, meaning
that for every coordinate there is at least one zero entry among the k vectors. For k ≥ 2, let
U1, ..., Uk ∈ {0, 1}n×d be collections of n d-dimensional binary vectors, where Uℓ,i denotes the i-th
vector of Uℓ. The k-Orthogonal Vectors problem (k-OV) asks whether there exist (s1, . . . , sk) ∈ [n]k
such that U1,s1 , U2,s2 , . . . , Uk,sk

are orthogonal.

Worst-case complexity. The naive algorithm solves k-OV in time O(nkd). For any fixed con-
stant c, the algorithms by Abboud et al. [1] and Chan and Williams [6] solve OV in dimension
d = c log n in time O(n2−εc) for εc > 0. However, Gao et al. [10] conjecture that no such strongly
subquadratic algorithm exists for superlogarithmic dimension d = ω(log n). This conjecture (known
as Low-dimension Orthogonal Vector Conjecture) is also implied by SETH [20]. Both the upper
bound for d = O(log n) and the SETH-implied hardness for d = ω(log n) generalize to k-OV, for
any constant k ≥ 2, where the running time barrier is nk [18].

Average-case complexity. For cryptographic purposes we care about average-case hardness –
because we want to be able to efficiently sample instances that are hard to solve (in contrast to
only having an existential knowledge that there are some hard instances). Moreover, the sampler
shall correctly tell (with high probability) whether its output is a yes- or no-instance.

One way to achieve this is to embed a solution in an instance sampled from a distribution
that generates no-instances with high probability. This method of planting a solution has been
applied to a number of problems, e.g., k-Clique [13] and (in the fine-grained setting) k-SUM [9, 2]
(a generalization of 3SUM) and Zero-k-Clique [15] (a generalization of Zero-Triangle, which is a
problem harder than both 3SUM and APSP), but not for (k-)OV. The following question remains
wide-open [5, 8, 7]:

How to plant orthogonal vectors (so that they are hard to find)?

1.2 Our results

We propose a way of planting a solution in k-OV instances where each vector entry is i.i.d. according
to a p-biased1 coin flip, for an appropriately chosen value of p so that the planted solution is the
only one in the instance, with good probability. We conjecture that solving these instances require
nk−o(1) time on average.

Superlogarithmic dimension. The k-OV problem might have appeared as a poor candidate
for a fine-grained average-case hard problem, as Kane and Williams [14] showed that for any fixed
p ∈ (0, 1), k-OV instances of i.i.d. p-biased entries can be solved in O(nk−εp) time for some εp > 0
by AC0 circuits. However, such instances are only non-trivial for d = Θ(log n), a parameter setting

1We say that a random bit is p-biased if it equals 1 with probability p and equals 0 with probability 1 − p.
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which can be anyway solved in time O(nk−ε), even in the worst case, using the algorithm of Chan
and Williams [6]. To obtain a candidate hard distribution based on i.i.d. entries, we therefore
choose to sample the entries as 1 with subconstant probability p(n) = o(1), which leads to non-
trivial instances in the superlogarithmic dimension regime d = ω(log n). In Appendix B we present
another simple argument why a logarithmic dimension is not sufficient, further justifying our choice.

(k − 1)-wise independence. Our planting procedure has the following notable property: any
subset of k − 1 (or less) out of the k vectors that form the planted solution has the marginal
distribution identical to that of k − 1 independently sampled vectors with i.i.d. p-biased random
entries. In particular, each individual vector of the solution has the same marginal distribution
as any other vector in the instance. This would not be true if we planted k random vectors
conditioned on orthogonality (i.e., a type of solution that may appear spontaneously with small
probability), because such vectors tend to be sparser than the expectation. This sparsity is what
makes the Kane–Williams algorithm [14] work, and lack thereof makes our instances immune to
that algorithm.

We note that the (k − 1)-wise independence property holds “for free” in natural distributions
for k-SUM [2, 9] and Zero-k-Clique [15] because of the natural symmetry of cyclic groups Zm.
However, it is a priori unclear how to get it for k-OV.

Search-to-decision reductions. To demonstrate the usefulness of the (k−1)-wise independence
property, we give a fine-grained average-case search-to-decision reduction for our conjectured hard
k-OV distribution. Actually, we give two such reductions, for two different parameter regimes. The
simpler one, in Section 6, introduced an O(log n) overhead in the failure probability, so it is relevant
only if the decision algorithm succeeds with probability higher than 1− 1

log n . The other reduction,
in Section 7, works with small constant failure probabilities on both ends.

Planting multiple solutions. We also argue that (k−1)-wise independence allow planting more
than one solution in a single instance, which we believe might be useful for building cryptographic
primitives.

Let us remark that all our results are nontrivial already for k = 2, i.e., for the Orthogonal Vectors
problem. However, from the point of view of cryptographic applications, larger values of k are more
interesting (as they potentially offer a bigger advantage for the honest parties), so we present all
our results in full generality.

1.3 Technical overview

Planting. How do we generate k orthogonal vectors such that any k − 1 of them look innocent?
First of all, we can focus on generating a single coordinate, and then repeat the process indepen-
dently for each of the d coordinates. Consider the joint distribution of k i.i.d. p-biased random
bits. We need to modify it to set the probability of k ones to 0. If we just do it, and scale up the
remaining probabilities accordingly, the probability of k − 1 ones turns out wrong. After we fix
that, the probability of k − 2 ones is off, and so on, in a manner similar to the exclusion-inclusion
principle. By doing this mental exercise we end up with a formula for the joint distribution of k
bits in a single coordinate of the k vectors to be planted. How do we actually sample from this dis-
tribution? Since it has the (k− 1)-wise independence property, the following approach must work:
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First sample k − 1 i.i.d. p-biased bits, and then sample the k-th bit with probability depending on
the number of ones among the first k−1 bits. In Section 3 we show how to set this last probability
exactly.

Search-to-decision reductions. Both our reductions are based on the same basic idea: In order
to find the planted solution, we replace some of the vectors in the input instance with newly sampled
vectors with i.i.d. p-biased entries and run the decision algorithm on such a modified instance. If
at least one of the planted vectors got resampled, the resulting instance has the same distribution
as if no planting occurred (thanks to the (k− 1)-wise independence), and so the decision algorithm
returns no with good probability. Otherwise the planted solution is still there and the decision
algorithm likely says yes.

Our first reduction (see Section 6) applies this idea to perform a binary search. It introduces a
factor of k log n overhead in the running time and also in the failure probability, because we need
to take a union bound over all invocations of the decision algorithm returning correct answers.

Our second reduction (see Section 7) is an adaptation of a search-to-decision reduction for k-
SUM due to Agrawal et al. [2]. In short, the reduction repeatedly resamples a random subset of
vectors, runs the decision algorithm, and keeps track for each of the original vectors, how many
times the decision algorithm returned yes when this vector was not resampled. Statistically, this
count should be larger for vectors in the planted solution. A careful probabilistic analysis shows
that this is indeed the case.

1.4 Open problems

Fine-grained asymmetric cryptography. A key goal of fine-grained cryptography is to devise
an advanced asymmetric cryptography scheme – such as public key encryption – whose security is
based on hardness of a well understood problem from fine-grained complexity. So far the closest
to this goal seems to be the key exchange protocol due to LaVigne, Lincoln, and Vassilevska
Williams [15], which is based on hardness of the Zero-k-Clique problem. Despite being based on a
parameterized problem (that allows for arbitrary polynomial nk−o(1)-hardness by simply choosing
a large enough k), the protocol offers only quadratic security, i.e., breaking the encryption takes
only quadratically more than it takes to encrypt and decrypt a message. This limitation seems
inherent to the protocol because it is based on a similar idea as Merkle puzzles [16].

It is an open problem if fine-grained cryptography with superquadratic security is possible. We
believe that k-OV could be a good hard problem for that purpose, because of a different structure,
which addition-based problems, like k-SUM and Zero-k-Clique, are lacking.

In recent work, Alman, Huang, and Yeo [4] show that if one-way functions do not exist then
average-case hardness fine-grained assumptions on planted k-SUM and Zero-k-Clique are false for
sufficiently large constant k. Being a planted problem, the same is expected to apply to k-OV [4].
A construction of public-key encryption from planted k-OV would be interesting even in a world
where one-way functions do exist, as they are not known to imply public-key encryption [12].

Faster algorithms for average-case OV. Algorithms for random OV instances seem to be
underexplored. Up until recently [3] it was not known if the average-case OV admits even a
subpolynomial improvement compared to the worst case. With this paper we hope to inspire more
research in this direction. We would even be happy to see our conjecture refuted.
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2 The model distribution

Fix k ≥ 2, and let d = α(n) log n for α(n) = ω(1). We define the family of model distributions
k-OVα

0 (n) that generate k matrices U1, ..., Uk ∈ {0, 1}n×d where all entries are i.i.d. p-biased bits
with probability

p =
(

1− 2−
2k

α(n)

) 1
k

≈
(2k ln(2)

α(n)

) 1
k

.

As it becomes apparent later, for the planting algorithm to work it is crucial that p ≤ 1/2, but
thanks to α(n) = ω(1) this holds for large enough n.

We show that the model distribution indeed generates no-solutions with good probability.

Lemma 1. A k-OV instance sampled from the model distribution k-OVα
0 (n) is a no-instance with

probability at least 1− 1
nk .

Proof. For a k-OV instance U = (U1, . . . , Uk) ∼ k-OVα
0 (n), a fixed combination of vectors u1, . . . , uk

(where uℓ ∈ Uℓ) is orthogonal iff, for each coordinate j ∈ [d], not all of the k vectors have one in that
coordinate. Since k i.i.d. p-biased bits are all ones with probability pk, the probability that u1, . . . , uk

are orthogonal (determined by the all-ones event not occurring in any of the d coordinates) is:

Pr[u1, ..., uk are orthogonal] =
(
1− pk

)d
=
(

2−
2k

α(n)

)α(n) log(n)
= n−2k.

By linearity of expectation, the expected value for the number of solutions among all nk possible
combinations of k vectors, denoted by c(U), is

E[c(U)] =
∑

ui∈Ui
(1≤i≤k)

Pr[u1, . . . , uk are orthogonal] = nk · n−2k = 1
nk

.

This gives us a bound on the probability of any solution occurring:

Pr[c(U) > 0] =
nk∑
i=1

Pr[c(U) = i] ≤
nk∑
i=1

i · Pr[c(U) = i] = E[c(U)] = 1
nk

.

Hence, an instance sampled from k-OVα
0 (n) is a no-instance with probability 1− 1

nk .

We remark that one can make the probability of sampling a no-instance arbitrarily high; in
order to get the probability 1− 1

nc it suffices to replace 2k with k+c in the formula for the probability
parameter p. However, having in mind the cryptographic motivation, 1

nk seems a reasonable default
choice for the failure probability of the sampler, because with the same probability the attacker
can just guess the solution.

3 The planted distribution

To plant a solution at locations s1, . . . , sk ∈ [n] in an instance U sampled from k-OVα
0 (n), we apply

the following randomized algorithm.

Plant(U, s1, . . . , sk):

5



1. For each coordinate 1 ≤ j ≤ d:

(a) Let m be the number of ones among U1,s1 [j], . . . , Uk,sk
[j].

(b) If m− k is even, flip Uk,sk
[j] with probability

(
p

1−p

)k−m
. (Here we need p ≤ 1/2.)

2. Return U.

We justify this way of planting in Section 4. For now, observe that if all vectors U1,s1 , . . . , Uk,sk

feature a one at coordinate j, we have m = k and Plant flips the final bit Uk,sk
[j] to a zero with

probability (
p

1− p

)k−m

=
(

p

1− p

)0
= 1.

Thus, Plant(U, s1, . . . , sk) outputs a yes-instance of k-OV with a solution at s1, . . . , sk.
We sample yes-instances of k-OV by planting a solution in an instance U ∼ k-OVα

0 (n) at
locations s1, . . . , sk chosen uniformly at random.

Distribution k-OVα
1 (n):

1. Sample U from k-OVα
0 (n).

2. Sample (s1, . . . , sk) uniformly at random from [n]k.

3. Return Plant(U, s1, . . . , sk).

The above observation about Plant immediately yields the following.

Lemma 2. A k-OV instance sampled from the planted distribution k-OVα
1 (n) is a yes-instance

with probability 1.

4 (k − 1)-wise independence of planted vectors

Our method of planting orthogonal vectors arises from the idea that for any planted problem, any
proper “piece” of the planted solution should be indistinguishable from any comparable piece of the
instance as a whole, conditioned on the latter still being consistent with being a part of a solution
itself.

For example, in the case of planting a k-clique in a graph G this requirement is trivial. Indeed,
the projection of the clique onto a smaller subset of k′ < k vertices yields a k′-clique, which are
exactly those subgraphs of G of size k′ which could feasibly belong to a solution.

In contrast to the previous example, in the case of k-SUM, any set of k−1 elements x1, . . . , xk−1
in an instance could feasibly be part of a solution, as one can always construct a k−th number xk

such that
∑k

i=1 xi = 0. Thus, by the principle we described, to plant a solution in an instance with
i.i.d. uniformly random elements, the marginal distribution of the distribution of planted solutions
(x1, . . . , xk) given by any projection to k − 1 elements should itself be uniformly random. This
holds true in the case of the planted k-SUM [2], where the planted solution is distributed uniformly
over the set of all k-tuples that form valid k-SUM solutions. The case of planted Zero-k-Clique [15]
is analogous. For both of these problems, k elements from the model distribution conditioned on
them feasibly forming a solution yields a distribution that is suitable for planting according to the
described principle.
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This is different from the k-OV problem with a model distribution of i.i.d. vector entries. Here,
as with k-SUM and Zero-k-Clique, any set of k − 1 elements (in this case vectors) could form a
solution to k-OV. All that is needed is for the last vector to feature a 0 in all those coordinates
where the other k − 1 all were 1. However, sparse vectors are far more likely to be part of a
solutions than dense ones. Therefore, conditioning k i.i.d. p-biased vectors on being orthogonal
yields a distribution which does not follow our principle; Projecting onto any subset of k′ < k
vectors results in vectors that are on average sparser than (and thus different from) k′ i.i.d. p-
biased vectors. As we will show now, our method of planting does satisfy this principle: Any subset
of k − 1 planted vectors are independent and identically distributed p-biased vectors.

Let M ∼ k-OVα
0 (n) and U = Plant(M, s1, . . . , sk). Recall that both sampling from the model

distribution k-OVα
0 (n) and the planting by Plant are independent and identical for each coordinate

j ∈ [d]. Hence, all k-bit sequences x = (U1,s1 [j], U2,s2 [j], . . . , Uk,sk
[j]) ∈ {0, 1}k, for all j ∈ [d],

are independent and identically distributed, according to a distribution whose probability density
function we denote by Pk : {0, 1}k → R.

Lemma 3. Let x ∈ {0, 1}k contain m ones, i.e., ||x||1 = m. Then

Pk(x) = pm(1− p)k−m − (−1)k−mpk.

Proof. Fix a coordinate j ∈ [d]. Let X = (M1,s1 [j], M2,s2 [j], . . . , Mk,sk
[j]) be the random variable

denoting the entries of the j-th coordinate among the vectors at locations s1, . . . , sk before planting.
We proceed by case distinction.

Case 1. If m − k is even, the probability of x occurring in the given coordinate j ∈ [d] of the
planted solution is given by

Pk(x) = Pr [X = x and Plant does not flip the final bit]

= pm(1− p)k−m ·
(

1−
(

p

1− p

)k−m
)

= pm(1− p)k−m − 1 · pk

= pm(1− p)k−m − (−1)k−mpk.

Case 2a. If m − k is odd and x = y1 for some y ∈ {0, 1}k−1, then x = y1 may occur either
directly in the model instance, or by y0 (for which m− k is even) occurring in the model instance
and Plant flipping the final bit:

Pk(x) = Pr [X = y1] + Pr [X = y0 and Plant flips the final bit]

= pm(1− p)k−m + pm−1(1− p)k−(m−1) ·
(

p

1− p

)k−(m−1)

= pm(1− p)k−m + pk

= pm(1− p)k−m − (−1)k−mpk.
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Case 2b. Similarly, if m − k is odd and x = y0 for some y ∈ {0, 1}k−1, then x = y0 can occur
either directly in the model instance or by Plant flipping the final bit of the sequence y1:

Pk(x) = Pr [X = y0] + Pr [X = y1 and Plant flips the final bit]

= pm(1− p)k−m + pm+1(1− p)k−(m+1) ·
(

p

1− p

)k−(m+1)

= pm(1− p)k−m + pk

= pm(1− p)k−m − (−1)m−kpk.

Remark 1. It follows immediately from Lemma 3 that the method of planting is invariant under
permutations of the k collections U1, . . . , Uk.

Having Pk as the distribution of planted vectors, rather than, e.g., the k-vector joint model
distribution conditioned on orthogonality, ensures (k − 1)-wise independence among the planted
vectors. I.e., the projection of k planted vectors onto any subset of size k′ < k is identically
distributed to k′ vectors from the model distribution.

Lemma 4 ((k − 1)-wise independence). Marginalizing any one of the k bits of Pk yields k − 1
independent p-biased bits.

Proof. By Remark 1 we may assume w.l.o.g. that the last bit is the one marginalized out. The
lemma then follows from the definition of Plant, as the first k − 1 entries of any coordinate in the
planted vectors are unchanged from the model instance, and are therefore independent p-biased
bits.

This property is useful in bounding the probability of a planted instance containing a solution
besides the planted one.

Lemma 5. A k-OV instance sampled from the planted distribution k-OVα
1 (n) has more than one

solution with probability less than 1
nk .

Proof. While the k planted vectors are guaranteed to form a solution, by (k−1)-wise independence,
all combinations of 0 ≤ k′ < k planted vectors and k − k′ non-planted vectors form a set of k
independent p-biased vectors which is therefore a solution to the k-OV problem with probability
(1− p)d = 1

n2k . By linearity of expectation,

E[c(U)] = 1 + (1− pk)d · (nk − 1) < 1 + 1
nk

.

Which then gives the desired result.

Pr[c(U) > 1] =
nk∑
i=2

Pr[c(U) = i] ≤
nk∑
i=1

(i− 1) · Pr[c(U) = i] = E[c(U)− 1] <
1

nk
.
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Uniqueness. Our way of planting is unique in the following sense.

Theorem 1. Let Q : {0, 1}k → R be a probability distribution such that Q(1k) = 0 and that
marginalizing any one of the k bits yields k − 1 independent p-biased bits. Then Q = Pk.

Proof. We show that Q(x) = Pk(x) for all x ∈ {0, 1}k. Let m denote the number of ones in x, that
is ||x||1 = m. We proceed by induction over k −m, i.e. the number of zeros in x.

Base case: k −m = 0. Then m = k and x = 1k. Thus Q(x) = Q(1k) = 0 = Pk(x).

Inductive case: k −m > 0. We assume w.l.o.g. that the k −m zeros are the last bits of x, i.e.,
x = 1m0k−m. Marginalizing the final k −m > 0 bits of Q yields k − (k −m) = m independent
p-biased bits, whereby the probability of all m remaining bits being ones is

pm =
∑

y∈{0,1}k−m

Q(1my) = Q(1m0m−k︸ ︷︷ ︸
=x

) +
∑

y∈{0,1}k−m

y ̸=0k−m

Q(1my).

Thereby,

Q(x) = pm −
∑

y∈{0,1}k−m

y ̸=0k−m

Q(1my)

= pm −
∑

y∈{0,1}k−m

y ̸=0k−m

Pk(1my) (By the induction hypothesis)

= pm + Pk(x)−
∑

y∈{0,1}k−m

Pk(1my)

where the sum term is merely the probability of 1m in the marginal distribution of Pk, which by
Lemma 4 in turn consists of m independent p-biased bits. Hence

= pm + Pk(x)− pm = Pk(x).

5 Conjectured hard problems

In this section we formally define the problems that we conjecture to require nk−o(1) time.

Definition 1 (Solving planted decision k-OV). Let A be an algorithm that given a k-OV instance
U outputs either 0 or 1. For α(n) = Ω(1), we say A solves the decision k-OVα problem with success
probability δ(n), if for both b ∈ {0, 1} and large enough n,

Pr
U∼k-OVα

b (n)
[A(U) = b] ≥ δ(n),

where randomness is taken over both the instance U and the random coins used by A.
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Similarly, we define a notion of recovering a solution from a planted instance.

Definition 2 (Solving planted search k-OV). Let A be an algorithm that given a k-OV instance
U outputs a tuple (s1, ..., sk) ∈ {1, ..., n}k. For a given α(n) = Ω(1), we say A solves the planted
search k-OVα problem with success probability δ(n) if for large enough n,

Pr
U∼k-OVα

1 (n)
(s1,...,sk)←A(U)

[U1,s1 , ..., Uk,sk
are orthogonal] ≥ δ(n),

where randomness is taken over both the instance U and the random coins used by A.

Now we are ready to formally state our main conjecture.

Conjecture 1. For any α(n) = ω(1) and ε > 0, there exists no algorithm A that solves the planted
decision k-OV problem with any constant success probability δ > 1

2 in time O(nk−ε).

6 Search-to-decision reduction via binary search

We reduce the search problem of finding the planted solution to the decision problem of determining
whether an instance contains a planted solution. This means that given a decision algorithm that
can correctly distinguish whether an instance was sampled from the model or planted distribution
with sufficient probability, one can recover the planted secret through this reduction. The reduction
introduces a factor O(log n) increase in both the running time and error probability of the algorithm.

The idea is to find each planted vector using something akin to binary search on each collection
Ai. We can split Ai into two partitions of roughly equal size and run the decision algorithm twice,
on instances where one of the two partitions is first replaced by newly sampled p-biased vectors.
The vector planted in Ai is guaranteed to be replaced in one of these cases, and by (k − 1)-wise
independence the resulting instance follows the model distribution. The search space is thus cut in
half and we can recurse on this smaller search space to eventually find the planted vector.

Theorem 2 (Search to decision reduction). Let α(n) = polylog(n) and let Adecide be an algorithm
that solves the planted decision k-OV problem with success probability 1− δ(n) in time T (n). Then
there exists an algorithm Asearch that solves the planted search k-OV problem with success probability
1− k⌈log n⌉ · δ(n) in expected time Õ(T (n) + n).

Proof. Consider an instance U = (U1, . . . , Uk) ∼ k-OVα
1 (n). First let us focus only on recovering

the location i ∈ [n] of the planted vector in the first collection U1. The reduction begins with the
“full” search space S := [n], and narrows it down by half in each iteration, so that the desired i is
recovered after ⌈log n⌉ iterations.

At each iteration, the current search space S is arbitrarily partitioned in two sets of equal size
(up to one vector, id . The decision algorithm Adecide is then executed on two new instances, where
the respective sets of vectors in U1 are replaced with newly sampled p-biased vectors.

By the (k− 1)-wise independence, if the vector belonging to the solution is replaced, all vectors
are independently and identically distributed p-biased vectors, i.e., the instance is distributed ac-
cording to k-OVα

0 (n). On the other hand, if the solution survives resampling, the instance remains
distributed according to k-OVα

1 (n). Therefore, the output of Adecide is used to decide which of the
two partition blocks should be assumed as the new search space.

10



The reduction is correct if Adecide decides correctly at every iteration. Of course, Adecide might
fail with probability δ(n). By a union bound over all ⌈log n⌉ invocations of Adecide this happens
with probability at most ⌈log n⌉ · δ(n). Thereby Asearch recovers the location i of the first planted
vector with success probability at least 1− ⌈log n⌉ · δ(n).

As for the runtime, Adecide with runtime T (n) is invoked O(log n) times, and across all iterations
n − 1 vectors are resampled in total. Since a single p-biased bit can be sampled in expected time
O(− log p) = O(log α(n)) = O(log log n), sampling a d-dimensional vector takes polylog(n) time in
expectation. Therefore, recovering the location of the first planted vector takes time Õ(T (n) + n).

The same process is repeated another k−1 times to recover the locations of the planted vectors
among U2, ..., Uk. As k is constant there is no asymptotic overhead in the running time while the
success probability drops to 1− k⌈log n⌉ · δ(n).

7 Search-to-decision reduction via counters

We present a second search-to-decision reduction, adapted from that of Agrawal et al. [2] for planted
k-SUM. As in the method in Section 6, we use the fact that an algorithm Adecide for the decision
k-OV problem, when given a planted k-OV instance with some of the vectors resampled, correctly
detects whether any of the planted vectors were among the resampled vectors. However, instead
of iteratively narrowing a pool of candidate vectors, we iterate this process on the entire instance
and for each vector u keep a count of the number of iterations in which u survived and Adecide’s
output was 1. After O(log(n)) iterations we output the vectors with the highest counts among all
k collections, which we show coincides with the planted solution (with good probability).

Theorem 3 (Search to decision reduction). For any α(n) = polylog(n) and δ > 0, there exists
an ϵ > 0 such that an algorithm solves the planted decision k-OV problem with success probability
at least 1 − ϵ in time T (n) yields an algorithm that solves the planted search k-OV problem with
success probability at least 1− δ in expected time Õ(T (n) + n).

In more detail, let Mix be the following randomized algorithm, which takes a k-OV instance U,
and resamples some of the vectors:

Algorithm Mix(U):

1. For each ℓ ∈ [k] and i ∈ [n]:

(a) With probability 1− 2−
1
k , replace Uℓ,i by a newly-sampled p-biased vector

2. Output U

For ℓ ∈ [k], let Sℓ ⊆ [n] indicate the indices of the vectors of Uℓ which are replaced by Mix. For
a vector u in U and a given execution of Mix, we say u survives if Mix does not replace u. We say
s = (s1, . . . , sk) survives if Uℓ,sℓ

survives for each ℓ ∈ [k].
Now let B(s) be the binary random variable indicating whether s survives. Our chosen proba-

bility for Mix to resample a vector yields the following.

Lemma 6. For a k-OV instance U and any s ∈ [n]k, s survives with probability one half, i.e.,
PrMix[B(s) = 1] = 1

2 .
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Proof. Each vector is independently picked to be replaced with probability 1 − 2−
1
k . The chance

of all k vectors surviving is

Pr
Mix

[B(s) = 1] =
(
1−

(
1− 2−

1
k

))k
= 2−

1
k
·k = 1

2 .

As laid out before, our search algorithm repeatedly executes Mix and then the given decision
algorithm Adecide. The hopes is that the output of the latter correlates with the survival of the
planted solution. We therefore also keep track of which vectors survive whenever Adecide believes
there is still a planted solution in the instance output by Mix.

Algorithm Asearch(U):

1. Initialize a counter Cℓ,i := 0 for each ℓ ∈ [k] and i ∈ [n].

2. Repeat m = Θ(log n) times:

(a) V← Mix(U)
(b) b := Adecide(V)
(c) If b = 1:

i. Set Cℓ,i := Cℓ,i + 1 for every Uℓ,i that was not replaced by Mix

3. Set sℓ := arg maxi∈[n] Cℓ,i for each ℓ ∈ [k]

4. Output s = (s1, . . . , sk)

This works well for instances U where Adecide is good at detecting whether a particular solution
survives. To capture this notion, we say an instance U is good, if it has only one solution, at
some location s, and the output of Adecide indicates whether s survives except for a small constant
probability; Concretely,

Pr
Mix

[Adecide(Mix(U)) ̸= B(s)] <
1
23

(
1− 2−

1
k

)
.

In the following, let Sample be a randomized algorithm that outputs a planted instance sampled
from k-OVα

1 (n) as well as the location s of the planted solution.

Lemma 7. For any δ > 0, there exists an ϵ > 0 such that given an algorithm that solves the planted
decision k-OV problem with success probability at least 1 − ϵ, an instance U ∼ k-OVα

1 (n) is good
except with probability at most δ

2 .

Proof. We show first that for an apt choice of ϵ, the decision algorithmAdecide correctly detects if the
solution planted by Sample (which produces instances distributed according to k-OVα

1 (n)) survives
except with probability at most δ

4 . Then, since for large enough n, instances U ∼ k-OVα
1 (n) will

only contain a single solution except with probability δ
4 , by a union bound we get a good instance

except with probability at most δ
2 .

For the first step, consider the following distribution:

Distribution k-OVα
B(n):

12



1. U, s← Sample

2. V← Mix(U)

3. Output (V, B = B(s)).
Observe that, if we condition on B = 1, the planted solution survives Mix, which merely

resamples some of the i.i.d. p-biased vectors in the instance. Thus, V is distributed according to
k-OVα

1 (n). On the other hand, if B = 0, at least one of the planted vectors is replaced by a newly-
sampled p-biased vector. By (k − 1)-wise independence, the subset of planted vectors that survive
are i.i.d. p-biased vectors, as are all other vectors in V. Hence, conditioning on B = 0 yields the
model distribution k-OVα

0 (n).
Therefore, for an algorithm Adecide that solves the planted decision k-OV problem with success

probability at least 1− ϵ, we have

Pr
k-OVα

B(n)
[Adecide(V) ̸= B] ≤ ϵ.

Now, let Z(U, s) be the random variable that, for a given instance U with a solution planted at s,
denotes the probability of Adecide(Mix(U)) ̸= B(s), where the randomness is taken over the internal
coins used by Mix. Then

ϵ ≥ Pr
k-OVα

B(n)
[Adecide(V) ̸= B(s)]

= E
(U,s)←Sample

[
Pr
Mix

[Adecide(Mix(U)) ̸= B(s)]
]

= E
(U,s)←Sample

[Z(U, s)] .

Choosing ϵ < δ
25 (1− 2−

1
k ), Markov’s inequality yields the following bound:

Pr
(U,s)←Sample

[
Z(U, s) ≥ 1

23

(
1− 2−

1
k

)]
≤ Pr

(U,s)←Sample

[
Z(U, s) ≥ 4

δ
E[Z(U, s)]

]
<

δ

4 .

Next, observe that s is the only solution in the instance U output by Sample with high proba-
bility,

Pr
(U,s)←Sample

[U has a solution besides s] = Pr
U←k-OVα

1 (n)
[c(U) > 1] <

1
nk

.

In particular, for large enough n, there is more than one solution with probability less than δ
4 . Thus,

by a union bound over this and our result in the first step, we find that an instance U ∼ k-OVα
1 (n)

is good except with probability at most δ
2 :

Pr
U←k-OVα

1 (n)
[U is good]

= Pr
U←k-OVα

1 (n)

[
U has a single solution s and Z(U, s) <

1
23

(
1− 2−

1
k

)]
= Pr

U,s←Sample

[
s is the only solution of U and Z(U, s) <

1
23

(
1− 2−

1
k

)]
≥ 1− Pr

U,s←Sample
[U has a solution besides s]− Pr

U,s←Sample

[
Z(U, s) ≥ 1

23

(
1− 2−

1
k

)]
> 1− δ

4 −
δ

4 = 1− δ

2 .
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We now show that the search algorithm performs well on this large fraction of good instances.

Lemma 8. Let δ > 0 and let Adecide be an algorithm that solves the planted decision k-OV problem.
Then Asearch fails to recover the solution s of good instances with probability less than δ

2 .

Proof. Let U be a good instance with its only solution at s. After t iterations, we expect the
counters for vectors in the solution s to be the highest:

E[Cℓ,i | sℓ ̸= i] = t · Pr
Mix

[
Uℓ,i survives and Adecide(Mix(U)) = 1

]
≤ t ·

(
Pr
Mix

[Uℓ,i survives and B(s) = 1] + Pr
Mix

[
Adecide(Mix(U)) ̸= B(s)

])
< t ·

( 1
k
√

2
· 1

2 + 1
23

(
1− 1

k
√

2

))
,

E[Cℓ,i | sℓ = i] ≥ t · Pr
Mix

[
s survives and Adecide(Mix(U)) = 1

]
≥ t · Pr

Mix

[
B(s) = 1 and Adecide(Mix(U)) = B(s)

]
≥ t ·

(
1− Pr

Mix
[B(s) = 0]− Pr

Mix

[
Adecide(Mix(U)) ̸= B(s)

])
> t ·

(
1− 1

2 −
1
23

(
1− 1

k
√

2

))
= t ·

(1
2 −

1
23

(
1− 1

k
√

2

))
.

Picking the k highest counters is guaranteed to yield the solution s if all counters Cℓ,i deviate by
less than half the difference of the two expected values, namely

∆ := 1
2 (E[Cℓ,i | sℓ = i]− E[Cℓ,i | sℓ ̸= i])

≥ 1
2 t

((1
2 −

1
23

(
1− 1

k
√

2

))
−
( 1

k
√

2
· 1

2 + 1
23

(
1− 1

k
√

2

)))
.

= 1
2 t

(1
2

(
1− 1

k
√

2

)
− 1

22

(
1− 1

k
√

2

))
= t · 1

8

(
1− 1

k
√

2

)
Each counter Cℓ,i is the sum of t i.i.d. binary random variables. By a Chernoff bound, a counter

Cℓ,i for a vector which is not in the planted solution, i.e. sℓ ̸= i will exceed its expected value by ∆
with probability at most

Pr [Cℓ,i ≥ E[Cℓ,i] + ∆ | sℓ ̸= i] < exp
(
−2

t

[1
8

(
1− 1

k
√

2

)]2
)

.

Similarly, a counter Cℓ,i for a vector that is part of a planted solution will fall short of its expected
value by ∆ with probability at most

Pr [Cℓ,i ≤ E[Cℓ,i]−∆ | sℓ = i] < exp
(
−2

t

[1
8

(
1− 1

k
√

2

)]2
)

.
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For a choice of t = 1
2 ·
[

1
8

(
1− 1

k√2

)]−2
log 2kn

δ = O(log n) iterations, both of these probabilities are
at most δ

2kn . If none of the k · n counters deviate by ∆, the ranges of counters for vectors at s
and those for vectors not at s will be disjoint and selecting for the highest counters is guaranteed
to yield s. Thus, by a union bound over all k · n counters, we fail to recover s with probability at
most kn · δ

2kn = δ
2 .

A runtime analysis of Asearch now completes the proof of our theorem.

Proof of Theorem 3. By Lemma 7, there exists an ϵ > 0 such that for a given algorithm Adecide

that solves the planted decision k-OV problem with success probability at least 1− ϵ, an instance
U ∼ k-OVα

1 (n) is good except with probability at most δ
2 . By Lemma 8, Asearch is able to recover

the solution s from a good instance except with probability at most δ
2 . By a union bound against

the instance not being good or Asearch failing on the good instance, Asearch solved the planted search
k-OV problem with success probability at least 1− δ.

As laid out in the proof of Theorem 2, a single d-dimensional p-biased vector can be sampled
polylog(n) expected time. On average, a single execution of Mix samples k · n · (1 − 2−

1
k ) = O(n)

new vectors, which therefore can be done in Õ(n) time.
As for Asearch, both the initialization and the final evaluation of the counters takes linear time;

The t = O(log n) iterations each involve one execution of Mix and Adecide, which take Õ(n) and
T (n) time respectively for an overall runtime of Õ(T (n) + n).
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A Planting more solutions

So far we have only considered planting a single solution in an instance sampled from the model
distribution. We justified our particular planted distribution by the fact it is the only way of
sampling solutions (orthogonal combinations of vectors) such that every subset of k′ < k vectors is
distributed identically to k′ independent p-biased vectors. As a consequence, if we have multiple
sets of orthogonal vectors sampled this way, any combination of k vectors that are not all part of
the same set are distributed identically to k independent p-biased vectors.

We propose a family of distribution, called m-planted-k-OVα
0 (n), for m ∈ [n], where m sets

of k orthogonal vectors are sampled independently and embedded at m (disjoint) locations in a
k-OVα

0 (n) instance. This is a generalization of the previous planted distribution which corresponds
to the case of m = 1. On the other extreme, when m = n, all k ·n vectors in an m-planted-k-OVα

0 (n)
instance belong to some orthogonal combination and no vector is an independently sampled p-biased
vector. The task of finding a single orthogonal combination of vectors is therefore trivially easier in
this case than in the case of a 1-planted k-OVα

0 (n) instance, as one can simply pick any one vector
arbitrarily, and find k − 1 vectors from the other collections to form an orthogonal combination
through exhaustive search in time O(nk−1d) = o(nk). Recovering the entire solution, that is all n
many k-tuples of locations where the orthogonal combinations were planted, still takes time Θ(nkd)
when done in the naive way.

In general, a solution to the m-planted k-OVα
0 (n) problem can be encoded as k sets S1, ..., Sk ⊆

{1, ..., n} of size m, indicating which vectors within collection U1, ..., Uk are part of an orthogonal
combination, as well as k− 1 permutations π2, ..., πk ∈ Sm that encode how these vectors match up
to form orthogonal combinations. We call S1, ..., Sk the support of the solution and π2, ..., πk the
matching. There are therefore (

n

m

)k

· (m!)k−1

possible solutions and the information encoded in an instance amounts to

log

(n

m

)k

· (m!)k−1

 = k log
(

n

m

)
+ (k − 1) log(m!)

= O(m log n)

As an observation, in the case of 1-planted k-OVα
0 (n), the matching is trivial (as there is

only one planted orthogonal combination), and therefore the difficulty in the problem is derived
from finding the support. On the other hand, for n-planted k-OVα

0 (n), the support is trivial (as
S1 = ... = Sk = {1, ..., n}) and the difficulty lies solely in determining the matching.
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B The downsampling attack

In this section we give another argument – different than the algorithms by Abboud et al. [1]
and Chan and Williams [6], and simpler than them – for choosing d = ω(log n). We call it the
downsampling attack. It relies on the fact k-OV can be solved faster than the nk barrier in the
sublogarithmic dimension regime d = o(log n). In this regime, by the pigeonhole principle there
are necessarily duplicate vectors in the instance, and it becomes faster to enumerate all possible
solutions and check if (or how often) they occur.

Now, take a higher dimensional instance of planted k-OV, and project it onto the first d =
o(log n) coordinates – the resulting instance still contains the original planted solution, but now
it might not be unique as we expect random solutions to occur among the p-biased vectors for
such a low dimension. However, through enumeration one can find all solutions among the smaller
instance, which act as candidate solutions for the original instance. Unless almost all combinations
of vectors in the smaller instance are orthogonal, this attack can find and enumerate the candidate
solutions in O(nk−ϵ) time and then check whether any of these candidates is a solution to the
original instance.

More formally, let k ≥ 2, α(n) = Ω(1), L be an instance of planted k-OVc(n), and ϵ > 0.
Pick δ := ϵα(n)

2k < 1 − ϵ (for small enough ϵ), and create a copy L′ of L projected onto the first
d′ = δ log2 n coordinates.

We can then enumerate all O(2k×d′) combinations of k d′-dimensional orthogonal vectors and
find all their occurrences in L′ in Õ(2kd′ + n) = Õ(nk·δ + n) = Õ(nk−ϵ) time. On expectation there
will be (1− pk)d′ ·nk = 2−

2k
c(n) ·d

′
·nk = nk−ϵ such candidate combinations, which can then be tested

in the full instance L in Õ(nk−ϵ) time. The algorithm is correct, as the planted solution in L is
guaranteed to also be a solution in L′.

Therefore, if α(n) = Θ(1), we can find an ϵ > 0 such that this attack finds the planted solution
in O(nk−ϵ) expected time. If α is super-constant however, i.e. α = ω(1), then the advantage ϵ

(subject to ϵα(n)
2k < 1 − ϵ) tends towards zero asymptotically. Hence, α(n) = ω(1) is a necessary

condition for the instances to be nk−o(1)-hard.
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