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Abstract Binary code analysis plays a pivotal role in the field of software security
and is widely used in tasks such as software maintenance, malware detection, software
vulnerability discovery, patch analysis, etc. However, unlike source code, reverse
engineers face significant challenges in understanding binary code due to the lack of
intuitive semantic information. Although traditional reverse tools can convert binary
code into C-like pseudo code, the lack of code comments and symbolic informa-
tion such as function names still makes code understanding difficult. In recent years,
two groups of techniques have shown promising prospects: (1) Deep learning-based
techniques have demonstrated competitive results in tasks related to binary code un-
derstanding, furthermore, (2) Large Language Models (LLMs) have been extensively
pre-trained at the source-code level for tasks such as code understanding and gener-
ation. This has left participants wondering about the capabilities of LLMs in binary
code understanding. To this end, this work proposes a benchmark to evaluate the
effectiveness of LLMs in real-world reverse engineering scenarios, which covers two
key binary code understanding tasks, i.e., function name recovery and binary code
summarization. To more comprehensively evaluate, we include binaries with multiple
target architectures as well as different optimization options. We gain valuable insights
into the capabilities and limitations through extensive empirical studies of popular
LLMs using our benchmark. Our evaluations reveal that existing LLMs can under-
stand binary code to a certain extent, thereby improving the efficiency of binary code

* Shaoyin Cheng and Guoqiang Chen are corresponding authors.
Xiuwei Shang, Zhenkan Fu, Gangyang Li and Li Hu
University of Science and Technology of China, Hefei, China
E-mail: {shangxw, ligangyang, pdxbshx}@mail.ustc.edu.cn, buildxcbpro@gmail.com

Guoqiang Chen
QI-ANXIN Technology Research Institute, Beijing, China
E-mail: guoqiangchen@qianxin.com

Shaoyin Cheng, Weiming Zhang and Nenghai Yu
University of Science and Technology of China, Anhui Province Key Laboratory of Digital Security, Hefei,
China
E-mail: {sycheng, zhangwm, ynh}@ustc.edu.cn

ar
X

iv
:2

50
4.

21
80

3v
1 

 [
cs

.S
E

] 
 3

0 
A

pr
 2

02
5



2 Xiuwei Shang et al.

analysis. Our results highlight the great potential of the LLMs in advancing the field
of binary code understanding, and provide new directions for binary code analysis
techniques.

Keywords Reverse Engineering · Binary Code Understanding · Program Comprehen-
sion · Large Language Models · Empirical Study

1 Introduction

In the field of software security, binary code analysis plays a foundational role in tasks
such as reverse engineering (Canfora et al., 2011), software vulnerability detection
(Giffin et al., 2004), digital forensics Naeem et al. (2022), and patch analysis Xu et al.
(2017), with engineers constantly dealing with vast amounts of unknown binary files.
However, unlike human-readable source code, binary code that has been compiled,
optimized, and stripped of symbol information (Zhang et al., 2021) is like a "black
box" devoid of semantic labels, where function names are simplified to placeholders,
variable types are degraded to register operations, and code comments are completely
absent. This semantic gap poses a huge challenge to reverse engineers in understanding
binary code.

Although many decompilation tools, such as IDA Pro (Hex-RaysSA, 2024), Ghidra
(NationalSecurityAgency, 2024) and BinaryNinja (Vector35, 2024), can heuristically
convert binary code into C-like pseudo code, alleviating some of the difficulties, they
still lack easy-to-understand semantics information, especially function names and
code comments that play an important role in comprehending the code (Gellenbeck
and Cook, 1991; Gao et al., 2021). Recently, borrowing ideas from Natural Language
Processing (NLP), deep learning-based methods have been proposed for understanding
binary code. In the task of function name recovery, NERO (David et al., 2020a), NFRE
(Gao et al., 2021) and SymLM (Jin et al., 2022) utilized the disassembled assembly
instruction sequence as neural models input to reassign descriptive names. NER (Chen
et al., 2023b) utilized decompiled pseudo code with a higher abstraction level as input
and achieves better performance.

Besides, the function name is only part of the semantic completion and is not
enough to represent the complete behavioral logic of the code (Sridhara et al., 2010). If
a natural language description can be generated for the binary code, it will greatly save
the reverse engineer’s analysis time. BinT5 (Al-Kaswan et al., 2023) is the first pre-
trained generative model designed specifically for binary code summarization, which is
based on the source code model CodeT5 (Wang et al., 2021) and fine-tuned on binaries.
Subsequently, as a unified multi-task pre-training model, HexT5 (Xiong et al., 2023)
can perform multiple downstream tasks such as code summarization and function
name recovery. However, the expert methods mentioned above generally perform
poorly when faced with unseen code samples, and their generalization capabilities still
need to be improved.

Recently, breakthroughs in Large Language Models (LLMs) have brought new
opportunities in this field. General LLMs, such as Llama (Touvron et al., 2023b), Chat-
GPT (Ouyang et al., 2022), etc., have been widely demonstrated for their capabilities
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in natural language understanding and generation. Furthermore, LLMs in the pro-
gramming language domain (e.g., CodeLlama (Roziere et al., 2023) and WizardCoder
(Luo et al., 2023)) have shown notable ability in program analysis tasks, like fixing
security vulnerabilities (Wu et al., 2023), test cases auto-generation (Zhang et al.,
2023). These developments demonstrate the potential of LLMs to handle complex and
structured information flows that are particularly important for understanding binary
code. More strikingly, the few-shot learning property of LLMs enables them to quickly
adapt to new domains via prompt engineering Dai et al. (2022). This capability offers
new possibilities for binary code analysis: Can LLMs bridge the representation gap
between source code and binary code, and directly infer function semantics from de-
compiled pseudo code? Does the generated semantic information exhibit accuracy and
interpretability comparable to that of professional reverse engineers? These questions
have yet to be systematically answered in existing research.

In this paper, instead of developing a new technique, we investigate and compare
the capabilities of various LLMs in understanding binary code. By harnessing the ad-
vanced semantic modeling and reasoning power of LLMs, we seek to explore the extent
to which these models are able to understand binary code, a task that is traditionally
handled by skilled human engineers (David et al., 2020b). To facilitate our evaluation,
we design an automated approach to construct an evaluation benchmark dataset, which
includes aligned source code, natural language summaries, and decompiled pseudo
code. We then contrast the capabilities of LLMs on two binary code understanding
tasks, namely: (1) function name recovery, and (2) binary code summarization. We
extensively evaluated eight code domain LLMs (CodeGen (Nijkamp et al., 2023),
WizardCoder (Luo et al., 2023), DeepSeek-Coder (Guo et al., 2024), CodeLlama
(Roziere et al., 2023) et.al.), eight general domain LLMs (ChatGLM (Zeng et al.,
2022), Vicuna (Zheng et al., 2023), Llama (Touvron et al., 2023b), Mistral (Jiang et al.,
2024), ChatGPT (Ouyang et al., 2022) et.al.), and four deep learning-based expert
models (SymLM (Jin et al., 2022), NER (Chen et al., 2023b), BinT5 (Al-Kaswan et al.,
2023), HexT5 (Xiong et al., 2023)). Additionally, we explore the impact of injecting
domain knowledge by fine-tuning LLMs on specific tasks. Furthermore, we conduct
case studies in the context of virus analysis to showcase the performance of the LLMs
in understanding binary code in real-world scenarios.

Our findings demonstrate that LLMs exhibit excellent potential in advancing
automated binary code understanding. We call for more research in this area to further
enhance the capabilities of LLMs to play a more critical role in the complex task of
binary code analysis.
Contributions. In summary, the primary contributions of our work are as follows:

– We design an automated method to construct a benchmark dataset to evaluate
the capabilities of binary code understanding and release it to facilitate further
research 1.

– We conduct a thorough empirical study that evaluates the capabilities of eight code
domain LLMs, eight general domain LLMs, and four DL-based methods on binary
code understanding. Our primary focus lies on two fundamental tasks: function
name recovery and binary code summarization.

1 https://github.com/Sxxxw/BinaryLLMs-Eval

https://github.com/Sxxxw/BinaryLLMs-Eval
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Fig. 1: Application background of binary code understanding.

– Our findings provide valuable insights into the capabilities and limitations of
LLMs for understanding binary code. We thoroughly discuss the outcomes of our
evaluations and offer suggestions for future research directions, aiming to propel
advancements in this domain.

Extended Version. This paper is an extended version of our work published in the
40th International Conference on Software Maintenance and Evolution (Shang et al.,
2024). Specifically, we extend the previous work in the following aspects:

– The original study only targeted the x64 architecture and used the default opti-
mization level of each project, without exploring the impact of different target
architectures and optimization levels on binary code understanding. In extending
this paper, we first substantially extend the evaluation analysis by assessing the ef-
fectiveness of LLMs in understanding binary code across four target architectures
(x86, x64, ARM, MIPS) and four optimization options (O0, O1, O2, O3), respectively.
(Corresponding to Section 4.1 and 4.2)

– We expand the scope of the experiment by incorporating additional LLMs for
in-depth analysis, when investigating the key factors affecting the performance
of LLMs in binary code understanding, as well as the impact of fine-tuning on
performance. (Corresponding to Section 4.3 and 4.4)

– We conduct additional case studies to further demonstrate the practical role of
LLMs in assisting reverse engineers in understanding binary code in real-world
scenarios. (Corresponding to Section 4.5)

– We extend the scope of our discussion, particularly focusing on future work and
limitations. (Corresponding to Section 5)

– We have also updated the related work with additional studies published in this
research area, providing more detailed explanations of evaluation design, experi-
mental metrics, etc.

Structure of the Paper. The rest of this paper is organized as follows: Section 2
summarizes the research background and related work, and explains our motivation.
Detailed evaluation design and results analysis are presented in Section 3 and Section 4,
respectively. Subsequently, the discussion is thoroughly studied from multiple aspects
in Section 5. Finally, Section 6 concludes this paper.
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2 Background and Motivation

2.1 Binary Code Understanding

Fig. 2: Example of source, assembly, stripped assembly and stripped pseudo code
snippet.

As shown in Figure 1, consider a scenario where a software developer, Alice,
who writes a program in a high-level language like C/C++. Her code, written in a
human-readable format (Figure 2a), must be translated into a form the computer can
execute. This is where the compilation process comes into play, turning Alice’s source
code into binary code, which is a series of 1s and 0s that the machine can understand
and execute.

Once compiled, Bob, a reverse engineer, wants to understand how Alice’s program
works. He uses a disassembler to convert the binary code back into an assembly code
sequence (Figure 2b), which is more readable than binary but still quite low-level
and contains a large number of machine instructions. By doing this, Bob can get
some basic structure of the program. However, Alice has used the “strip” command to
remove symbol information from the original binary code in order to reduce file size
and protect intellectual property. This makes Bob’s job more difficult because he is
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now missing critical information such as function names (replaced with meaningless
placeholders such as sub_0BA6E0) and code comments (Figure 2c).

Finally, Bob uses a decompiler in an attempt to reconstruct the high-level logic of
the program. The decompiler generates pseudo code (Figure 2d), an approximation
of what Alice’s original source code might have looked like. However, due to the
complexity of the decompilation process and the lack of symbolic information in the
stripped binary, the pseudo code may not exactly match Alice’s original code, making
it still difficult for Bob to understand the function and behavior of the program.

At this point, Bob attempts to use advanced natural language processing (NLP)
techniques, such as LLMs or deep learning models, which are adept at identifying
patterns and inferring logical structures. Bob leverages these techniques to predict
function names and generate natural language summaries of the code’s functional-
ity. This process can be formalized as:

N , S = f(F ,B) (1)

where F is a stripped decompiled function in pseudo code form in binary file B, which
is fed into LLMs denoted as f . The objective is to generate a meaningful function
name denoted as N , and a natural language description denoted as S of this function.

Through this process, Bob combined the analytical power of AI with his reverse
engineering skills to bridge the gaps left by the stripped binaries and gain a deeper
understanding of Alice’s original programming intent. Specifically, by recovering the
function names and summarizing the code functions, Bob was able to quickly infer
the role of each function, and then understand the design logic of the entire program
in a relatively short period of time, which greatly improved the efficiency of reverse
analysis.

2.2 Related Works

2.2.1 Function Name Recovery

The task of binary function name recovery aims to reassign descriptive function names
to functions in binary files that have been stripped of symbolic information. During
compilation and release, debugging symbols such as function names, variable names,
and type information are often stripped to minimize file size, enhance security, and
obscure implementation details. However, their absence complicates reverse engineer-
ing, security analysis, malware detection, and vulnerability discovery. Function name
recovery helps researchers quickly extract critical function semantics and enhance the
understanding of binary program behavior.

The research community has extensively explored the task of function name
recovery. Initially, signature matching techniques (Zaremski and Wing, 1995) were
applied to restore library function names. However, their adaptability to broader
contexts posed challenges. As a result, probabilistic prediction approaches gained
traction. A notable example is Debin (He et al., 2018), which leverages a conditional
random field (CRF) model to infer debugging information.
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In recent years, the rapid progress of artificial intelligence technology has led to
the widespread adoption of neural network-based methods for function name recovery.
Among them, NERO (David et al., 2020a) uses augmented control flow graphs,
combined with the neural model of the encoder-decoder paradigm, to effectively
capture the behavioral characteristics of functions and provide a new method for
recovering binary function names. NFRE (Gao et al., 2021) proposes a lightweight
framework for function name recovery that utilizes the sequential and structural
information of assembly instructions. The efficiency and scalability of the framework
provide the possibility to process large-scale binary files. Based on NFRE, SymLM
(Jin et al., 2022) further considers the calling context to help the model understand
function semantics, and leverages advanced pre-training models (Pei et al., 2020) for
instruction embedding. XFL (Patrick-Evans et al., 2023) leverages feature engineering
to extract constants and control flow, employs an aggregation strategy to integrate
global and contextual embeddings. And utilizes PfastreXML (Jain et al., 2016) with
binary function embeddings for efficient multi-label classification, addressing sparsity
and class imbalance in function name labeling. NER (Chen et al., 2023b) starts from
the perspective of binary code representation and studies the effectiveness of different
representations for function name recovery using deep neural models, providing
new perspectives and tools for this field. Finally, llasm (Sha et al., 2024) pioneers
an encoder-decoder LLM fusion architecture for binary function name recovery,
integrating a pre-trained assembly encoder with a natural language decoder. This
approach leverages LLM reasoning to enhance semantic understanding, broaden
function name prediction, and enable deeper binary code interpretation. These studies
refine binary function name recovery through data representation, optimization effects,
and NLP integration, advancing reverse engineering, malware analysis, and program
comprehension.

2.2.2 Binary Code Summarization

Binary Code summarization aims to automatically describe the functionality of bi-
nary functions in natural language, assisting reverse engineers in analyzing binary
files without source code. Due to the lack of high-level semantic information (such
as function names and comments), decompiled pseudo-C code remains difficult to
interpret. This task improves analysis efficiency through automatic summarization,
facilitating malware detection and vulnerability discovery while aiding engineers in
comprehending binary code behavior.

Recently, several approaches have emerged, each contributing unique solutions to
the challenges of understanding and summarizing binary code. In these approaches,
BinT5 (Al-Kaswan et al., 2023) is the first model focused on binary code summa-
rization, which extends the application scope of source code pre-trained language
models. This model treats the decompiled code as a special programming language,
uses fine-tuned CodeT5 (Wang et al., 2021) to capture its semantics and generate a
summary. The introduction of BinT5 opens up new avenues for binary code summa-
rization research. HexT5 (Xiong et al., 2023) proposes a unified pre-training model
also based on CodeT5, which allows multi-task learning, supports function name
recovery, binary code summarization, and other downstream tasks, and demonstrates



8 Xiuwei Shang et al.

promising performance. CP-BCS (Ye et al., 2023) proposes a framework based on
control flow graphs and pseudo code for generating binary function summaries. This
approach effectively captures the execution behavior of assembly code by combining
bidirectional instruction-level control flow graphs and pseudo code, overcoming the
challenges posed by the low-level representation of assembly code. Bin2Summary
(Song et al., 2024) enhances the semantic understanding of binary code fragments
through function-specific code embedding techniques and utilizes an attention-based
seq-to-seq model to generate natural language summaries from the embedded binary
code. Lastly, MALSIGHT (Lu et al., 2024) enhances binary code summarization by
integrating reverse function extraction, recursive summarization, and static/dynamic
annotations, capturing function call context to better handle malware’s complex inter-
actions. It fine-tunes an LLM on malware source code and benign pseudo code and
introduces BLEURT-sum to improve summary accuracy and readability.

Additionally, multi-intent code summarization has become a research focus, aim-
ing to generate customized summaries tailored to different developer needs and intents.
MiSum (Zhu et al., 2025) introduces a multi-intent code summarization framework
based on a multimodal heterogeneous code graph (MM-HCG), integrating assembly
code (CFG) and pseudo code (AST) for multi-level code understanding. Utilizing an
intent-aware attention mechanism, MiSum generates customized summaries tailored
to different code analysis needs, enhancing both the flexibility of binary code summa-
rization and its effectiveness in reverse engineering and cross-layer code analysis.

2.3 Large Language Models and Our Motivation

In recent years, Large Language Models (LLMs) have garnered widespread attention
from both academia and industry due to their remarkable capabilities. Typically com-
posed of billions or even trillions of parameters, LLMs are trained on vast amounts of
data to learn the relationships between programming languages and natural language.
Notable examples include GPT-3 (Brown et al., 2020) and LLaMA (Touvron et al.,
2023a), all of which have demonstrated outstanding performance across various Natu-
ral Language Processing (NLP) tasks. Amidst this surge in research interest, LLMs
specifically designed for programming languages have rapidly emerged. These include
Codex (Chen et al., 2021), GPT-NeoX (Black et al., 2022), CodeT5+ (Wang et al.,
2023), PolyCoder (Xu et al., 2022), WizardCoder (Luo et al., 2023), and CodeLlama
(Roziere et al., 2023), among others. These models have exhibited exceptional profi-
ciency in code comprehension, further expanding the potential applications of LLMs
in software development and analysis. Recently, A few studies (Wu et al., 2023; Zhang
et al., 2023; Hou et al., 2024) find that LLMs have demonstrated excellent capabilities
in dealing with natural language tasks, as well as source code understanding, indicating
that they have the potential to be applied to complex analysis of source code.

Traditional binary reverse engineering and decompilation tools, such as Ghidra
(NationalSecurityAgency, 2024) and IDA Pro (Hex-RaysSA, 2024), play a crucial role
in converting binary code into high-level languages. However, they exhibit significant
limitations in terms of readability and comprehension of complex code structures. The
lack of high-level semantic information and debugging symbols makes decompilation



An Empirical Study on the Effectiveness of LLMs for Binary Code Understanding 9

Github
Project

Binary W/ 
Debug Information

Source
Code

Stripped
Binary

Pseudo
Code

CompilationDownload Strip Decompilation

① Dataset Alignment ② Correctness & Leakage Check

Source
Code

LLM-Gen
Summary

Pseudo
Code

LLM-Gen
Summary

Correctness
Check

Leakage
Check

Imagine you are an experienced software 

developer.  The following is a source code 

function, your task is to understand it and 

generate a short comment to the function 

describing its functionality briefly.

Here is the source code function:

```C/C++

{Source Code}

```

Human-Gen
Summary

Extract

srcML

ChatGPT

Extract

Parser

Fig. 3: An overview of the benchmark dataset construction process.

a labor-intensive process, heavily reliant on expert knowledge and domain-specific
expertise. Nevertheless, binary code shares inherent similarities with source code and
natural language, as they all follow specific patterns and structures that can be learned
and leveraged by LLMs (Zhang, 2022).

Therefore, this study will explore the potential of LLMs in understanding binary
code, aiming to evaluate whether these models can cross domain boundaries and extend
their capabilities in natural language and source code to binary code analysis. This
is expected not only to provide new perspectives for automated code understanding,
but also to open up new application paths in areas such as reverse engineering and
malware analysis.

3 Evaluation Design

3.1 Dataset Construction

Before we can effectively evaluate the ability of LLMs to understand binary code,
a comprehensive benchmark dataset is necessary to provide a consistent basis for
different model evaluations and comparisons. The specific process of constructing the
benchmark dataset is shown in Figure 3.

3.1.1 Source Code Selection

To reflect real-world reverse engineering needs, we believe that code sources of the
benchmark should meet the following requirements:

– Authenticity: the code should come from real projects, not toy programs or incom-
plete code snippets.

– Breadth: the selected code should cover multiple fields and not be limited to
specific fields or application scenarios.

– High quality: the selected code should be of good quality, including clear structure,
reasonable naming conventions, etc.

– Credibility: the selected code should ideally be sourced from projects maintained
by well-known or reputable developers or organizations to accurately reflect real-
world application scenarios.
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Therefore, as shown in Table 1, we select 12 real-world projects implemented in
C language with the highest star ratings on Github, including FFmpeg, Redis, Curl,
Masscan, Llama2.c, Whisper.cpp, OpenSSL, zstd, ImageMagick, Libvips, Libexpat,
and Ultrajson, which have high credibility, excellent code quality and maintenance
standards, covering eight application domains, including crypto, compress, network,
video, image, database, neural network, etc.

3.1.2 Compile, Strip and Decompile

We cross-compile these projects in different compilation environments to obtain binary
files. Specifically, the target architectures include x64, x86, ARM, and MIPS, where the
x64 architecture uses four optimization levels (O0 to O3) while the other architectures
only use the O0 optimization level. As illustrated in Table 1, we generate a total of
196 binaries. Subsequently, we employ the strip command in Linux to remove the
symbol tables from these binaries to simulate binaries without symbol information
that are common in actual reverse engineering.

Previous research (Chen et al., 2023b) has found that using pseudo code as a
representation of binary code is more effective for neural models than assembly
instruction sequence and Intermediate Representation (IR), as it provides a higher-
level code representation that facilitates model understanding. Therefore, we directly
utilize IDA Pro (Hex-RaysSA, 2024) to decompile the binary files and convert the
binary code into pseudo code form without considering other representation forms.

3.1.3 Alignment

We use DWARF (International, 2010) debugging information to align source code
and pseudo code, which can record functions, variables in binary functions, and their
locations (include source file name, line number, and column number) in source
code. As shown in Table 1, we obtain a total of 466,495 functions matching source
code and pseudo code. To align source code and human-written summary, we use
srcML (Maletic and Collard, 2015) to analyze and parse the source files, then collect
single- and multi-line summaries above the location of function declarations and
definitions. Through the above steps, the alignment of source code – pseudo code –
human summary is finally achieved.

3.1.4 Ground-truth Identifiction

For the function name recovery task, we parse the function names in the source code
as labels using regular expressions. For the binary code summarization task, we first
consider using human-written comments extracted from source code files as labels as
in previous work (Al-Kaswan et al., 2023; Xiong et al., 2023). However, we found that
only about 14.8% of functions have comments written by human developers. Worse
yet, not all comments are describing the functional summary of the function, but will
also contain some noisy content, and they are of varying quality and style. Therefore,
using human-written comments as ground-truth is unreliable.

Presently, an increasing number of research works (Dagdelen et al., 2024; Bzdok
et al., 2024; Tan et al., 2024) employ large language models such as ChatGPT (Ouyang



12 Xiuwei Shang et al.

Table 2: Detail information of Large Language Models we apply in this work. (In the
License column, "✓" indicates Open-source, "×" indicates Closed-source.)

Domain Model Release
Time Size Base

Model
Training Corpus Publisher License

Raw Size #Tokens #Instances

Code
LLMs

CodeGen25-7b-instruct (Nijkamp et al., 2023) Jul-2023 7B CodeGen2 - 1.4T - Salesforce ✓
WizardCoder-15b-V1.0 (Luo et al., 2023) Jun-2023 15B StarCoder - - 78.0K WizardLM ✓
WizardCoder-33b-V1.1 (Luo et al., 2023) Jan-2024 33B Deepseek-Coder - - - WizardLM ✓
Code Llama-7b-instruct-hf (Roziere et al., 2023) Jun-2023 7B Llama-2-7b 4.4TB 525.0B - Meta AI ✓
Code Llama-13b-instruct-hf (Roziere et al., 2023) Jun-2023 13B Llama-2-13b 4.4TB 525.0B - Meta AI ✓
Code Llama-34b-instruct-hf (Roziere et al., 2023) Jun-2023 34B Llama-2-34b 4.4TB 525.0B - Meta AI ✓
Code Llama-70b-instruct-hf (Roziere et al., 2023) Jan-2024 70B Llama-2-70b - 1.0T - Meta AI ✓
DeepSeek-Coder-33b-instruct (Guo et al., 2024) Nov-2023 33B - - 2.0T - DeepSeek-AI ✓

General
LLMs

ChatGLM2-6B (Zeng et al., 2022) Jun-2023 6B - - 1.4T - THUDM ✓
Vicuna-7b-v1.5 (Zheng et al., 2023) Aug-2023 7B Llama-2-7b - - 125.0K L.Zheng et al. ✓
Vicuna-13b-v1.5 (Zheng et al., 2023) Aug-2023 13B Llama-2-13b - - 125.0K L.Zheng et al. ✓
Llama-2-13b-chat-hf (Touvron et al., 2023b) Jul-2023 13B - - 2.0T - Meta AI ✓
Llama-2-70b-chat-hf (Touvron et al., 2023b) Jul-2023 70B - - 2.0T - Meta AI ✓
Mistral-7B-Instruct-v0.2 (Jiang et al., 2024) Dec-2023 7B Mistral-7B - - - Mistral AI ✓
Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024) Dec-2023 47B Mistral-7B - - - Mistral AI ✓
ChatGPT (Ouyang et al., 2022) Nov-2022 - - - - - OpenAI ×

et al., 2022) for tasks like data annotation, and has demonstrated a certain degree
of reliability. Inspired by these pioneering works, we utilize ChatGPT to generate
summaries as ground-truth. Specifically, we use the source code of the function to
construct the prompt shown in Figure 3, prompting ChatGPT to generate a short
summary describing the function’s purpose and functionality.

3.1.5 Correctness & Leakage Check

It is crucial to ensure the correctness of the ground-truth, so we perform a correctness
check on the descriptive summaries generated by ChatGPT. Specifically, we invited
three experienced domain experts to review the match between the source code and
the summary. Experts were asked to give each abstract a "pass" or "fail" score. If two
or more experts give a "fail" rating, the data will be removed directly from the dataset;
if one expert gives a "fail" rating, we will conduct a collective discussion and give
a final in conclusion. Finally, as shown in Table 1, we select 2,000 functions, each
of which contains seven compilation settings (i.e., x64_O0, x64_O1, x64_O2, x64_O3,
x86_O0, ARM_O0, MIPS_O0), totaling 14,000 pieces of data as the benchmark dataset.

It is also imperative that benchmark datasets are not included in the training set
of LLMs to mitigate the risk of data leakage. All our evaluation data are decompiled
pseudo code, and the symbolic information is stripped away so that it is significantly
different from the corresponding source code form, which greatly avoids data leakage.
To further ensure the validity and reliability of our benchmark evaluation, we use the
Google search engine to check whether the code appears on the Internet in clear text.
The results show that none of the pseudo codes are retrieved by whole-word matching.

3.2 Large Language Models Setup

3.2.1 Large Language Models As Is

We select eight code domain LLMs, i.e., CodeGen25 (Nijkamp et al., 2023), DeepSeek-
Coder (Guo et al., 2024), two versions of WizardCoder (Luo et al., 2023), four versions
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Pseudo
Code

Please imagine you are an experienced binary reverse

engineer. The following is a stripped decompiled C

function, your task is to understand it and response with a

descriptive function name.

Here is the decompiled C function:

```C   {Pseudo Code}  ```

Please imagine you are an experienced binary reverse

engineer. The following is a stripped decompiled C

function, your task is to understand it and generate a short

comment to the function describing its functionality.

Here is the decompiled C function:

```C   {Pseudo Code}   ```

① Query LLMs

Code LLMs

General LLMs

Fine-tuned LLMs

Source
Code

LLM-Gen
Summary

ChatGPT

CodeGen CodeLlama DeepSeek

VicunaMistral

CodeLlama Mistral

② Evaluation

Predict
Summary

Predict
Func_name

Parser Label
Func_name

Func_name 
Evaluator

Summary 
Evaluator

Fig. 4: An overview of the evaluation process.

of CodeLlama (Roziere et al., 2023), and select eight general domain LLMs, i.e.,
ChatGLM (Zeng et al., 2022), two versions of Vicuna (Zheng et al., 2023), two
versions of Llama (Touvron et al., 2023b), two versions of Mistral (Jiang et al., 2024),
and ChatGPT (Ouyang et al., 2022). The principles for our selection are: (1) state-
of-the-art, (2) pre-trained on enough source code to be able to understand code to
a certain extent, and (3) have text generation and code generation capabilities. In
addition, in order to ensure that the model can follow the instructions, we all choose
the instruct-tuned version. Table 2 provides detailed information, including parameter
size, base model, training corpus, publisher, etc.

Limited by the context window length, we set the maximum input tokens to 4,096,
and code snippets exceeding the length will be truncated. For the function name recov-
ery task, we set the maximum new tokens to 48, and for the code summarization task,
we set it to 256. We set the sampling temperature to 1, top_p to 0.95, top_k to 10, and
num_beams to 1. For all open-source models, we downloaded them from HuggingFace
(HuggingFace, 2024) and deployed on our local machine with FP16 mixed precision
enabled during inference. For ChatGPT, we called its latest gpt-3.5-turbo-16k
version through the OpenAI’s API.

3.2.2 Prompt Formats

Figure 4 illustrates the prompt format we used for LLMs. We use role-play (Chen
et al., 2023a; Kong et al., 2023) prompts to give LLMs the role of experienced binary
reverse engineers, enabling them to better handle binary code understanding tasks. We
enclose the code in the prompt with triple backticks (```) to clearly describe the code
format. Considering the limitation of the length of the model context window, and in
order to reduce the inference time overhead and memory usage, we adopt the zero-shot
prompts. We also analyze the impact of few-shot prompts on the performance of LLMs
in Section 4.3.

3.2.3 Fine-tuned Large Language Models

We also investigate the ability of fine-tuned LLMs to understand binary code, since
fine-tuning is a common technique to adapt a pre-trained LLM to downstream tasks
(Wu et al., 2023; Feng et al., 2020; Fried et al., 2022), such as function name recovery
and code summary generation. Furthermore, pre-training corpora of existing LLMs
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contain very few binary code, either in the form of disassembled instruction sequences
or decompiled pseudo code. Therefore, we hope to explore whether injecting binary
domain information into LLMs can improve its performance.

The GNU repository2 is extensively used as a training or test set for many existing
deep learning-based works (David et al., 2020a; Jin et al., 2022; Chen et al., 2023b;
Xiong et al., 2023; Wang et al., 2022; Li et al., 2021). To build our fine-tuning dataset,
we select 51 projects from the GNU repository, including binutils, coreutils, findutils,
libmicrohttpd, nettle, etc. We use BinKit (Kim et al., 2022) to create a compilation
environment, and then compiler the selected projects using the gcc-11.2.0 compiler
with x86_64 target architecture and O0 optimization level. We obtain a total of 270
binary files. After strip, decompile and alignment, we obtain 124,819 functions match-
ing source code and decompiled pseudo code, and randomly select 30,000 of them as
the fine-tuning dataset.

Additionally, we perform a search and confirm that none of the functions in our
proposed benchmark is present in the fine-tuning dataset.

3.3 Evaluation Setup

The evaluation environment is a machine equipped with 8 * NVIDIA RTX A6000
GPU with 48GB of VRAM, 2 * 28-core Intel Xeon 6330 CPU, 512GB RAM and
64TB storage, running on Ubuntu 22.04 OS. The GPU is running Nvidia driver version
525.116.03 with CUDA version 12.0.

We implement all the experiments using Python 3.8 with PyTorch (PyTorch, 2024)
2.0.1, DeepSpeed (DeepSpeed, 2024) 0.13.0 and Transformers (Transformers, 2024)
4.37.2 packages. As for model fine-tuning, we implement it based on the LLaMa-
Factory (Zheng et al., 2024) framework. We use LoRA (Hu et al., 2022) fine-tuning
method and specify all available modules. We adopt Adam optimizer in fp16 precision,
40 global batch size and 1 training epoch. The learning rate is set to 1e-5 and followed
by a consine decay.

4 Evaluation Results and Findings

In this section, we conduct extensive experiments to answer the following research
questions:

– RQ1: How do LLMs perform in the task of function name recovery?
– RQ2: How do LLMs perform in the task of binary code summarization?
– RQ3: What factors significantly influence the performance of LLMs to understand

binary code?
– RQ4: Can fine-tuning enhance the capability of LLMs to understand binary code?
– RQ5: Do LLMs have the practical ability in real-world scenarios?

2 http://ftp.gnu.org/gnu

http://ftp.gnu.org/gnu
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4.1 RQ1: Performance of Function Name Recovery

Metrics. For the function name recovery task, following (Gao et al., 2021; Chen
et al., 2023b), we calculate token-level Precision, Recall, F1-score to evaluate the
performance of LLMs. The metrics ignore non-alphabetical characters and are case-,
order-, and duplication-insensitive at the token-level. They can be expressed as:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-score =
2× Precision × Recall

Precision + Recall
(4)

Specifically, function names consist of one or more discrete tokens, each encapsulating
a portion of the function’s semantic information. During the evaluation, we employ a
combination of empirical rules and a unigram language model (ULM)(Kudo, 2018)
to segment function names into token sequences. For function names that adhere
to standard naming conventions, such as camel case (getUserId) and snake case
(get_user_id), we design specific rules for tokenization. However, for function
names that do not follow explicit naming conventions, such as getuserid, we utilize
a pretrained SentencePiece model in conjunction with ULM to segment names based
on token frequency statistics. For instance, setcmdfmt is tokenized into set, cmd, and
fmt.

For an intuitive understanding of the metrics, a ground truth of getUserMessage
with a prediction of get_message is given full precision and 67% recall. And a
prediction of get_user_message_set_user_message has 83% precision and full
recall.
Results. Table 3 and Table 4 respectively show the performance of LLMs and DL-
based methods in function name recovery tasks under different target architectures
and compiler optimization options.

From Table 3, we can observe that CodeLlama and Llama consistently perform
excellently across different parameter sizes under various architectures. Among them,
CodeLlama-34b outperforms all other LLMs in precision, recall, and F1-score metrics,
achieving scores of 28.73, 27.33, and 26.75 in the x64 architecture, 28.06, 26.82,
and 26.09 in the x86 architecture, 29.14, 27.83, and 27.16 in the ARM architecture,
and 32.87, 31.22, and 30.66 in the MIPS architecture. Following closely behind,
WizardCoder-15b and DeepSeek-Coder-33b also show strong performance, with
F1-score of 21.76, 22.45, 22.64, 28.09 and 23.02, 21.83, 22.84, 27.05 across the
four architectures, respectively. CodeGen25-7b and ChatGLM2-6B show the poorest
performance, with F1-score ranging from only 48.9% to 66.7% of the other LLMs.
This lagging performance may be attributed to the capability flaws of their basic
models or the lack of targeted training data. In the general LLMs category, Llama-
2-13b consistently outperforms other LLMs in both precision and F1-score metrics,
achieving scores of 23.88 and 22.68 in the x64 architecture, 23.90 and 22.54 in the
x86 architecture, 23.98 and 22.51 in the ARM architecture, and 28.17 and 26.88 in the
MIPS architecture, respectively.
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A deeper analysis of the performance across different target architectures reveals
that the average F1-score for all LLMs on the MIPS architecture is 24.62, while on
x64, x86, ARM architectures, the average F1-score are 20.73, 20.47, and 20.74, respec-
tively. Compared to other architectures, the F1-score for MIPS shows improvements of
18.77%, 20.27%, and 18.71%. The superior performance of MIPS in function name
recovery tasks can likely be attributed to its simplified instruction set and unified func-
tion calling conventions. This streamlined instruction set reduces reliance on complex
operations and diverse instruction variants, enabling the LLM to more effectively
capture function call patterns and contextual information.

Furthermore, as a task that combines natural language and code language under-
standing, code domain LLMs generally perform slightly better than general domain
LLMs. This may be because their pre-training datasets have a higher proportion of
source code. Training on a extensive range of source code datasets allows them to gain
a deeper grasp of programming syntax, structure and semantics.

Findings 1: CodeLlama-34b performs the best in the function name recovery
task across different target architectures, achieving an F1-score of 26.75, 26.35,
26.75, and 26.59 in the x64, x86, ARM, and MIPS architectures, respectively.
Additionally, LLMs perform the best in function name recovery on the MIPS
architecture, with the average F1-score across all LLMs being 24.62. Code
domain LLMs generally perform slightly better than general domain LLMs,
likely owing to their greater familiarity with programming paradigms.

From Table 4, it is evident that CodeLlama and Llama also continue to perform
excellently under different compiler optimization options. Among them, CodeLlama-
34b outperforms all other LLMs in precision, recall, and F1-score metrics, achieving
scores of 28.73, 27.33, and 26.75 under the -O0 optimization, 27.98, 27.50, and 26.35
under the -O1 optimization, 28.89, 27.09, and 26.75 under the -O2 optimization, and
28.40, 27.31, and 26.59 under the -O3 optimization.

In the general LLM category, Llama-2-13b outperforms other general LLMs in
both precision and F1-score, achieving the following scores across the four optimiza-
tion options: 23.88 and 22.68 for -O0, 24.06 and 22.71 for -O1, 24.44 and 23.00 for
-O2, and 24.42 and 23.04 for -O3, respectively.

For the binaries with -O0, -O1, -O2, and -O3 optimization levels, the average
F1-scores for all LLMs are 20.73, 20.62, 20.53, and 20.81, respectively. We observe
that the performance differences in function name recovery tasks across different
optimization levels are minimal, with the performance gap between O0 and O3 being
only 0.39%.

Findings 2: CodeLlama-34b continues to perform the best in the function
name recovery task under different compiler optimization options, achieving
an F1-score of 26.75, 26.35, 26.75, and 26.59 under the -O0, -O1, -O2, and
-O3 optimization levels, respectively. Additionally, all LLMs exhibit a minimal
performance gap across different optimization levels, with the average F1-score
difference between O0 and O3 being only 0.39%.
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Among the deep learning-based expert models, NER (Chen et al., 2023b) performs
the best, with an average F1-score of 11.29 and 11.13 in different architectures and
optimization options, still slightly outperforming the LLM with the worst performance,
CodeGen25. However, SymLM (Jin et al., 2022) and HexT5 (Xiong et al., 2023)
perform poorly, with average F1-score of 3.68 and 6.52, and 3.09 and 2.96, respectively,
which differ from the performance reported in their original papers. This difference
may come from the partitioning of their datasets. SymLM and HexT5 widely use
projects from GNU as part of their training and testing sets. SymLM divides the
training and testing sets at the binary file-level, which may result in some code
appearing in both the training and testing sets. For example, in the Binutils project,
the ar and nm files share the same binary file descriptor (BFD) processing code. This
reuse of libraries and underlying code may lead to exaggeration of evaluation metrics.
Although HexT5 adopts a stricter project-level dataset partitioning approach, different
projects under GNU may still share programming styles or naming conventions,
leading to potential data leaks. Overall, deep learning-based expert models perform
worse compared to LLMs, primarily due to their limited generalization ability, which
makes them prone to overfitting specific features of the training data when handling
out-of-distribution data. In contrast, LLMs exhibit superior adaptability in zero-shot
learning tasks, allowing them to effectively handle unseen data.

Findings 3: Among the existing deep learning-based expert models, SymLM
performs the best. However, these models exhibit poor generalization ability
beyond the training data distribution, with performance significantly lower than
that of LLMs.

In terms of inference time cost, locally deployed LLMs with 6B-7B parameter
quantities typically require 1 to 1.6 seconds to infer a single piece of data, LLMs
with 13-15B scales require 1.2 to 2 seconds, LLMs with 33-34B scales require 3.5
to 5.1 seconds, and CodeLlama-70b requires a maximum of 10.35 seconds per piece.
Considering that ChatGPT requires API access, which is affected by network latency
and rate limits, we do not measure its time overhead. The DL-based model, due to its
lightweight advantage, greatly reduces inference time and achieves the fastest NER of
0.03 seconds per piece.

Findings 4: The DL-based model has a significant advantage in inference speed
benefiting from their model size. Meanwhile, the inference speed of LLMs is
still within an acceptable range.

4.2 RQ2: Performance of Binary Code Summarization

Metrics. For the binary code summarization task, same as BinT5 (Al-Kaswan et al.,
2023), HexT5 (Xiong et al., 2023), we use smoothed BLEU-4 (Papineni et al., 2002),
METEOR (Lavie and Denkowski, 2009), Rouge-L (Lin, 2004) as the evaluation
metric.
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BLEU (Bilingual Evaluation Understudy) is the most widely used metric in code
summarization tasks. The Unigrams and bigrams measure the adequacy of the candi-
date, while longer trigrams and 4-grams assess its fluency. Based on standard works
like CodeT5 Wang et al. (2021) and CodeSearchNet Husain et al. (2019), we choose
BLEU-4 as the evaluation metric. BLEU-4 calculates the cumulative precision for
4-grams, which is the ratio of matching 4-grams in the candidate sentence to the total
number of 4-grams. The score is computed as follows:

BLEU -4 = BP × exp(

4∑
n=1

wn logP_n), (5)

where BP represents the brevity penalty for short generated sequences, w1 to wn are
positive weights summing to 1, and Pn is the ratio of subsequences of length n in the
generated summary that also appear in the reference.

METEOR (Metric for Evaluation for Translation with Explicit Ordering) calculates
the harmonic mean of the unigram precision and recall, which is calculated as:

METEOR = (1− γ · fragβ) ·
P ·R

α · P + (1− α) ·R
, (6)

where frag is the fragmentation fraction, and P and R represent unigram precision and
recall, respectively. The parameters α, β, and γ are penalties.

Rouge-L is a variant of Rouge (Recall-oriented Understudy for Gisting Evaluation),
which is calculated based on the longest common subsequence (LCS) betweem the
reference and the candidate. The LCS-based F-measure (Flcs) is called Rouge-L,
which is calculated as:

Plcs =
LCS(X,Y )

n
, Rlcs =

LCS(X,Y )

m
, Flcs =

(1 + β2)PlcsRlcs

Rlcs + β2Plcs
, (7)

where β = Plcs/Rlcs, and n and m denote the lengths of X and Y, respectively.
Results. The performance of LLMs and deep learning-based methods in the binary
code summarization task under different architectures and compiler optimization
options is listed in Table 5 and Table 6, respectively.

From Table 5, we can clearly observe that ChatGPT outperforms all other LLMs
in BLEU-4, METEOR, and Rouge-L metrics across different architectures, achieving
scores of 7.69, 29.50, and 22.09 in the x64 architecture, 7.38, 28.65, and 21.52 in the
x86 architectures, 7.80, 29.48, and 22.48 in the ARM architectures, and 8.30, 30.32,
and 23.13 in the MIPS architectures, respectively. At the same time, WizardCoder-15b
also shows very competitive results, with scores of 4.72, 24.10, and 18.16 in the x64
architecture, 4.63, 24.04, and 18.12 in the x86 architecture, 4.67, 24.23, and 18.02 in
the ARM architecture, and 5.08, 25.16, and 19.07 in the MIPS architecture. Similar to the
function name recovery task, CodeGen25-7b and ChatGLM2-6B perform the worst in
their respective domains, but narrow the performance gap with other LLMs. Similar
to the function name recovery task, all LLMs perform best on the MIPS architecture,
with an average Rouge-L score of 18.58, compared to 17.69, 17.58, and 17.86 on the
x64, x86, ARM architectures, respectively. The Rouge-L for the MIPS architecture is
improved by 5.03%, 5.69%, and 4.03% over the other architectures.



22 Xiuwei Shang et al.

Ta
bl

e
6:

C
om

pa
ri

so
n

of
L

L
M

s
an

d
D

L
-b

as
ed

m
et

ho
ds

on
bi

na
ry

co
de

su
m

m
ar

iz
at

io
n

un
de

rd
iff

er
en

tc
om

pi
le

ro
pt

im
iz

at
io

n
op

tio
ns

.W
e

m
ar

k
th

e
be

st
pe

rf
or

m
in

g
m

et
ho

ds
in

ea
ch

do
m

ai
n.

D
om

ai
n

M
od

el
O

0
O

1
O

2
O

3

B
LE

U
-4

M
E

TE
O

R
R

ou
ge

-L
Ti

m
e(

s)
B

LE
U

-4
M

E
TE

O
R

R
ou

ge
-L

Ti
m

e(
s)

B
LE

U
-4

M
E

TE
O

R
R

ou
ge

-L
Ti

m
e(

s)
B

LE
U

-4
M

E
TE

O
R

R
ou

ge
-L

Ti
m

e(
s)

C
od

e
L

L
M

s

C
od

eG
en

25
-7

b-
in

st
ru

ct
3.

56
20

.7
6

14
.0

6
7.

14
3.

55
20

.8
3

13
.8

8
7.

20
3.

49
20

.7
2

13
.9

0
7.

27
3.

47
20

.1
9

13
.4

2
7.

38
W

iz
ar

dC
od

er
-1

5b
-V

1.
0

4.
72

24
.1

0
18

.1
6

8.
00

4.
63

23
.9

0
18

.0
0

8.
08

4.
64

24
.1

2
18

.0
7

8.
18

4.
56

23
.6

0
17

.6
1

8.
50

W
iz

ar
dC

od
er

-3
3b

-V
1.

1
4.

12
23

.7
2

16
.0

3
20

.7
7

4.
16

23
.7

9
16

.0
9

20
.6

8
4.

18
23

.8
1

16
.2

0
20

.7
3

4.
08

23
.2

6
15

.9
9

20
.7

0
C

od
e

L
la

m
a-

7b
-i

ns
tr

uc
t-

hf
4.

16
21

.1
0

16
.6

5
5.

55
4.

13
20

.7
0

16
.4

8
5.

42
4.

05
20

.6
7

16
.5

5
5.

31
4.

06
20

.9
9

16
.5

9
5.

50
C

od
e

L
la

m
a-

13
b-

in
st

ru
ct

-h
f

4.
22

19
.5

2
16

.4
6

7.
62

4.
20

19
.3

3
16

.2
2

7.
88

4.
25

19
.2

8
16

.4
2

7.
78

4.
19

19
.6

2
16

.4
5

8.
86

C
od

e
L

la
m

a-
34

b-
in

st
ru

ct
-h

f
4.

41
20

.9
7

17
.6

0
15

.7
0

4.
32

20
.8

1
17

.4
1

16
.0

0
4.

29
20

.5
8

17
.4

5
16

.5
9

4.
37

20
.4

4
17

.4
0

16
.8

7
C

od
e

L
la

m
a-

70
b-

in
st

ru
ct

-h
f

4.
26

22
.3

7
16

.6
0

46
.3

3
4.

09
22

.1
8

16
.5

1
46

.3
1

4.
09

22
.3

9
16

.4
3

47
.8

3
4.

13
22

.1
4

16
.2

5
49

.0
8

D
ee

pS
ee

k-
C

od
er

-3
3b

-i
ns

tr
uc

t
4.

66
24

.0
8

17
.3

8
17

.3
2

4.
67

24
.0

3
17

.3
8

17
.1

5
4.

62
24

.0
1

17
.4

2
16

.8
7

4.
61

23
.7

1
17

.2
8

17
.4

2

G
en

er
al

L
L

M
s

C
ha

tG
L

M
2-

6B
3.

54
21

.4
2

14
.4

9
5.

21
3.

49
21

.4
5

14
.4

6
5.

29
3.

50
21

.4
3

14
.4

5
5.

36
3.

40
21

.1
7

14
.2

6
5.

40
V

ic
un

a-
7b

-v
1.

5
4.

47
23

.0
2

17
.6

4
4.

40
4.

39
22

.9
5

17
.5

8
4.

41
4.

41
22

.9
9

17
.6

8
4.

49
4.

36
22

.8
7

17
.4

4
4.

56
V

ic
un

a-
13

b-
v1

.5
5.

59
22

.2
3

19
.7

5
4.

86
5.

46
21

.9
1

19
.5

7
5.

05
5.

48
22

.1
9

19
.8

1
5.

00
5.

35
21

.7
7

19
.4

3
5.

20
L

la
m

a-
2-

13
b-

ch
at

-h
f

4.
72

22
.5

6
18

.0
6

7.
07

4.
57

22
.4

5
17

.8
6

7.
43

4.
61

22
.5

7
17

.9
1

7.
58

4.
41

22
.3

4
17

.6
1

8.
03

L
la

m
a-

2-
70

b-
ch

at
-h

f
4.

36
23

.1
7

16
.1

4
45

.7
3

4.
24

23
.1

5
15

.9
3

48
.1

1
4.

23
23

.1
0

16
.0

1
46

.2
8

4.
13

22
.9

1
15

.6
9

50
.1

3
M

is
tr

al
-7

B
-I

ns
tr

uc
t-

v0
.2

6.
05

25
.6

5
20

.8
6

3.
51

6.
00

25
.2

1
20

.6
0

3.
51

5.
93

25
.6

9
20

.6
7

3.
59

5.
85

25
.3

8
20

.6
9

3.
59

M
ix

tr
al

-8
x7

B
-I

ns
tr

uc
t-

v0
.1

6.
41

26
.0

2
21

.0
4

12
.4

1
6.

27
25

.8
5

20
.9

3
11

.3
8

6.
36

26
.0

2
21

.0
8

11
.3

5
6.

27
25

.8
6

20
.9

0
11

.3
7

C
ha

tG
PT

(g
pt

-3
.5

-t
ur

bo
-1

6k
)

7.
69

29
.5

0
22

.0
9

-
7.

57
29

.1
3

21
.9

4
-

7.
46

29
.1

2
21

.9
2

-
7.

40
29

.0
7

21
.7

6
-

D
L

-b
as

ed
B

in
T

5
(A

l-
K

as
w

an
et

al
.,

20
23

)
0.

00
2.

08
4.

69
0.

56
0.

00
2.

06
4.

60
0.

56
0.

00
2.

06
4.

65
0.

55
0.

00
2.

09
4.

72
0.

55
H

ex
T

5
(X

io
ng

et
al

.,
20

23
)

0.
10

6.
21

8.
44

0.
43

0.
10

6.
18

8.
47

0.
43

0.
09

6.
20

8.
38

0.
42

0.
12

6.
30

8.
49

0.
42



An Empirical Study on the Effectiveness of LLMs for Binary Code Understanding 23

Unlike the function name recovery task, the performance of general domain LLMs
is generally significantly better than that of code domain LLMs in binary code summary
tasks. This may be attributed to the different properties of the two tasks. In the function
name recovery task, the output of LLMs is usually shorter and only needs to generate a
function name, which is relatively simple. In contrast, the binary code summarization
task requires generating longer natural language descriptions to accurately summarize
the functionality and structure of binary code, which requires the model to understand
more contextual information and convert it into natural language text, which is a
more complex task. General domain LLMs are better at generating longer natural
language descriptions due to their inherent characteristics, while code-domian LLMs
have limited capabilities in this regard.

Findings 5: Among all LLMs, ChatGPT performs the best in the binary code
summarization task across different architectures, achieving BLEU-4 scores
of 7.69, 7.38, 7.80, and 8.30 on x64, x86, ARM, and MIPS, respectively. All
LLMs perform best on the MIPS architecture, achieving an average Rouge-L
score of 18.58, which represents improvements of 5.03%, 5.69%, and 4.03%
compared to the other architectures. General domain LLMs perform significantly
better than code domain LLMs, which is attributed to its stronger long-context
understanding and summarizing capabilities.

As observed in Table 6, similar to the results across different architectures, Chat-
GPT outperforms all other LLMs in the BLEU-4, METEOR, and Rouge-L metrics
under various compiler optimization options. It achieves scores of 7.69, 29.50, and
22.09 under the -O0 optimization, 7.57, 29.13, and 21.94 under the -O1 optimization,
7.46, 29.12, and 21.92 under the -O2 optimization, and 7.40, 29.07, and 21.76 under
the -O3 optimization options, respectively. Additionally, among code-domain LLMs,
WizardCoder-15b leads in both BLEU-4 and Rouge metrics, outperforming other
models in the same domain with scores of 4.72 and 18.16, 4.63 and 18.00, 4.64 and
18.07, and 4.56 and 17.61 across the different optimization options. As in the case of
different architectures, CodeGen25-7b and ChatGLM2-6B still perform the worst in
the binary code summarization task within their respective domains.

Similar to the function name recovery task, the performance differences across all
LLMs in binary function summarization at the -O0, -O1, -O2, and -O3 optimization
levels are also minimal, with an average Rouge-L score of 17.68, 17.55, 17.62, and
17.42, respectively. The performance gap between -O0 and -O3 is only 1.49%.

Findings 6: ChatGPT exhibits the best performance in the binary code summa-
rization task across different compiler optimization settings, achieving BLEU-4
scores of 7.69, 7.57, 7.46, and 7.40 for the -O0, -O1, -O2, and -O3 optimiza-
tion options, respectively. All LLMs exhibit minimal performance differences
across different optimization levels, with the average ROUGE-L score difference
between -O0 and -O3 being 1.49%.

For the deep learning-based expert models, BinT5 (Al-Kaswan et al., 2023)
achieves average BLEU-4, METEOR, and Rouge-L scores of 0.00, 2.06, and 4.68, re-
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spectively, across different architectures and optimization options. HexT5 (Xiong et al.,
2023) shows slight improvement, with scores of 0.10, 6.20, and 8.43, respectively.
Similar to the function name recovery task, their performance still falls significantly
short of LLMs.

Findings 7: Similar to the previous task, existing DL-based expert models
perform worse than LLMs on the binary code summarization task.

Regarding inference time, locally deployed LLMs are generally 5-6 times longer
than the function name recovery task. LLMs with 6B-7B parameters usually take
3.4 to 7.4 seconds to infer a single piece of data, 13-15B scale LLMs take 4.8 to 8.9
seconds, and 33-34B scale LLMs takes 15.4 to 21 seconds. CodeLlama-70b takes the
most of 49.08 seconds among LLMs. The DL-based model also shows the advantage
of inference speed, with HexT5 taking only the shortest 0.42 seconds.

Findings 8: For the binary code summarization task, inference time for locally
deployed LLMs is about five times that of function name recovery.

4.3 RQ3: Factors that Significantly Affect Performance

We further explore the key factors affecting the performance of LLMs in this section.
As this experiment focuses on analyzing factors including the few-shot form prompts,
the length of pseudo code, and the length of symbol information, the experimental
environment is fixed with the x64 architecture and the O0 optimization option.

4.3.1 Few-shot prompts

The pre-training datasets for LLMs contain little or no binary code, which makes
directly applying LLMs to binary code understanding tasks likely not to yield optimal
results. In this case, few-shot prompts become a potential solution, by providing
well-designed examples to LLMs, so that LLMs can learn the unique structure and
syntax of binary code and quickly adapt to new tasks. Specifically, we construct two
carefully designed pairs of pseudo code and ground-truth examples, and add them to
the original prompts. We conduct experiments on few-shot prompts for all LLMs in
the previous experiments. The results are shown in Table 7.

For the function name recovery task, both code-domain LLMs and general-domain
LLMs show significant improvements compared to zero-shot prompts. Among them,
the code domain WizardCoder-33b and the general domain ChatGPT exhibit the
most notable improvements, with Precision, Recall, and F1-score increasing by 11.19,
8.15, and 9.90 points for WizardCoder-33b, and 8.16, 10.70, and 9.33 points for
ChatGPT, respectively. The code domain LLMs show an average improvement of 5.43
in Precision, 4.05 in Recall, and 4.84 in F1-score. In comparison, the performance
improvement of general domain LLMs is slightly lower, with an average improvement
of 5.24, 3.84, and 4.49 on Precision, Recall, and F1-score, respectively.

For the binary code summarization task, both code domain and general domain
LLMs show a slight improvement compared to the function name recovery task.



An Empirical Study on the Effectiveness of LLMs for Binary Code Understanding 25

Ta
bl

e
7:

Pe
rf

or
m

an
ce

of
pr

om
pt

s
in

th
e

fo
rm

of
Fe

w
-s

ho
t.

Th
e

Im
pr

.c
ol

um
n

re
pr

es
en

ts
th

e
pe

rf
or

m
an

ce
im

pr
ov

em
en

to
fF

ew
-s

ho
tc

om
pa

re
d

to
Z

er
o-

sh
ot

.W
e

m
ar

k
th

e
in

cr
ea

se
an

d
de

cr
ea

se
of

th
e

m
et

ri
cs

.(
x6

4_
O

0)

M
od

el

Fu
nc

tio
n

N
am

e
R

ec
ov

er
y

B
in

ar
y

C
od

e
Su

m
m

ar
iz

at
io

n

Pr
ec

is
io

n
R

ec
al

l
F

1-
sc

or
e

Ti
m

e(
s)

B
LE

U
-4

M
E

TE
O

R
R

ou
ge

-L
Ti

m
e(

s)

Fe
w

Im
pr

.
Fe

w
Im

pr
.

Fe
w

Im
pr

.
Fe

w
Im

pr
.

Fe
w

Im
pr

.
Fe

w
Im

pr
.

Fe
w

Im
pr

.
Fe

w
Im

pr
.

C
od

eG
en

25
-7

b-
in

st
ru

ct
17

.3
2

+7
.3

4p
t

16
.3

3
+3

.7
1p

t
16

.0
4

+5
.9

8p
t

1.
88

+0
.2

5s
3.

83
+0

.2
7p

t
19

.8
8

-0
.8

8p
t

13
.5

6
-0

.5
0p

t
11

.3
1

+4
.1

7s

W
iz

ar
dC

od
er

-1
5b

-V
1.

0
29

.2
5

+5
.9

6p
t

26
.3

4
+4

.2
3p

t
26

.6
4

+4
.8

8p
t

7.
85

+6
.2

8s
4.

83
+0

.1
1p

t
25

.0
7

+0
.9

7p
t

18
.8

9
+0

.7
3p

t
10

.2
7

+2
.2

7s

W
iz

ar
dC

od
er

-3
3b

-V
1.

1
31

.7
6

+1
1.

19
pt

29
.2

8
+8

.1
5p

t
29

.3
9

+9
.9

0p
t

4.
64

-0
.3

7s
5.

16
+1

.0
4p

t
26

.0
3

+2
.3

1p
t

18
.5

3
+2

.5
0p

t
24

.0
6

+3
.2

9s

C
od

e
L

la
m

a-
7b

-i
ns

tr
uc

t-
hf

28
.0

7
+0

.5
5p

t
26

.0
7

+1
.0

1p
t

26
.1

9
+0

.9
6p

t
1.

15
-0

.0
4s

4.
55

+0
.3

9p
t

23
.8

3
+2

.7
3p

t
17

.8
1

+1
.1

6p
t

6.
39

+0
.8

4s

C
od

e
L

la
m

a-
13

b-
in

st
ru

ct
-h

f
32

.0
8

+5
.4

4p
t

30
.0

3
+5

.2
0p

t
29

.7
5

+5
.0

7p
t

2.
10

+0
.3

8s
4.

55
+0

.3
3p

t
23

.4
1

+3
.8

9p
t

17
.2

8
+0

.8
2p

t
11

.3
7

+3
.7

5s

C
od

e
L

la
m

a-
34

b-
in

st
ru

ct
-h

f
31

.9
1

+3
.1

8p
t

30
.1

8
+2

.8
5p

t
30

.0
8

+3
.3

3p
t

3.
84

+0
.4

2s
4.

92
+0

.5
1p

t
24

.4
5

+3
.4

8p
t

17
.8

9
+0

.2
9p

t
24

.5
6

+8
.8

6s

C
od

e
L

la
m

a-
70

b-
in

st
ru

ct
-h

f
30

.9
2

+4
.3

5p
t

29
.5

5
+4

.0
3p

t
29

.3
1

+4
.4

1p
t

12
.0

7
+2

.0
2s

4.
74

+0
.4

8p
t

25
.1

5
+2

.7
8p

t
17

.3
1

+0
.7

1p
t

59
.0

1
+1

2.
68

s

D
ee

pS
ee

k-
C

od
er

-3
3b

-i
ns

tr
uc

t
28

.9
7

+5
.4

1p
t

27
.7

8
+3

.2
0p

t
27

.2
4

+4
.2

2p
t

7.
11

+3
.1

2s
4.

82
+0

.1
6p

t
25

.9
2

+1
.8

4p
t

16
.6

8
-0

.7
0p

t
31

.3
0

+1
3.

98
s

C
ha

tG
L

M
2-

6B
16

.5
0

+2
.6

2p
t

14
.1

1
+1

.5
4p

t
14

.6
8

+2
.0

2p
t

1.
30

+0
.2

2s
3.

93
+0

.3
9p

t
22

.3
4

+0
.9

2p
t

16
.2

7
+1

.7
8p

t
5.

64
+0

.4
3s

V
ic

un
a-

7b
-v

1.
5

24
.0

5
+5

.7
7p

t
20

.9
3

+2
.7

6p
t

21
.6

3
+4

.3
1p

t
1.

11
-0

.0
2s

5.
07

+0
.6

0p
t

22
.1

8
-0

.8
4p

t
18

.3
1

+0
.9

3p
t

4.
54

+0
.1

4s

V
ic

un
a-

13
b-

v1
.5

27
.0

7
+5

.8
3p

t
25

.0
9

+3
.5

5p
t

25
.0

9
+4

.6
3p

t
1.

52
+0

.4
9s

6.
16

+0
.5

7p
t

24
.5

8
+2

.3
5p

t
20

.2
3

+0
.4

8p
t

8.
98

+4
.1

2s

L
la

m
a-

2-
13

b-
ch

at
-h

f
24

.9
4

+1
.0

6p
t

23
.9

0
+0

.6
2p

t
23

.0
6

+0
.3

8p
t

2.
08

+0
.9

0s
5.

28
+0

.5
6p

t
23

.3
4

+0
.7

8p
t

18
.2

4
+0

.1
8p

t
10

.8
3

+3
.7

6s

L
la

m
a-

2-
70

b-
ch

at
-h

f
27

.2
6

+3
.7

5p
t

24
.7

0
+3

.1
4p

t
25

.0
1

+3
.2

9p
t

10
.5

9
+6

.1
3s

5.
23

+0
.8

7p
t

24
.5

7
+1

.4
0p

t
17

.3
5

+1
.2

1p
t

59
.7

2
+1

3.
99

s

M
is

tr
al

-7
B

-I
ns

tr
uc

t-
v0

.2
27

.5
9

+5
.6

7p
t

27
.5

1
+3

.6
9p

t
26

.5
0

+4
.6

9p
t

1.
28

+0
.0

8s
6.

67
+0

.6
2p

t
27

.0
3

+1
.3

8p
t

21
.0

6
+0

.2
0p

t
5.

59
+2

.0
8s

M
ix

tr
al

-8
x7

B
-I

ns
tr

uc
t-

v0
.1

28
.3

9
+9

.0
5p

t
30

.3
5

+4
.7

0p
t

28
.2

9
+7

.2
9p

t
2.

67
+0

.0
2s

6.
84

+0
.4

3p
t

27
.6

5
+1

.6
3p

t
21

.9
2

+0
.8

8p
t

15
.4

4
+3

.0
3s

C
ha

tG
PT

(g
pt

-3
.5

-t
ur

bo
-1

6k
)

27
.5

6
+8

.1
6p

t
29

.1
1

+1
0.

70
pt

27
.4

1
+9

.3
3p

t
-

-
7.

93
+0

.2
4p

t
30

.6
1

+1
.1

1p
t

23
.1

6
+1

.0
7p

t
-

-



26 Xiuwei Shang et al.

0-150

150-200

200-250

250-300

300-350

350-400

400-500

500-600

600-700

700-900

900-1300

1300-2000

>2000

# Token Range of the Pseudo Code

0.0

0.1

0.2

0.3

0.4

P
re

ci
si

on

Function Name Recovery

0-150

150-200

200-250

250-300

300-350

350-400

400-500

500-600

600-700

700-900

900-1300

1300-2000

>2000

# Token Range of the Pseudo Code

0.05

0.10

0.15

0.20

0.25

R
ou

ge
-L

Binary Code Summarization

CodeGen25-7b-instruct
WizardCoder-15B-V1.0
WizardCoder-33B-V1.1
CodeLlama-7b-Instruct-hf
CodeLlama-13b-Instruct-hf
CodeLlama-34b-Instruct-hf
CodeLlama-70b-Instruct-hf
Deepseek-Coder-33b-instruct
ChatGLM2-6B
Vicuna-7b-v1.5
Vicuna-13b-v1.5
Llama-2-13b-chat-hf
Llama-2-70b-chat-hf
Mistral-7B-Instruct-v0.2
Mixtral-8x7B-Instruct-v0.1
ChatGPT

Fig. 5: Impact of pseudo code length on performance.

Among them, WizardCoder-33b exhibits the most notable improvement, with an
increase of 1.04, 2.31, and 2.50 points in the BLEU-4, METEOR, and Rouge-L metrics,
respectively. However, there are still some LLMs that show a decrease in METEOR
and Rouge-L metrics for this task. For example, the code domain CodeGen25-7b has
decreased by 0.88 and 0.50 points in METEOR and Rouge-L, respectively, while the
general domain Vicuna-7b shows a decrease of 0.84 points in METEOR. Observing
their outputs, we find that the introduction of the few-shot examples increased the
length of prompts, causing more test data to exceed the maximum length of window
context of the model (4096 tokens) and be truncated, resulting in a decrease in
performance. Overall, the code domain LLMs show an average improvement of 0.41,
2.14, and 0.63 points in the three metrics for the summarization task, respectively. In
comparison, the general domain LLMs show average improvements of 0.54, 1.09, and
0.84 points.

In addition, few-shot prompts will improve inference time in most cases. However,
observing the outputs of WizardCoder-15b, we find that the few-shot prompts improve
the model’s ability to follow instructions, reduce the output of useless information,
and thus reduce the inference time. In this case, few-shot prompts not only enhance
model performance but also improve inference efficiency.

Findings 9: When computing resources and inference time permit, few-shot
prompts can be selected to improve the performance of LLMs on function name
recovery and binary code summarization tasks.

4.3.2 Pseudo Code Length

To study the impact of pseudo code length on the performance of LLMs, we divide the
length of pseudo code token according to intervals, and controll the number of data in
each interval between 100 and 200 to avoid long-tail distribution of data.
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Fig. 6: Impact of symbol information length on performance.

As shown in Figure 5, when the length of pseudo code is between 0-400 tokens, the
metric of function name recovery remains at a relatively low level, as shorter pseudo
code may not provide enough keywords to infer the purpose and naming intention of
the function. Longer pseudo code can provide more contextual information, helping
the LLMs capture semantic clues related to function names. Therefore, the metrics are
relatively high between 400-2000 tokens; After exceeding 2000 tokens, the structure
and logic of the code are too complex, making it difficult for the LLMs to process and
integrate a large amount of information, resulting in a decrease in metrics.

For the binary code summarization task, the metrics show a slowly decreasing
trend as the pseudo code length increases. As code complexity increases, LLMs find
it difficult to maintain both conciseness and accuracy of summaries resulting in the
generation of lengthy and unfocused summaries, thereby reducing the overall quality
of the summaries.

Findings 10: LLMs achieve the best performance for function name recov-
ery at moderate pseudo code length, while the performance of binary code
summarization slowly decreases as pseudo code length increases.

4.3.3 Symbol Information Length

We define symbol information as the strings and identifiers in the pseudo code that
are not stripped during the strip process, which can provide human-understandable
semantic information. We also divide the length of the symbolic information token
into intervals.

As shown in Figure 6, as the length of the symbol information token increases, the
performance of both function name recovery and binary code summarization tasks
increases significantly. This is due to the fact that longer symbol information provides
richer semantic content and more context clues, helping LLMs understand the intent
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and functionality of the code. However, we found that when the symbol information
token exceeds 130, the performance of most LLMs in binary code summarization tasks
slightly decreases. This is because more symbol information tokens are accompanied
by longer pseudo code lengths, resulting in more code being truncated due to window
context limitations, affecting the completeness of LLMs summary.

Findings 11: The symbol information (e.g., strings and identifiers) has rich
semantics and contributes significantly to LLM’s understanding of binary code.

4.4 RQ4: Fine-Tuning to Enhance the Performance

As mentioned in Section 3.2.3, we build the fine-tuning dataset from the GNU reposi-
tory, with each piece of data in the form of decompiled pseudo code and ground-truth
pairs. Considering the computational resource limitations, we fine-tune only the 7b-15b
LLMs, selecting Codellama-7b-instruct-hf and WizardCoder-15b-V1.0 from
the code domain, as well as Mistral-7B-Instruct-v0.2 and Llama-2-13b-chat-hf
from the general domain, which have performed well in previous experiments.

Figure 7 shows the performance comparison of original and fine-tuned LLMs. For
the function name recovery task, the general domain Llama-2-13b-chat-hf shows
the greatest improvement, with Precision, Recall, and F1-score increasing by 8.39,
6.06, and 6.92 points, respectively. On average, all LLMs shows improvements of
7.44, 4.42, and 6.28 points on three metrics. For the binary code summarization task,
Llama-2-13b-chat-hf also shows the most significant improvement, with BLEU-4,
METEOR, and Rouge-L metrics increasing by 6.70, 8.15, and 10.63 points, respec-
tively. On average, all LLMs shows improvements of 5.48, 7.46, and 7.56 points.
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① int main(); ② static void decompress_buffer(struct 
compression *compress);

③ int mz_inflate(mz_streamp pStream, int flush);

__int64 __fastcall main(int a1, char **a2, char **a3) {

… …

sub_EEB0((__int64)&s);

__printf_chk(1LL, "Decompressed: %s\n");

… …

sub_EEB0((__int64)&s);

sub_4FA00(&v80, s2[0], SHIDWORD(s2[1]));

v48 += fwrite(s2[0], 1uLL, SHIDWORD(s2[1]), ptra);

__fprintf_chk(stdout, 1LL, "Received %d bytes out of %d 

bytes\n", HIDWORD(s2[1]), (unsigned int)v72);

… … }

unsigned __int64 __fastcall sub_EEB0(__int64 a1) {

… …

v2 = *(_QWORD *)a1;

v6 = v2;

if ( v4 ) {

*(_DWORD *)v4 = 0;

*(_DWORD *)(v4 + 43788) = 1;

*(_QWORD *)(v4 + 11000) = 0LL;

… …  }  … …

sub_E950(&v6, 0LL);     … … }

__int64 __fastcall sub_E950(__int64 *a1, int a2) {

… …

while ( 1 ) { 

v14 = *a1;

v15 = sub_CA20((_DWORD)v2, v14, (unsigned 

int)& v47, (int)v2 + 11020, (int)v10 + (int)v9, 

(_DWORD)v12, v45);     … …

memcpy(v19, (char *)v10 + v17, v21);

… … } … …

memcpy(v36, (char *)v10 + v9, v35);        … … }

The following C/C++ decompiled binary

code includes two function `sub_EEB0`

and `sub_E950`, which are stripped symbol

(function name) in the compilation. Please

summary these function to describe their

functionality and try to recovery their

descriptive function names:

```C/C++

{sub_EEB0}

{sub_E950}

```

 sub_EEB0 seems to be involved in processing or interpreting

data received from a network connection. Considering its role in

handling potentially compressed or encoded network data, and

the presence of operations like decompression or decryption in

similar contexts ...... (descriptive name = ProcessNetworkData or

DecodeAndProcessCommand)

 sub_E950 aligns with the pattern of a function responsible for

processing or transforming received network data, possibly

performing actions like decompression, decoding, or preliminary

parsing ...... (descriptive name = TransformNetworkData or

ProcessReceivedData)

 sub_EEB0 appears to be initializing

and preparing a resource for

processing, which is then passed to

sub_E950. (descriptive name =

InitializeAndProcessResource)

 sub_E950 is a function that seems to

be doing more direct data

manipulation and processing.

(descriptive name = ProcessDataStream)

The function `sub_EEB0`

are called by the following

function `main`. Now,

please try to analyze the

two previous functions (`

sub_EEB0`and`sub_E950`

) again:

```C/C++

{main}

```

2nd Response2nd Prompt1st Prompt 1st Response

Function Call Chain

Prompt-response Chatflow

Fig. 8: An example of binary code understanding in a real-world virus with ChatGPT.

Overall, fine-tuning LLMs on downstream tasks related to binary code understanding
can bring considerable performance improvements.

Findings 12: Introducing binary domain knowledge through fine-tuning can
improve the performance of LLMs on function name recovery and summary
production tasks. Among them, the general-domain Llama-2-13b-chat-hf
demonstrates the most significant improvement in both tasks.

4.5 RQ5: Case Study on Real-World Virus Analysis

We present a few case studies to show how much advanced general LLMs can as-
sist participants in a real-world scenario. Specifically, we utilize ChatGPT (Ouyang
et al., 2022) to facilitate virus analysis, including summarizing the functionality of
decompiled binary functions in viruses and recovering their descriptive names.

An open-source Linux remote access trojan named splinter3 is compiled with
gcc-11.4.0 and stripped to release. In this case, Figure 8 has shown a partial analysis
in a call chain, where the reduced pseudo code are shown in the upper part, as well
as the function definitions in the source code. The lack of symbolic information
makes it difficult for an analyst to understand the function sub_EEB0 and sub_E950.
We first construct the first prompt with these two functions and feed it to ChatGPT,
asking for the functional summaries and descriptive names. The model gives us a
primary description of the operations performed in the pseudo code without any high-
level insight. We then construct the second prompt with the caller function main that
contains a few symbol information. The second response correctly indicates that these
functions are related to data decompression. At the same time, the predicted names
reflect their functionality, although the predictions do not exactly match the source
code.

3 https://github.com/tuian/splinter

https://github.com/tuian/splinter
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Prompt-response Chatflow

The following decompiled C/C++ binary code includes the function `sub_140001A20`, which was stripped of symbols (including function 
name) during compilation. Please summarize the function to describe its functionality and try to recover its descriptive function name:
```   __int64 __fastcall sub_140001A20 (__int64 a1, CHAR *a2) {

… … }
```

Function Analysis
1. Drive String Retrieval:

The function starts with a call to `GetLogicalDriveStringsA`, which is used to retrieve a list of all logical drives on the computer.   … …
4. String Operations:
• The `ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE6appendEyc` function call within the loop implies appending a character 

to a string, likely building a new string based on the filtered drive letters.
• Another function call, `ZNKSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE4findEcy`, suggests searching within a string. This 

could be used to check for the presence of certain characters or substrings.
… …

6. Return Value:
• The function returns an unsigned integer (`v6`), which is assigned the value of `v14`. The significance of `v14` depends on the string 

operations and the loop's outcome.

Suggested Descriptive Function Names
Given the operations performed, particularly focusing on logical drive strings and certain string manipulations, potential descriptive 
names for the function could be:

FilterAndProcessDriveLetters, RetrieveAndManipulateDriveInfo, ExtractRelevantDriveCharacters, BuildDriveLetterString

Conclusion
The function appears to be involved in retrieving logical drive information, processing or filtering this information (particularly focusing 
on specific drive letters), and possibly building a new string based on certain criteria.

Determine whether to execute `v14 = v9[i + 32];` based on result of `ZNKSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE4findEcy` 
by analyzing the judgment statement further and analyzing what the possible results of the variable v14 are. 

1st Response

1st Prompt

2nd Prompt

1. The `ZNKSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE4findEcy` Function:
• The function name, though mangled, appears to represent a method from the C++ Standard Library’s 

`basic_string` class, specifically the `find` method. 
• The `find` method typically searches for a character or substring within a string and returns the position of the first 

occurrence.     … …
2. The Judgment Statement:
• - The statement `if ((unsigned _int64)ZNKSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE4findEcy (...) > 0x64)` is a conditional 

check. The hexadecimal `0x64` is equivalent to decimal `100`.
• - The condition checks if the return value of the `find` method is greater than `100`. Since `npos` is much larger than `100`, this 

condition essentially checks if the character is not found in the string.
3. Assignment to `v14`:

… …
4. Possible Results for `v14`:
• Given the loop iterates over logical drive strings and the condition checks for certain characters (uppercase letters A through Y),

`v14` will be assigned the first such character that is not found in a certain string (or whose position is beyond `100` in that string).
• This means `v14` could potentially hold any uppercase letter from A to Y, depending on the contents of `v9` and the result of the

`find` operation. If no such letter meets the condition, `v14` would retain its initial value, which is `48` (`0` in ASCII).

Conclusion
The logic in the function seems to be identifying the first logical drive letter (from a subset of A to Y) that is not present or is 
significantly far in a certain string (possibly a list of already processed or available drives). The variable `v14` stores this character if 
found, or retains an initial value if not.

2nd Response

Based on the above analysis, this function returns a previously non-existent drive disk drive, so under what circumstances would a
previously non-existent disk drive appear? What are the possible descriptive function names for this function.

3nd Prompt

Based on the analysis, the function seems to identify and return a previously non-existent drive letter, 
likely from among the uppercase letters A to Y. 
This kind of functionality might be used in various scenarios, particularly in systems where drive letters can dynamically change or new 
drives can be added. Here are a few circumstances where a previously non-existent disk drive might appear:

1. External Storage Devices: When external storage devices like USB drives, external hard drives, or SD cards are connected to system.
2. Network Drives: … …  3. Virtual Drives: … …  4. Partition Changes: … …  5. Subsystems or Virtual Machines: … …

Given these use cases, the function's purpose seems to be identifying an available letter to assign to a new drive. This is a common task 
in systems administration and programming when dealing with dynamic storage options. Based on this, possible descriptive names for 
the function could be:

FindAvailableDriveLetter, GetUnusedDriveLetter, IdentifyNewDriveLetter, DetermineFreeDriveLetter, SelectNextAvailableDriveLetter

These names reflect the function's role in scanning the current drive letters and finding one that is not currently in use, which can then 
be assigned to a new or dynamically added drive.

3nd Response

Fig. 9: The chatflow of analyzing the binary function getRemovableDisk from
TrojanCockroach with ChatGPT.
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In another case, we query a function named getRemovableDisk in stripped binary
from TrojanCockroach4 virus, which is used to get the recently inserted disk letter
for further infection. In the Chatflow shown in Figure 9, we make several queries
with ChatGPT regarding the functionality summary and function name recovery of
the pseudo code sub_140001A20 decompiled with IDA Pro. We have omitted parts
of ChatGPT’s responses that deviated from our desired goals and were inconsistent
with the facts. We find that ChatGPT provided an answer close to the fact in its first
response, but it lacks further analysis of the key judgment statement. We lead it to
successfully find out the callee function find mangled in the binary. With the help of
calling context, we further prompt ChatGPT to analyze the functionality and provide
high-level insights. Finally, it correctly summarizes the behavior of the function and
tell us that the return value of the function is a dynamically added drive letter.

Findings 13: ChatGPT demonstrates the potential ability to analyze binaries in
the real world. The information from the calling context will boost the predictions
of LLMs.

5 Discussions

Based on the experimental findings, we summarize directions for future work and
limitations of the current evaluation.

5.1 Future Works

Current LLMs have indeed shown potential in understanding binary codes, and we
believe that future work can be conducted in-depth from the following aspects.

– Develop domain-specific LLM: Binary code typically lacks annotations and rich
context, making it difficult for LLMs to correctly understand the semantics and
functionality of the code. Future research could focus on developing domain-
specific LLMs that are pre-trained specifically for the characteristics of binary
code. For example, by incorporating extensive binary domain knowledge during the
pre-training phase to enhance the LLMs’s grasp of code semantics and structure.

– Extend context window: Many existing LLMs have fixed context window sizes,
which are often insufficient for handling long and complex binary code. Binary
code typically involves multiple functions, call relationships, and intricate control
flow structures, requiring longer context windows for effective analysis. Future
research should explore architectures that support longer sequence lengths, such as
enhanced attention mechanisms or extended Transformer models, to better analyze
complex binary code.

– Enhance processing of non-intuitive code: Current LLMs rely on identifiers and
descriptive strings in binary code to understand its functionality. However, binary
code often lacks these elements, especially after being obfuscated or stripped

4 https://github.com/MinhasKamal/TrojanCockroach

https://github.com/MinhasKamal/TrojanCockroach


32 Xiuwei Shang et al.

of symbol tables. Future research should focus on developing new algorithms
or enhancing LLM capabilities to understand binary code functionality without
identifiers, using techniques such as static analysis or dynamic tracking (e.g., by
integrating call chains and execution traces).

– Integrate multi-modal information: Binary code analysis should not rely on a
single source of information. By integrating multiple data sources, such as human
expert annotations, assembly instructions, and dynamic execution data, LLMs’
understanding of binary code can be significantly enhanced. Future research should
focus on multi-modal information integration, incorporating these heterogeneous
data sources into LLM inputs to provide a more comprehensive analysis of binary
code.

– Enhancing transfer learning capabilities: The behavior of binary code often varies
due to compiler optimizations, target platforms (e.g., x86, x64, ARM architectures),
and different operating system environments. Therefore, future LLM research
should focus on enhancing models’ transfer learning capabilities across different
platforms. This could involve constructing training datasets that span multiple
architectures and environments, enabling models to better predict function names
and understand binary code in unknown platforms and environments.

– Robustness in analyzing obfuscated binary code: Current binary code analysis
methods struggle with obfuscated and encrypted code, especially in malware
analysis. To improve LLM robustness, techniques like execution-aware code
embeddings and dynamic execution tracing can help better interpret obfuscated
code, recover its functionality, and enhance analysis accuracy.

5.2 Limitations

Although this paper provides a systematic evaluation of the performance of LLMs on
binary code understanding tasks, we need to acknowledge existing limitations.

– Evaluation metrics for code summarization tasks: Current practices are mainly
based on text coherence metrics such as BLEU-4 (Papineni et al., 2002) and Rouge-
L (Lin, 2004), which are originally designed for text translation tasks. However,
these metrics may not be fully applicable to binary code summarization tasks.
Reverse engineers typically rely on specific key terms to understand the design of
a function, where text fluency is not the most critical factor. It may be beneficial to
develop a new metric to better capture the essence of binary summarization.

– Binary code obfuscation: The evaluation dataset in this paper does not consider any
form of binary code obfuscation, such as encryption or compiler-based obfuscation
(Junod et al., 2015). In fact, code obfuscation significantly alters the structure and
control flow of the code, often leading to substantial changes in the form of the
pseudo code, thereby increasing the difficulty of understanding and interpreting
the code. Models may perform poorly when faced with obfuscated code, which
could affect their applicability in real-world reverse engineering tasks. Future
research could explore ways to improve the robustness of LLMs in dealing with
obfuscated code, particularly in scenarios like malware analysis, where obfuscation
is prevalent.
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– Understanding function relationships: In binary code understanding, function
name recovery and code summarization are two critical tasks, but these tasks are
usually handled in isolation. However, functions in binary code are usually inter-
dependent and call each other, making the understanding of function relationships
essential for comprehending the overall code. This paper focuses more on analyz-
ing individual functions, ignoring the mutual relationships and call dependencies
between different functions and the overall program structure.

6 Conclusion

Large Language Models (LLMs) have demonstrated significant potential in the field
of binary code understanding. In this paper, we select two representative tasks: (1)
function name recovery and (2) binary code summarization, and design an automated
method to construct a benchmark for a comprehensive evaluation of LLMs’ ability to
understand binary code. The research findings indicate that LLMs, particularly models
such as CodeLlama, WizardCoder, and ChatGPT, have achieved impressive results
in certain aspects of binary code understanding. However, the models’ performance
still requires improvement when dealing with more complex binary structures and
unseen code samples. Additionally, we observe that LLMs’ performance varies across
different target architectures and compiler optimization options. In particular, LLMs
perform better on the MIPS architecture compared to other architectures, which may be
attributed to the simplified instruction set and the unified function call conventions of
the MIPS architecture. Furthermore, code domain LLMs generally outperform general
domain LLMs, as they are better equipped to handle the syntax and structure of binary
code, leading to superior performance.

Therefore, we call for more research to focus on this important area of software
engineering, exploring ways to improve and optimize LLMs so that they can play
a more pivotal role in complex binary code analysis tasks. This will open up new
possibilities and application paths in the field of understanding binary code, particularly
in tasks such as reverse engineering, malware analysis, and vulnerability detection.
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