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Cert-SSB: Toward Certified Sample-Specific
Backdoor Defense

Ting Qiao, Yingjia Wang, Xing Liu, Sixing Wu, Jianbing Li, and Yiming Li

Abstract—Deep neural networks (DNNs) are vulnerable to
backdoor attacks, where an attacker manipulates a small portion
of the training data to implant hidden backdoors into the
model. The compromised model behaves normally on clean
samples but misclassifies backdoored samples into the attacker-
specified target class, posing a significant threat to real-world
DNN applications. Currently, several empirical defense methods
have been proposed to mitigate backdoor attacks, but they
are often bypassed by more advanced backdoor techniques. In
contrast, certified defenses based on randomized smoothing have
shown promise by adding random noise to training and testing
samples to counteract backdoor attacks. In this paper, we reveal
that existing randomized smoothing defenses implicitly assume
that all samples are equidistant from the decision boundary.
However, it may not hold in practice, leading to suboptimal
certification performance. To address this issue, we propose
a sample-specific certified backdoor defense method, termed
Cert-SSB. Cert-SSB first employs stochastic gradient ascent
to optimize the noise magnitude for each sample, ensuring
a sample-specific noise level that is then applied to multiple
poisoned training sets to retrain several smoothed models. After
that, Cert-SSB aggregates the predictions of multiple smoothed
models to generate the final robust prediction. In particular,
in this case, existing certification methods become inapplicable
since the optimized noise varies across different samples. To
conquer this challenge, we introduce a storage-update-based
certification method, which dynamically adjusts each sample’s
certification region to improve certification performance. We
conduct extensive experiments on multiple benchmark datasets,
demonstrating the effectiveness of our proposed method. Our
code is available at https://github.com/NcepuQiaoTing/Cert-SSB.

Index Terms—Certified Backdoor Defense, Backdoor Defense,
Randomized Smoothing, Trustworthy ML, AI Security

I. INTRODUCTION

RECENTLY, deep neural networks (DNNs) have been
widely and successfully adopted in various domains,

including mission-critical applications, such as face recogni-
tion [1], [2], [3]. However, training high-performance models
typically requires large amounts of data and computational
resources, which can be costly. Consequently, researchers
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Fig. 1: An overview of existing randomized smoothing-based
certified backdoor defenses and our Cert-SSB. The existing
methods apply fixed noise to smooth classifiers for all inputs,
ignoring sample diversity. This often leads to suboptimal
certification performance. In contrast, Cert-SSB optimizes the
noise, enabling the smoothing strategy to adapt to different
inputs (as shown in the right figure), thereby achieving more
robust certified backdoor defenses.

often rely on third-party resources, such as publicly available
datasets, cloud computing platforms, and pre-trained mod-
els, to reduce the training burden. Arguably, this reliance
introduces security risks, with backdoor attacks [4], [5], [6],
[7] being among the most severe threats. In a backdoor
attack, adversaries inject predefined trigger patterns into a
subset of the training data, causing the model to misclassify
any input containing the trigger according to the attacker’s
intent. These attacks are both stealthy and highly detrimental,
making them a key concern in both academia and industry.
An industry report [8] highlights that backdoor attacks rank
as the fourth most significant security threat faced by enter-
prises. Government agencies also recognize the severity of this
issue. For instance, the U.S. intelligence community [9] has
launched a dedicated funding program to counter backdoor
attacks and related threats. To prevent models from becoming
compromised due to backdoor attacks, developing effective
defense mechanisms has become an urgent priority.

To mitigate backdoor threats, researchers have made sig-
nificant efforts in both detection [10], [11], [12] and defense
[13], [14], [15]. However, advanced backdoor attacks [16],
[17], [18] can still easily bypass existing defenses, leading
to an ongoing arms race between defenders and attackers.
To address this issue, some studies have proposed certified
backdoor defense methods, primarily categorized into deter-
ministic certification [19], [20], [21], [22] and probabilistic
certification [23], [24]. These methods aim to provide theo-
retical guarantees, ensuring that the classification results of
testing samples remain consistent regardless of whether the
model is trained on clean or backdoor data, as long as the

ar
X

iv
:2

50
4.

21
73

0v
1 

 [
cs

.C
R

] 
 3

0 
A

pr
 2

02
5

https://github.com/NcepuQiaoTing/Cert-SSB


PREPRINT 2

perturbation induced by the trigger remains within an ℓp norm
ball of radius r. However, deterministic methods face scala-
bility challenges when applied to large-scale neural networks.
Consequently, probabilistic certification approaches based on
randomized smoothing have emerged as a more practical
alternative and have demonstrated robustness on large-scale
datasets such as ImageNet [25]. Randomized smoothing was
initially developed to certify robustness against adversarial
examples. Its principle is to introduce random noise into
the input data, ensuring that the classification results remain
consistent within a specified region (e.g., an ℓp norm neigh-
borhood), thereby achieving robustness. Notably, pioneering
studies [23], [24] showed that certified backdoor defenses
based on random smoothing, which are robust against bounded
backdoor patterns (i.e., constrained pixel-level perturbation),
can be achieved by introducing isotropic Gaussian noise into
a tuple consisting of a testing instance and the training set
to mitigate the impact of attacker-injected triggers, effectively
neutralizing backdoor attacks during the training phase.

In this paper, we revisit existing randomized smoothing-
based certified backdoor defenses. We find that these methods
typically apply a fixed (i.e., identical) magnitude of Gaussian
noise to each sample to smooth the base classifier (i.e.,
the decision boundary), thereby producing the final robust
predictions. In other words, this approach (implicitly) assumes
that all samples are equidistant from the decision boundary.
However, inspired by [26], we recognize that this assumption
may not hold in practice and could even degrade defense
performance, as it may not be optimal for every sample. For
example, as shown in the left part of Figure 1, adding an
overly large noise magnitude to samples near the decision
boundary can lead to misclassification, whereas increasing
the noise magnitude for samples farther from the decision
boundary can potentially enhance their certification perfor-
mance. Based on this observation, we further analyze the
intrinsic characteristics of samples, particularly their distances
to the decision boundary. We find that these distances vary
significantly among samples, and regardless of whether they
belong to the training or testing set, their certification radius
under a fixed noise magnitude is influenced by their individual
properties. Therefore, an ideal strategy should be: applying
smaller noise to samples near the decision boundary while
assigning larger noise to those farther away, thereby better bal-
ancing classification performance and robustness, as illustrated
in the right part of Figure 1. This finding raises a key question:
How can we exploit the intrinsic properties of samples to
adjust the noise magnitude for each sample to design more
effective certified backdoor defenses?

Fortunately, the answer to the above question is affirmative.
Arguably, the most direct approach is to optimize the noise at
each sample by maximizing the confidence margin between
the top-1 and top-2 predicted classes of the classifier (i.e., the
certification radius). However, due to the lack of an analytical
expression for the certification radius, direct optimization is
challenging. Inspired by [27], we employ a stochastic gradient
ascent method to iteratively optimize the noise in order to
maximize the certification radius. However, during the opti-
mization process, the continuous adjustment of noise alters

the data distribution, leading to increased variance in gradient
estimation and affecting optimization stability. To address
this issue, we propose an advanced sample-specific certified
backdoor defense method, termed Cert-SSB. In general, Cert-
SSB consists of two main stages: training and inference.
In the first stage, we train multiple smoothed models using
the optimized noise, which is obtained through stochastic
gradient ascent to maximize the certification radius. Generally,
the certification radius is computed based on the predictions
of classifiers trained with fixed noise. Besides, we adopt a
reparameterization technique to reduce gradient variance and
enhance optimization stability. In the inference stage, we
aggregate multiple smoothed classifiers trained in the first
stage to generate the final smoothed prediction. However, since
the optimized noise results in different noise magnitudes for
each sample, existing certification methods, which typically
assume a fixed noise level, are no longer directly applicable.
To resolve this issue, we propose a storage-update-based cer-
tification method, which dynamically adjusts the certification
region (i.e., the space covered by the certification radius) for
each sample. This ensures that certification regions do not
overlap between different samples and that predictions remain
consistent within each certified region.

Our main contributions can be summarized as follows:
• We revisit existing randomized smoothing-based certified

backdoor defenses and reveal that their use of fixed
noise results in suboptimal certification performance for
samples, affecting both training and testing samples.

• We propose a sample-specific certified backdoor de-
fense method (i.e., Cert-SSB) to dynamically adjust
the smoothing noise magnitude for different samples to
optimize certification performance.

• We introduce a storage-update-based certification method
to dynamically update each sample’s certification region,
ensuring non-overlapping certified regions across differ-
ent samples and improving certification robustness.

• We conduct extensive experiments on benchmark datasets
to validate Cert-SSB’s effectiveness, demonstrating its
superior certification performance over existing methods.

The remainder of this paper is organized as follows. Section
II provides a brief overview of related work. Section III revisits
the limitations of existing certified backdoor defenses. Follow-
ing that, in Section IV, we describe the threat model, defense
goal, and an overview of our approach, followed by a detailed
design of our certified backdoor defense method. Section V
reports experimental results and performance analysis. Finally,
we conclude this paper at the end.

II. RELATED WORKS

A. Backdoor Attacks

Backdoor attacks [28], [29], [30], [31] have emerged as a
new threat in the training process of deep neural networks
(DNNs). There are various ways to categorize backdoor at-
tacks. First, they can be classified based on the adversarial
objective into all-to-one and all-to-all. In all-to-one attacks,
all samples with backdoor triggers are misclassified into a
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predefined fixed target label, making the attack relatively
simple and straightforward. In contrast, all-to-all attacks in-
volve misclassifying samples with triggers into specific target
classes based on their original categories, with a fixed mapping
relationship between classes. This type of attack is more
complex. Second, backdoor attacks can be categorized based
on the threat scenario into three major types: (1) poison-
only attacks [32], [16], (2) training-controlled attacks [33],
[34], and (3) model-modified attacks [35], [36]. Specifically,
poison-only attacks restrict the adversary to modifying the
training dataset; training-controlled attacks allow the adversary
to fully control the training process, including both the training
data and algorithms. In contrast to these approaches, model-
modified attacks mainly focus on the deployment phase rather
than the training phase, embedding hidden backdoors by
directly modifying model weights or introducing malicious
DNN modules. In this paper, we mainly focus on poison-only
backdoor attacks, which represent the most classical setting
and pose the broadest threat scenarios. Recently, there are also
a few works exploring how to exploit backdoor attacks for
positive purposes [37], [38], [39], [40], [41], [42], which is
out of the scope of this paper.

B. Backdoor Defense

In general, existing backdoor defense methods can be cat-
egorized into empirical defenses [43], [44], which rely on
heuristic approaches to counter specific types of attacks, and
certified defenses [22], [24], which provide theoretical guaran-
tees for classifier robustness against adversarial perturbations.

1) Empirical defenses: Existing empirical defense methods
can be classified into five main categories: (1) the detection of
poisoned training samples [45], [46], (2) poison suppression
[47], [48], (3) backdoor removal [49], [50], (4) the detection
of poisoned testing samples [51], [52], and (5) the detection of
attacked models [53], [54]. Specifically, the detection of poi-
soned training samples aims to identify and filter out malicious
samples from the training set. Poison suppression prevents
the model from learning poisoned samples by modifying the
training process, thereby inhibiting the formation of hidden
backdoors. Backdoor removal focuses on eliminating hidden
backdoors from pre-trained (third-party) models. Detection of
poisoned testing samples is designed to identify and block
poisoned inputs during the testing phase. Lastly, the detection
of attacked models determines whether a given model has
been compromised by analyzing certain model properties.
However, [55] and [56] revealed that new attack strategies
could circumvent these empirical defenses, highlighting the
ongoing arms race between attack and defense techniques.

2) Certified defenses: Existing certified defense methods
can be categorized into deterministic defenses [19], [20], [21],
[22], which provide a guaranteed ‘certified’ outcome when the
input is robust to attacks, and probabilistic defenses [23], [24],
which ensure a ‘certified’ result with a certain probability (e.g.,
99.9%), where the randomness is independent of the input
sample. However, deterministic defenses often face scalability
challenges when applied to large networks. In this work, we
focus on probabilistic certified defenses.

Probabilistic certification offers better scalability. Previous
methods primarily relied on intrinsic mechanisms [57], [58]
or randomized smoothing techniques [23], [24] to achieve
robust predictions. For example, Jia et al. [57] leveraged the
intrinsic ensemble technique within the bagging mechanism,
focusing on the number of poisoned samples. Similarly, Jia et
al. [58] employed the intrinsic majority voting mechanism in
the k-nearest neighbors algorithm, focusing on the number
of neighbors. However, these methods do not consider the
size of the trigger, making them unsuitable for defending
against backdoor attacks. On the other hand, Wang et al.
[23] were the first to apply randomized smoothing to de-
fend against backdoor attacks, introducing random noise to
neutralize potential triggers. However, this method lacked
comprehensive experimental evaluation and failed to achieve
a high robustness bound. Recently, Weber et al. [24] proposed
the robustness against backdoor attacks (RAB) framework,
which provides certified robustness against backdoor attacks
and sets a theoretical benchmark for provable defenses in this
field. The detailed implementation of RAB will be discussed in
Section II-C. However, current methods implicitly assume that
all samples are equidistant from the decision boundary, which
may not hold in practice. This leads to suboptimal certification
and highlights the urgent need for adaptive approaches that
account for sample-specific characteristics.

C. Randomized smoothing and RAB

Randomized Smoothing (RS) [59] is a probabilistic defense
method that enhances classifier robustness by smoothing pre-
dictions. Specifically, given an input x, the smoothed classifier
g(x, σ) selects the most probable class predicted by the base
classifier f under isotropic Gaussian noise. Formally:

g(x, σ) := argmax
y∈Y

Pϵ(f(x+ ϵ) = y), (1)

where ϵ ∼ N (0, σ2I). The noise level σ is a hyperparameter
that controls the trade-off between robustness; it does not
change with the input x. Using the Neyman-Pearson lemma
[60], Cohen et al. [59] proved that g(x, σ) is certifiably robust
to adversarial perturbations under the ℓ2 norm constraint.
Define yA = argmaxy Pϵ(f(x + ϵ) = y), and assume
that when classifying a perturbed input x + ϵ, the base
classifier f assigns the most probable class yA with probability
PA = Pϵ(f(x+ϵ) = yA), and the second most probable class
y with probability PB = maxy ̸=yA

Pϵ(f(x + ϵ) = y). Then,
it is always true that g(x+∆, σ) = yA as long as ∥∆∥2 < r,
where the certified robust radius r is given by:

r(x, σ) :=
σ

2

(
Φ−1(PA(x, σ))− Φ−1(PB(x, σ))

)
, (2)

where Φ−1 represents the inverse Gaussian cumulative distri-
bution function (CDF).

In general, RS techniques are primarily designed to certify
adversarial robustness by adding noise to testing instances.
Most recently, a few pioneering research [23], [24] showed
that we can achieve certified backdoor defenses that are robust
against bounded backdoor patterns by introducing isotropic
Gaussian noise to a tuple consisting of a testing instance and
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Fig. 2: Distribution of ℓ2 norm distances between samples and
their closest boundary samples.

the training set to neutralize backdoor effects. Among these
approaches, the most notable is RAB [24]. In the following,
we briefly describe the implementation details of RAB.
Overview of RAB [24]. Given a dataset D and a testing
instance x, the base classifier f , learns a probability dis-
tribution Pϵ(q(x,D) = y) over the class labels. It outputs
the label that is most likely under this learned distribution q:
f(x,D) = argmaxy Pϵ(q(x,D) = y). A smoothed classifier
g(x,D, σ) returns whichever class the base classifer f(x,D)
is most likely to predict when x is perturbed by smoothing
distributions X = (Z,D):

g(x,D, σ) = argmax
y

Pϵ(Z,D)(f(x+ Z,D +D) = y), (3)

where Z ∼ N (0, σ2I) is assumed to be independent, and
D ∼ N (0, σ2I) consists of n independent and identically
distributed random variables D(i), each added to a training in-
stance in D. Let δ = (∆1, . . . ,∆n) denote backdoor patterns
applied to n training instances in D, and let Bx denote the
backdoor trigger added to the testing instance x. Define yA =
argmaxy Pϵ(Z,D)(f(x + Bx + Z,D + δ +D) = y), assume
that when classifying a point N (x, σ2I), the base classifier
f(x,D) assigns the most probable class yA with probability
PA(x,D, σ) = Pϵ(Z,D)(f(x + Bx + Z,D + δ + D) = yA),
and the “runner–up” class y with probability PB(x,D, σ) =
maxy ̸=yA

Pϵ(Z,D)(f(x+Bx+Z,D+δ+D)) = y). Then, it is
always true that g(x+Bx,D, σ) = g(x+Bx,D+δ, σ) = yA

as long as the backdoor patterns
√∑n

i=1 ∥∆i∥22 ≤ r, where

r =
σ

2

(
Φ−1(PA(x,D, σ))− Φ−1(PB(x,D, σ))

)
. (4)

By analyzing Eq. (4), we find that increasing the hyperpa-
rameter σ enlarges the certified radius r, thereby enhancing the
model’s robustness. However, excessively increasing the noise
magnitude may degrade classification accuracy (i.e., incorrect
predictions), which reflects the trade-off between robustness
and accuracy. Therefore, a key challenge remains: how to
determine the optimal noise level σ for each input.

III. REVISITING CERTIFIED BACKDOOR DEFENSES

Existing randomized smoothing-based certified backdoor
defense methods implicitly assume that all samples are equidis-
tant from the decision boundary, i.e., they apply a fixed noise
magnitude to each sample to smooth the classifier and obtain
the final robust prediction. In this section, we analyze the
variations in sample-to-decision-boundary distances from an
intrinsic sample property perspective and further explore the
limitations of using fixed Gaussian noise in existing methods.

A. Preliminaries

The Main Pipeline of (Poisoning-based) Backdoor At-
tacks. Let D = {(xi, yi)}ni=1 represents the benign dataset
consisting of n samples, where xi ∈ X is the i-th image,
yi ∈ Y = {1, 2, · · · ,K} is its corresponding label, and K
denotes the total number of classes. In general, adversaries
create a poisoned dataset Dp to train the target model using
either a standard loss function or a customized one specified
by the attacker. Specifically, Dp consists of two main parts:
1) the modified version of a selected subset (i.e., Ds) of
D, and 2) the remaining benign subset Db. Formally, Dp =

Dm(Bx, ŷ)∪Db, where Dm(Bx, ŷ) = {xi +∆i, ŷ}di=1, Db =
D\Ds = {xi, yi}ni=d+1, Bx introduces unique trigger patterns
∆i into the selected training instances, and ŷ = GY (y).
Here, λ ≜ |Dm|

|D| is the poisoning rate, and GY is adversary-
specified poisoned label generator. For example, in Badnets
[32], GY (y) = yt for all-to-one attacks, where yt ∈ Y is the
target label, and GY (y) = y+1 mod K for all-to-all attacks.
The attack succeeds if the classifier predicts the target label ŷ
with high probability for a testing example x modified with
the backdoor pattern Bx: f(x+ Bx,Dm(Bx, ŷ)) = ŷ.

Definition 1 (Boundary Samples and Closet Boundary Sam-
ples.). Consider the logit margin of model f : X → [0, 1]K

with respect to the label y, defined as: ϕy(x;w) = fy(x;w)−
maxy′ ̸=y fy′(x;w). A sample x is classified as y by the
model f(·;w) if and only if ϕy(x;w) ≥ 0. The set of
boundary samples belonging to class y can be expressed as
T (y;w) = {x∗ : ϕy(x

∗;w) = 0}. Following the prior work
[61], the closest boundary sample for x is defined as:

x̄∗ ≜ argmin
x̄

∥x∗ − x∥p , s.t. ϕy(x
∗,w) = 0, (5)

where ∥·∥1≤p≤∞ is the ℓp norm.

Generating the Closest Boundary Samples. To compute
the closest boundary sample, we leverage the fast adaptive
boundary attack (FAB) [62]. Specifically, we modify FAB to
implement an iterative algorithm using gradient ascent with
∇xϕy(x,w), updating the boundary sample at the (t + 1)-th
iteration as follows:

x∗
t+1 = βt · x0 + (1− βt)

{
x∗
t + αt

▽xϕy(x
∗
t ;w)

∥▽xϕy(x∗
t ;w)∥

}
, (6)

where αt is a positive step size, x0 is an initial point satisfying
ϕy(x0;w) ≤ 0 and βt ∈ [0, 1] is a line search parameter,
to ensure x∗

t+1 satisfies ϕy(x
∗
t+1;w) = 0. In practice, x0 is

randomly selected from the validation set, ensuring its label
differs from y.

B. Analysis of Sample’s Distance to Decision Boundary

We hereby analyze how the distance from a sample to
the decision boundary varies across inputs. Specifically, this
distance is estimated using the ‘closest boundary sample’
defined in Definition 1 to avoid the inaccurate estimation using
a random boundary one since there are multiple of them.

Setting. We hereby use BadNets [32] attack with a ResNet
model [63] on the CIFAR-10 [64] datasets for discussion.
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(d) CIFAR-10

Fig. 3: Effect of different noise levels on the certified radius for MNIST and CIFAR-10 datasets. The first two subfigures show
results for testing samples, while the last two show results for training samples.

Specifically, we set the target label yt as ‘0’ and the poisoning
rate as 5%. Following the previous work [24], we use a one-
pixel patch located at the lower right corner of the image as the
trigger pattern. We randomly select 2,000 poisoned samples
and use Eq. (6) to generate their closest boundary samples for
the target label yt. During training, we compute the ℓ2 norm
between each sample and its closest decision boundary sample.
Samples with a small distance to the decision boundary are
referred to as easy samples, while those with a larger distance
are referred to as hard samples.
Result. As shown in Figure 2, the ℓ2 distances to the closest
boundary samples vary significantly among different samples
in the poisoned dataset. Specifically, although most samples
have relatively small distances (e.g., ℓ2 ≤ 0.3), a considerable
number of hard samples exhibit larger distances to their closest
boundary samples. Therefore, these hard samples require a
larger magnitude of noise to effectively defend against back-
door attacks during training. In contrast, for easy samples
with smaller distances, only a smaller magnitude of noise is
needed to achieve the desired defense effect. For samples that
fall between hard samples and easy samples, a trade-off and
adjustment in noise selection are necessary.

C. Limitations of Fixed Noise in Testing Samples

Setting. We hereby randomly select three testing samples from
the MNIST and CIFAR-10 datasets, respectively, and evaluate
the certification radius of the RAB model [24] trained with
σ = 1.0. The certification radius is computed following Eq.
(4), using different noise levels with σ values ranging from
0 to 1.0 in increments of 0.2. All other experimental settings
remain as described in Section III-B.
Result. As shown in Figures 3(a) and 3(b), the three samples
from both MNIST and CIFAR-10 datasets exhibit a trend
where the certification radius first increases and then decreases
as the noise magnitude increases. Notably, although the model
was trained with σ = 1.0, the optimal certification radius
does not occur at this noise level. Taking the MNIST dataset
as an example, sample 1 reaches its maximum certification
radius of approximately 1.5 at σ = 0.8, sample 2 peaks at
about 1.3 when σ approaches 0.9, while sample 3 maintains
a relatively stable low value. This result suggests that the
optimal certification performance is not necessarily achieved
by using the same noise magnitude during testing as in
training. Therefore, the σ value should be optimized for each
sample to achieve the maximum certification radius.

D. Limitations of Fixed Noise in Training Samples

Setting. We randomly select three training samples from
the MNIST and CIFAR-10 datasets, respectively, and
train multiple models with different noise levels. Specif-
ically, we apply noise with standard deviations of σ ∈
{0, 0.2, 0.4, 0.6, 0.8, 1.0} during training. During the testing
phase, we evaluate each model using the same noise level as in
its training phase. That is, for a model trained with σ = 0.5, its
certification radius is also computed using σ = 0.5. All other
experimental settings remain as described in Section III-B.

Result. As shown in Figures 3(c) and 3(d), the certification
radii of different samples exhibit distinct trends as the noise
level varies. Overall, while some samples achieve larger cer-
tification radii at appropriate noise levels, others are more
sensitive to noise, showing instability or even misclassification
at higher noise values. For example, Sample 1 shows a contin-
uously increasing certification radius as the noise σ increases,
indicating that its robustness remains stable even at higher
noise levels. Sample 2 exhibits a stable certification radius in
the range of σ = 0.6 to 0.8, without significant changes as
the noise level further increases. This suggests that this noise
level may be optimal for this sample. In this case, increasing
the noise further may not improve the certification radius and
could even negatively impact classification accuracy. There-
fore, for this sample, a trade-off must be made between
accuracy and robustness. In contrast, Sample 3 experiences
a gradual decrease in certification radius as the noise level
increases and eventually undergoes misclassification at higher
noise levels. The “×” markers in the figure indicate misclas-
sified points. This result suggests that the noise level used for
training should be optimized based on the characteristics of
individual samples rather than using a fixed value to achieve
better certification performance.

IV. METHODOLOGY

A. Threat Model and the Goal of Certified Defense

1) Threat Model: This work focuses on defending against
poison-only backdoor attacks. Adversaries can manipulate the
training data but cannot modify other training components,
such as the loss function or model architecture. Defenders have
full control over the training process but cannot detect whether
the data is poisoned, nor do they know the trigger pattern.

2) Goal of Certified Defense: The primary goal is to defend
against poison-only backdoor attacks by obtaining a robustness



PREPRINT 6

Stage 1: Cert-SSB Training Stage 2: Cert-SSB Inference

Adding 
Fixed Noise

x r x r

t-th iteration

SGA

Optimized Noise Generation Robust Training Process

Poisoned Sample Optimized Noise

Optimized Noises

Poisoned Dataset

Smoothing

*
1p xbσ+

Smoothed 
Model 1

Optimized Noises

Poisoned Dataset

Smoothing

*
p x Mbσ+

Smoothed 
Model M

...... ...... ......

Clean / Poisoned Testing  Sample

predict

C
onfidence for Each C

lass Cat Dog ...

Robust
Margin

...

Storage-update-based Certification

Overlapping？

Maximize r

...... Agg.

Sample-
specific Noise

No Update

Trim Region +
Align Label

1
1

(0, )
n

i

Ib
=
∏ 

1

(0, )
n

M
i

Ib
=
∏ 

Smoothed 
Model M

Smoothed 
Model 1

update

Fig. 4: The main pipeline of our Cert-SSB consists of two stages. In the first stage, we adopt a stochastic gradient ascent
(SGA) strategy to iteratively optimize the noise in order to maximize the certification radius r, thereby solving for the optimal
noise (i.e., sample-specific noise). The value of r is computed based on the predictions of a base model trained with fixed
noise. This optimized noise is then injected into the poisoned training set and used to train M smoothed models. In the second
stage, the M smoothed models trained in the first stage are aggregated to generate the final smoothed prediction. Notably,
under this setting, the traditional certification method, which typically assumes a fixed noise level, is no longer applicable. To
conquer this challenge, we propose a novel storage-update-based certification method, which ensures that each certification
region is non-overlapping and maintains consistent predictions within each region (see Figure 5 for more details).

threshold r through analysis, ensuring that if the total backdoor

modification satisfies
√∑d

i=1 ∥∆i∥22 < r, the classifier’s
predictions on testing samples containing backdoor triggers
remain unaffected by whether the model was trained on
poisoned or clean data. In other words, the model’s predictions
should be consistent, expressed as: f(x+ Bx,Dm(Bx, ŷ)) =
f(x + Bx,Dm(∅)), where Dm(∅) denotes the clean dataset
without any embedded backdoor patterns (i.e., ∆i = 0).

B. Overview of the Proposed Method

As demonstrated in Section III, existing randomized
smoothing-based certified backdoor defenses exhibit subop-
timal certification performance, regardless of whether fixed
noise is applied to training or testing samples. This is because
each sample has a different distance to the decision boundary.
To address this issue, we propose a sample-specific certified
backdoor defense method, dubbed Cert-SSB, in which the
noise level is adaptively adjusted for each individual sample.

As shown in Figure 4, our method consists of two main
stages: (1) Cert-SSB training stage, and (2) Cert-SSB inference
stage. In the training stage, we apply stochastic gradient
ascent to iteratively solve for the optimal noise level σ∗

x that
maximizes the certification radius. The radius is computed
based on the prediction probabilities of a base classifier trained
with fixed noise. Once obtained, the sample-specific noise σ∗

x

is injected into the poisoned training set to train M smoothed
models. In the inference stage, we aggregate predictions from
the M smoothed models trained in the first stage to produce
the final smoothed output. Intuitively, as long as the predicted
probability of the most likely class exceeds that of the second
most likely class, the model can be considered certifiably
robust. However, under this sample-specific noise setting,
traditional certification methods become inapplicable, as they
typically assume a uniform noise level across all inputs. To
overcome this limitation, we introduce a storage-update-based
certification method, which categorizes certification regions

(i.e., regions defined by the certified radius of each input)
to ensure that they remain non-overlapping across inputs and
that prediction consistency is maintained within each region
(see Figure 5). The technical details are as follows.

C. Cert-SSB Training: Train the Model with Optimized Noise

In this stage, we train multiple smoothed models based on
optimized noise, where the optimized noise is obtained by ap-
plying stochastic gradient ascent to maximize the certification
radius. In general, the certification radius is computed based
on the predictions of a classifier trained with fixed noise.

1) Optimized Sample-Specific Noise Generation: Given a
smoothed classifier with fixed noise σ0 (which reduces to
the base classifier f(x,D) when σ0 = 0), our goal is to
construct a new smoothed classifier g(x,D, σ∗

x) based on
an optimized noise σ∗

x for each sample. The new classifier
should ensure that for all samples x, the predictions of the
two smoothed classifiers (with σ0 and σ∗

x) remain identical
while also maximizing the certification radius at each sample
x. Formally, let yA represent the predicted label under the
fixed noise level σ0, it can be defined as:

yA = argmax
y

Pϵ(Z,D)[f
y(x+ Bx + Z,D + δ +D)], (7)

where Z ∼ N (0, σ2
0I) is assumed to be independent, and

D ∼ N (0, σ2
0I) consists of n i.i.d. random variables D(i),

each added to a training instance in D. For each input x,
the optimized noise σ∗

x is obtained by solving for σ that
maximizes the certification radius r(x, σ) in Eq. (4):

σ∗
x = argmaxσ

σ
2 (Φ

−1(PA(x,D, σ))− Φ−1(PB(x,D, σ))),
(8)

where PA(x,D, σ) = Pϵ(Z,D)[f
yA(x+Bx +Z,D+ δ+D)],

PB(x,D, σ) = maxy ̸=yA
Pϵ(Z,D)[f

y(x+Bx+Z,D+δ+D)].
In practice, we solve Eq. (8) using stochastic gradient

ascent, where the probabilities of predicting class yA and y
are estimated via Monte Carlo approximation. Specifically,
we introduce noise multiple times, record the output count for
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these two classes, and approximate the probability distribution
using their relative frequencies. Formally, the gradient of the
objective at the t-th iteration is approximated as follows:

▽σt{σt

2 · [Φ−1( 1
J

∑J
j=1 f

yA(x+ Bx + Zi,D + δ +Di))

−Φ−1(maxy ̸=yA

1
J

∑J
j=1 f

y(x+ Bx + Zi,D + δ +Di))]},
(9)

where Z1, . . . , ZJ ∼ N (0, (σt)2I) as well as D1, . . . , DJ ∼
N (0, (σt)2I) are independently sampled at each iteration.

However, since the probabilities depend on the optimization
variable σ, and σ parameterizes the smoothed distribution
N (0, σ2I) [65], any change in σ affects the underlying dis-
tribution, which can result in high variance in the gradient
estimation method. To address this problem, we adopt the
reparameterization technique proposed by Kingma et al. [66]
and Rezende et al. [67], which allows for a lower-variance
gradient estimation of the objective in Eq. (9). Specifically,
we reparameterize the noise as Z = σẐ and D = σD̂, where
Ẑ and D̂ are sampled from a standard normal distribution, i.e.,
Ẑ, D̂ ∼ N (0, I). This transformation allows us to reformulate
the objective in Eq. (8) as follows:

σ∗
x = argmax

σ

σ

2
(Φ−1(P̂A(x,D, σ))− Φ−1(P̂B(x,D, σ))),

(10)
where P̂A(x,D, σ) = Pϵ(Ẑ,D̂)[f

yA(x+Bx+σẐ,D+δ+σD̂)],
P̂B(x,D, σ) = maxy ̸=yA

Pϵ(Ẑ,D̂)[f
y(x+ Bx + σẐ,D + δ +

σD̂)]. Note that under this reparameterization, the distributions
Ẑ and D̂ are no longer dependent on the optimization variable
σ. As a result, Eq. (10) typically yields lower-variance gradient
estimates compared to the original formulation in Eq. (8).

2) Robust Training Process: Once the optimized noise σ∗
x

is obtained, we incorporate it into the training process to en-
hance robustness. Specifically, we first sample M sets of noise
vectors b1, · · · , bM from the distribution D ∼

∏n
i=1N (0, I),

where each set contains n = |D| i.i.d. vectors corresponding
to the size of the training dataset. For each sampled noise set
bm, we construct a perturbed (poisoned) training dataset Dp+
σ∗
xbm by introducing the sample-specific noise σ∗

x. Next, we
train M smoothed models on these perturbed datasets, denoted
as g1(x,D, σ∗

x), . . . , gM (x,D, σ∗
x). To maintain consistency

between the noise distributions during training and inference,
we further sample a noise vector µM ∼ N (0, σ0

2Ih) for each
model gm, using the hash value of its trained model file as
the random seed. This noise vector is stored alongside the
model parameters and added to the input during inference. By
introducing noise in both the training and testing phases, we
ensure that the ensemble of smoothed models {g1, . . . , gM}
avoids performance degradation when classifying clean inputs.
See Algorithm 1 in our Appendix A for training details.

D. Cert-SSB Inference: Storage-update-based Certification

In this stage, we aggregate the ensemble of smoothed
classifiers trained in the first stage to form the final prediction.
However, under the use of sample-specific noise σ∗

x, traditional
certification methods are no longer applicable. To address
this, we propose a novel storage-update-based certification
method. By introducing a ‘storage’ mechanism, this method

dynamically adjusts certification regions to ensure they are
non-overlapping across inputs while preserving prediction
consistency for each individual sample.

Formally, given a trained model g(x,D, σ∗
x) and a test-

ing input x, the prediction is computed via majority voting
with the optimized noise. Specifically, we estimate the class
probability as Pϵ(g(x,D, σ∗

x) = y) = 1
M

∑M
m=1 I{gm(x +

µm,Dp + σ∗
xbm) = y}, where µm is the deterministic noise

vector sampled during training, and I{·} is the indicator func-
tion. The following theorem states the robustness guarantee:

Theorem 1 (Certified Robustness of Cert-SSB). Let Bx ∈
Rd and let δ := (∆1,∆2, ...,∆n) for backdoor patterns
∆i ∈ Rd, and let D be a training set, and let smoothing
noise Ẑ ∼ N (0, I), D̂ ∼ N (0, I). Let yA ∈ Y , such as
yA = g(x + Bx,D + δ) with class probabilities satisfying
Pϵ(Ẑ,D̂)(f(x + Bx + σ∗

xẐ,D + δ + σ∗
xD̂) = yA) ≥ PA ≥

PB ≥ maxy ̸=yA
Pϵ(Ẑ,D̂)(f(x+Bx+σ∗

xẐ,D+δ+σ∗
xD̂) = y).

Then, we have g(x+Bx,D) = g(x+Bx,D+δ) = yA for all

backdoor patterns ∆ satisfying
√∑n

i=1 ∥∆i∥22 ≤ r(g;σ∗
xi
),

where the certified robust radius r is given by

r(g;σ∗
xi
) =

√∑n
i=1(σ

∗
xi

)2

2

(
Φ−1(PA(σ

∗
xi
))− Φ−1(PB(σ

∗
xi
))
)
.

(11)

Compared to RAB [24], our method achieves a better trade-
off between robustness and accuracy by replacing the fixed
smoothing noise σ with optimized sample-specific noise σ∗

xi
.

This advantage is further supported by experimental results
presented later. The formal proof is provided in Appendix B.

Notably, traditional certification methods become inappli-
cable in our setting due to two core limitations: (1) they
assume non-overlapping certification regions for all inputs, and
(2) they require a globally fixed robustness parameter (e.g.,
noise level σ). To overcome these limitations, we propose a
storage-update-based certification strategy. Before introducing
the proposed method, we first provide a brief definition of the
concepts of ‘overlapping’ and ‘non-overlapping’ certification
regions. Based on this definition, we introduce Definition 3,
which classifies the possible types of certification region
overlapping. Then, following this classification, we describe
the storage-update mechanism in detail (see Proposition 1).

Definition 2 (Overlapping and Non-overlapping of Certifica-
tion Regions). Let g be a sample-specific smoothed classifier,
and let r(σ∗

x1
) denote the certification radius of g at input

x1. For any other input x2, if ∥x1 − x2∥2 ≤ r(σ∗
x1
), the

certification regions of x1 and x2 are said to overlapping;
otherwise, they are said to be non-overlapping.

Definition 3 (Classification Criteria of Certification Regions).
Let the triplet storage set S = {(xi,Yi,Ri)}ni=1 store all
previously predicted inputs xi, their corresponding predictions
Yi, and their associated certification regions Ri. Here, Ri

denotes the certification region centered at xi, characterized
by the certification radius ri. The certification regions Ri for
different inputs are classified as follows (see Figure 5):

• Case 1: Non-overlapping Certification Regions. All cer-
tification regions are non-overlapping, i.e., ∀i ̸= j,Ri ∩
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Fig. 5: Storage-update-based certification (see proposition 1).
Given two inputs x1 and x2 with certified regions R1 and
R2, respectively, there are three cases based on Definition 3.

Rj = ∅, and the corresponding predictions are different,
i.e., Yi ̸= Yj .

• Case 2: Overlapping Certification Regions with Consis-
tent Predictions. The certification region Rn+1 of a new
input xn+1 overlaps with an existing certification region
Ri, and their predictions are consistent, i.e., ∃i such that
Ri ∩Rn+1 ̸= ∅ and Yn+1 = Yi.

• Case 3: Overlapping Certification Regions with Incon-
sistent Predictions. The certification region Rn+1 of a
new input xn+1 overlaps with an existing region Ri, but
their predictions differ, i.e., Yn+1 ̸= Yi. This case can
be further divided into two subcases:

– The new input lies inside the existing certification
region, i.e., xn+1 ∈ Ri and Rn+1 ∩Ri ̸= ∅.

– The new input lies outside the existing certification
region, i.e., xn+1 /∈ Ri but Rn+1 ∩Ri ̸= ∅.

Based on the classification in Definition 3, we propose a
storage-update-based certification method, that enforces non-
overlapping certification regions while maintaining prediction
consistency (i.e., ∀i ̸= j,Ri ∩ Rj = ∅,Yi ̸= Yj). In this
way, the certification regions of inputs with different predicted
labels do not overlapping within the storage set S. This is a
key property of a sound certification process.

Now, we introduce Proposition 1, which formalizes the
proposed storage-update-based certification method.

Proposition 1 (Storage-update-based Certification). Based on
Definition 3, the storage-update-based certification method
handles new inputs according to the following cases:

• Case 1: If ∀i ̸= j, Ri ∩ Rj = ∅ and Yi ̸= Yj , then all
existing triplets (xi,Yi,Ri) and (xj ,Yj ,Rj) in storage
remain unchanged.

• Case 2: If there exists some i such that Rn+1 ∩ Ri ̸=
∅ and Yn+1 = Yi, then the new certification triplet
(xn+1,Yn+1,Rn+1) can be directly added to the storage.

• Case 3: If Rn+1 ∩ Ri ̸= ∅ and Yn+1 ̸= Yi, the method

proceeds as follows1 (see Figure 5):
– If xn+1 ∈ Ri: The new certification region is up-

dated to the largest subset R̃n+1 such that R̃n+1 ⊆
Rn+1 and R̃n+1 ⊆ Ri. Then, Rn+1 is replaced by
R̃n+1, and the label Yn+1 is updated to Yi to ensure
prediction consistency.

– If xn+1 /∈ Ri: The new certification region is up-
dated to the largest subset R′

n+1 such that R′
n+1 ⊆

Rn+1 and R′
n+1 ∩Ri = ∅. Then, original Rn+1 is

replaced by R′
n+1.

After applying the appropriate case, the final triplet
(xn+1,Yn+1,Rn+1) (or its updated form) is added to the
storage set S for use in future certification.

In practice, in our experiments, we did not observe any
cases where inputs with different predictions have overlapping
certified regions. That is, for each input, the certified region
stored in S is essentially determined by the certification radius
computed using Eq. (11) for the sample-specific smoothed
classifier g(x,D, σ∗

x). This can be attributed to two main
reasons: 1) Due to the high dimensionality of image datasets,
the ℓ2-norm distance between samples is significantly larger
than the certification radius provided by randomized smooth-
ing; 2) The optimized noise σ∗

x tends to have a moderate
value (σ∗

x ≤ 1.0), resulting in relatively small certification
regions. For example, the certification region corresponds to
an ℓ2-ball with a radius of approximately 4σ∗

x, which is
much smaller than the distances between samples in high-
dimensional datasets (e.g., ImageNet). Nonetheless, in certain
rare or specifically constructed scenarios, it remains theoreti-
cally possible for inputs with different predictions to exhibit
overlapping certified regions, particularly in low-dimensional
input spaces or when abnormally large values of σ∗

x lead
to significantly enlarged certification radii. For such cases,
our storage-update-based certification strategy becomes in-
dispensable: by appropriately adjusting the certified regions
and associated predictions, it effectively resolves potential
conflicts, as described in Proposition 1.

V. EXPERIMENTS

A. Main Settings

1) Datasets and Models: We conduct experiments on
MNIST [68], CIFAR-10 [64], and ImageNette [69], using a
simple CNN model [32], a lightweight ResNet-like model
[59], and standard ResNet-18 model [70], respectively.

2) Training Settings: We adopt a sample-specific smooth-
ing approach during training. In this stage, we set the number
of sampled Gaussian noise vectors (i.e., augmented datasets)
to M = 1, 000 for MNIST and CIFAR-10, and M = 200
for ImageNette, resulting in ensembles of 1,000 and 200
models, respectively. Following previous works [59], [27],
the added noise follows a Gaussian distribution with mean
µ = 0 and standard deviation σ, set as follows: for MNIST
and CIFAR-10, σ ∈ {0.12, 0.25, 0.5, 1.0}; for ImageNette,
σ ∈ {0.25, 0.5, 1.0}. Additionally, we set the number of
stochastic gradient ascent iterations to T = 100, the number

1This process is straightforward when the certification regions are ℓ2-balls.
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TABLE I: Certified performance (i.e., ERA and AER) is reported using the best results across different noise levels at each radius under
the all-to-one setting. We evaluate three types of attacks (one-pixel, four-pixel, and blending) on the MNIST, CIFAR-10, and ImageNette
datasets. In particular, we mark the best certification results in boldface.

Dataset↓ Attack Setting↓, Metric−→ Method↓ AER
Radius (ERA↑)

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75

MNIST

One-pixel
RAB 1.48 100 99.91 99.76 99.43 99.05 97.73 55.79 0

Cert-SSB 1.65 99.95 99.91 99.81 99.62 99.34 98.82 86.53 42.98

Four-pixel
RAB 1.49 99.95 99.86 99.72 99.39 99.01 97.78 56.12 0

Cert-SSB 1.69 99.95 99.86 99.72 99.57 99.20 98.63 81.94 42.98

Blending
RAB 1.46 100 99.86 99.67 99.39 99.05 97.35 42.03 0

Cert-SSB 1.70 99.95 99.86 99.76 99.72 99.20 98.72 72.15 42.84

CIFAR-10

One-pixel
RAB 0.55 87.80 69.70 56.70 38.30 16.55 2.60 0 0

Cert-SSB 0.62 86.55 71.90 60.75 46.30 26.10 11.50 1.45 0

Four-pixel
RAB 0.56 88.70 69.50 55.70 36.60 14.15 2.25 0.05 0

Cert-SSB 0.65 86.40 70.30 59.50 43.55 20.90 1.60 0 0

Blending
RAB 0.56 88.00 69.80 56.25 36.95 15.00 2.35 0 0

Cert-SSB 0.64 86.15 73.40 61.55 46.55 27.25 0.05 0 0

ImageNette

One-pixel
RAB 0.49 94.62 74.18 52.60 35.42 14.60 0 0 0

Cert-SSB 0.64 95.20 86.36 72.50 45.08 32.10 17.36 5.08 0

Four-pixel
RAB 0.48 94.80 73.94 52.26 33.36 13.26 0 0 0

Cert-SSB 0.67 94.90 86.82 77.00 55.22 34.52 20.22 5.76 0

Blending
RAB 0.47 94.78 74.32 51.44 33.02 12.62 0 0 0

Cert-SSB 0.64 94.94 83.46 58.66 46.30 34.52 20.22 5.76 0

TABLE II: Certified performance (i.e., CRA and ACR) is reported using the best results across different noise levels at each radius under
the all-to-one setting. We evaluate three types of attacks (one-pixel, four-pixel, and blending) on the MNIST, CIFAR-10, and ImageNette
datasets. In particular, we mark the best certification results in boldface.

Dataset↓ Attack Setting↓, Metric−→ Method↓ ACR
Radius (CRA↑)

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75

MNIST

One-pixel
RAB 0.69 46.37 46.24 46.10 45.01 45.91 45.49 42.51 0

Cert-SSB 0.84 46.29 46.24 46.24 46.10 45.96 45.91 45.20 42.88

Four-pixel
RAB 0.68 46.34 46.24 46.10 46.72 45.91 45.63 41.23 0

Cert-SSB 0.87 46.29 46.24 46.24 46.10 46.01 45.91 45.67 43.88

Blending
RAB 0.69 46.34 46.24 46.10 45.01 45.91 45.49 42.46 0

Cert-SSB 0.87 46.34 46.29 46.24 46.19 45.96 45.91 45.63 44.30

CIFAR-10

One-pixel
RAB 0.32 48.30 39.40 30.40 20.05 8.35 0.55 0 0

Cert-SSB 0.33 52.65 41.60 34.65 21.30 3.50 0 0 0

Four-pixel
RAB 0.33 48.90 41.00 32.05 21.35 9.65 0.65 0 0

Cert-SSB 0.35 56.55 44.00 35.90 26.30 10.30 0 0 0

Blending
RAB 0.32 48.40 40.70 31.55 20.75 8.90 0.65 0 0

Cert-SSB 0.32 58.55 42.05 35.30 24.70 0.95 0 0 0

ImageNette

One-pixel
RAB 0.27 48.40 39.78 30.30 20.30 8.22 0 0 0

Cert-SSB 0.36 48.70 43.96 38.06 26.66 16.58 9.48 3.42 0

Four-pixel
RAB 0.26 48.68 40.10 29.00 18.32 7.10 0 0 0

Cert-SSB 0.49 49.00 42.48 36.76 26.26 19.08 11.44 4.00 0

Blending
RAB 0.27 48.72 40.14 29.62 19.02 7.16 0 0 0

Cert-SSB 0.48 49.10 42.86 38.96 34.48 27.62 19.06 6.74 0

of Monte Carlo samples to J = 1, and the learning rate to
α = 10−4. We initialize σ0 using the optimal sample-specific
noise level σ∗

x obtained during training.
3) Attack Settings: We evaluate the certified performance

of Cert-SSB against three representative backdoor attacks:
one-pixel pattern, four-pixel pattern, and random but fixed
noise patterns blended across the entire image [71]. The
perturbation magnitude of the attack is controlled by the ℓ2-
norm of the backdoor patterns, with ∥∆∥2 = 0.1. Following
prior work [24], we inject 10% poisoned samples into the
MNIST dataset and 5% into the CIFAR-10 and ImageNette
datasets. The goal of these attacks is to induce the model
to misclassify inputs as ‘0’ in MNIST, ‘airplane’ in CIFAR-
10, and ‘tench’ in ImageNette. In addition to the all-to-one
attack, we also consider an all-to-all attack objective [32],
where the compromised model alters its predictions based

on the original labels. We hereby primarily focus on the
perturbation magnitude and the number of injected backdoor
samples without considering specific backdoor patterns.

4) Evaluation Metrics: Following previous works [59],
[24], we evaluate the effectiveness of our method using
empirical robust accuracy (ERA), certified robust accuracy
(CRA), average empirical radius (AER), and average certified
radius (ACR). Specifically, ERA is defined as the proportion of
clean testing samples that are correctly classified by the Cert-
SSB model, serving as an upper bound for the corresponding
CRA. CRA is defined as the proportion of backdoor-triggered
testing samples that are consistently classified correctly within
the certified radius r. This implies that the trained Cert-SSB
model not only ensures that its predictions are consistent with
those of a model trained on a clean dataset but also guarantees
that these predictions are equal to the ground truth labels.
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TABLE III: Certified performance (i.e., ERA and AER) is reported using the best results across different noise levels at each radius under
the all-to-all setting. We evaluate three types of attacks (one-pixel, four-pixel, and blending) on the MNIST, CIFAR-10, and ImageNette
datasets. In particular, we mark the best certification results in boldface.

Dataset↓ Attack Setting↓, Metric−→ Method↓ AER
Radius (ERA↑)

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75

MNIST

One-pixel
RAB 1.46 99.95 99.81 99.62 99.48 98.77 95.93 61.94 0

Cert-SSB 1.67 99.95 99.86 99.72 99.53 99.11 97.87 92.11 11.11

Four-pixel
RAB 1.44 99.95 99.86 99.62 87.61 98.72 95.41 46.24 0

Cert-SSB 1.66 99.91 99.81 99.76 99.57 99.11 98.35 92.77 5.21

Blending
RAB 1.46 99.91 99.86 99.67 99.34 98.72 95.56 60.57 0

Cert-SSB 1.66 99.95 99.91 99.77 99.72 99.05 97.97 92.25 16.17

CIFAR-10

One-pixel
RAB 0.54 86.50 69.70 55.90 36.05 14.11 2.85 0.05 0

Cert-SSB 0.62 86.55 74.25 61.50 42.35 21.25 5.55 1.80 0.5

Four-pixel
RAB 0.55 87.70 69.70 56.80 38.15 17.05 3.10 0.05 0

Cert-SSB 0.73 85.55 74.75 68.35 58.15 39.95 10.65 1.20 0.05

Blending
RAB 0.50 87.40 49.50 24.10 2.65 0 0 0 0

Cert-SSB 0.67 86.90 68.10 50.10 22.35 22.35 0.45 0 0

ImageNette

One-pixel
RAB 0.49 94.56 73.36 52.86 35.04 14.24 0 0 0

Cert-SSB 0.74 94.62 81.06 61.46 50.84 38.84 25.08 10.28 0

Four-pixel
RAB 0.48 94.44 73.66 51.48 33.24 13.46 0 0 0

Cert-SSB 0.65 94.00 77.78 59.64 44.80 28.36 14.40 5.68 0

Blending
RAB 0.48 94.66 74.28 51.56 33.60 13.28 0 0 0

Cert-SSB 0.70 93.32 78.16 42.48 52.34 38.26 17.28 1.40 0

TABLE IV: Certified performance (i.e., CRA and ACR) is reported using the best results across different noise levels at each radius under
the all-to-all setting. We evaluate three types of attacks (one-pixel, four-pixel, and blending) on the MNIST, CIFAR-10, and ImageNette
datasets. In particular, we mark the best certification results in boldface.

Dataset↓ Attack Setting↓, Metric−→ Method↓ ACR
Radius (CRA↑)

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75

MNIST

One-pixel
RAB 0.01 0.19 0.14 0.10 0.10 0.10 0 0 0

Cert-SSB 0.77 46.34 46.24 46.15 45.96 45.91 45.34 43.36 6.71

Four-pixel
RAB 0 0.10 0.10 0 0 0 0 0 0

Cert-SSB 0.76 46.29 46.24 46.05 45.91 45.86 45.01 42.36 4.49

Blending
RAB 0.01 0.52 0.52 0.52 0.426 0.28 0.14 0.14 0

Cert-SSB 0.77 46.29 46.24 46.10 45.96 45.82 45.34 42.93 5.39

CIFAR-10

One-pixel
RAB 0.04 12.6 0 0 0 0 0 0 0

Cert-SSB 0.24 51.55 38.65 26.30 10.20 1.75 0.10 0 0

Four-pixel
RAB 0.04 10.90 6.80 3.60 1.20 0.10 0 0 0

Cert-SSB 0.30 48.65 42.60 35.05 19.50 0.10 0 0 0

Blending
RAB 0.04 11.80 6.90 3.60 1.20 0 0 0 0

Cert-SSB 0.29 47.70 36.90 29.50 21.30 9.65 0 0 0

ImageNette

One-pixel
RAB 0.01 7.76 3.88 1.68 0.04 0 0 0 0

Cert-SSB 0.44 52.72 46.86 38.24 30.64 22.54 13.64 4.26 0

Four-pixel
RAB 0.01 6.52 2.84 1.04 0.48 0 0 0 0

Cert-SSB 0.41 56.88 49.42 39.58 28.40 20.78 11.86 3.28 0

Blending
RAB 0.01 6.64 3.20 1.36 0.32 0 0 0 0

Cert-SSB 0.36 50.58 42.02 32.24 24.02 16.58 8.92 2.70 0

AER represents the average radius over clean test samples,
while ACR denotes the average radius over all backdoor-
triggered test samples. In general, higher values of ERA, CRA,
AER, and ACR indicate better certification performance. In
particular, we present certification curves (see Figure 6–7) to
provide a more intuitive comparison of certified performance
(i.e., ERA and CRA) under different noise levels.

B. Main Results under the All-to-One Setting
As shown in Tables I-II, our Cert-SSB achieves the best

performance under the all-to-one setting across three datasets
and three attack types (one-pixel, four-pixel, and blending).
For instance, on the MNIST dataset, at a radius of 1.5, ERA
exceeds 72% (an improvement of approximately 30%), while
CRA surpasses 45% (an increase of around 3%). Even on the

more challenging ImageNette dataset, at a radius of 0.75, ERA
exceeds 45% (an improvement of nearly 15%), and CRA is
above 26% (an increase of 10%). In both cases, AER and
ACR also improve by approximately 0.2. These experimental
results validate the effectiveness of our certification method.

As shown in Figure 6, our method achieves significantly
higher ERA and CRA across different noise levels (e.g.,
0.25, 0.5, and 1.0) compared to traditional approaches on the
ImageNette dataset, further validating its superior certification
performance. Notably, in these scenarios, the trade-off between
model accuracy and robustness becomes more pronounced:
stronger noise tends to degrade certification performance at
smaller radii while improving performance at larger ones. The
certification curves for the CIFAR-10 and MNIST datasets are
provided in our Appendix C.
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Fig. 6: Certified performance (i.e., ERA and CRA) under
different certification radii on the ImagNette dataset in the all-
to-one setting with various noise levels (0.25, 0.5, and 1.0). The
first column corresponds to the one-pixel attack, the second to
the four-pixel attack, and the third to the blending attack.
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Fig. 7: Certified performance (i.e., ERA and CRA) under
different certification radii on the ImagNette dataset in the all-
to-all setting with various noise levels (0.25, 0.5, and 1.0). The
first column corresponds to the one-pixel attack, the second to
the four-pixel attack, and the third to the blending attack.
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Fig. 8: Effect of stochastic gradient ascent iterations T .
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Fig. 9: Effect of Optimized-Noise Model Count Mo.

C. Main Results under the All-to-All Setting
As shown in Tables III-IV, our Cert-SSB method also

achieves the best performance under the all-to-all setting
across three datasets and three attack types (one-pixel, four-
pixel, and blending). For example, on the MNIST dataset, at
a radius of 1.5, ERA exceeds 92% (an improvement of ap-
proximately 30%), while CRA surpasses 42% (an increase of
about 40%). Even on the more challenging ImageNette dataset,
at a radius of 0.75, ERA exceeds 40% (an improvement of
nearly 15%), and CRA is above 20% (an increase of 20%). In
both cases, AER improves by approximately 0.2, while ACR
increases by 0.7 on MNIST and 0.4 on ImageNette. These
results validate the effectiveness of our method.

As shown in Figure 7, both ERA and CRA under different
noise levels (e.g., 0.25, 0.5, 1.0) are also significantly higher
than those of traditional methods on the ImageNette dataset,
with even more pronounced improvements compared to the
all-to-one setting. This experimental result further demon-
strates the superior certification performance of our Cert-SSB
method. The trade-off between model accuracy and robustness
is consistent with that in the all-to-one setting. The certification
curves for CIFAR-10 and MNIST are in our Appendix C.

D. Discussions
In this section, we discuss the effectiveness of Cert-SSB

with different key hyperparameters. For simplicity, we take
the one-pixel attack on the ImageNette dataset under the all-
to-one setting as an example for discussion.
Effect of Stochastic Gradient Ascent Iterations T . As
shown in Figure 8, both the empirical robust accuracy and

certified robust accuracy consistently increase as T increases,
particularly at larger certification radii. The underlying reason
is that a larger T allows for a more optimized smoothing
parameter σ∗

x for each input x, thereby expanding the certified
radius and leaving room for further improvements in strong
defense methods. However, excessively increasing T also
leads to higher computational costs. Therefore, defenders must
choose an appropriate T based on specific requirements.
Effect of Optimized-Noise Model Count Mo. Considering
that the final prediction is obtained through an ensemble of
multiple models, we further investigate the impact of the
number of optimized-noise models on certification perfor-
mance (i.e., ERA and CRA) under different certification radii.
Specifically, we trained 50 models with fixed noise σ0 and
150 models with optimized noise σ∗

x, forming an ensemble
of 200 models (i.e., Mf = 50, Mo = 150). This setup is
compared against two baselines: one where all models are
trained with fixed noise (i.e., Mf = 200, Mo = 0), and
another where all models are trained with optimized noise
(i.e., Mf = 0, Mo = 200). We evaluate the certification
performance of these three settings under various noise levels
(i.e., σ = 0.25, 0.5, 1.0) and across different certification radii.
As shown in Figure 9, the ensemble trained entirely with
optimized noise achieves significantly higher ERA and CRA
at all certification radii, compared to those incorporating a
portion of fixed-noise models. These results indicate that in-
creasing the number of optimized-noise models helps improve
the robustness of the ensemble, while introducing fixed-noise
models may limit the overall performance.
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(a) clean image (b) clean image (c) clean image (d) clean image

(e) σ∗
x = 0.311 (f) σ∗

x = 0.248 (g) σ∗
x = 0.236 (h) σ∗

x = 0.299

Fig. 10: Examples of clean and perturbed images using opti-
mized noise σ∗

x (initialized from σ0 = 0.25).

Visualization of Optimized Noise σ∗
x. We hereby randomly

select two input images from two categories, respectively, and
perform noise optimization for each input image x, starting
from a fixed initial noise level of σ0 = 0.25, to obtain the
optimal noise σ∗

x that maximizes the certified radius. As shown
in Figure 10, the optimized noise values vary significantly
across different inputs, with some being larger and others
smaller. Notably, even within the same category, there exist
considerable differences among the optimized results. These
findings further demonstrate the necessity of adaptively opti-
mizing the noise for each individual input.

E. The Analysis of Computational Complexity

In this section, we analyze the computational complexity of
Cert-SSB under an experimental setup running Ubuntu 22.04,
equipped with an Intel Xeon Silver 4214 CPU, a Tesla V100-
PCIE-32GB GPU, and CUDA 12.0. We particularly focus on
the computational costs of the noise optimization and storage-
update-based certification processes.
The Complexity of Noise Optimization. Let N , λ, T denote
the number of samples in the training set, the poisoning rate,
and the number of stochastic gradient ascent (SGA) iterations
used for noise optimization, respectively. Since Cert-SSB first
poisons a small subset of selected samples and then performs
T rounds of SGA optimization on each poisoned sample
to obtain the optimized noise, its computational complexity
is O(N · λ · T ). Furthermore, Cert-SSB supports parallel
processing, as the optimization process for each sample is
independent. In practice, Cert-SSB requires only one round
of SGA iteration to obtain sufficiently optimized noise. For
instance, on the CIFAR-10 dataset, computing optimized noise
for a single sample takes approximately 2 seconds. Therefore,
the additional computational overhead of our method in the
noise optimization phase is acceptable.
The Complexity of Storage-update-based Certification. In
this stage, the defender adopts a storage-update-based method
to dynamically update the certification process for n samples,
ensuring that the certification regions of different samples do
not overlap. The computational complexity of this step is
O(n), and it also supports parallel processing. For example, in
batch mode, executing the storage-based update certification
method on 2000 testing samples takes only about 2 seconds.

Arguably, this computational overhead is negligible compared
to the improvement in certification performance.

VI. CONCLUSION

In this paper, we revisited existing randomized smoothing-
based certified backdoor defense methods and revealed that
using fixed noise for all samples led to suboptimal certification
performance. To address this issue, we proposed a sample-
specific certified backdoor defense method (i.e., Cert-SSB),
which employed stochastic gradient ascent to iteratively opti-
mize sample-specific noise in order to maximize the certifica-
tion radius. The optimized noise was then injected into the poi-
soned training set to retrain multiple smoothed models, whose
predictions are aggregated to obtain the final robust prediction.
Since existing certification methods typically assumed a fixed
noise level and thus did not apply to our setting, we further
introduced a storage-update-based certification approach to
improve certification accuracy and reliability. Extensive ex-
periments on multiple benchmark datasets demonstrated that
Cert-SSB significantly outperformed existing methods in terms
of certification performance. We hope this work inspires future
exploration of how sample-specific noise relates to model
decision boundaries for better personalized certification.
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APPENDIX

A. The Detailed Algorithm for Cert-SSB

Algorithm 1 details the training procedure of Cert-SSB.

Algorithm 1 Cert-SSB Training: Train the Model with Opti-
mized Noise

1: Input: Stochastic gradient ascent iterations T , poisoned
training dataset Dp = {(xi + ∆i, ỹi)}ni=1, initial noise
scale σ0, number of models M , learning rate α

2: Output: Model collection {(g1, µ1), . . . , (gM , µM )}
3: for m = 1, . . . ,M do
4: Step 1: Optimize Sample-Specific Noise σ∗

x

5: Initialize σ0
x = σ0

6: for t = 0, . . . , T − 1 do
7: Sample Ẑ1, ..., ẐJ(D̂1, ..., D̂J) ∼ N (0, I)
8: Compute class probabilities:

φ(σj
x) =

1
J

∑J
j=1f((x+Bx+σt

xẐj ,D+δ+σt
xD̂j))

9: Define FA(σ
t
x) = maxy φy, yA = argmaxy φy , and

FB(σ
t
x) = maxy ̸=yA

φy

10: Compute certified radius:
r(σt

x) =
σt
x

2 (Φ−1(FA)− Φ−1(FB))
11: Update σt+1

x = σt
x + α▽σt

x
r(σt

x)
12: end for
13: Set σ∗

xi
= σT

x for all t
14: Step 2: Robust Training Process
15: Sample noise vectors bm1 , ..., bmn ∼

∏n
i=1N (0, I)

16: Construct augmented dataset: Dm = {(xi + ∆i +
σ∗
xi
bm,i)

n
i=1})

17: Train model gm(x,D, σ∗
x) = train model(Dm)

18: Sample µm ∼ N (0, σ2
0Id) deterministically using ran-

dom seed based on hash(gm(x,D, σ∗
x))

19: end for

B. Proof of Theorem 1

Here we provide the proof for Theorem 1. As the proof is
based on statistical hypothesis testing, we begin by defining
the type-I and type-II error probabilities. Formally, we denote
the type-I error probability under the null hypothesis H0 as
α(ϕ) = α(ϕ;H0) and the type-II error probability under the
alternative hypothesis H1 as β(ϕ) = β(ϕ;H1). To facilitate
the proof of Theorem 1, we first state and apply Lemma
1, which establishes a key robustness condition based on
hypothesis testing. This result ensures that the classifier’s
decision remains stable under specified probability constraints,
even in the presence of perturbations.

Lemma 1 ([24]). Let g be the sample-specific smoothed
classifier defined as g(x,D, σ) = argmaxy Pϵ(Z,D)

(
f(x +

Z,D + D) = y
)
, where the smoothing distribution is given

by X := (Z,D), with Z taking values in Rd and D being a
collection of n independent Rd-valued random variables: D =
(D(1), · · · , D(n)) = (σ∗

x1
ϵ1, · · · , σ∗

xn
ϵn), where ϵ ∼ N (0, I).

Let Bx ∈ Rd and let δ = (∆1,∆2, ...,∆n) for backdoor

patterns ∆i ∈ Rd. Let yA ∈ Y and let PA, PB ∈ [0, 1] such
that yA = g(x,D, σ) and

Pϵ(g(x,D, σ) = yA) ≥ PA ≥ PB ≥ max
y ̸=yA

Pϵ(g(x,D, σ) = y),

(1)
If the optimal type II errors, for testing the null X ∼ H0

against the alternative X + (Bx, δ) ∼ H1, satisfy

β∗(1− PA;H1) + β∗(PB ;H1) > 1, (2)

then it is guaranteed that yA = g(x+ Bx,D + δ, σ).

Building upon Lemma 1, we derive Theorem 1, which
formally guarantees robustness by providing an explicit cer-
tified radius within which the classifier’s prediction remains
unchanged. The key idea is to ensure that the likelihood ratio
test satisfies the probability bounds established earlier.

Theorem 1 (Certified Robustness of Cert-SSB). Let Bx ∈
Rd and let δ := (∆1,∆2, ...,∆n) for backdoor patterns
∆i ∈ Rd, and let D be a training set, and let smoothing
noise Ẑ ∼ N (0, I), D̂ ∼ N (0, I). Let yA ∈ Y , such as
yA = g(x + Bx,D + δ) with class probabilities satisfying
Pϵ(Ẑ,D̂)(f(x + Bx + σ∗

xẐ,D + δ + σ∗
xD̂) = yA) ≥ PA ≥

PB ≥ maxy ̸=yA
Pϵ(Ẑ,D̂)(f(x+Bx+σ∗

xẐ,D+δ+σ∗
xD̂) = y).

Then, we have g(x+Bx,D) = g(x+Bx,D+δ) = yA for all

backdoor patterns ∆ satisfying
√∑n

i=1 ∥∆i∥22 ≤ r(g;σ∗
xi
),

where the certified robust radius r is given by

r(g;σ∗
xi
) =

√∑n
i=1(σ

∗
xi

)2

2

(
Φ−1(PA(σ

∗
xi
))− Φ−1(PB(σ

∗
xi
))
)
.

(3)

Proof. We prove this theorem by directly applying Lemma
1. Consider the smoothing noise jointly distributed as X =
(Z,D) and define the perturbed and unperturbed input distri-
butions as follows: X̃ = (Bx, δ) +X, X̃ ′ := (Bx, 0) +X .
Correspondingly, the probability of the smoothed classifier can
be expressed as: Pϵ(g̃(x,D) = y) = Pϵ(g(x+ Bx,D + δ) =
y). By assumption, the classifier satisfies:

Pϵ(g̃(x,D) = yA) ≥ PA, max
y ̸=yA

Pϵ(g̃(x,D) = y) ≤ PB .

(4)
Applying Lemma 1, it follows that if β(ϕa) + β(ϕb) > 1,

then the classifier output remains unchanged under perturba-
tions, ensuring: g̃(x,D) = g̃(x,D − δ) = yA. To verify this
condition, we analyze the likelihood ratio between X̃ and
X̃ ′ at z = (x, b), given by Λ(z) = exp{

∑n
i=1(−

∥∆i∥2

2(σ∗
xi

)2
+

bTi ∆i

(σ∗
xi

)2
)}. Since Gaussian distributions assign probability den-

sity rather than discrete probabilities, any likelihood ratio test
takes the form:

ϕt(z) =

{
1 Λ(z) ≥ t,
0 Λ(z) < t.

(5)

To compute the error probabilities, the threshold for P ∈

[0, 1] is given by: tP := exp(Φ−1(P )

√∑n
i=1

∥∆i∥2
2

(σ∗
xi

)2 −∑n
i=1

∥∆i∥2
2

2(σ∗
xi

)2 ) and note that α(ϕ(tP )) = 1 − P since

α(ϕ(tP )) = 1 − Φ(
log(tP )+ 1

2

∑n
i=1

∥∆i∥2
2

(σ∗
xi

)2√∑n
i=1

∥∆i∥2
2

(σ∗
xi

)2

), where Φ is
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Fig. 1: Certified performance (i.e., ERA, CRA) under different
certification radii on the MNIST dataset in the all-to-one setting
with various noise levels (0.12, 0.25, 0.5, and 1.0). The first
column corresponds to the one-pixel attack, the second to the
four-pixel attack, and the third to the blending attack.
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Fig. 2: Certified performance (i.e., ERA, CRA) under different
certification radii on the MNIST dataset in the all-to-all setting
with various noise levels (0.12, 0.25, 0.5, and 1.0). The first
column corresponds to the one-pixel attack, the second to the
four-pixel attack, and the third to the blending attack.
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Fig. 3: Certified performance (i.e., ERA, CRA) under different
certification radii on the CIFAR-10 dataset in the all-to-one
setting with various noise levels (0.12, 0.25, 0.5, and 1.0). The
first column corresponds to the one-pixel attack, the second to
the four-pixel attack, and the third to the blending attack.
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Fig. 4: Certified performance (i.e., ERA, CRA) under different
certification radii on the CIFAR-10 dataset in the all-to-all
setting with various noise levels (0.12, 0.25, 0.5, and 1.0). The
first column corresponds to the one-pixel attack, the second to
the four-pixel attack, and the third to the blending attack.

the CDF of the standard normal distribution. For the test
ϕa = ϕta with ta ≡ tPA

, the type I error probabil-
ity satisfies: α(ϕa) = 1 − PA. Similarly, for ϕb = ϕtb

with tb ≡ t1−PB
, we have: α(ϕa) = PB . Evaluat-

ing the type II error probabilities, we obtain: β(ϕa) =

Φ(Φ−1(PA) −
√∑n

i=1
∥∆i∥2

2

(σ∗
xi

)2 ), β(ϕb) = Φ(Φ−1(1 − PB) −√∑n
i=1

∥∆i∥2
2

(σ∗
xi

)2 ). Substituting these into condition β(ϕa) +

β(ϕb) > 1, we conclude that the inequality holds if and only

if:
√∑n

i=1 ∥∆i∥22 <

√∑n
i=1(σ

∗
xi

)2

2

(
Φ−1(PA)− Φ−1(PB)

)
.

Rearranging, the certified robust radius is obtained as:

r(g;σ∗
xi
) =

√∑n
i=1(σ

∗
xi

)2

2

(
Φ−1(PA)− Φ−1(PB)

)
. Thus, the

classifier g remains robust against backdoor patterns, ensuring:
g̃(x,D) = g̃(x,D − δ) = yA.

C. Additional Experimental Results

We hereby present additional experimental results, with
all experimental settings consistent with those described in

Section V-B. Figures 1-2 illustrate the certification curves for
the MNIST dataset under the all-to-one and all-to-all settings,
respectively. Figures 3-4 show the certification curves for the
CIFAR-10 dataset under the all-to-one and all-to-all settings.
The results are consistent with the conclusions in Sections V-B
and V-C, demonstrating that our method maintains strong cer-
tification performance (i.e., empirical robust accuracy (ERA)
and certified robust accuracy (CRA)) across different datasets.
In particular, in the all-to-all setting, our method achieves a
significant improvement in certified robust accuracy, further
validating its effectiveness and generalization capability.
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