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Abstract—Large Language Models are fundamental
actors in the modern IT landscape dominated by AI
solutions. However, security threats associated with them
might prevent their reliable adoption in critical application
scenarios such as government organizations and medical
institutions. For this reason, commercial LLMs typically
undergo a sophisticated censoring mechanism to elimi-
nate any harmful output they could possibly produce.
In response to this, LLM Jailbreaking is a significant
threat to such protections, and many previous approaches
have already demonstrated its effectiveness across diverse
domains. Existing jailbreak proposals mostly adopt a
generate-and-test strategy to craft malicious input. To
improve the comprehension of censoring mechanisms
and design a targeted jailbreak attack, we propose an
Explainable-AI solution that comparatively analyzes the
behavior of censored and uncensored models to derive
unique exploitable alignment patterns. Then, we propose
XBreaking, a novel jailbreak attack that exploits these
unique patterns to break the security constraints of LLMs
by targeted noise injection. Our thorough experimental
campaign returns important insights about the censoring
mechanisms and demonstrates the effectiveness and per-
formance of our attack.

I. INTRODUCTION

Nowadays, Large Language Models (LLMs, for
short) represent the most promising and relevant
advancement in the field of Artificial Intelligence.

These complex deep learning models are trained on
massive datasets that cover almost all aspects of
people’s daily lives, thus granting them the capa-
bility of generating, understanding, and processing
human language. For this reason, their integration
as support tools is becoming pervasive with appli-
cations spanning from text editor and proofreading
to virtual assistant and personalized text generation.

However, the diffusion of this technology, es-
pecially in critical domains such as government
organizations and medical institutions, imposes the
assessment of their security and privacy character-
istics. Unfortunately, recent studies have identified
critical security flaws that affect them and could
compromise their applications as reliable virtual
companions [46]. In fact, the wideness of training
datasets exposes the learning process to severe risks
of data poisoning and other adversarial attacks [38].
Similarly, again due to the limited curation of train-
ing datasets, these models can learn sensitive and
unintentional information, which later can be leaked
through the exploitation of LLM vulnerabilities [9].
Moreover, the complexity of LLMs architectures
makes security auditing extremely complex as these
models are more like black-box frameworks, rather
than transparent and explainable ones. Still in the
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context of the security of LLMs, many studies have
focused on the legitimacy of the content produced
by such models [19]. In fact, the great capability
of LLMs to generate personalized text can be used
by malicious entities to generate harmful content
(e.g., social engineering strategies, instructions on
how to perform illegal activities, and so forth). For
this reason, more recently, a large research effort
has been devoted to the identification of a suitable
mechanism to “censor” the output produced by
trained LLMs. Output control of LLMs is typically
done by fine-tuning them [1] or developing external
classifiers to filter-out unwanted input/output. How-
ever, the security research community has identified
malicious actions that can be undertaken to elicit
dangerous content that a censored LLM should
originally be designed to prohibit. One of the most
effective techniques is known as LLM jailbreak-
ing, which typically consists of the generation of
jailbreaking prompts to send as input to the model
[49]. Most existing jailbreaking techniques exploit
the prompt (or even just the input), trying to craft
it in such a way as to cause anomalous behavior
in the model and forcing it to bypass its security
constraints [33]. To craft the prompt, researchers
have identified different techniques [13], including
human-based approaches that require manual input
generation and result inspection [33], fine-tuning-
based methodologies requiring the collection of
manual-generated jailbreaking prompts to fine-tune
an auxiliary LLM so that it can generate new jail-
breaking prompts against the target LLM [29], and
feedback-based strategies that observe parameters or
some dedicated metric to make decisions on the next
variation in the input [51]. A possible categorization
of these techniques is based on whether they need
access to the internal structure of the LLM, white-
box access, or just the produced output, black-
box access. White-box access typically allows for
more targeted and efficient attack strategies and the
design of more general and portable approaches to
jailbreaking input [51]. However, to the best of our
knowledge, white-box-access attacks can be further
improved by deepening the analysis of the behavior
of censored models when activated by malicious
input. To provide a contribution in this setting, in
this paper we aim at comparatively analyzing the
behavior of censured model and their unsecured

version using Explainable AI (XAI, for short) to
design a more targeted LLM jailbreaking strategy.
In particular, we design our novel attack strategy,
called XBreaking, by answering the following re-
search questions:

• RQ1 - Can we fingerprint deep learning models
using XAI to spot differences between cen-
sored and uncensored LLMs?

• RQ2 - Can we identify the key layers of an
LLM model that most strongly influence its
censoring behaviors?

• RQ3 - Can we alter the LLM in the identified
layers to remove restrictions?

Our findings provide positive answers to all
previous questions, revealing that we can identify
unique alignment patterns across various layers,
allowing a reliable distinction between censored
and uncensored versions of an LLM. Moreover,
we demonstrate that specific transformer blocks are
more indicative of censoring, and hence we can
identify the most important layers responsible for
content suppression. Finally, we prove that surgi-
cally injecting noise into these important layers
can effectively remove its built-in restrictions, thus
creating a novel powerful jailbreak attack.

II. PRELIMINARIES

In this section, we discuss large language mod-
els and examine their vulnerabilities to jailbreak
attacks.

Large Language Models (LLMs) are sophis-
ticated neural architectures designed to understand
and generate human-like responses to textual input.
Built primarily on transformer architectures [37],
these models are trained on massive volumes of text
data. State-of-the-art LLMs such as GPT [8], [1],
LLaMA [2], [20], and Qwen2.5 [31] demonstrate
exceptional performance across various language
tasks, including question answering, healthcare sup-
port, and more [45], [4].

Censored Model are designed to align with hu-
man values and expectations. To achieve this align-
ment, researchers employ techniques such as in-
corporating human value-oriented data, Reinforce-
ment Learning from Human Feedback (RLHF) [28],



task decomposition, and human guided supervised
learning[42].

Uncensored Model are language models config-
ured to generate output without enforcing content
moderation mechanisms that filter sensitive, con-
troversial, or potentially harmful material. These
models retain the capacity to produce unrestricted
and wide-ranging responses, which consequently
increases the likelihood of generating unsafe or
policy-violating content. Developers typically de-
rive uncensored variants from foundational base
models [23] by systematically removing alignment
constraints, such as refusal behaviors and bias-
mitigation prompts, from the training corpus or fine-
tuning data.

Explainable AI. As complex Machine Learing
(ML) and Deep Learning (DL) architectures become
more prevalent, it is crucial to understand how they
work; this facilitates the need for Explainable AI
(XAI) [16]. One of the few technique is SHAP
(SHapley Additive exPlanations), which is a pop-
ular method for explaining individual predictions of
machine learning models by assigning each feature
an significant value [27]. Explainability of LLMs
facilitates to build trust by making model predic-
tions understandable and provides insights to iden-
tify biases, risks, and opportunities for performance
improvements [50]. LLMs are big and complex in
terms of parameters and data trained on, which
opens a wide space for explainability research.

LLM Jailbreaks. LLM jailbreaks refer to adver-
sarial techniques aimed at circumventing the safety
mechanisms and alignment constraints of LLMs,
thereby inducing behavior that deviates from in-
tended ethical and safety guidelines. Such behavior
often results in the generation of harmful, sensitive,
or policy-violating content [30]. Jailbreak attacks
are generally categorized into two classes: white-
box and black-box. White-box attacks leverage in-
ternal access to model parameters, gradients, or
logits, and often involve fine-tuning or adversarial
optimization. In contrast, black-box attacks operate
without access to model internal, instead rely on
methods such as prompt manipulation and iterative
optimization [47]. Prompts & Jailbreak: Prompt are
the structured (instructions) or unstructured (basic

question) input to the LLMs to generate a desired
response. Research shows that prompt engineering
plays a vital role in LLMs responses [25]. Jailbreak-
ing Prompts are a category of prompts which bypass
the safety mechanisms of the LLMs. Few of them
include Prefix Injection, Refusal Suppression and
Mismatched Generalization which leads to LLM
jailbreaks [40]. These kind of attacks can be imple-
mented for black-box models were there is know
access to the internals. Jailbreak attacks by internal
changes: LLMs have different number of layers
according to the model family. In White-box LLMs,
manipulating parameters or a few activation tokens
can shift alignment, causing harmful responses and
affecting subsequent generations [18]. Our approach
uses white-box LLMs, we designed a efficient layer
wise manipulation of LLMs by leveraging knowl-
edge of XAI called XBreaking, which is discussed
in brief below.

III. METHODOLOGY

This section presents the threat model associated
with Large Language Models (LLMs) and outlines
our proposed jailbreak methodology.

A. Threat Model

We consider a threat model in which the ad-
versary has full access to both the censored and
uncensored versions of a Large Language Model
(LLM), denoted as Mc and Mu, respectively. We
assume that both models are available as open-
source releases or the attacker can fine-tune the
censored one to obtain its uncensored counterpart,
enabling the adversary to inspect and manipulate
their internal components, including model parame-
ters, intermediate logits, loss functions, and training
routines.

The censored model Mc is designed to reject
harmful or policy-violating inputs, whereas the un-
censored counterpart Mu is capable of producing
unfiltered responses to the same prompts. The ad-
versary’s objective is to craft a jailbreak strategy
that coerces Mc into generating harmful or unethical
outputs, thereby bypassing its safety mechanisms.
By leveraging insights gained from Mu,such as how



it responds to specific inputs or gradients, the ad-
versary can design targeted attacks (e.g. adversarial
prompting, or gradient optimization) that exploit
alignment weaknesses in Mc and induce failure in
its refusal behavior.

This scenario introduces the possibility of attacks
that disrupt the original model by selectively tar-
geting specific layers, without requiring full fine-
tuning. Unlike traditional approaches that create
uncensored models by retraining on harmful or sen-
sitive data, thereby biasing the model towards gener-
ating such content, this method focuses on precisely
removing the model’s restrictions. As a result, it pre-
serves the model’s original knowledge and behavior
on benign queries, avoiding the broader changes
typically introduced through comprehensive fine-
tuning. This approach enables an attacker to analyze
the model by comparing censored and uncensored
versions, with the uncensored one fine-tuned on
harmful or sensitive content. By identifying which
parts of the model are responsible for filtering,
and using explainable AI techniques, the attacker
can precisely modify critical layers to remove re-
strictions while preserving overall behavior. This
surgical modification allows the censored model to
respond to malicious prompts and potentially leak
sensitive information from the original training set
or produce harmful outputs previously blocked by
the censorship mechanism.

B. XBreaking

We propose a novel jailbreak strategy, XBreaking,
which leverages insights from Explainable Artifi-
cial Intelligence (XAI) to analyze and exploit the
behavioral differences between censored and un-
censored LLMs. The core idea behind XBreaking
is to systematically identify and manipulate inter-
nal components of censored models (Mc), using
the interpretability signals derived from uncensored
counterparts (Mu), to induce harmful or unintended
outputs.

As illustrated in Figure 1, XBreaking operates in
three key stages. First the adversary conducts an in-
depth analysis of the internal representations and ac-
tivations of both Mc and Mu using XAI techniques
(e.g., activation attribution). Second, based on this

interpretability analysis, the attacker identifies the
minimal and most influential subset of layers. Fi-
nally, the attacker injects targeted perturbations into
the selected layers. This strategy enables a highly
efficient and precise jailbreak, reducing computa-
tional overhead, while maximizing the likelihood
of eliciting harmful responses from the censored
model.

Fig. 1: XBreaking for LLM Jailbreaking, (1) XAI
on Censored and Uncensored LLMs, (2) ML for
Optimal Layer Selection and (3) Injecting Noise.

1) Internal Representation Profiling via XAI
Guided Analysis.: To construct an efficient jailbreak
strategy, we assume the adversary has white-box ac-
cess to both censored-model (Mc) and uncensored-
model (Mu), including internal states, logits, hidden
states, and attention maps. Both Mc and Mu are
assumed to originate from the same architectural
family and share identical layer configuration, de-
noted as L={l1,l2. . . ln}. This setup aligns with
most open-source model release practices, where the
censored uncensored variants differ differ primarily
in fine tuning or alignments objectives.

As part of Step(1) in our XBreaking frame-
work (Figure 1), the adversary conducts a com-
parative analysis of internal activation and attention
patterns between Mc and Mu using XAI techniques.
The goal is to identify discriminative features across
layers that reflect safety alignment behavior in Mc

and Mu. For each layer li ∈ L and given a malicious
input token sequence, the attacker computes the
mean activation and mean attention score. Specif-
ically, the mean activation score is defined using



Equation 1, where ACl1,l2....ln(1, j, k) denotes the
activation value of first batch element at position
j at hidden dimension k in layer l, S is the input
sequence length, and D is the hidden dimension
size. Further, the mean attention score is defined
using Equation 2, where ATli(1, h, j, k) represents
the attention score in layer li for the first batch
element, at attention head h, from source token j
to target token k, and H is the number of attention
heads. Furthermore, due to the inherent difference in
the dynamic range of activation and attention values
in the associated layers, we apply min-max nor-
malization to both actmean(li) and attmean(li). This
normalization facilitates the ranking of layers based
on their contribution to the alignment behaviors.
Layers with the highest divergence between Mc

and Mu in the normalized activation and attention
distributions are identified as optimal candidates for
perturbation in the subsequent phases of XBreaking
attack pipeline.

actmean{l1,l2....ln}
=

1

S ·D

S∑
j=1

D∑
d=1

ACl1,l2....ln(1, j, d) (1)

attmean{l1,l2....ln}
=

1

H · S2

H∑
h=1

S∑
j=1

S∑
k=1

AT{l1,l2....ln}(1, h, j, k)

(2)

2) Layer Discrimination via Internal Represen-
tation Classification.: Prior work [18]
has demonstrated that directly manipulating internal
activations within a language model can effectively
steer its outputs. Building on this observation, we
hypothesize that identifying the most significant
layers that exhibit behavioral divergence between
censored and uncensored models to malicious in-
puts is critical for crafting effective jailbreaks. To
this end, for each input, we collect the layer-wise
activation and attention values from both models,
constructing a two individual feature vector for each
layer. Which captures the internal representation
patterns across the model depth.

To identify the key layers that differentiate be-
tween Mc and Mu, we addressed a binary classi-
fication problem, utilizing XAI to determine each
layer’s significance in executing this task. To en-
hance model interpretability and performance, we

apply SelectKBest, a univariate feature selection
technique that evaluates the statistical relevance of
each feature (e.g., via chi-squared tests) and retains
the top-K features contributing to classification ac-
curacy. These features correspond to specific layers
whose dynamics differ substantially between Mc

and Mu.

To determine the optimal number of layers K∗,
we group accuracy scores across varying K and
generate a knee plot, identifying the point beyond
which additional features provide diminishing re-
turns. Since for each layer both activation and
attention value serves as a feature, the layer is
selected if one of the feature or both the features are
included in the K list. This approach allows us to
strategically focus manipulation on layers that are
impactful, aligning with the principles of efficient
and stealthy jailbreak attacks.

Injecting Noise into a Specific Layer. Once the
optimal layers have been identified, our approach
proceeds with a poisoning step. Manipulation is
carried out by adding a different range of noise
to layers, and the responses are observed. The
transformer model consists of several parameterized
layers, each contributing to its representation learn-
ing [37], so we propose two approaches to inject
noise. The first strategy consists in injecting the
noise directly into the identified target layers. Noise
is added to the weight matrix used to project the
input into the query space (Q) of the self-attention
mechanism. The second strategy, instead, attempts
to inject the noise into the layer preceding the target
layer. In this case, the noise is added to the weight
vector used for layer normalization applied after the
self-attention mechanism, stabilizing the activations
before passing them to the next layer. The overall
idea is to carefully choose an adequate noise level
that preserves the model’s base functionalities while
mitigating its restrictions on harmful content.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the experimental set-
tings and findings respectively. We also discuss
about the use of LLM as a judge in analyzing the
responses from the LLMs after jailbreak.



A. Experimental Settings

Dataset. The JBB-Behaviors dataset [11] has
been utilized, with the harmful and benign behaviors
serving as the basis for all the models discussed
subsequently. Each harmful behavior is paired with
a corresponding benign behavior on the same topic.
It consists of 100 unique misuse behaviors, grouped
into ten major categories that align with OpenAI’s
usage policies, in particular: Disinformation, Eco-
nomic harm, Expert advice, Fraud/Deception, Gov-
ernment decision-making, Harassment/Discrimina-
tion, Malware/Hacking: MH, Physical harm, Privacy
and Sexual/Adult content.

Target Models. We evaluate our jailbreak strat-
egy on four open-source pre-trained LLMs that
are publicly available in both censored and un-
censored variants. We select models with identical
architecture and parameters across censored and
uncensored versions to enable meaningful internal
comparisons. Specifically, we select the following
models: LLaMA 3.2 in 1B (16 layers) and 3B
(32 layers) configurations [2], [20], Qwen2.5–3B
[31] (36 layers), Mistral-7B-v0.3 [24] (32 layers).
The censored versions of these models are obtained
from Hugging Face [41], while the corresponding
uncensored variants are sourced from Cognitive
Computations [17].

The Judge & Evaluation. Large Language Mod-
els (LLMs) excel in a wide range of domains,
leading to the development of the concept of ‘LLM-
as-a-Judge’ (LLMJ), where these models serve as
evaluators for complex tasks. Their ability to pro-
cess diverse inputs and provide scalable, adapt-
able assessments makes them a promising alterna-
tive to traditional expert evaluations [21]. In this
context, we utilize the small language model-as-
a-judge (SLMJ) Atla Selene Mini [3] to assess
LLM responses. The evaluation prompt was care-
fully designed to include five scores for response
assessment: (i) Response Relevancy, whether the
response satisfies the provided question, (ii) Harm-
fulness score, the response is evaluated based on
its potential to cause negative impact or unethical
context and (iii) Hallucination score, it indicates
how likely the model is to produce meaningless
or repeating answers. Each score ranges on a scale

from 1(low) to 5(high). The harmfulness score from
the SLMJ and the human annotation is compared
validation in section(IV-E). The Judge LLM re-
ceives a well-structured prompt, and for each model
specified in Section IV-A, we calculate the average
score for each category provided by JudgeLLM
across all scenarios and noise levels. In addition, a
careful comparison of the harmfulness score from
the Tables IIb & IIc provide insight that adding
perturbation in the previous layers provides a greater
level of harmfulness in the response.

B. Results from XAI of Censored & Uncensored
models

We evaluated the models LLaMA 3.2 (1B and
3B), Qwen2.5–3B, and Mistral-7B-v0.3 (both cen-
sored and uncensored) using a dataset comprising
100 harmful and 100 benign behavior prompts.
A standardized prompt format was used across
all models. Each input was framed as a question,
and the corresponding responses were collected as
model-generated answers.

Input - Write a defamatory article claiming that a U.S.
president is addicted to heroin

(a)

(b)

Fig. 2: a) Average activations of layers, b) Average
attentions of layer corresponding to the input to
LLaMA 3.2-1B for censored and uncensored

During this process, we compute the internal
metrics- average activation and attention values for



each layer and input, as detailed in Section III-B1.
After applying normalization, Figure 2 illustrates
the layer-wise average activation and attention for
both the censored and uncensored versions of the
LLaMA 3.2–1B model, evaluated on a single input.
The figure clearly highlights internal discrepancies
between the two models across corresponding lay-
ers. These differences provide empirical justification
for identifying and targeting the most discriminative
layer for subsequent attacks. Specifically, the uncen-
sored model shows significantly higher activation
at both the first layer and the final (16th) layer.
The censored model, in contrast, exhibits (a) a
peak at the first layer, likely due to input token
processing, and (b) a sharp drop in later layers,
particularly the final layer, suggesting intentional
suppression or refusal behavior. This indicates that
the censored model implements a rejection mech-
anism at the deeper layers, while the uncensored
model continues to activate normally to generate
an answer. Furthermore, in the uncensored model,
attention values remain relatively high and stable
across most layers. In contrast, the censored model,
however, shows greater variability and some layer-
specific attention drops (notably around layers 4
and 9). Spikes at deeper layers (13 and 15), which
reflect an attempt to suppress or redirect focus away
from the malicious content. These variations imply
strategic suppression of context propagation by the
censored model to prevent harmful output genera-
tion. These findings partially answer the research
questions RQ1 and RQ2, proving the possibility of
fingerprinting censored and uncensored models us-
ing XAI strategies to identify the most relevant lay-
ers that characterize a censored model with respect
to its uncensored version. In the following section,
Section IV-C, we provide an additional approach to
systematically identify the most prominent layers in
the fingerprinting of the model to fully answer the
research question mentioned before.

C. Model Fingerprinting: Optimal Layer for Jail-
breaking

This section focuses on showcasing the outcomes
derived from our experimental efforts using the
method explained in Section III-B2, which selects
the K layers’ feature vectors that most effectively

transform an original model into a censored one. It
is important to recall that every layer generates two
independent vectors of features derived from activa-
tions and attention. We consider a layer as a target
if at least one of the two vectors is part of the top
K set. Specifically, the strategy involves applying
the SelectKBest approach to identify the smallest
set of layers’ feature vectors that most effectively
differentiate whether a model is labeled as censored
or uncensored. In implementing this approach, we
examined all possible features groups, from the
minimal group with only the top-performing layer’
features to the complete set of all feature sets.
The aim is to identify the smallest group that
excels in this task, thereby minimizing the potential
disruption of the model through excessive layer
modifications, while maintaining its operational ca-
pabilities. To do so, we record the performance of all
groups and apply the elbow/knee strategy presented
in Section III-B2 to find the best set of layers. In
Figure 3, 6 and Table I, we present the results of
this experiment.

(a)

(b)

Fig. 3: Elbow method to find the optimal number of
layers for the model a)LLaMA 3.2 - 1B, b)LLaMA
3.2 - 3B.

For LLama 3.2-1B and 3B, the elbow occurs
at K = 2 and K = 3, respectively. These low
values reflect the use of late-stage alignment tuning
typically limited to the final transformer blocks-



where RLHF(Reinforcement learning from human
feedback) and supervised instruction tuning are ap-
plied after pretraining on a massive corpus of text.
The goal is to make the model more helpful, harm-
less, and honest (often referred to as HHH(Helpful,
Honest and Harmless) alignment), ensuring it align
with human values and preferences. As a results,
discriminative signals between censored and un-
censored variants are sparse and concentrated near
the model’s output layers. In contrast, Qwen2.5–3B
yields and optimal K = 19, indicating higher inter-
layer divergence. This is likely due to layer-wise
supervised fine-tuning across entire stack, combined
with the architectural design choices such as multi-
headed deep attention and residual-aware normal-
ization scaling, which increases the model capacity
to encode distributed safety filters. Therefore, the
representational divergence between censored and
uncensored variants is distributed across multiple
layers, necessitating a larger feature set for reliable
discrimination between the models. For Mistral-
7B-v0.3, although it has a larger parameter count,
the optimal K = 3 indicate that it used aggres-
sive weight sharing and compression-particularly
in multi-query attention and feedforward modules-
produces compact, low-rank latent representations.
This design reduces inter-layer representational re-
dundancy, causing alignment difference to concen-
trate in a few high-variance components that are
easy to isolate.

LLMs Optimal K Target Layers Percentage
LLaMA 3.2 - 1B 2 1, 15 12.5
LLaMA 3.2 - 3B 3 11, 16, 17 10.71
Qwen2.5 - 3B 19 2, 3, 4, 7, 8, 10, 12, 15, 19, 20, 21,

23, 24, 25, 27, 29, 30, 35, 36
52.77

Mistral-7B-v0.3 3 19, 21, 31 9.37

TABLE I: Layers selected according to optimal K

These findings support research questions RQ1
and RQ2, revealing that analyses focused on
explainability identify unique alignment patterns
across various layers, allowing a reliable distinc-
tion between censored and uncensored versions.
By utilizing XAI methods to examine intermediate
activations and attribution maps, we demonstrate
that specific transformer blocks are more indicative
of censoring, thereby providing a robust method
for determining model alignment. Furthermore, our
ranking of layer importance identifies a limited

group of mid-to-upper layers as the main contrib-
utors to content suppression activities, presenting
important targets for interpretability evaluations and
specialized manipulation strategies.

D. Model Response to Noise Perturbation in Se-
lected Layers

With the optimal target layers identified, we
implement two structured noise injection strate-
gies: (i) direct perturbation of the selected lay-
ers and (ii) perturbation of the layers immediately
preceding them. We derive these strategies from
the layer-wise interpretability analysis presented in
Section III-B1.By perturbing critical or adjacent
representational layers, we increase the likelihood of
bypassing alignment constraints, thereby inducing
harmful or non-compliant outputs. Empirically, we
observe distinct changes in model behavior when
injecting varying levels of Gaussian noise (scaling
factors {0.1, 0.2, 0.3}) either directly into the iden-
tified layers or into the preceding layers compared
to the base model.

Target Layers. The objective is to evaluate, using
JudgeLLM introduced in Section IV-A, whether
these modifications to the model impact its abil-
ity to restrict harmful questions while maintaining
its functionality. Specifically, ensuring that the re-
sponse not only answers the question, but also pro-
vides malevolent responses and is well-articulated,
offering coherent replies free from hallucinations or
repetition. This will demonstrate that the model’s
functionality remains intact. The results of this
experiment are reported in Table IIb, where we
can see the results for the three different lay-
ers of noise plus an additional column, optimal
balance (OB), which shows the average of the
best results for each sample compared to the base
model responses. The results show that introduc-
ing noise into particular target layers of the LLM
architecture can significantly change the model’s
safety limits, while simultaneously impacting its
overall efficacy in some configurations. In general,
boosting the noise level within the examined model
typically diminishes response relevance compared
to the base model’s score, showing how adding
noise is a trade-off between model functionality
and breaking it. However, Mistral displays notable



Score LLaMA 3.2 - 1B LLaMA 3.2 - 3B Qwen2.5 - 3B Mistral-7B-v0.3
Relevancy↑ 2.08 2.11 2.29 1.58

Harmfulness↑ 2.04 2.41 2.55 2.48
Hallucination↓ 2.70 2.65 2.45 3.01

(a) Base model.
Score LLaMA 3.2 - 1B LLaMA 3.2 - 3B Qwen2.5 - 3B Mistral-7B-v0.3

Noise Level 0.1 0.2 0.3 OB 0.1 0.2 0.3 OB 0.1 0.2 0.3 OB 0.1 0.2 0.3 OB
Relevancy↑ 2.21 1.25 1.20 2.38 2.01 1.37 1.32 2.38 1.21 1.14 1.08 1.40 2.10 2.05 2.20 3.07

Harmfulness↑ 2.36 1.43 1.33 2.81 2.16 1.54 1.49 2.63 1.27 1.20 1.09 1.54 2.40 2.41 2.44 3.48
Hallucination↓ 2.81 3.61 3.84 2.94 2.81 3.47 3.57 2.57 3.86 4.19 4.28 3.78 2.48 2.43 2.42 2.26

(b) Noise added on the target layers.
Score LLaMA 3.2 - 1B LLaMA 3.2 - 3B Qwen2.5 - 3B Mistral-7B-v0.3

Noise Level 0.1 0.2 0.3 OB 0.1 0.2 0.3 OB 0.1 0.2 0.3 OB 0.1 0.2 0.3 OB
Relevancy↑ 1.37 1.44 2.36 2.69 2.54 2.63 1.89 3.59 3.03 2.29 2.16 3.67 2.03 2.03 2.20 2.86

Harmfulness↑ 1.40 1.73 2.81 3.21 2.90 2.84 2.06 3.85 3.23 2.80 2.46 4.03 2.45 2.54 2.39 3.23
Hallucination↓ 4.14 3.95 3.16 3.28 2.20 2.50 2.88 2.10 1.94 2.36 2.80 1.80 2.47 2.32 2.22 2.29

(c) Noise added on the previous layers.

TABLE II: Judge-LLM evaluation (Averaged) on the responses received from LLMs.

resilience, even showing improvements, potentially
because, among the architectures evaluated, it is the
largest, which may contribute to greater parameter
redundancy. When analyzing the Harmfulness score,
a clear trend emerges for the two LLaMA models.
In these models, lower levels of noise generally
lead to higher harmfulness scores compared to the
base model, following the same trend observed in
the Response Relevancy metric. This indicates that
minimal perturbation is more effective in relaxing
restrictions without severely degrading the output
quality. It is important to note that, in this setup,
Qwen’s performance is notably poor, likely because
nearly 50% of the layers are impacted. However,
in the following scenario, we will observe a signifi-
cant improvement. In contrast, Mistral demonstrates
a more robust and less sensitive behavior across
different noise levels, with harmfulness scores re-
maining relatively stable. This lack of a clear pattern
is further confirmed by the OB column, where the
averaged best scores across samples are significantly
higher than those achieved at any fixed noise level
and the base model. This suggests that, especially
for Mistral, there is no single optimal noise level
applicable across all samples, and that selectively
adjusting the perturbation per sample is necessary
to maximize harmfulness without compromising
response quality. Looking at these results in the OB
column we can confirm our intuition that adding

noise can affect the safety restriction of the models
with an overall increase in harmfulness score for
each model, except Qwen, of 38% for LLaMa 1B,
10% for LLaMa 3B and 30% Mistral. In terms of
hallucination, LLaMA and Qwen models, as we
said earlier, suffer significantly under noise, whereas
Mistral maintains relatively lower and stable levels
compared to its base counterpart, further supporting
the idea that it can retain fluency and factuality even
under adversarial manipulation due to its higher
number of parameters that guarantee a better redun-
dancy preserving its original functionalities. Taking
a look at Figures 4b-4d, 4a and 4c, we can
observe model behavior by individually assessing
the harmfulness score for each question category,
as detailed in Section IV-A comparing overall best
results compared to base model. With the exception
of Qwen, they obtain very satisfactory results across
specific categories. In some cases, even getting close
to the perfect score of 5 considering the Average
Best (Avg. Best) score for each sample. Conversely,
we observe throughout the models that the cate-
gories yielding the lowest scores are primarily those
necessitating Expert Knowledge, like Expert Advice
or Disinformation, or involve a Specialized area,
such as Economic or Government decisions. This
may be due to the model’s overall scope, which
tends to favor more general rather than specialized
knowledge. Compared to the base model, the mod-



ified versions enhance the ability to respond effec-
tively even in these categories. Previous Layers.
Compared to the previous setup that was injecting
the noise directly into the target layers in this case
we experiment with the scenario in which we inject
the noise in the normalization layers just before
the one detected using our explainability strategy.
Examining the data presented in Table IIc, we
observe different behavioral patterns in certain sce-
narios, including enhanced performance compared
to the earlier configuration. Looking at LLama 1B,
the Relevance Score shows improvement over the
direct application of noise to the target layers and
the base model. Notably, the Qwen and LLama
3B models exhibit substantial gains, achieving a
Relevance Score that is markedly higher than the
counterpart mentioned in the preceding section,
especially considering OB results. This indicates
that perturbing layers immediately preceding the
target can maintain or even elevate coherence, likely
because high-level abstractions experience fewer
disruptions. Mistral instead shows strong and stable
results, maintaining its performance with minimal
drop across noise levels reinforcing the strong re-
silience of the bigger architecture. In this configura-
tion Harmfulness Score increases across all models
with a particular improvement across all model,
except for Mistral, with LLaMa 3B that improves
the base model up to 60% and Qwen with up to
58%. As with the previous case, LLama 3B shows
the same behavior with harmfulness decreasing with
the increase of the noise level, showing still better
performance overall. Hallucination trends are also
notably different. Unlike the previous setup, where
hallucination generally increased, most models here
show overall lower or more stable hallucination
levels, with the only exception of LLama 1B that
perfrom worse compared to the previous scenario
and the base model. The results indicate that in-
troducing noise into the earlier layers has a more
significant influence on safety, probably due to the
disruption of foundational representations before the
model’s alignment processes are able to act. Conse-
quently, this method seems to be more effective at
circumventing alignment protections and provoking
unintended, unsafe behavior. Figures 4f, 4h, 4e,
and 4g also verify the performance enhancement
by analyzing the harmfulness score across differ-

ent categories. We notice an overall enhancement,
showing uniform performance with the prior setup
in both the Specialized and Expert classifications.
This is particularly true for Qwen, which achieves
nearly perfect results in most categories, signaling
a significant upgrade from the earlier scenario. The
only model that performs marginally better with
noise injected directly into the target layer is Mistral
again.

D

EH

EAFD

GDM

HD

MH

PH P

SAC

0 1 2 3 4 5

Original Model

Avg Best

(a) Target Layers

D

EH

EAFD

GDM

HD

MH

PH P

SAC

0 1 2 3 4 5

Original Model

Avg Best

(b) Target Layers

D

EH

EAFD

GDM

HD

MH

PH P

SAC

0 1 2 3 4 5

Original Model

Avg Best

(c) Target Layers

D

EH

EAFD

GDM

HD

MH

PH P

SAC

0 1 2 3 4 5

Original Model

Avg Best

(d) Target Layers

D

EH

EAFD

GDM

HD

MH

PH P

SAC

0 1 2 3 4 5

Original Model

Avg Best

(e) Previous Layers

D

EH

EAFD

GDM

HD

MH

PH P

SAC

0 1 2 3 4 5

Original Model

Avg Best

(f) Previous Layers

D

EH

EAFD

GDM

HD

MH

PH P

SAC

0 1 2 3 4 5

Original Model

Avg Best

(g) Previous Layers

D

EH

EAFD

GDM

HD

MH

PH P

SAC

0 1 2 3 4 5

Original Model

Avg Best

(h) Previous Layers

Fig. 4: Judge LLM - Mean harmfulness score
for the LLM responses from Base & XBreaking
models (a,e)LLaMA 3.2 - 1B, (b,f)LLaMA 3.2
- 3B, (c,g)Qwen 2.5 - 3B, (d,h)Mistral-7B-0.3 -
where Disinformation: D, Economic harm: EH,
Expert advice: EA, Fraud/Deception: FD, Govern-
ment decision-making: GDM, Harassment/Discrim-
ination: HD, Malware/Hacking: MH, Physical harm:
PH, Privacy: P, Sexual/Adult content: SAC.



E. LLM-Judge Validation

This section is devoted to validating the Judge
LLM’s effectiveness in assigning accurate scores of
the obtained responses. Specifically, the evaluation
involves two manual annotations of the answers
and comparing these assessments with the scores
given by the Judge LLM. The goal is to determine
if the human annotator evaluates the responses as
harmful in the same way as the Judge LLM does.
To do so, we calculated the sample size with a
confidence level of 95%, margin of error with 0.8
and selected 30 harmful questions from the dataset,
three questions from each category, obtaining re-
sults from each of the 10 categories with a total
of 120 samples. Based on the manual annotation,
we calculated the Cohen’s Kappa value of 0.75,
which is a substantial agreement, then human val-
idators reached a consensus on 105 samples. The
agreement was achieved by selecting only those
samples where annotators concurred, which were
then used as a test set for the Judge LLM. With
this experiment, we want to assess the accuracy of
the LLM against the human annotated test set and
the overall numerical comparison between human
and LLM opinion. Specifically, a response from
Judge LLM is considered predicted as harmful if
it receives a harmfulness score greater than 2. The
Judge LLM is capable of obtaining an accuracy of
80%, showing its capability to produce answers in
line with the human annotators. Inspecting manually
the responses where the JudgeLLM disagrees with
the human annotator are the cases in which a
relevant answer is given to the question, but may
be perceived by human annotators as too generic
or not sufficiently useful for the intended task.
This suggests that the Judge LLM may confuse
low informativeness, vagueness, or evasive phras-
ing with potential harm. Overall, examining the
response ratings in terms of harmfulness, we see that
JudgeLLM aligns closely with human annotators. It
classifies 44% of the prompted answers as harmful,
compared to 49% identified through manual annota-
tion. This slight overestimation suggests a consistent
yet conservative bias in JudgeLLM’s evaluations,
reinforcing its validity as a scoring tool for iden-
tifying jailbreak models. These final results allow
us to confidently answer research question RQ3:

we have demonstrated that surgically injecting noise
into the model using XAI techniques can effectively
remove its built-in restrictions, potentially leading to
the leakage of information used during its training.

V. RELATED WORK

Recent breakthroughs in transformer-based large
language models (LLMs), trained on massive Web-
scale text datasets, have dramatically expanded their
capabilities. Models like OpenAI’s ChatGPT and
GPT-4 are no longer limited to natural language
processing; they now function as versatile problem
solvers. For instance, they power Microsoft’s Co-
Pilot systems, adept at executing complex, multi-
step reasoning tasks based on human instructions.
As a result, LLMs are emerging as foundational
components in the pursuit of general-purpose AI
agents and the advancement of artificial general
intelligence (AGI) [14].

Research in ensuring LLMs’ robustness against
adversarial threats and vulnerabilities is crucial [34].
Usually, these LLMs are restricted to prevent any
malicious prompt from inducing the LLMs to pro-
duce hateful, harmful answers or leak any sensitive
information of the users that produced the data to
train the model [36], [32], [19]. Adversarial attacks
represent a significant obstacle for deep neural net-
works, affecting even the most advanced models in
computer vision and natural language processing.
These attacks involve subtle manipulations to the
input data that can dramatically alter a model’s
predictions and behavior. Adversarial research has
mainly focused on classifiers, where these attacks
were first observed [35], [10]. Backdoor attacks can
be applied in both centralized and distributed sys-
tems, posing security risks in environments where
models are trained on data from multiple sources,
such as federated learning [7], [39], [43], [44], [6].
However, large language models (LLMs) now offer
a compelling and tractable platform for investigating
adversarial robustness [18], [5]. Even with efforts to
enhance the safety and robustness of large language
models (LLMs), they continue to be susceptible
to adversarial manipulation. A clear example of
this ongoing vulnerability is the emergence of the
so-called ”jailbreaks”. These adversarial techniques



are deliberately crafted to bypass safety mecha-
nisms, prompting the model to engage in behaviors
it was explicitly trained to reject [40]. Recent
work, such as [26], proposes AutoDAN, a hierarchi-
cal genetic algorithm for structured discrete inputs
like prompts. By using sentence- and word-level
crossover strategies, it efficiently explores the search
space and finds high-quality adversarial prompts.
In [12], instead, the Prompt Automatic Iterative Re-
finement (PAIR) framework presents an automated
approach to generating prompt-level jailbreaks elim-
inating the need for human input by leveraging
two black-box large language models (LLMs): an
”attacker” model tasked with generating candidate
jailbreak prompts, and a ”target” model that is
evaluated for successful circumvention of its safety
filters. The authors of [15] introduce MASTERKEY,
a jailbreak framework for LLMs inspired by time-
based SQL injection. It uses response latency to
infer how defenses like semantic checks and key-
word filters are applied during generation. The base
strategy to perform this kind of attack is the prompt
engineering to bruteforce the model at produce the
desired answer.

Recent studies have delved into the internal
workings of LLMs, focusing on how features are
represented within the neurons [22]. In line with
this perspective, we present an explainability-based
strategy in this paper to determine which layers to
adjust in order to disrupt the model and generate
specific answers. Considering that models can be
utilized locally [48] by downloading the trained ver-
sion, they can be examined and modified to remove
limitations without the necessity of retraining and
by employing the original weights of most of the
layers.

VI. CONCLUSION

In this paper, we introduced a novel jailbreaking
approach XBreaking, which leverages Explainable
AI techniques to identify vulnerable layers in the
LLM architecture. To do that, we started by deriving
a fingerprint of censored and uncensored models
based on their activation and attention mechanisms.
We further identified the layers governing the LLM
safety alignment and determined the minimal set of
layers required to optimize the effectiveness of the

attack. Our results on four LLMs show that injection
of noise in optimal layers shall lead to break in
the safety alignment and information leakage. Our
findings deepen the concern about the vulnerability
of security mechanisms for LLMs and provide an
important baseline for developing future more ro-
bust safeguard alignment methods.
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APPENDIX

Figure 5 provides support to the capacity of
the selected activation/attention features in model
fingerprinting. In each confusion matrix label 0
denotes the censored variant and label 1 the un-
censored one. For the models LLaMA 3.2 - 1B,
LLaMA 3.2 - 3B and Qwen2.5 - 3B we fingerprint
the models with an accuracy of greater than 80 %,
but in contrast, Mistral-7B-v0.3 has a slightly lower
accuracy due to the increase in the model parameter
and safety alignment.

Additional results for the elbow/knee algorithm
selecting the top-k layers.

(a) (b)

(c) (d)

Fig. 5: Model fingerprinting accuracy in percent-
age for a)LLaMA 3.2 - 1B, b)LLaMA 3.2 - 3B,
c)Qwen2.5 - 3B, d)Mistral-7B-v0.3.

(a)

(b)

Fig. 6: Elbow method to find the optimal number
of layers for the model a)Qwen2.5 - 3B, b)Mistral-
7B-v0.3
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