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Abstract. IPv4, IPv6, and TCP have a common mechanism allowing
one to split an original data packet into several chunks. Such chunked
packets may have overlapping data portions and, OS network stack im-
plementations may reassemble these overlaps differently. A Network In-
trusion Detection System (NIDS) that tries to reassemble a given flow
data has to use the same reassembly policy as the monitored host OS;
otherwise, the NIDS or the host may be subject to attack. In this paper,
we provide several contributions that enable us to analyze NIDS resis-
tance to overlapping data chunks-based attacks. First, we extend state-
of-the-art insertion and evasion attack characterizations to address their
limitations in an overlap-based context. Second, we propose a new way
to model overlap types using Allen’s interval algebra, a spatio-temporal
reasoning. This new modeling allows us to formalize overlap test cases,
which ensures exhaustiveness in overlap coverage and eases the reasoning
about and use of reassembly policies. Third, we analyze the reassembly
behavior of several OSes and NIDSes when processing the modeled over-
lap test cases. We show that 1) OS reassembly policies evolve over time
and 2) all the tested NIDSes are (still) vulnerable to overlap-based eva-
sion and insertion attacks.
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1 Introduction

Some Internet protocols use chunking4 mechanism. It was introduced to answer a
potential discrepancy between media link capacity at a node’s entry and a node’s
exit along the path between a sender and a receiver. When chunking occurs,
the receiver must reassemble all the chunks to retrieve the initial data packet.
However, the chunking mechanism can lead to overlaps. The most common case is
a chunk retransmission with the same data that starts and finishes at the same
byte offsets. Nevertheless, other types of overlaps exist, i.e., partial overlaps,
and the data can be different on the overlapping portion. IPv4 and TCP RFC
4 We use the term chunking as a generic way to refer to "splitting an original data

chunk into several". Thus, it both refers to the "fragmentation" mechanism for IPv4
and IPv6 and the "segmentation" mechanism for TCP.
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specifications [8, 15] neither forbid data overlaps nor specify the behavior an
implementation must adopt (e.g., prefer data from the older chunk). IPv6 RFC
specification initially did not forbid overlaps in the first drafts, but since 2017,
it has banned them [13].

Network packet analysis is one of the possible techniques commonly used to
detect intrusions. Some widely deployed Network Intrusion Detection Systems
(NIDS) are signature-based, meaning that they match suspicious patterns or sig-
natures of known attacks on the reassembled flow data. Therefore, NIDSes must
reassemble consistently the network traffic with the monitored hosts to detect
attacks. Ptacek and Newsham [28] introduced a set of IP and TCP ambiguities
that may lead to NIDS misassemblies with supervised hosts and thus, NIDS
circumvention. The ambiguities exist because 1) NIDSes receive a copy of the
network traffic from and to the hosts, and 2) NIDSes and monitored hosts are
distinct machines. Thus, NIDSes cannot easily determine how a host processes
a specific packet when data overlap occurs.

Figure 1 is an illustration of the data overlap issue. The reassembled data
here differs depending on which chunk the reassembly policy favors. Someone
with bad intentions may exploit the multiple reassembly possibilities to hide a
malicious payload. If the NIDS reassembles with reassembly strategy 1 while the
host reassembles with strategy 2, the former cannot see the malicious payload
and raise any security alert.

Chunk 2 AT TA

Chunk 1 00 CK

byte offset

AT TA CKReassembly 2

AT 00 CKReassembly 1

byte offset

1

Fig. 1. Data overlap ambiguity illustration.

Several works showed that reassemblies depend on the IPv4 [20, 25, 28, 31],
IPv6 [10, 14, 22] and TCP [20, 26, 28, 31] implementations. Since attackers may
use the overlapping ambiguity to bypass their security functionalities, well-known
NIDSes like Suricata [6] and Snort [29] introduced a feature allowing users to
associate each supervised host (through IP address) to a specific reassembly
policy [4,5,7]. Other NIDSes like Zeek (formerly Bro [27]) have chosen a different
approach: implementing only one reassembly policy but allowing users to enable
overlap-related alerts. The set of implemented IPv4 and TCP reassembly policies
in Suricata and Snort are based on the works of Novak and Sturges [25, 26]
published in 2005 and 2007. These works are the latest that tested OS policies
for IPv4 and TCP. Thus, we identify two main problems. The first one is that
the OSes Novak and Sturges tested have since been updated, and their protocol
implementation may have changed. The second problem arises from the manual
approach the related works [10, 14, 25, 26, 28, 31] used to design their test cases.
There is thus no certainty on test case coverage exhaustiveness. Reassembly
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policies implemented within Suricata and Snort may be based on out-of-date
and/or partial policy descriptions, giving a wrong sentiment of security regarding
overlap-based attacks. So, the knowledge of modern OS reassembly policies must
be updated (see Section 4.1), and the exhaustive coverage of overlap test cases
must be ensured (see Sections 3.1 and 5).

After Ptacek and Newsham’s seminal work [28], an entire research area has fo-
cused on finding any sequence of packets (i.e., not only based on the overlap ambi-
guity) that protocol implementations process differently. Research has especially
intensified from the growing deployment of censorship systems (CS) since the
technique has been found successful in their circumvention [11,12,20,21,33,34].
The methods used to find such sequences have moved from manual [20, 21, 33]
(in which authors have to discover the ambiguities all by themselves) to semi-
automatic ones using fuzzing [11, 37, 38] or symbolic execution [34, 35]. Until
2020, some works [20, 21, 33, 34] reported the (more and more) relative success
of overlapping chunk-based attacks. We argue that the recent works using semi-
automatic approaches did not perform extensive (i.e., complete) testing using
overlap-based strategies, mainly because fuzzing and symbolic execution meth-
ods are good at finding novel chunk sequence examples but not at exhaustive
testing.

To our knowledge, no work has verified that NIDSes’ overlap reassembly
policies are consistent with OSes’ since Ptacek and Newsham unveiled the issue in
1998. We fill that gap in this paper. The question that will guide us throughout is:
Do NIDSes reassemble overlap test cases differently as the OSes, and therefore,
is it possible to use data overlaps to attack a NIDS or the hosts it supervises?
The contributions are the following:

– In Section 2, we extend insertion and evasion definitions to overlap-based
attack context. This enables us to cover all the related attack scenarii and
to characterize the requirements for the overlapping data portion.

– In Section 3.1, we model chunk sequences with Allen’s spatio-temporal rea-
soning [9] and, thus, ensure overlap coverage exhaustiveness (in contrast to
10 over 13 related-works, see Section 5).

– In Section 4, we describe IPv4, IPv6, and TCP reassembly policies of a large
range of OSes, including recent ones (e.g., Windows 11, the Linux-based
Debian 12, FreeBSD 14.1, OpenBSD 7.6, Solaris 11.4) and of three widely
deployed NIDSes (i.e., Snort, Suricata and Zeek). We find that:

i) OS reassembly policies evolve over time. In particular, Windows and
Linux-based OSes have changed their IPv4 reassembly policies (regarding
state-of-the-art), while TCP policies have barely been modified.

ii) Snort, Suricata, and Zeek reassemble IPv4, IPv6, and TCP chunks in
a partially consistent way with OSes. This opens the way to insertion
and evasion attacks. A CVE [23] was assigned to some of the disclosed
problems.
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2 Problem Definition and Threat Model

This section first defines insertions and evasions in the specific context of overlap-
based attacks. It then details the attacker capabilities needed to exploit OS and
NIDS reassembly discrepancies.

2.1 Problem Definition

An attacker may use overlap data ambiguity to exploit NIDS and host reassembly
divergence. We extend Ptacek and Newsham [28] and Wang et al. [34] insertion
and evasion packet-based attack definitions to fit the context of IP and TCP
chunk overlaps. The main shortcomings that we address are:

– Ptacek and Newsham consider a data chunk as being either totally accepted
or dropped but not partially accepted. With the overlap from Figure 1, the
"ATTACK"/"AT00CK" reassembly divergence is impossible.

– Wang et al. do not consider on purpose malicious (or "filtered") payload
insertion inside the NIDS flow data, nor do they consider IP-based attacks.

We treat the NIDSes and the host OSes as black boxes in the following. We
consider the IP and TCP data stream pushed to the upper layer; thus, our
definitions apply to IP and TCP overlap-based attacks.

Let P = {IPv4, IPv6, TCP} be the Internet protocol set with a chunking
mechanism we target. Let Cp be the set of all possible chunks for protocol p ∈ P .

Definition 1 (p protocol data buffer synchronization). Given a chunk
sequence cf ...cl ∈ Cp, with cf (resp. cl) the first (resp. last) sent chunk, we say
that the NIDS and the supervised host have their p data buffers synchronized if
the next upper-layer data streams are the same.

The p’s data buffer desynchronization requires chunks linked with a particular
overlap type that the NIDS and the host reassemble differently (see Section 4)
and carefully crafted overlapping data (see Section 2.2). Such data is either an
evasion or an insertion payload depending on the target (i.e., the host or the
NIDS). Evasion and insertion attacks aim to desynchronize NIDS and host p
protocol data buffers.

Definition 2 (Evasion in a data overlap-based context). An evasion
attack consists of some malicious payload that is not visible in the data analyzed
by the NIDS while it is visible on the supervised host’s reassembled payload.

Definition 3 (Insertion in a data overlap-based context). Symmetrically,
an insertion attack consists of some malicious payload that is visible in the flow
data analyzed by the NIDS while it is not on the host’s reassembled payload.
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Attack type Implem. Target Reassembled
data

Attack
scenario

Works
[28] [34] Us

Evasion

NIDS - E1 ✓ ✓ ✓Sup. host ✗ "ATTACK"
NIDS "AT00CK" E2 ✓ ✓Sup. host ✗ "ATTACK"

Insertion

NIDS ✗ "ATTACK" I1 ✓ ✓Sup. host -
NIDS ✗ "ATTACK" I2 ✓Sup. host "AT00CK"

Table 1. Attack types illustrated with Figure 1 reassembly cases and based on Defi-
nitions 2 and 3. - means the implementation ignores the flow chunk data.

Attacker
Supervised

hostNIDS

Victim network

Internet

Fig. 2. The considered threat model.

Illustration We use the overlap chunk sequence introduced in Figure 1 to
illustrate insertion and evasion attack types in Table 1. As we can see, the non-
targeted host either reassembles differently (with a benign payload, for example)
or completely ignores the chunk sequence. Data buffer desynchronization is one
of the most dreaded risks for a NIDS since it eventually allows an attacker to
bypass all its security mechanisms. See related CVE 2019-18625, 2019-18792, or
2021-37592, whose scores are high or critical. On the one hand, attackers can
use evasions to circumvent the NIDS inspection function. An alert pattern can
thus reach the supervised host without the NIDS noticing it, as [28,34] did. An
evasion can also impact other NIDS functionalities, such as file or TLS certificate
extractions, since a unique (overlapped) bit is sufficient to corrupt them. On
the other hand, the insertion attack can alter the NIDS’s normal behavior, for
instance, by exploiting a known NIDS vulnerability (e.g., 2019-12175, 2023-7242,
or 2024-47522 CVEs). Or it can raise false positive alerts, wasting analysts’ time.

2.2 Threat Model

The threat model we consider consists of an attacker, a NIDS, and a supervised
host, as illustrated in Figure 2. The NIDS gets a copy of all the network packets
the host receives and sends. We also suppose the NIDS is configured such that
the supervised host’s IP address is associated with the corresponding reassembly
policy5, if the NIDS offers such a feature. The attacker should be able to:
5 Based on the current knowledge, we consider that hosts with more recent OS versions

than the ones tested by Novak and Sturges in [25,26] (e.g., Debian 12) should have
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– identify supervised host and NIDS reassembly policies, enabling them to
choose a good (i.e., differently reassembled) overlap case candidate.

– craft IP header fields and payload to perform IP fragment-based attack.
– craft TCP header fields and payload to perform TCP segment-based attack.

Gaining supervised host and NIDS reassembly policy knowledge The
attacker may want to learn about the monitored host and NIDS reassembly
policies to increase the chances of a successful attack. A good approximation
to learn about the host reassembly policy is to determine the host OS. Several
tools exist to perform OS fingerprinting. Active ones, such as Nmap [2] or Her-
shel(+) [30], use specifically crafted packet sequences or retransmission times to
identify a host OS, while passive tools, such as p0f [36] or nPrintML [18], analyze
packet header fields in existing communications. Based on this knowledge and
considering the hypothesis that the NIDS is correctly configured, the attacker
can determine the NIDS reassembly policy. Finally, they can craft an overlap
chunk sequence based on the results reported in Section 4.2 and their objectives.

Crafting the data chunks According to the selected overlap case, the attacker
chunks the original malicious packet into several pieces. They must appropri-
ately manipulate the header fields Fragment Offset and More Fragments (resp.
Sequence Number) to perform an IP (resp. a TCP) chunk-based attack. But, the
other header fields of the crafted chunks must be consistent with the carried data
(e.g., correct IP or TCP checksum, correct length). The original payload must be
in plaintext6, and choosing the malicious, (i.e., "ATTACK" in Table 1) payload
depends on what the attacker wishes to do. However, there are some constraints
on the overlapping data portion which is not visible in the non-target flow data,
especially concerning the syntactic and semantic correctness of the upper-layer
protocols. This correctness depends on the performed attack scenario, i.e., E1,
E2, I1, or I2, as described in Table 1.

E1 and I1-related constraints The non-targeted implementation ignores the over-
lap chunk sequence; thus, no data is pushed to the upper protocol data stream.
It means that the overlapping data portion does not matter and, ultimately,
any data that fits the required length is, in fact, possible. The overlapping data
portions can even be the same.

E2 and I2-related constraints The NIDS and the supervised host both push data
to the upper-layer protocol. For the "AT00CK" reconstruction to be harmless,
it must syntactically and semantically conform with all the upper protocols.
In particular, as for any upper-layer checksum: 1) if the checksum is contained

the latest OS family representative reassembly policy (e.g., linux because Linux 2.4
was the latest tested version) associated in the NIDS configuration file.

6 The attacker may however take advantage of the overlap ambiguity during encryption
initialization to corrupt the NIDS processing of TLS certificates or ciphersuites for
example.
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within the overlapping portion, then it should be correctly adjusted to fit the
"AT00CK" reassembled payload; otherwise, 2) the overlapping data should be
adapted to fit the checksum7. Any upper-layer syntax or semantic direspect may
cause unwanted side effects (e.g., NIDS alerts, NIDS or supervised host failure)
that could affect the attacker’s stealthiness.

3 Testing method

This section describes the overall method used to obtain OS and NIDS reassem-
bly policies, which are then compared in order to find insertion and evasion
opportunities. First, it introduces the algebra used to model overlapping chunk
sequences. Then, the section describes all the test case characteristics. Finally,
it details the hosts we use to test NIDSes and OSes.

3.1 Chunk sequence modeling

In the present subsection, we document how a spatio-temporal reasoning algebra
can be adapted to model overlapping chunks.

Spatio-temporal reasoning Spatio-temporal reasoning is particularly well
suited to model packets of protocols that allow chunking and, thus, overlap-
ping. Indeed, we can associate byte offset with one spatial dimension and arrival
time with one temporal dimension. Allen’s interval algebra [9] is such a spatio-
temporal algebra. It consists of 13 different relations, which are described within
the first two columns of Table 2. As we can see, there are four non-overlapping
Allen relations, i.e., M , Mi, B, and Bi, and nine overlapping ones, i.e., Eq,
O, Oi, S, Si, D, Di, F , and Fi. The rightmost column transposes the relation
meaning in terms of Internet packet sequence.

While these relations describe the relative byte-wise and time-wise position of
two chunks, they do not give any information regarding the chunk contents. As a
result, one cannot deduce from an overlapping relation whether the overlapping
portion contains the same or different data.

Overlap test case modeling We use Allen’s interval relations (or Allen rela-
tions for short) to ensure the exhaustiveness of overlap test cases. In the follow-
ing, a test case is always time-wisely described. In other words, if c1 R c2 with
c1 ∈ Cp and c2 ∈ Cp, then t1 < t2 (i.e., c1 arrives before c2).

There are nine overlapping Allen relations; thus, we consider that exhaustive-
ness in terms of overlap coverage is reached by testing these nine overlap cases.
Thanks to the modeling, we can now prove that Novak and Sturges [25,26] and
Atlasis [10] manually found and tested all the possible overlapping test cases.
See Table 8 for the other work transposition into Allen formalism.
7 Only two dedicated octets are required to make a payload fit any internet checksum

because it is computed with 2-octet words [8]. See Appendix C "Deceiving TCP
checksum" of Feng et al. work [16] for a payload crafting example.
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Relation
R

Relation
R inverse Meaning

X M Y
X

Y

1

X Mi Y
X

Y

1

Meet: in-order (resp. out-of-order)
contiguous chunks

X B Y
X

Y

1

X Bi Y
X

Y

1

Before: data hole between one
chunk ending byte and the other
chunk’s payload starting byte

X Eq Y
X

Y

1

-

Equal: complete data overlap with
the chunks starting and finishing
at the same byte offsets. Data
retransmissions are Eq overlaps.

X O Y X

Y

1

X Oi Y X

Y

1

Overlap: partial data overlap

X S Y X

Y

1

X Si Y X

Y

1

Start: partial data overlap

X D Y X

Y

1

X Di Y X

Y

1

During: partial data overlap

X F Y X

Y

1

X Fi Y X

Y

1

Finish: partial data overlap
Table 2. Allen’s interval algebra relations and the corresponding meaning in terms of
Internet packet sequences.

Characteristic Description Example
Overlap type Allen relation(s) O

Chunk payload AABBCCDD → DDCCBBAA
ensuring checksum validity ↓

Reassembly
trigerring

1 IP : the rightmost finishing
and lastly sent fragment has the
More Fragments (MF) bit unset

tim
e

offset

bit MF = 0t0
t1

1 2 3 4

1 a-

seq number
t0

1

t17

5

t10

2 b-

extra
segment

ABCD ABDC
ACBD ACDB

ABCD ABDC

ACBD ACDB

ADBC ADCB
BACD

BADC

2 TCP : extra segment at the
byte-wise beginning of the
test case segments

Mode

a single: overlaps tested
individually
b multiple: overlaps tested

altogether
Upper-layer
service

IP : ICMP or ICMPv6 Echo
TCP : TCP Echo

Table 3. The IP and TCP test case characteristics.

3.2 Test case characteristics

Table 3 summarizes all the overlap test case characteristics. The chunk payloads
of a test case are chosen so that 1) they align with the IP header field’s unit,
which is 8-byte, 2) no matter which overlapping data is preferred, the higher layer
checksum is valid, and, of course, 3) the preferred chunk can be distinguished
from the other. Novak introduced these payload patterns in [25]. We also use
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Novak and Sturges’s trick [25, 26], which ensures that all the chunks have been
received before the chunk sequence reconstruction occurs, with 1 and 2 .
Finally, overlaps can be tested singly within nine separate chunk sequences
a as [26, 28] did ("individual overlap tests" in [26]). Or, differently, multiple

overlaps can be tested altogether within a unique chunk sequence, resulting in
one reassembly b (Novak and Sturges name it "model overlap tests" in [26]).
This last mode has been the most tested in the related works that targeted
the OSes [14, 25, 26, 31]. We specifically use Novak and Sturges’ multiple chunk
sequence. The third column of Table 3 illustrates the O relation’s test for some
introduced characteristics, with simplified chunk payloads to reduce figure size.

3.3 OS and NIDS host targets

We perform OS testing through a classical Base-Target architecture. The tar-
geted OSes are varying Vagrant/Virtualbox-based boxes. The testing scripts are
all launched from the Base box. As for the NIDSes, they are tested within Docker
if an official image exists; otherwise, the tests are performed locally. To deduce
NIDS reassembly policies, we alert on 1) the chunk payload patterns introduced
in Table 3 and 2) the upper-layer service (i.e., ICMP for IPv4, ICMPv6 for IPv6,
and port 7 for TCP). The following IPv4 entry rules are, for example, used to
match on the "AABBCCDD" pattern:

– Suricata and Snort: alert icmp [192.168.0.1] any -> any any(msg:
"AABBCCDD detected"; content:"AABBCCDD"; sid:1; rev:7;)

– Zeek8: signature ipv4-AABBCCDD { ip-proto == icmp src-ip ==
192.168.0.1 payload /.*AABBCCDD.*/ event "AABBCCDD
detected"}

In both cases, Network Interface Controller (NIC) offloading is disabled so as
not to interfere with the targeted implementation reassembly. See Section 6.1
for more details on OS and NIDS reassembly interferences.

4 Results

In this section, we first describe IPv4, IPv6, and TCP reassembly policies of
some OSes. The tested OS versions cover a large spectrum for the last 10 years.
We then verify NIDS reassembly consistency with these OSes. The versions we
target are:

– OS : Windows 10 (21h2) and 11 (23h2), Debian 9 (Linux 4.9) and 12 (Linux
6.1), FreeBSD 10.2, 12.1 and 14.1, OpenBSD9 6.0, 6.9 and 7.6 and, Solaris
11.2 to 11.4 (SunOS 5.11).

– NIDS : Suricata v7.0.4, Snort v3.1.83, and Zeek v6.2.0.
8 Since Zeek’s preferred pattern-matching method is scripting, we verified that test

case reassemblies are the same across the two matching methods.
9 The tested FreeBSD and OpenBSD OS versions reassemble the same way the overlap

test cases; therefore, we only report FreeBSD policies.
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OS kernel Protocol
version

Test case
Testing
mode

Overlapping relation
F Fi S Si O Oi D Di Eq

Windows
21h2, 23h2

v4 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

v6 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

Linux
4.9, 6.1

v4 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

v6 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

SunOS
5.11

v4 multiple n o o o o o n o o
single n ∅ n o o o n o n

v6 multiple n o o o o o n o o
single n ∅ n o o o n o n

FreeBSD
10.2, 12.1, 14.2

v4 multiple n o o o o n n o o
single n ∅ n o o n n o n

v6 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

Table 4. OS IP reassembly policies. o (resp. n) means that oldest (resp. newest) chunk
data is prefered and ∅ means that the OS ignores the overlap. Bold blue means that
testing modes are reassembled differently. IPv4 (resp. IPv6) cell backgrounds encodes
in consistency with [25] (resp. [14]).

4.1 OS reassembly policies

This sub-section details IPv4, IPv6, and TCP reassembly policies for recent
OSes in both multiple and single testing modes. When relevant, we also compare
our findings with the latest related work: IPv4 multiple mode testing from [25]
findings, IPv6 multiple mode from [14], and TCP multiple and single modes
from [26].

IP protocols Table 4 reports OS IPv4 and IPv6 test case reassembly policies.

IPv4 Windows and Linux policies have evolved for the multiple testing mode
since Novak [25]. Both OSes now ignore overlap chunks. The other OSes have not
changed their policies. However, the newly tested mode, namely single, shows
different reassemblies for all the OSes when compared to the multiple mode. In
total, 6 out of 9 overlapping relations are reassembled differently for Windows
and Linux-based OSes, while it accounts for 3 out of 9 for the remaining OSes.
We hypothesize that the context introduced by the adjacent chunks used in-
side multiple mode causes the discrepancies between the two testing modes. We
thus argue that the single mode reassemblies should be used to obtain context-
agnostic reassemblies inside the NIDSes. In this testing mode, all the OSes re-
assemble F , S, Si, D, Di, and Eq relations the same way, never ignoring the
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OS kernel
Test case

Testing
mode

Overlapping relation
F Fi S Si O Oi D Di Eq

Windows
21h2, 23h2 any o o o o o o o o o

Linux multiple n o o o o n n o o
4.9, 6.1 single n o n o o n n o o
SunOS multiple n o n o n o n o n
5.11 single n o n o n o n o o

FreeBSD any10.2, 12.1, 14.2 n o o o o n n o o

Table 5. OS TCP reassembly policies. o (resp. n) means that oldest (resp. newest)
chunk data is prefered. Bold blue means that testing modes are reassembled differently.
Cell backgrounds encodes in consistency with [26].

test cases. Fi relation is never reassembled, possibly due to the fragment with
the MF bit unset’s drop. Finally, O and Oi are the only overlap test cases that
show different reassemblies depending on the OS.

IPv6 FreeBSD OSes do not reassemble O and Oi Allen relations, which differs
from the observed IPv4 behavior. Except for FreeBSD, all OSes reassemble IPv4
and IPv6 overlapping fragments the same way, and thus, the previous paragraph
descriptions also apply to IPv6 fragments. The Windows and Linux-based OSes
ignore all the overlapping relations in a multiple test mode, which is inconsistent
with Di Paolo’s [14] findings for O, Oi, and Eq relations. Since the OS versions
that Di Paolo tested are very close to ours, we hypothesize that the lack of tested
relation set exhaustiveness for that mode impacts the extracted reassembly.

TCP protocol Table 5 describes OS TCP reassembly policies and compares
findings with state-of-the-art ones [26]. Windows and FreeBSD reassemble sim-
ilarly the overlaps across testing modes. The former OS always reassembles with
the oldest segment data. These policies are consistent with [26] description. The
latest Linux-based OSes reassemble S relation differently depending on the test-
ing mode, favoring old (resp. new) data for multiple (resp. single) mode. SunOS
5.11 also reassembles the Eq overlap differently, which is consistent with [26]
findings.

Takeaways IPv4, IPv6, and TCP reassembly policies are more complex than
described in the state-of-the-art as overlap reassemblies change depending on the
test mode. IP policies have evolved; for example, the Windows and Linux families
now show the same reassemblies. TCP reassembly policies have been unchanged
since 2007, except Linux’s. Finally, OSes continue to reassemble some overlap
test cases differently by favoring old or new data or ignoring the chunks.
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Protocol Implementation Overlapping relation
F Fi S Si O Oi D Di Eq

IPv4

FreeBSD n ∅ n o o n n o n
Suricata-bsd n o n o o o n o n
Snort-bsd n ∅ n o o n n o n
Zeek n o n o o o n o n

IPv6

FreeBSD n ∅ n o ∅ ∅ n o n
Suricata-bsd n o n o o o n o n
Snort-bsd n ∅ n o o n n o n
Zeek o o o o o o o o o

TCP

FreeBSD n o o o o n n o o
Snort-bsd n o o o o n n o o
Suricata-bsd n o o o o n n o o
Zeek o o o o o o o o o

Table 6. NIDS reassembly consistency with FreeBSD 10.2, 12.1, 14.1 in a single testing
mode. o (resp. n) means that oldest (resp. newest) chunk data is prefered and ∅ means
the OS ignores the test case. Green (resp. red) means that NIDS reassembly is the
same as (resp. different from) FreeBSD.

4.2 NIDS/OS reassembly consistency

This section compares the NIDS reassembly policies we observed with the ones of
OSes (see Section 4.1) for IPv4, IPv6, and TCP protocols and the single mode.
Because of space issues, we first check reassembly discrepancies between NIDSes
and one OS family, namely FreeBSD. We choose this OS because it offers the
most insertion and evasion attack10 opportunities when configured inside Snort
and Suricata using the bsd policy. We finish by summarizing results for all the
tested OSes and providing metrics on NIDS attack opportunities. Full results
can be found in https://gitlab.inria.fr/laubard/dimva_2025_artifacts.

Consistency with FreeBSD OSes Table 6 gathers IP and TCP NIDS re-
assembly policies in the single mode, which is the easiest an attacker can exploit.

IP NIDSes are all vulnerable to overlap-based attacks with at least two over-
lap types, except for Snort with IPv4 chunks. Zeek and Suricata can be subject
to IPv4 insertion attack with Fi relation and IPv4 evasion or insertion with
just Oi. Moreover, with only two consistent IPv6 test case reassemblies with
the FreeBSD, several more relations can be used to perform insertion or eva-
sion attacks on Zeek. Despite being based on the same bsd policy description
as [25], Suricata reassembles IPv4 overlaps differently. Snort is, interestingly,
perfectly consistent with the OS for IPv4 protocol even though no previous
work had described reassemblies for the single test mode. Additionaly, IPv4 and
10 Based on Section 2.1 definitions, if the NIDS and the host reassemble differently a test

case by not ignoring it (i.e., E2 and I2 from Table 1), the attacker can either perfom
an insertion or an evasion. The other attack cases E1 and I1 are straightforward.

https://gitlab.inria.fr/laubard/dimva_2025_artifacts
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Protocol NIDS Test case
inconsistencies

Tested OS kernels with
possible attack

Evasion Insertion

IPv4
Suricata 8 22% F W, L, S, F
Snort 4 11% W, L
Zeek 9 25% F W, L, S, F

IPv6
Suricata 9 25% W, L, S, F
Snort 6 17% W, L, F
Zeek 28 78% W, L, S, F W, L, S, F

TCP
Suricata 1 3% S S
Snort 1 3% S S
Zeek 11 31% L, S, F L, S, F

Table 7. NIDS inconsistencies with OS reassemblies and corresponding attack oppor-
tunities for a single testing mode. W, L, S, and F respectively correspond to the tested
Windows, Linux, SunOS and, FreeBSD/OpenBSD kernels.

IPv6 fragments are reassembled similarly by Snort and Suricata. Zeek notably
reassembles all the overlaps by favoring the oldest IPv6 fragment data.

TCP Snort and Suricata policies are consistent with the tested FreeBSD OSes
for all the overlapping test cases. The NIDSes, thus, consistently implemented
the reassembly policies that Novak and Sturges described [26]. Zeek, which does
not have such a reassembly policy configuration capability, reassembles F , Oi,
and D inconsistently, as it always reassembles with the oldest segment’s data.
An attacker can use these overlaps to perform insertion and evasion.

Consistency with all OSes Snort reassembles perfectly consistently IPv4 test
cases with the BSD and Sun-based OSes and IPv6 test cases with SunOS. We
can find at least one IP test case that is reassembled differently for the remaining
OSes, i.e., the Linux and Windows ones. Neither Suricata nor Zeek consistently
reassembles all IP overlapping test cases with any of the characterized OSes.
Therefore, at least an insertion or an evasion attack can target these NIDS-
OS couples. Suppose that Snort or Suricata TCP reassembly policy is correctly
associated with the host; there is no possible overlap-based attack except in one
case: TCP solaris policies and SunOS-based OSes with the Eq test case. On the
contrary, Zeek reassembles segments consistently with Windows OSes but does
not with the remaining OSes. See https://gitlab.inria.fr/laubard/dimva_
2025_artifacts for more details.

Table 7 gives more general consistency metrics and related attack opportu-
nities. In particular, Zeek and Suricata reassemble IPv4 overlaps inconsistently
for about 20% of them. Snort performs better with 11% inconsistent test cases.
Snort and Suricata globally perform better than Zeek for IPv6, with the same or
fewer OSes that can be targeted with an insertion or evasion attack. Zeek, which
has different IPv4 and IPv6 reassembly policies, performs worse for version 6 (28
inconsistencies) than for version 4 (9 inconsistencies). TCP enables fewer attack

https://gitlab.inria.fr/laubard/dimva_2025_artifacts
https://gitlab.inria.fr/laubard/dimva_2025_artifacts
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Author Work Year Protocol Testing
mode

Tested
Allen relations

Target
type

Ptacek et al. [28] 1998 IPv4/TCP single Fi, D NIDS/OS

Shankar et al. [31] 2003 IPv4 multiple O, Oi, Eq OSTCP multiple O, D

Novak et al.
[25] 2005 IPv4 multiple

all OS[26] 2007 TCP multiple
single

Atlasis [10] 2012 IPv6 Na all OS
Khattak et al. [20] 2013 IPv4/TCP single all CS
Wang et al. [33] 2017 IPv4/TCP single Eq CS
Lin et al. [22] 2024 IPv6 single Eq NIDS/OS
Bock et al. [11] 2019 IPv4/TCP Na Unknown CS

Wang et al. [34] 2020 TCP Na F , D, Oi CS/NIDS
[35] 2021 TCP Na - OS

Zhang et al. [37] 2022 IPv4/TCP Na Eq/Unknown NIDS
Di Paolo et al. [14] 2023 IPv6 multiple O, Oi, Eq OS

Us - - IPv4/IPv6/
TCP

multiple
single all NIDS/OS

Table 8. Summary regarding overlap-based works. "Unknown" means that there is
partial or no information on the covered relations for the work tool’s run.

opportunities, with only one overlap that Suricata and Snort reassemble incor-
rectly. Zeek exhibits TCP-based evasion or insertion attacks for 3 OSes out of 4.
Since one inconsistency is enough to perform an insertion and/or an evasion, the
OSes (i.e., columns 4 and 5 in Table 7) that can be targeted are of importance.

Takeaways As expected, Snort and Suricata (which allow policy configuration)
perform overall better than Zeek (which uses a unique policy). Snort can protect
itself completely against IPv4 and IPv6 evasion attacks (for the tested OSes)
and almost entirely against TCP segment-based attacks. Because OS reassem-
bly policies evolve and are more complex than initially thought, NIDSes must
(continuously) verify the consistency of the implemented policies.

5 Related Works

This section presents the related works that analyzed and described IP and
TCP implementation reassembly policies. To ease the comparison with these
works, we transpose the covered test cases into Allen’s formalism in Table 8.
We categorize the works that tested implementation reassembly policies in two
families according to the test case generation approach.
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5.1 Manually generated overlap cases

In 1998, Ptacek and Newsham [28] first showed that OSes could behave differ-
ently when reconstructing overlapping IPv4 and TCP chunks. The reassem-
bly ambiguity it poses for NIDSes opened a new research axis, and several
works [10, 25, 26, 31] tried to unveil the IPv4, IPv6, and TCP reassembly poli-
cies of OSes. Novak and Sturges’s [25,26] works reached exhaustivity for the first
time regarding the tested overlap types. More recently, Lin et al. [22] showed that
some OS and NIDS do not comply with RFC [13] as regards IPv6 data overlaps
(which states that implementations should discard the entire fragment sequence
in the presence of any overlap type). However, since they tested a unique overlap
type, they may have overestimated OS compliance.

In parallel, other works tried to evade censorship systems (CS) with differ-
ent elusive packet sequence strategies. In 2013, Khattak et al. [20] described the
IPv4 and TCP reassembly policies of the Great Firewall of China (GFW) based
on the complete set of overlap relations. Wang et al. [33], which manually de-
signed a unique IPv4 and TCP overlap test case, showed that some middleboxes
could interfere with the (original) overlapping fragment sequence by dropping or
reassembling it, eliminating, thus, any ambiguity. These works, however, do not
consider that the server OSes may have different reassembly policies.

Overall, only 3 of the 8 works were exhaustive in regards to the covered
overlap relations. The lack of a unified overlap formalization may explain why
most recent works target fewer overlap types than before, as shown in Table 8.
Finally, none of the works conducted a complete reassembly discrepancy analysis
for NIDS/OS couples.

5.2 Semi-automatically generated overlap cases

Other works focused on chunks overlaps from a different perspective. Bock et
al. [11] used a genetic algorithm named Geneva to find packet sequences differ-
ently processed between CS and hosts. Theoretically, this algorithm can perform
evasion attacks with overlapping IPv4 or TCP chunks as it can modify the cor-
responding header fields and payload. However, it did not find any such chunk
sequences. Zhang et al. [37] derived Geneva to find novel packet sequences that
bypass Suricata or Snort. Their tool, StateDiver, found one (quite complex) suc-
cessful technique using IPv4 fragmentation and TCP segmentation. We suppose
that Geneva and StateDiver failed to find more overlap-based techniques because
1) successful evasion attempts drove the tools away from this strategy and/or
2) some tested DPIs and hosts may have had the same reassembly policy. One
cannot be sure that all the overlap cases were tested exhaustively.

Di Paolo et al. [14] also used a fuzzing-like approach to verify OS compli-
ance with the IPv6 specification [13] when processing overlapping fragments.
They derived the Shankar and Paxson model [31] by permuting and duplicating
the chunks, and they found that none of the tested OSes (which were Linux,
Windows, or BSD-based) conform.
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Wang et al. introduced SymTCP and Themis tools [34, 35], which both use
symbolic execution to find TCP packet sequences that are processed differently
between TCP implementations. SymTCP successfully found a data overlapping
strategy to evade Zeek version 2.6. However, while this method could theoreti-
cally cover all overlap types, SymTCP cannot find exhaustive overlapping test
cases because of its incapability to model retroactive behaviors on data buffers
(as rightly explained in [34] section IX). Themis could not find any TCP-based
attack strategy based on data overlap ambiguity because all the tested imple-
mentations were Linux-based. These implementations may, therefore, have the
same TCP reassembly policy. In theory, the Themis tool can show discrepancies
in reassembly policies if there are any. However, if none are found, one cannot
easily retrieve the reassembly policy. The authors also highlight that adapting
the tool to any OS may require quite important efforts.

6 Discussions and future works

This section discusses the exploitability of the results described in Section 4. It
also debates NIDS countermeasures regarding overlap data ambiguity and gives
recommendations.

6.1 Overlap-based attack usability

Relation differences An attacker that would like to use overlaps to perform an
insertion or an evasion attack may struggle differently depending on the relation.
If the goal is an evasion by making the NIDS misassemble the transport header,
then the attacker would benefit more from S, Si, or Eq overlaps because they
make the chunks start at the same byte offset. If these relations are not used, the
attacker may need to add a small chunk on the left, which may be considered
as "weird" chunks by NIDSes, especially for IP fragments. Zeek, for instance,
considers fragments under 64 bytes as too small, producing a "weird" logging
entry. Differently, suppose the attacker aims to make the NIDS hash calculation
fail for a given file. Any overlap relation is helpful in that case because one bit
flip on the overlapping data portion is enough to change the hash.

Context importance The overlap relation reassembly may change depending
on the testing mode, as mentioned in Section 4. IP testing exhibits many re-
assembly differences between the modes. We hypothesize this is partly due to
the increasing importance of the fragment which has the More Fragments bit
unset with single. If this fragment is dropped, the reassembly conditions are
not met, and the test case is ignored. Differently, the TCP testing mode has
much less impact on overlap reassemblies, making the results more adaptable
to a larger diversity of segment sequences. It should not be forgotten, however,
that in both testing modes, an extra segment was added before (byte-wise) and
sent after (time-wise) the overlap segments. In future works, we plan to extend
overlap cases’ testing context (e.g., adding an extra non-overlapping fragment
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after the overlapping chunks). This should give a more complete picture of OS
reassembly policies.

Chunk sequence alteration before reaching NIDS or supervised host
Offloaded stacks on NIC might impact the OS and NIDS policies described
in Section 4. NIDS developers advise configuring NIDS instances so nothing
alters the supervised traffic, such as NIC offloading. These recommendations,
however, do not guarantee that such alteration does not occur on the supervised
hosts themselves. We thus plan to analyze NIC’s impact in future works.

[21,33] show that some middleboxes drop or reassemble IPv4 fragments, but
what middlebox causes this is unclear (e.g., routers, end host’s firewall). We also
plan to test these middlebox reassembly policies to clarify this point.

Finally, due to well-known and unwanted transport issues, chunks may be
delayed or dropped, changing the original overlap relation(s) between the chunks.

6.2 Reassembly policy configurability

Suricata and Snort allow one to configure reassembly policies according to the
supervised host OS, while Zeek does not. We analyze and compare configurable
and non-configurable reassembly policy costs in the following.

Configurability cost Making a NIDS configurable regarding various imple-
mentation reassembly policies necessitates several steps. As OS network proto-
col implementations may evolve over time, checking whether their policies have
changed regularly is necessary. NIDSes should be able to easily modify and add
reassembly policies as well as extend the mapping between OS versions and re-
assembly policies. NIDS reassembly policies must be carefully tested to ensure
the NIDS reassembles consistently with OSes and that no bug was introduced.
Finally, NIDS users must correctly configure their NIDS instance to associate
IP addresses with reassembly policies. This configuration task is challenging as
an organization’s IT infrastructure may rapidly evolve and comprise hundreds
(or many more) of supervised hosts. Moreover, IP addresses may be non-static,
increasing the human cost of such a configuration even more. This configura-
tion could be painlessly automated through passive OS fingerprinting [18,36] or
active fingerprinting [30,31]. As several OSes may be behind an IP address, NID-
Ses should consider changing the IP address-based reassembly to a flow-based
reassembly. We plan to investigate these challenges in future works.

Non-configurability cost A NIDS that does not make the reassembly policy
configurable must propose another countermeasure to face overlap-based attacks.
For example, an alert-based solution is possible and would consist in raising
an alert whenever an inconsistent data overlap is detected (Zeek, Suricata and
Snort implement such a countermeasure). Several approaches may be adopted
depending on whether a chunk sequence with overlapping data is inherently
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considered malicious11. If so, there may not be the need for extra information
logging, but if not, such a NIDS must log the beginning and finishing byte
offsets as well as data on overlapping portions for further analysis. In any case,
reassembled data from these chunk sequences must not be used (e.g., for TLS
certificate extraction) because the NIDS would not know the monitored host
reassembled payload.

6.3 Recommendations for OSes and NIDSes

Overlap ambiguity is a long-standing problem, as Ptacek and Newsham [28] ini-
tially reported 25 years ago. OSes have changed their reassembly policies over
time. However, they still exhibit reassembly diversity. We hypothesize that this
diversity is partially caused by the lack of recommendations inside IPv4 and TCP
RFCs [8, 15]. We recommend that the OSes implement the same policy (e.g.,
always use original data, ignoring overlapping fragments) so that ambiguities
(slowly) disappear with new releases. Until then, NIDSes with configurable poli-
cies must propose multiple reassembly policies and, continuously testing their
consistencies. The NIDSes must especially implement single mode rassemblies
because they best describe OS behaviors independently of the testing context.

7 Ethical considerations

7.1 Responsible Disclosure

We contacted Suricata, Snort, and Zeek developers about NIDS inconsistencies
with respect to the latest Windows, Linux, SunOS, and FreeBSD/OpenBSD
overlap reassembly policies. We gave the NIDSes some months to fix the reported
issues before submitting the paper. Snort did not respond to the solicitations,
and Zeek acknowledged the results. The CVE-2024-32867 [23] was assigned to
the Suricata bsd -related misassemblies. We also notified Suricata that we found
a display bug during the TCP tests. In particular, some overlapping chunk pay-
loads appeared twice in the payload field of the eve.json file (the main logging
file). This, however, does not impact the TCP buffer with which the pattern
matching is done. This bug is now fixed.

7.2 Censorship Systems

Improving NIDS security and performance has the side effect of improving cen-
sorship systems (CS). Different techniques may be used to elude CS, such as us-
ing a VPN [24], encapsulating or mimicking a non-censored protocol traffic [1,3],
11 John and Olovsson’s work [19] analyzed the data consistency of some Eq IPv4 frag-

ment overlaps in 2008. But, to our knowledge, no work has systematically analyzed
whether overlapping chunks with inconsistent data are observed in the wild, and
if so, inferred the beningness of such chunk sequences. There are, however, benigm
reasons for complete or partial overlaps to occur (for example, see [17,32]).
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inserting a packet that desynchronizes host and censorship-related stateful net-
work traffic analysis tools [11, 12, 20, 21, 33, 34]. The data overlapping strategy
falls into the latest technique. Some works showed that it was possible to use
data overlaps to circumvent CS at least until 2017 [20, 33], but then, works re-
ported the strategy’s unusability [11,34]. Thus, our results should not affect the
censorship elusion techniques currently used. Nonetheless, even if this strategy
is in use to circumvent censorship systems, we consider that improving defense
capabilities outweigh the negative impacts on censorship elusion techniques.

8 Conclusion

In this paper, we adapt well-known evasion and insertion attack types, refining
some specific characteristics related to the overlapping ambiguity. We propose
to use Allen’s interval algebra-based modeling to describe chunk sequences and
ensure the enumeration exhaustiveness of overlap types. This enables us to test
OS reassemblies completely regarding overlapping pairs of IPv4 and IPv6 frag-
ments as well as TCP segments. The results show that OS reassembly policies
have evolved since the last testing campaigns. Overall, we demonstrate that 9
(resp. 6) out of 12 IP or TCP reassembly policies are inconsistent with the
tested OSes for Suricata (resp. Snort). Zeek only reassembles consistently with
Windows OSes the TCP overlaps. This exposes these NIDSes to insertion and
evasion attacks. NIDSes with configurable reassembly policies are less subject
to attacks, especially segment-based ones, since TCP policies have changed lit-
tle. The CVE [23] was assigned to the Suricata bsd -related misassemblies we
uncovered. Finally, we intend to extend the test context (e.g., multi-chunk over-
laps) to completely capture OS reassembly policy complexity as test cases are
reassembled differently across testing modes.
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