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Abstract

In this manuscript, we demonstrate the feasibility of a privacy-preserving U-Net
deep learning inference framework, namely, homomorphic encryption-based U-Net
inference. That is, U-Net inference can be performed solely using homomorphic
encryption techniques. To our knowledge, this is the first work to achieve sup-
port perform implement enable U-Net inference entirely based on homomorphic
encryption ?.
The primary technical challenge lies in data encoding. To address this, we em-
ploy a flexible encoding scheme, termed Double Volley Revolver, which enables
effective support for skip connections and upsampling operations within the U-Net
architecture.
We adopt a tailored HE-friendly U-Net design incorporating square activation
functions, mean pooling layers, and transposed convolution layers (implemented as
ConvTranspose2d in PyTorch) with a kernel size of 2 and stride of 2. After training
the model in plaintext, we deploy the resulting parameters using the HEAAN
homomorphic encryption library to perform encrypted U-Net inference.
The complete, runnable C++ code to implement our work can be found at:
https://github.com/petitioner/HE.CryptoUNets.

1 Introduction

1.1 Background

Deep neural networks (DNNs) have emerged as powerful and versatile tools across a broad range
of domains, including speech recognition, natural language processing, and computer vision. Their
deployment typically involves two key phases: training and inference. In the training phase, a suitable
dataset is selected, a network architecture is designed, and the model is optimized by adjusting its
parameters over multiple epochs. This process often requires significant computational resources and
time, potentially spanning several days. Once trained, the network enters the inference phase, where
it is expected to generate predictions for unseen inputs efficiently.

Despite the utility of DNNs, many real-world applications involve sensitive data that cannot be openly
shared. For instance, credit card transaction records are proprietary to financial institutions, and
healthcare datasets—such as patient histories or diagnostic imagery—are restricted to clinical entities
due to legal and ethical constraints. Regulations like the General Data Protection Regulation (GDPR)
in the European Union further limit data access and sharing. In many cases, data custodians lack the
technical expertise to train DNNs themselves, and privacy concerns prevent them from outsourcing
the task to external service providers.

Fully Homomorphic Encryption (FHE) presents a promising solution for reconciling the competing
demands of data privacy and machine learning. Although early perceptions deemed FHE compu-
tationally impractical, substantial progress over the last decade—both in theoretical advances and
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practical implementations—has enabled research prototypes to apply FHE in a variety of domains.
While FHE-based training of deep neural networks remains computationally intensive and largely
impractical at scale, the inference phase under FHE is increasingly considered viable and has attracted
growing attention.

1.2 Related Work

Privacy-preserving machine learning has been an active research area for nearly two decades. How-
ever, the application of homomorphic encryption specifically to deep neural networks remains
relatively underexplored. To date, one of the most notable efforts in this direction is CryptoNets by
Gilad-Bachrach et al., which introduced a carefully constructed neural network capable of perform-
ing inference directly on encrypted inputs using non-interactive homomorphic encryption. Their
model achieved 99% accuracy on the MNIST handwritten digit classification task and an amortized
throughput of approximately 60,000 predictions per hour.

More recently, fully homomorphic encryption has also been adopted in other privacy-preserving
tasks, such as secure face matching and encrypted k-nearest neighbor search. Nevertheless, these
works are largely limited to inference.

A more extensive body of research has explored hybrid protocols that combine homomorphic
encryption with interactive secure computation. Early examples include the works of Barni et
al. and Orlandi et al., which employed additively homomorphic encryption in conjunction with
interactive protocols to achieve inference on small-scale networks in around 10 seconds. Subsequent
frameworks—such as SecureML by Mohassel and Zhang, MiniONN by Liu et al., Chameleon by
Riazi et al., and GAZELLE by Juvekar et al.—have significantly improved both accuracy and latency.
For instance, GAZELLE performs inference on MNIST in 30 ms and on CIFAR-10 in approximately
13 seconds.

Despite these advances, most of these studies focus exclusively on the inference stage and do not
address the challenge of privacy-preserving training. Only a handful of works have explored this
direction [11, 5], reflecting a broader skepticism about the practicality of training neural networks
under FHE due to its perceived inefficiency.

In this work, we take a further step toward expanding the applicability of homomorphic encryption
in deep learning by demonstrating the feasibility of executing U-Net inference entirely within the
encrypted domain.

1.3 Contributions

This paper proposes a method for performing U-Net inference on encrypted data using Fully Ho-
momorphic Encryption (FHE). Our work focuses exclusively on the inference phase, under the
assumption that the model—specifically, a U-Net architecture—has been pre-trained offline on
plaintext data and is already available on the cloud.

Although privacy-preserving model training is a critical and challenging problem, especially in
domains where data confidentiality is paramount, our study does not attempt to address this issue.
Instead, we aim to demonstrate that FHE-based inference can be both practical and accurate, even
when applied to complex models like U-Net.

A frequent criticism of homomorphic encryption is its high computational overhead, which has
historically led to the belief that it is impractical for most machine learning applications. However,
by integrating techniques from cryptography, deep learning, and systems engineering, we show that
it is possible to construct an FHE-based pipeline that supports real-world inference scenarios with
acceptable performance. In this context, our work can be seen as a continuation of the CryptoNets
paradigm, extending its applicability to more sophisticated neural architectures and more demanding
vision tasks.
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2 Preliminaries

2.1 Fully Homomorphic Encryption

Homomorphic Encryption (HE) encompasses a class of cryptographic primitives that enable compu-
tation over ciphertexts, such that the decrypted result of the homomorphic operation corresponds to
the outcome of the same operation performed on the plaintexts. A scheme is termed fully homomor-
phic encryption (FHE) if it supports both additive and multiplicative operations, thereby achieving
Turing-completeness over encrypted inputs. Gentry’s seminal construction in 2009 [6] introduced
the first plausible FHE scheme by employing ideal lattices, bootstrapping, and a novel approach to
managing noise growth.

Subsequent advancements have significantly improved the asymptotic and concrete efficiency of FHE.
Notably, Brakerski, Gentry, and Vaikuntanathan [1] proposed the BGV leveled FHE scheme, which
eliminates bootstrapping in exchange for circuit depth restrictions. The introduction of the SIMD
(Single Instruction, Multiple Data) paradigm by Smart and Vercauteren [13], leveraging the Chinese
Remainder Theorem (CRT) decomposition of plaintext polynomials, enables the packing of multiple
plaintext slots into a single ciphertext, thus facilitating parallelized computation.

A critical development enabling approximate arithmetic for real-number computations—especially
relevant in privacy-preserving machine learning—is the rescaling operation introduced in the CKKS
scheme [2]. Rescaling effectively manages the ciphertext modulus and controls the scale factor to
bound precision loss and mitigate noise accumulation.

Modern approximate FHE libraries, such as HEAAN, support a rich set of homomorphic operations:

• Enc: Encryption of a plaintext vector into a ciphertext;

• Dec: Decryption of a ciphertext into its corresponding plaintext;

• Add, Mult: Ciphertext-ciphertext addition and multiplication;

• cMult: Ciphertext-plaintext multiplication with a constant vector;

• ReScale: Scale reduction operation following multiplication to maintain modulus align-
ment;

• Rot: Encrypted vector rotation, often used for index permutation;

• bootstrap: Noise-refreshing procedure via homomorphic decryption and reencryption.

These primitives collectively enable the implementation of expressive encrypted computations, serv-
ing as the foundation for privacy-preserving machine learning, encrypted database query processing,
and secure multiparty computation.

2.1.1 Data Encoding via Slot-Packing

To maximize ciphertext slot utilization in homomorphic matrix processing, Kim et al. [9] proposed a
slot-packing scheme that enables efficient plaintext-to-ciphertext encoding for tabular datasets. Given
a row-major matrix Z ∈ Rn×d, the matrix is first linearized into a one-dimensional vector V ∈ Rn·d

using row-wise flattening. The encrypted matrix is then represented as Z = Enc(V ).

Based on this encoding, two core homomorphic transformations are performed using rotation opera-
tions:

• Full Row Rotation: Cyclically shifts entire row segments across the vector;

• Partial Column Rotation: Simulates per-column operations by offsetting specific column-
aligned entries across adjacent rows.

These transformations enable encrypted matrix manipulation in the ciphertext domain, producing the
following permuted encodings:
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Z =


x10 x11 . . . x1d

x20 x21 . . . x2d

...
...

. . .
...

xn0 xn1 . . . xnd

 , Z
′
= Enc


x20 x21 . . . x2d

...
...

. . .
...

xn0 xn1 . . . xnd

x10 x11 . . . x1d

 ,

Z
′′
= Enc


x11 . . . x1d x20

x21 . . . x2d x30

...
...

. . .
...

xn1 . . . xnd x10

 , Z
′′′

= Enc


x11 . . . x1d x10

x21 . . . x2d x20

...
...

. . .
...

xn1 . . . xnd xn0

 .

The transformation from Z to Z
′′′

—which achieves full column rotation—can be realized via a
composition of two Rot operations, two cMult operations for masking, and one Add to combine
intermediate ciphertexts.

Extensions to this encoding framework [7, 4] have incorporated utility functions such as SumRowVec
and SumColVec, which enable ciphertext-domain summation across rows and columns, respectively.
These primitives are instrumental in implementing homomorphic reductions, gradient aggregation,
and other linear algebra operations central to encrypted machine learning pipelines.

2.2 Fully Convolutional Networks

Convolutional Neural Networks (CNNs) constitute a prominent class of deep learning models,
architecturally inspired by the hierarchical structure of the biological visual cortex. Owing to their
ability to capture spatial hierarchies in data through local receptive fields and weight sharing, CNNs
have achieved state-of-the-art performance across a wide range of computer vision tasks, particularly
in image classification. Their biologically inspired design sets them apart as one of the few neural
architectures that closely emulate the functional organization of the human visual system.

Long et al. [10] proposed a more elegant architecture, known as the fully convolutional network
(FCN), to address the challenge of dense prediction in semantic segmentation. The main idea in [10]
is to augment the conventional contracting network with a sequence of layers in which pooling
operations are replaced by upsampling operators. These additional layers progressively restore
spatial resolution in the output. To preserve localization accuracy, high-resolution features from the
contracting path are combined with the upsampled activations. A subsequent convolutional layer is
then capable of learning to generate more refined predictions based on this integrated information.

Fully Convolutional Architecture: Traditional convolutional neural networks (CNNs) employ fully
connected layers in the final stages for classification, which constrains input images to a fixed size.
FCNs eliminate these fully connected layers and instead utilize convolutional layers throughout the
entire network, enabling the model to accept arbitrary-sized inputs and produce correspondingly
sized dense predictions. This fully convolutional design allows the network to perform pixel-wise
predictions on entire images without requiring cropping or patch-based processing.

Upsampling and Deconvolution: Since convolutions and pooling layers reduce the spatial resolution
of feature maps, FCNs incorporate deconvolutional (or transposed convolutional) layers to upsample
the low-resolution outputs back to the original input dimensions. The parameters of these decon-
volution layers are learned via backpropagation, allowing the model to reconstruct high-resolution
outputs that align with the input image size.

Skip Connections: To combine semantic information from deep layers with fine-grained details from
shallow layers, FCNs introduce skip connections. Specifically, high-resolution feature maps from
earlier layers in the contracting path are fused with the corresponding upsampled outputs. This fusion
enhances spatial precision in the final predictions. The skip connection mechanism is conceptually
similar to that later used in the U-Net architecture.

End-to-End Training: FCNs enable end-to-end learning from raw input images to dense segmenta-
tion maps. Unlike traditional approaches that require handcrafted pre-processing and post-processing
pipelines, FCNs streamline the training process and improve efficiency by jointly optimizing the
entire network in a single training loop.
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Ronneberger et al. [12] proposed the U-Net architecture, a modification and extension of the Fully
Convolutional Network (FCN), designed to achieve precise and accurate segmentation results even
with limited training data.

2.3 Double Volley Revolver

Unlike other efficient yet intricate encoding schemes [8], Volley Revolver [4] is a lightweight and
flexible matrix encoding technique specifically designed for privacy-preserving machine learning. Its
core idea, in its simplest form, involves encrypting the transpose of one of the matrices involved in a
matrix multiplication, thereby enabling efficient homomorphic computation.

Encoding schemes play a pivotal role in enabling privacy-preserving training of convolutional
neural networks (CNNs). As demonstrated in [4], Volley Revolver can be effectively utilized for
implementing homomorphic CNN training. Despite its simplicity, this encoding strategy allows fine-
grained control over data movement within ciphertexts, facilitating practical encrypted computation.

Importantly, it is not mandatory to always transpose the second matrix. In practice, either of the two
matrices can be transposed prior to encryption. For example, transposing the first matrix and adapting
the multiplication accordingly leads to an algorithm similar to Algorithm 2 in [4].

Furthermore, when the matrices involved are too large to be encapsulated in a single ciphertext, we
extend the original scheme to a batched version, termed Double Volley Revolver. In this setting,
each matrix is partitioned horizontally into multiple ciphertexts, forming two teams A and B. The
outer loop of the algorithm iterates over all ciphertext pairs from these two sets, while the inner
loop performs submatrix multiplication between each pair (A[i], B[j]) using the original Volley
Revolver algorithm.

2.3.1 Horizontal Partitioning

Figure 1 illustrates a simple example of the multiplication process used in this encoding scheme.

·

a0 a1 b0 b2

a2 a3 b1 b3

a4 a5 b0 b2

a6 a7 b1 b3

×

a0 a1

a2 a3 b0 b1

a4 a5 b2 b3

a6 a7

0 0

0 0

0 0

0 0

·

a0 a1 b0 b2

a2 a3 b1 b3

a4 a5 b0 b2

a6 a7 b1 b3

c0 = a0 · b0 + a1 · b2 c3 = a2 · b1 + a3 · b3

c0 c0

c3 c3

c4 c4

c7 c7

c4 = a4 · b0 + a5 · b2 c7 = a6 · b1 + a7 · b3

c0 0

0 c3

c4 0

0 c7

·

a0 a1 b1 b3

a2 a3 b0 b2

a4 a5 b1 b3

a6 a7 b0 b2

c1 = a0 · b1 + a1 · b3 c2 = a2 · b0 + a3 · b2

c1 c1

c2 c2

c5 c5

c6 c6

c5 = a4 · b1 + a5 · b3 c6 = a6 · b0 + a7 · b2

0 c1

c2 0

0 c5

c6 0

Encrypt

Encoding

R
o
t
(0
)

R
o
t(1)

SumColVec(·) Clean up the

redundant values

SumColVec(·) Clean up the

redundant values

⊕
⊕

Figure 1: The matrix multiplication algorithm of Volley Revolver applied to a 4× 2 matrix A and
a 2× 2 matrix B.
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3 Technical Details

3.1 U-Net Convolutional Networks

U-Net is a specialized convolutional neural network (CNN) architecture primarily designed for
semantic segmentation tasks, particularly in the field of medical image analysis. It is well-suited
for tasks such as organ segmentation, tumor detection, and other pixel-level image classification
problems, where precise localization and boundary delineation are crucial. The network’s architecture
is characterized by an encoder-decoder structure, where the encoder captures high-level features
through successive downsampling, and the decoder reconstructs the spatial resolution through
upsampling, ultimately providing pixel-wise predictions.

One of the key strengths of U-Net is its ability to handle limited datasets, making it highly effective
in medical imaging where annotated data is often scarce. This is achieved through the use of
skip connections that enable the network to retain fine-grained spatial information while learning
hierarchical features. U-Net has demonstrated state-of-the-art performance in various medical image
segmentation benchmarks, establishing itself as a cornerstone in medical imaging research.

The architecture of U-Net relies on four primary techniques to achieve its impressive performance:
convolution, pooling, upsampling, and skip connections. Each of these components plays a critical
role in feature extraction, resolution reduction, feature map restoration, and the retention of spatial
details, respectively. These techniques are detailed in the following sections.

3.1.1 Convolution

Convolution is the fundamental operation for feature extraction in convolutional neural networks. It
involves applying small-sized kernels (e.g., 3× 3) that slide over the input image to capture local
spatial patterns such as edges, textures, and corners. Through the stacking of multiple convolutional
layers, the network can progressively extract increasingly abstract representations—ranging from
low-level visual cues to higher-level semantic structures.

In U-Net, each convolutional block typically consists of two successive 3× 3 convolutional layers,
each followed by a Rectified Linear Unit (ReLU) activation function. This configuration preserves
fine-grained spatial details while simultaneously enriching the representation capacity of the network.

3.1.2 Pooling

Pooling serves to reduce the spatial dimensions of feature maps, enabling the network to abstract
higher-level representations while reducing computational complexity. Max pooling, which selects
the maximum value within a local region (typically 2 × 2), is commonly used due to its ability to
retain the most salient features.

This operation offers two key advantages: (1) it significantly decreases the number of parameters and
computational overhead, and (2) it increases the receptive field, allowing the model to capture more
global contextual information. In U-Net, downsampling is implemented using 2× 2 max pooling
operations, which halve the spatial resolution at each stage.

3.1.3 Upsampling

Upsampling is employed to restore the spatial resolution of feature maps that have been compressed
during the encoding phase. Basic methods such as nearest-neighbor interpolation or bilinear interpo-
lation can be used for this purpose; however, these approaches are fixed and non-learnable.

A more effective and widely adopted method in U-Net is transposed convolution (also known as
deconvolution), which learns a set of weights to perform upsampling in a data-driven manner. This
learnable upsampling mechanism enables the network to recover finer structural details and improve
localization accuracy.

3.1.4 Skip Connections

Skip connections are a core architectural component of U-Net, designed to mitigate the loss of
spatial detail caused by repeated convolution and pooling operations. As the network goes deeper,
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spatial resolution is progressively reduced, making it challenging to accurately localize fine-grained
structures such as object boundaries.

To address this, U-Net introduces skip connections that directly concatenate the feature maps from the
encoder (at a given resolution level) with the corresponding decoder feature maps after upsampling.
This operation, performed along the channel dimension, allows the decoder to leverage both high-level
semantic information and low-level spatial details.

This design greatly enhances the network’s ability to perform precise pixel-level predictions, and is
widely regarded as one of the most influential innovations introduced by the U-Net architecture.

3.2 Homomorphic U-Net Inference

3.2.1 Polynomial Approximation

Polynomial approximation techniques are central to many applications in numerical analysis, par-
ticularly when seeking efficient representations of nonlinear functions. Classical approaches, such
as Taylor expansion and Lagrange interpolation, offer high accuracy in localized regions around a
specific expansion point. However, their utility diminishes rapidly outside the neighborhood of the
expansion point, with the approximation error increasing exponentially as the input moves further
from this vicinity.

In contrast, the least squares approximation method minimizes the overall approximation error across
a global domain, yielding a more reliable and stable representation over broader intervals. The least
squares framework optimizes the coefficients of a polynomial by minimizing the sum of squared
errors between the approximated polynomial and the target function. This method’s robustness and
generality have made it a popular choice in practical applications, as evidenced by its integration in
software packages such as Python’s polyfit(·) and MATLAB’s polyfit. These built-in functions
efficiently implement least squares polynomial fitting for a wide range of non-polynomial functions,
offering significant flexibility in modeling real-world data.

Another widely adopted technique is the minimax approximation, which minimizes the maximum
error across the entire approximation interval. This approach ensures a uniform approximation quality,
making it particularly valuable in applications where tight bounds on worst-case errors are critical.
The minimax method has found broad application in the context of function approximation where
control over the peak error is essential.

Recent advancements have extended polynomial approximation techniques to large intervals, often
incorporating domain-specific optimizations. Cheon et al. [3] introduced the concept of domain
extension polynomials, a strategy that facilitates the iterative extension of the approximation domain.
This method proves particularly useful for approximating functions that exhibit behavior analogous
to sigmoid functions, enabling the efficient approximation of such functions over significantly
broader intervals. This technique has found specific utility in homomorphic evaluation, where
accurate function approximations are required within encrypted computation frameworks. Building
on this work, we adopt their methodology to approximate the sigmoid function over the interval
[−64, 64], leveraging the extended domain to achieve a balance between computational efficiency
and approximation fidelity.

These techniques collectively form a powerful toolkit for approximating complex nonlinear functions,
ensuring high-quality results across both narrow and broad domains, and providing a basis for efficient
encrypted function evaluation in privacy-preserving applications.

3.2.2 Homomorphic Evaluation

Here is a description of the network used for training:

1 Model Summary:
2 UNet(
3 (conv11): Conv2d(1, 5, kernel_size=(3, 3), stride=(1, 1), ...

padding=(1, 1))
4 (act11): MyReLU()
5 (conv12): Conv2d(5, 5, kernel_size=(3, 3), stride=(1, 1), ...

padding=(1, 1))
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6 (act12): MyReLU()
7 (pool1): AvgPool2d(kernel_size=2, stride=2, padding=0)
8 (conv21): Conv2d(5, 10, kernel_size=(3, 3), stride=(1, 1), ...

padding=(1, 1))
9 (act21): MyReLU()

10 (conv22): Conv2d(10, 10, kernel_size=(3, 3), stride=(1, 1), ...
padding=(1, 1))

11 (act22): MyReLU()
12 (pool2): AvgPool2d(kernel_size=2, stride=2, padding=0)
13 (conv51): Conv2d(10, 20, kernel_size=(3, 3), stride=(1, 1), ...

padding=(1, 1))
14 (act51): MyReLU()
15 (conv52): Conv2d(20, 20, kernel_size=(3, 3), stride=(1, 1), ...

padding=(1, 1))
16 (act52): MyReLU()
17 (convtran1): ConvTranspose2d(20, 10, kernel_size=(2, 2), ...

stride=(2, 2))
18 (conv61): Conv2d(20, 10, kernel_size=(3, 3), stride=(1, 1), ...

padding=(1, 1))
19 (act61): MyReLU()
20 (conv62): Conv2d(10, 10, kernel_size=(3, 3), stride=(1, 1), ...

padding=(1, 1))
21 (act62): MyReLU()
22 (convtran2): ConvTranspose2d(10, 5, kernel_size=(2, 2), ...

stride=(2, 2))
23 (conv71): Conv2d(10, 5, kernel_size=(3, 3), stride=(1, 1), ...

padding=(1, 1))
24 (act71): MyReLU()
25 (conv72): Conv2d(5, 5, kernel_size=(3, 3), stride=(1, 1), ...

padding=(1, 1))
26 (act72): MyReLU()
27 (out): Conv2d(5, 1, kernel_size=(1, 1), stride=(1, 1))
28 )

3.3 Loss Function

The loss function plays a crucial role in guiding the network to learn accurate semantic segmentation.
In the context of U-Net and similar architectures, the most commonly employed loss function is the
binary cross-entropy loss, which treats segmentation as a pixel-wise binary classification problem.
Each pixel is assigned a label (e.g., foreground or background), and the loss evaluates the discrepancy
between the predicted probability and the ground truth label at every pixel.

Binary cross-entropy (BCE) loss originates from the concept of cross-entropy in information theory,
introduced by Shannon (1948), and is formally defined as the negative log-likelihood under a Bernoulli
distribution. It is particularly suitable for settings where the model outputs a probability value in the
range [0, 1] for each pixel, indicating the likelihood of belonging to the positive class.

However, BCE may become suboptimal in scenarios involving class imbalance—such as when the
foreground region occupies only a small portion of the image. To address this, alternative loss
functions such as the Dice loss and the Intersection over Union (IoU) loss have been widely adopted.
Dice loss, in particular, is effective at handling highly imbalanced segmentation tasks, as it directly
optimizes for overlap between predicted and ground-truth masks.

In the original U-Net architecture, the authors employed standard pixel-wise binary cross-entropy loss.
In subsequent variants and extensions of U-Net, Dice-based loss functions have been introduced, often
leading to improved performance, especially in medical image segmentation tasks where foreground
objects tend to be small and sparse. Despite the potential benefits of these alternatives, we follow the
original U-Net implementation and adopt binary cross-entropy loss due to its simplicity and ease of
integration. Specifically, we utilize the nn.BCEWithLogitsLoss() function provided by PyTorch,
which combines a sigmoid layer and the BCE loss in a numerically stable implementation.
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3.3.1 Computational Complexity

Experiments for encrypted-domain processing were conducted on a dual-socket Intel Xeon E5-2698
v3 server, based on the Haswell microarchitecture. This server configuration includes 16 cores per
socket running at 2.30 GHz, with a total of 250 GB of main memory. The software environment
utilized GCC version 7.2.1 for compilation, with arithmetic operations supported by NTL version
10.5.0 and GMP version 6.0.

Future improvements: The preliminary results presented herein validate the feasibility of performing
Stochastic Gradient Descent (SGD) training within the encrypted domain. However, this work
represents a nascent phase, and several avenues for optimization remain unexplored. Notably, our
current approach only addresses basic batching techniques for input data, while still allocating
individual ciphertexts for each weight parameter. Efficient strategies for ciphertext packing and
optimized batching, which could substantially enhance computational efficiency, are currently under
investigation.

4 Empirical Results

The C++ source code to implement the experiments in this section is openly available at:
https://github.com/petitioner/HE.CryptoUNets .

4.1 Dataset

To assess the performance of our U-Net-based segmentation method, we utilize the ISBI 2012 EM
Segmentation Challenge dataset. This dataset comprises a series of electron microscopy (EM) images
capturing neuronal structures from the Drosophila larval ventral nerve cord. The primary objective of
the challenge is to achieve precise segmentation of cell membranes within these grayscale images,
with an emphasis on delineating fine structural boundaries and mitigating potential noise within the
dataset.

4.2 Parameters

The parameters of HEAAN utilized in our experiments are as follows: logN = 16, logQ = 990,
logp = 45, and slots = 32768, corresponding to a security level of λ = 128. Further details
regarding these parameter choices can be found in [9]. Notably, bootstrapping was not applied to
refresh the weight ciphertexts. Each input image incurs an approximate runtime of 11 minutes, with a
peak memory usage of approximately 18 GB.

4.3 Performance

4.4 Timing analysis

4.5 Description of the Network

4.6 Message sizes

5 Conclusion

In this work, we implemented privacy-preserving U-Net inference solely based on homomorphic
encryption techniques by employing a flexible data encoding scheme.
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