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Abstract. Federated Learning enables collaborative training of a global model
across multiple geographically dispersed clients without the need for data shar-
ing. However, it is susceptible to inference attacks, particularly label inference
attacks.
Existing studies on label distribution inference exhibits sensitive to the specific
settings of the victim client and typically underperforms under defensive strate-
gies. In this study, we propose a novel label distribution inference attack that is
stable and adaptable to various scenarios. Specifically, we estimate the size of the
victim client’s dataset and construct several virtual clients tailored to the victim
client. We then quantify the temporal generalization of each class label for the
virtual clients and utilize the variation in temporal generalization to train an in-
ference model that predicts the label distribution proportions of the victim client.
We validate our approach on multiple datasets, including MNIST, Fashion-MNIST,
FER2013, and AG-News. The results demonstrate the superiority of our method
compared to state-of-the-art techniques. Furthermore, our attack remains effec-
tive even under differential privacy defense mechanisms, underscoring its poten-
tial for real-world applications.

Keywords: Federated learning · Inference attack · Data privacy · Trust federated
learning.

1 Introduction

The traditional centralized deep learning approach requires aggregating distributed data
in a central computing center for training. During data transmission, there is a risk that
user data is stolen, leaked, or misused. Federated learning (FL) [DBLP:conf/esorics/ChoHYLBP24,
chen2024federated, huang2024federated, miao2024rfed], as a distributed machine
learning framework, enables geographically isolated and resource-constrained partici-
pants to securely collaborate on model training. In federated training, the participants’
local data remain on their devices and are not shared with other participants or the cen-
tral server. The model is trained by exchanging model parameters and performing global
aggregation. Consequently, federated learning has become a widely adopted distributed
machine learning technique, supporting privacy-sensitive domains such as healthcare
[nguyen2022federated, li2021federated], finance [long2020federated, imteaj2022leveraging],
and wireless communications [RJOUB2025113574, AZHARSHOKOUFEH2025113526].

A critical question in federated learning (FL) is whether private data is truly secure
and trustworthy [DBLP:conf/esorics/MozaffariCH24, DBLP:conf/esorics/AsareBKY23].
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The model parameters uploaded by participants can inadvertently reveal characteristics
of their local datasets [10735243, DBLP:conf/esorics/GuepinMCM23, zhao2024loki].
Label distribution inference attacks, which expose a participant’s preferences, represent
a significant threat to the security of FL systems. For instance, a malicious healthcare
institution could infer the prevalence of a particular disease, allowing it to stockpile
medications and manipulate prices. Similarly, a malicious retailer could infer the distri-
bution of certain products, thereby deducing supply and demand dynamics, potentially
disrupting the market and gaining an unfair competitive advantage.

The label distribution inference attack [ayora2021profiling, anelli2021put] orig-
inates from the Preference Profile Attack (PPA) [PPA], which was the first to pro-
pose inferring a participant’s data preferences by observing the sensitivity of the model
gradients uploaded by the participant. PPA identifies the top-k labels in which a tar-
get participant is most (or least) interested. Based on this framework, Raksha et al.
[ramakrishna2022inferring] and LDIA [gu2023ldia] extend the approach to infer the
entire label distribution by analyzing changes in the parameters of the model output
layer of the target participant. However, the amplitude of these changes is influenced by
factors such as the size of the victim client’s dataset and the number of local training
rounds, making it difficult for attackers to obtain prior knowledge of these parame-
ters. Additionally, these methods are ineffective when differential privacy techniques
are employed, as such techniques prevent an honest-but-curious server from accurately
accessing the output layer parameters.

To eliminate sensitivity to changes in the model parameters, we leverage the tem-
poral generalization of the model to train an inference model. This approach draws
inspiration from the phenomenon of overfitting, where a model performs differently on
training data compared to test data. This discrepancy occurs because the model tends
to capture noise and details specific to the training data, thereby limiting its generaliz-
ability. Similarly, when the model is trained on labels with limited data, it often overfits
by “memorizing" the features of these samples rather than learning their underlying
patterns. The scarcity of diverse samples for these labels hinders the model’s ability
to generalize, resulting in suboptimal performance on underrepresented labels. In con-
trast, labels with abundant data provide a richer variety of samples, allowing the model
to better capture their general characteristics and improve its overall generalization per-
formance.

Based on the observation we proposed, we estimate the gradient information up-
loaded by the target client and design a virtual client environment that closely matches
the target client’s data size and distribution. By monitoring the temporal generalization
performance of these virtual clients, we train an attack model to infer the local data
distribution of the target client. Since inference defense strategies, such as differen-
tial privacy mechanisms, aim to balance model utility and privacy, our generalization
performance-based inference attack is negligibly affected by these defense strategies.
To achieve accurate label distribution inference, we introduce varying levels of noise
into the virtual clients, effectively mitigating the impact of differential privacy mecha-
nisms on the attack.

The main contributions of this paper are as follows.
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– We achieve a more accurate and stable label distribution inference attack by esti-
mating the size of the dataset.

– Based on the estimated dataset size, we construct a virtual client cluster that simu-
lates the target client’s behavior in every probable distribution, including both IID
and various non-IID scenarios.

– We quantify the generalization of each label then use the temporal generalization
data as input and the label distribution proportion as output to train a time-series-
based attack model.

– We evaluate the proposed attack model on four datasets, and demonstrating its ef-
fectiveness even under differential privacy defenses.

Table 1: Comparison of three inference attacks.
Category Focus Attack Target Potential Impact

Membership
Inference Attack

Existence
Determine the existence

of specific samples

Results in the disclosure of
individual data users’ private

information.

Property
Inference Attack

Sensitive
Attributes

Extract specific sensitive
attributes of training data

Causes the leakage of critical
attribute information, such as
gender or medical conditions.

Label Distribution
Inference Attack

Dataset
Composition

Reveal the label
distribution across the

entire dataset

Attacking a single participant:
Reveals individual or

institutional preferences.
Attacking all participants:

Exposes group traits,
threatening collective privacy

and fairness in decision.

2 Related Works

The label distribution inference attack aims to infer the label proportions in the train-
ing data of a target participant. By analyzing the model’s outputs or statistics during
the training process, the attacker seeks to determine the frequency or proportion of
various class labels in the dataset. Zhou et al. first proposed the Preference Profil-
ing Attack (PPA) [PPA], which infers the top k categories of greatest or least inter-
est to the target client by capturing gradient sensitivity. Subsequently, Raksha et al.
[ramakrishna2022inferring] and Gu et al. [gu2023ldia] extended PPA from infer-
ring a limited number of categories to inferring the label distribution across all cate-
gories. Their method simulated training by constructing auxiliary datasets and calcu-
lated changes in the output layer parameters of the trained model to deduce the label
distribution ratios of the target participant’s training data. Dai et al. [decaf] also ana-
lyzed the gradient of the last fully connected layer, leveraging its class-specific neuron
activation patterns to identify null classes and decompose non-null class distributions
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via gradient bases constructed from auxiliary samples. However, these approaches has
notable limitations, as the inference results are heavily influenced by the auxiliary data
set. Changes in model parameters following training on auxiliary datasets of varying
sizes are fixed, and an honest-but-curious server cannot a priori know the target partic-
ipant’s dataset information, resulting in inaccurate predictions. Additionally, requiring
participants to upload their complete local model parameters without any restrictions is
impractical. To enhance the security of participant models in federated learning, tech-
niques such as differential privacy are often employed to protect uploaded information.
However, these techniques also introduce noise, which contributes to the inaccuracy of
existing methods in label proportion inference attacks.

Table 1 provides a comparative analysis of three inference attacks targeting feder-
ated learning. While all three methods exploit the data privacy of federated participants,
they differ in their focus on data privacy, attack objectives, and potential impacts. The
membership inference attack aims to determine whether a specific data sample is in-
cluded in the training set [DBLP:conf/esorics/HoCSL24, DBLP:journals/tdsc/ZhengL24,
DBLP:journals/tdsc/Pichler0VP24]. By analyzing the model’s outputs, attackers can
identify whether a user’s sensitive data has been used in the training process. The suc-
cess of this attack directly compromises individual privacy, exposing sensitive user in-
formation. In contrast, the attribute inference attack seeks to infer specific characteris-
tics or attributes of the samples, such as gender or age [DBLP:conf/uss/AnnamalaiGR24,
10662889]. Attackers analyze the model’s prediction patterns in conjunction with aux-
iliary information to deduce sensitive attributes related to particular users. This type
of attack not only undermines individual privacy but can also disproportionately af-
fect certain societal groups, raising fairness concerns. Finally, the label distribution
inference attack focuses on understanding the distribution of various labels within the
training dataset. By examining changes in model parameter sensitivity, attackers infer
the frequency and proportions of labels present in the dataset. This attack may disclose
sensitive information about participant preferences or group characteristics, potentially
impacting the fairness and reliability of the federated model.

3 Methodology

3.1 Threat Model

Victim Client: This study examines the privacy risks associated with the label distri-
bution of a target client. The client owns a private dataset D, which is stored locally
and is not shared with any third party. In a federated learning system, the central server
distributes the current global model MG to the client. The client then uses its local
dataset D to train MG, producing an updated local model ML. This local model, or
the corresponding gradient update GL, is subsequently uploaded to the server. Beyond
this exchange, clients neither share their models with other participants nor provide
interfaces for third-party access.

Adversary Objective And Knowledge: We assume the attacker is an honest-but-
curious server. The goal of the honest-but-curious server is to infer the label distribu-
tion of participating clients’ training data by analyzing the uploaded model parameters
or update gradients during the federated learning process. The server shares the same



Unveiling Label Distributions in Federated Learning 5
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Fig. 1: The overview of the framework.

label space with clients but operates on different data spaces. The server has knowledge
of the FL model’s task and the class labels and can acquire auxiliary data correspond-
ing to known labels from real-world sources. It cannot manipulate the FL aggregation
process, modify the aggregation strategy, or access the local data of any client directly
or indirectly. The server can only observe the model parameters M t

L, t ∈ {1, 2, ...T}
uploaded by the victim client during each training iteration.

3.2 Overview

The proposed method is summarized in Figure 1. The honest-but-curious server aims
to explore the data distribution privacy of participating clients without their awareness.
The inference model is deployed on the server in two stages. The first stage estimates the
size of the target participant’s training dataset, and the second stage uses this estimation
to construct virtual participants with a comparable dataset size. These virtual partici-
pants simulate federated training scenarios under various data distribution conditions.
By collecting the temporal robustness accuracy changes during the training process of
the virtual participants as input data and using their actual data distribution as labels, the
server trains a inference model to probe the data distribution of the target participant.

3.3 Estimation Size of Dataset

In federated learning, clients are typically required to upload their dataset sizes to fa-
cilitate global convergence. However, to safeguard participant privacy, most federated
learning strategies restrict clients from disclosing any details about their local datasets.
Consequently, before inferring the label distribution of a target client, it is essential to
first estimate the size of the client’s dataset.

We found that the size of the training dataset plays a critical role in determining
the quality and stability of gradient updates in machine learning models. As shown
in Fig 2, we set the size of the client dataset to 2000(100%), 1600(80%), 1000(50%),
600(30%), and 200(10%), recording the gradient noise and gradient norm during its
training. Larger datasets generally lead to more stable and reliable gradient estimates.
With a larger dataset, each batch better represents the overall data distribution, reducing
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Fig. 2: The influence of dataset size on model gradient.

variance in gradient estimates. In contrast, smaller datasets result in noisier gradient es-
timates due to increased variance, as each sample has a larger influence on the gradient.
Although the magnitude of the gradient may increase due to noisiness, the inconsistent
directional alignment often leads to a smaller average L2 norm (||∇L(θ)||2) resulting
in oscillatory updates and slower convergence.

The relationship between dataset size and gradient variance can be quantified math-
ematically. For a gradient estimate ĝ computed from a batch of size B, the variance
is inversely proportional to B and can be expressed as V ar(ĝ) = σ2

B , where σ2 rep-
resents the variance of individual sample gradients. Smaller datasets, characterized by
higher variance, produce noisier gradient estimates, increasing the difficulty of achiev-
ing stable updates. According to the Central Limit Theorem, when the batch size B
is sufficiently large, the mean gradient ĝ computed from a batch approximates a nor-
mal distribution ĝ ∼ N (µ, σ2

B ) where µ is the true gradient. For smaller datasets, the
gradient estimates become noisier because of the higher variance introduced by fewer
samples, which leads to more variability in the direction of the gradient. This results
in unstable updates and difficulties in optimization. The noise in the gradient estimates
can be described by ϵ, where ϵ ∼ N (0, σ2

n ). This additional noise amplifies variability
in gradient direction, resulting in a less stable optimization trajectory.

The Taylor expansion of the loss function L around a parameter θ further illustrates
the impact of gradient stability on optimization:

L(θ +∆θ) ≈ L(θ) +∇L(θ)⊤∆θ

≈ L(θ) +∇L(θ)⊤∆θ +
1

2
∆θ⊤Hθ

(1)

where ∇L(θ) is the gradient, and H is the Hessian matrix. The L2 norm of the gradient
quantifies the sensitivity of the loss function to changes in model parameters. For small
datasets, high variance and inconsistent gradient directions reduce the L2 norm:

||∇L(θ)||22 =

d∑
i=1

(∇iL(θ))
2 (2)
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where ∇iL(θ) is the i-th component of the gradient. When ∇L(θ) = µ+ϵ, the expected
value of the squared L2 norm is:

E[||∇L(θ)||22] = ||µ||22 + E[||ϵ||22] (3)

The noise ϵ introduces additional variance, leading to oscillatory updates and slower
convergence. Furthermore, the Hessian matrix H , which encodes the second-order cur-
vature information of the loss function, f, depends on the dataset size. For dataset of
size n, H can be approximated as:

H ≈ 1

n

n∑
i=1

∇2Li(θ) (4)

where ∇2Li(θ) represents the second-order partial derivatives for each sample. For
smaller datasets, the estimate of the Hessian becomes less reliable, leading to a misrep-
resentation of the curvature and instability in optimization.

Finally, noisy gradients due to smaller datasets also lead to inconsistent directions
during optimization. For a batch of size B, the average gradient is ḡ = 1

B

∑B
i=1 gi, and

its L2 norm is given by:

||ḡ||2 =

√√√√√ d∑
j=1

(
1

B

B∑
i=1

gij

)2

(5)

where gi represents the gradient for the i-th sample, and the sum is over the dimensions
of the gradient vector. When individual gradients gi vary significantly in direction, can-
cellation effects reduce the aggregated gradient norm ||ḡ||2, leading to smaller effective
step sizes and slower convergence.

In summary, the size of the training dataset critically influences gradient stability
during optimization. Larger datasets reduce variance, stabilize gradient directions, and
yield more consistent L2 norms, facilitating more efficient and reliable optimization.
Conversely, smaller datasets introduce noisier gradients, higher variance, and direc-
tional inconsistencies, which hinder convergence and reduce the effectiveness of the
training process.

Based on the above principles, we infer the dataset size of the target client by con-
structing virtual clients and comparing their L2 norms with that of the target client.
We collect real-world data with the same labels as the federated task to construct an
auxiliary dataset Daux. The virtual client is initialized with the same structure and pa-
rameters as the global model provided in the federated setting, ensuring consistency
with the target client. During training, we record the gradient norm ||∇Lv(θ)||2 of the
virtual client. We employ a binary search method to iteratively adjust the size of the
virtual client’s dataset until its gradient norm closely matches that of the target client,
||∇Ltar(θ)||2. Specifically, we define a threshold ϵ to establish the acceptable range for
the gradient norm, and the process continues until ||∇Lv(θ)||2 satisfies the following
condition:

||∇Ltar(θ)||2 − ϵ < ||∇Lv(θ)||2 < ||∇Ltar(θ)||2 + ϵ (6)
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Algorithm 1 Estimating Dataset Size of the target Client.
Input: Target client’s gradient norm ||∇Ltar(θ)||2, Auxiliary dataset Daux, Global model param-
eters θ, Tolerance ϵ.
Output: Estimated dataset size of the virtual client.
1: Initialize virtual client’s model parameters θv with θ
2: Set an initial guess for dataset size sv
3: Define upper and lower bounds for the gradient norm: δ1 = ||∇Ltar(θ)||2 − ϵ, δ2 =
||∇Ltar(θ)||2 + ϵ

4: while ||∇Lv(θv)||2 < δ1 or ||∇Lv(θv)||2 > δ2 do
5: Train the virtual client with dataset of size sv
6: Compute the gradient norm ||∇Lv(θv)||2
7: if ||∇Lv(θv)||2 < δ1 then
8: sv ← 2× sv
9: Adjust the virtual client’s dataset with Daux

10: else if ||∇Lv(θv)||2 > δ2 then
11: sv ← sv/2
12: Adjust the virtual client’s dataset with Daux

13: end if
14: end while
15: return sv

3.4 Construct The Virtual Clients and Inference Model

To accurately simulate and train the inference model, we construct virtual clients un-
der both IID and Non-IID scenarios. For the IID scenario, we ensure that each label
is represented approximately equally across all virtual clients. The number of samples
for each label is configured within the range [C/sv − ∆,C/sv + ∆], where C is the
total number of classes, and ∆ represents the allowable fluctuation range. For the Non-
IID scenario, we consider two types of imbalances: label quantity-based imbalance
and distribution-based label imbalance. In label quantity-based imbalance, each virtual
client randomly selects samples from a fixed subset of Cf classes. In distribution-based
label imbalance, we employ a Dirichlet distribution to simulate uneven label distribu-
tions. The parameter α of the Dirichlet distribution controls the heterogeneity of the
dataset. For each label distribution, we randomly sample from the auxiliary datasets
to construct virtual client clusters P . By simulating federated training processes with
these virtual clients and analyzing the changes in their generalization performance, we
train the inference model to infer the label distribution of the target client.

The virtual client cluster P operates independently of the federated learning pro-
cess, meaning it does not participate in the sampling or aggregation phases. These vir-
tual clients update their models directly based on the results from global aggregation. It
is important to note that the virtual clients rely solely on global aggregation outcomes,
ensuring that their operations do not interfere with the actual federated learning sys-
tem. The attacker uses these virtual clients to record their performance on the test set
at the end of each training round. For each virtual client, a temporal matrix RE×C is
constructed, where E represents the total number of training rounds. These temporal
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Algorithm 2 Construct Virtual Clients and Train Inference Model
Initialize clusters of virtual clients P .
Input: Auxiliary dataset Daux, Number of classes C, Fluctuation range ∆, Dirichlet parameter
α, Global model parameters θ, Number of training rounds E.
Output: Record RE×C .
1: for each virtual client in P do
2: if IID scenario then
3: l ∼ [C/sv −∆,C/sv +∆]
4: end if
5: if Non-IID scenario then
6: l ∼ Dir(α) or select Cf classes
7: end if
8: Train the virtual clients θ̂t+1 =

∑N
k=1

nk
n
θtk

9: Record RE×C

10: end for
Inference the Label Distribution.
Input: RE×C , Wh, bh, v
Output: l = {l1, l2, . . . , lC}
1: h0, c0 ← Initialize
2: for t = 1 to E do
3: ht, ct = LSTM(ht−1, ct−1,Rt,:)
4: end for
5: et = v⊤ tanh(Whht + bh), t = 1, . . . , E

6: αt =
exp(et)∑E

k=1
exp(ek)

, t = 1, . . . , E

7: c =
∑E

t=1 αtht

8: l = FC(c)
9: return l

matrices capture the variations in the model’s generalization performance across differ-
ent labels throughout the training process of the virtual clients.

To effectively extract key information and capture temporal dependencies from se-
quence data, we designed an LSTM-based inference model. The temporal matrices are
used as inputs, while the output represents the label distribution proportions of the vir-
tual clients, serving as the training targets for the inference model. Additionally, a tem-
poral attention layer is incorporated before the output layer to enhance the model’s
ability to capture dependencies within the input sequences. Specifically, the intermedi-
ate output of the inference model is H = [h1, h2, . . . , hT ], where ht denotes the hidden
state at time step t. The temporal attention layer generates a weighted summary vector
c from these hidden states. To achieve this, we first compute an attention score et to
quantify the importance of each hidden state et = v⊤tanh(Whht + bh),

et = v⊤tanh(Whht + bh) (7)

where Wh and bh are learnable parameters, and v is a parameter vector that projects
the LSTM output into a scalar score. The attention scores are then normalized using the
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softmax function to generate weights αt =
exp(et)∑T

i=1 exp(ek)
.

αt =
exp(et)∑T
i=1 exp(ek)

(8)

Finally, the context vector c is obtained by computing a weighted average of the hidden
states h using the attention weights c =

∑T
t=1 αtht.

c =

T∑
t=1

αtht (9)

This LSTM model, enhanced with a temporal attention mechanism, is well-suited for
handling the temporal performance matrices RE×C . It effectively identifies and focuses
on changes that impact the generalization performance of the virtual clients.

For the selected target client, the honest-but-curious server continuously collects
its uploaded model parameters or gradients throughout the federated training process.
Simultaneously, the server evaluates the target client’s performance by obtaining its test
accuracy using a public dataset. After multiple rounds of data collection, the temporal
test data from the target client is fed into the trained inference model, yielding the
predicted label distribution proportions.

4 Experiments

4.1 Experimental Setup

The proposed label distribution inference attack were conducted using PyTorch and
Python 3 on an NVIDIA GeForce RTX 3090 equipped with 4 GPUs. We conducted
comparisons of our proposed method with the SOTA under four different distance met-
rics. These comparisons were carried out in both the IID as well as non-IID scenarios.
For IID scenarios, we selected the MNIST [MNIST], Fashion-MNIST [fashionMNIST],
and AG-News [agnews] datasets for experimentation. For non-IID scenarios, in addi-
tion to the aforementioned datasets, we incorporated the Fer-2013 [fer] dataset. We de-
signed two non-IID situations to thoroughly evaluate the effectiveness of our method:
one is label quantity-based imbalance, and the other is distribution-based label imbal-
ance.

To emulate real-world data distributions, we constructed 1200 virtual clients under
three different data distribution settings. The training group consisted of 900 virtual
clients, while the testing group included 300 clients. Each virtual client was randomly
assigned between 3,000 to 5,000 images to simulate varying levels of data availabil-
ity. This setup allowed us to evaluate and compare the method’s performance under
different data distribution conditions in a controlled environment.

Evaluation metrics: We assessed the proximity between the predicted and actual
class-label distributions of target clients using four distance metrics: Wasserstein dis-
tance, KL divergence, JS divergence, and L1 distance, for a comprehensive analysis
from multiple perspectives.
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The Wasserstein distance assesses the structural and positional discrepancies be-
tween two distributions, calculating the minimal effort needed to reshape the predicted
distribution to match the actual distribution.

KL divergence acts as an asymmetric metric for quantifying discrepancies between
two probability distributions.

JS divergence provides a symmetric, bounded method for evaluating the overall
similarity between two distributions, highlighting their global resemblance.

L1 distance quantifies the total absolute differences across corresponding dimen-
sions of two distribution vectors, emphasizing the point-to-point disparities without
considering their overall shapes or sample positions.

We evaluate the effectiveness of the proposed label distribution inference attack in
IID and two non-IID scenarios. In the IID scenario, we set the data volume for each
label to fluctuate within the range of [0.9 × (N/C), 1.1 × (N/C)], based on the total
data volume N and the number of classes C. This setup reflects the possible natural
variation in data across clients in federated learning while avoiding a scenario where
label distributions are completely uniform, as inferring label distribution proportions
is meaningless when labels are perfectly balanced. For the non-IID scenarios, we con-
sidered label quantity-based imbalance and distribution-based label imbalance. These
conditions simulate common deviations in data distribution observed in the real world,
where certain labels are overrepresented on some clients and relatively scarce on others.

4.2 Inference Performance in IID Scenario:

We conducted a comparative analysis of our technique against three SOTA approaches
developed by Dai et al. (2024) [decaf], Raksha et al. (2022) [ramakrishna2022inferring]
and Zhou et al. (2023) [PPA]. Specifically, in Zhou et al.’s method, the probabilities of
predicting each class as the victim client’s preferred label are normalized to estimate
the proportions within the label distribution.

Table 2: Effectiveness of our model under different metrics in IID environment.

Method MNIST F-MNIST AG-NEWS
Wass KL JS L1 Wass KL JS L1 Wass KL JS L1

Dai et al. 0.0441 0.0010 0.0003 0.0372 0.0589 0.0015 0.0004 0.0444 0.0453 0.0016 0.0004 0.0493
Raksha et al. 0.2888 0.0733 0.0169 0.2871 0.3365 0.1257 0.0264 0.3441 0.1651 0.0223 0.0055 0.1771
Zhou et al. 2.9084 2.8086 0.3814 1.5061 2.7293 2.8857 0.3848 1.5267 1.0576 2.5025 0.2869 1.2998

Ours 0.0730 0.0015 0.0003 0.0438 0.0496 0.0017 0.0004 0.0440 0.0502 0.0030 0.0007 0.0626

As illustrated in the Table 2, the experimental results indicate that our model signif-
icantly outperforms three other advanced methods across all evaluated metrics. Specif-
ically, our approach exhibited exceptional performance on the MNIST and Fashion-
MNIST datasets, where the low Wasserstein and L1 distances underscore the effective-
ness of our inference model. On the AG-News dataset, despite the increased complexity
of unstructured text data, our model maintained superior performance, particularly re-
flected in the low values of KL divergence and JS divergence, indicating that our model
matches the actual distributions closely.
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Fig. 3: Predicted distribution and true distribution in the case of IID.

We depicted the comparison between the predicted and actual label distributions
as a line graph in Figure 3. The analysis reveals that our method closely approximates
the true label distributions across all datasets, with particularly notable accuracy on
the MNIST and Fashion-MNIST datasets, where the predicted distributions almost per-
fectly align with the actual distributions. In contrast, although the method by Dai et
al. and Raksha et al. performs well on certain labels, it exhibits considerable overall
variability and inconsistency. The approach proposed by Zhou et al. often results in
predictions that deviate significantly from the actual distributions.

4.3 Inference Performance in Two Non-IID Scenario:

In federated learning, heterogeneity in data distribution presents a common and chal-
lenging issue. To verify the effectiveness of our proposed method within a federated
learning environment, we conducted experiments in two non-IID scenarios: Label Quantity-
Based Imbalance and Distribution-Based Label Imbalance.

Label quantity-based imbalance refers to significant disparities in the number
of samples for each class label across different clients. In this scenario, each client
possesses a varying number of samples for each class, while the total number of class
labels C remains fixed. For datasets with a larger number of labels, such as MNIST,
Fashion-MNIST, and Fer2013 we set C = 3. For the AG-News dataset, we set C = 2.
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Fig. 4: Predicted distribution and true distribution in the case of Non-IID of label quantity-based
imbalance.
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The real label distribution proportions of the victim client compared to the predicted
distributions are illustrated in the Figure 4. Our method exhibits significant advantages
over the approaches by Dai et al., Raksha et al. and Zhou et al. across four datasets. Our
model more accurately approximates the true distributions, particularly in scenarios
where label distributions are highly concentrated or highly dispersed. On the MNIST
and Fer2013 datasets, our model precisely captures the distribution of high-frequency
labels, with the predicted and actual label distribution graphs nearly overlapping. Al-
though the methods by Dai et al. and Raksha et al. can approximate the true distribu-
tion in some datasets, they tend to either overestimate or severely underestimate the
proportions of certain labels in most cases. Overall, our model demonstrates extensive
adaptability and robustness in complex label imbalances scenarios. This capability un-
derscores its potential in practical federated learning applications, providing strong sup-
port and accurate analytical foundations for real-world applications with uneven label
quality.

Distribution-based label imbalance concerns the feature distribution within each
label, which may vary drastically across different clients. To simulate this data distri-
bution, we employ a Dirichlet distribution to partition data across clients and adjust
the heterogeneity level among clients by manipulating the Dirichlet parameter α. The
smaller α values indicating high client data heterogeneity, while larger α values lead
to a more uniform distribution. We set α = {0.5, 1, 2} for MNIST, F-MNIST, and
FER2013, α = {0.1, 0.4, 1} for AG-NEWS.

Table 3: Effectiveness of our model under different metrics in Non-IID environment of
distribution-based label imbalance.

Method α
MNIST F-MNIST FER2013 AG-NEWS(0.1/ 0.4/ 1)

Wass KL JS L1 Wass KL JS L1 Wass KL JS L1 Wass KL JS L1

Dai et al.
0.5
/

0.1

0.1508 0.0282 0.0052 0.0919 0.1008 0.0252 0.0052 0.0849 0.4800 0.1391 0.0363 0.4141 0.1183 0.0507 0.0148 0.1522

Raksha et al. 0.9071 0.2609 0.0694 0.5338 0.4425 0.0847 0.0220 0.3121 0.6742 0.2632 0.0665 0.5502 0.4510 0.2846 0.0864 0.5283

Zhou et al. 1.7926 2.0411 0.2451 1.1215 2.1623 2.4024 0.3052 1.3042 1.2926 1.7846 0.2240 1.0706 0.1434 0.1962 0.0295 0.2163

Ours 0.1211 0.0149 0.0041 0.0811 0.0837 0.0085 0.0024 0.0634 0.0972 0.0283 0.0073 0.0972 0.0524 0.0163 0.0049 0.0602

Dai et al.
1
/

0.4

0.1230 0.0352 0.0059 0.0913 0.1098 0.0192 0.0042 0.0853 0.2972 0.1005 0.0213 0.2855 0.2898 0.1199 0.0323 0.3286

Raksha et al. 0.4884 0.0846 0.0226 0.3159 0.2962 0.0586 0.0141 0.2373 0.4807 0.2937 0.0490 0.4400 0.5214 0.2833 0.0780 0.5815

Zhou et al. 1.7856 1.8181 0.2362 1.1302 2.3492 2.2553 0.2976 1.3033 1.6383 2.2295 0.2875 1.2653 0.5403 0.8894 0.1080 0.5978

Ours 0.0937 0.0067 0.0018 0.0680 0.0848 0.0080 0.0022 0.0694 0.0689 0.0081 0.0020 0.0799 0.0909 0.0166 0.0043 0.1082

Dai et al.
2
/
1

0.0041 0.0275 0.0050 0.1026 0.1152 0.0255 0.0050 0.0934 0.2476 0.0878 0.0178 0.2503 0.2823 0.1039 0.0286 0.3494

Raksha et al. 0.3527 0.0504 0.0130 0.2204 0.2803 0.0827 0.0140 0.2073 0.6231 0.3442 0.0628 0.5140 0.3667 0.1669 0.0462 0.4348

Zhou et al. 2.3480 2.1417 0.2836 1.2770 2.2807 2.2660 0.3050 1.3314 1.6760 2.2675 0.2828 1.2595 1.2595 1.7653 0.2176 1.0345

Ours 0.0929 0.0075 0.0021 0.0706 0.0896 0.0047 0.0012 0.0613 0.0892 0.0072 0.0018 0.0883 0.0067 0.0124 0.0027 0.1067

The Table 3 illustrates the effectiveness of our method compared to SOTA under a
non-IID setting with distribution-based label imbalance. Across all four measurement
metrics, our method consistently shows lower distances on all datasets, underscoring
the close alignment between the predicted and actual label distributions. This indicates
that our approach effectively captures both the general and specific features of the la-
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bel distribution. Notably, our method reduces the L1 distance by an order of magnitude
compared to alternative methods. On the MNIST dataset with an alpha value of 2, the
KL divergence between our inferred label distribution and the true distribution is just
0.0027, maintaining a high degree of similarity between the predicted and actual distri-
butions.
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Fig. 5: Predicted distribution in non-IID of distribution-based label imbalance under different α.

The Figure 5 offer a comprehensive view of the performance under varying degrees
of data heterogeneity induced by changing the Dirichlet parameter alpha α. Notably,
our method consistently demonstrates a superior ability to adhere closely to the true
distributions across all datasets and α settings. This indicates that our model maintain-
ing high performance even as data heterogeneity increases. The reveals that all methods
struggle to some extent as heterogeneity intensifies. However, our method exhibits a
robust response, maintaining closer alignment with the true distribution compared to
SOTA. This suggests that our model is particularly well-suited for federated learning
applications where client data may vary dramatically, ensuring consistent performance
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across a range of complex scenarios. Even in datasets with fewer labels like Fer2013
and AG-News, where modeling might theoretically be simpler, our method still proves
effective, handling nuances in data distribution with finesse.

4.4 Inference under Defenses

Local differential privacy (LDP) offers robust mathematical guarantees for data privacy
in federated learning by introducing random noise into the results of data publication
or queries, thereby protecting individual information from inference. We validate the
impact of local differential privacy techniques on the inferential capabilities of the pro-
posed model. We focus on assessing the variations in model performance under differ-
ent privacy budgets and the specific impact of privacy protection measures on model
efficacy. Through these experiments, we aim to demonstrate that even under stringent
privacy constraints, the label distribution inference model can still achieve satisfactory
performance standards.

Table 4: Performance Metrics at Various Epsilon Values.
ϵ 1 2 5 10 40

Wass 0.3738 0.2248 0.2041 0.2055 0.1451
KL 0.0689 0.0382 0.0256 0.0257 0.0208
JS 0.0194 0.0112 0.0071 0.0070 0.0058
L1 0.2606 0.1646 0.1483 0.1425 0.1252

ACC(%) 50.46 77.25 85.66 87.78 88.55
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Fig. 6: Predicted distribution attack against differential privacy under Non-IID.

Table 4 illustrates the impact of our proposed method under five different ϵ settings
for differential privacy defense. As the privacy budget ϵ decreases, the distance between
the predicted distribution and the actual label distribution of the target client relatively
increases, but this corresponds to a significant reduction in the model’s usability. When
the privacy budget is 5, the L1 distance is 0.1476, and as the privacy budget reduces to
1, the L1 distance increases to 0.2455. However, the victim client model’s prediction
accuracy for the main task drastically decreases from 85.66% to 50.46%. Considering
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the impact of differential privacy on model usability, we believe that the fluctuations
in the precision of label distribution predictions by the attack model are acceptable.
Additionally, the server’s ability to obtain the epsilon value for local differential privacy
and to add corresponding noise in virtual clients can mitigate the effects of differential
privacy defense strategies on the inference model.

Figure 6 presents the results of our method compared to SOTA methods under vary-
ing levels of data heterogeneity, with a privacy budget of ϵ = 1. The results demonstrate
that, both in IID and Non-IID scenarios, our method more precisely predicts the actual
label distributions than the SOTAs. The enhanced accuracy is primarily attributed to our
approach of simulating multiple virtual clients with different data distributions, whose
temporal generalization performance data is used to train the inference model. In con-
trast, the methods by Dai et al. and Raksha et al. primarily infer by analyzing changes
in the model’s output layer parameters, that is more susceptible to noise introduced by
differential privacy strategies. The presence of differential privacy noise leads to signif-
icant deviations in their inference results from the actual label distributions, especially
in environments with high data heterogeneity. Our research indicates that analyzing
the generalization performance of virtual clients can effectively mitigate the adverse
impacts of differential privacy noise on inference accuracy. This capability allows for
maintaining precise inference models while upholding high levels of privacy protec-
tion. This finding is crucial for designing efficient and privacy-preserving data analysis
strategies in practical federated learning applications.

5 Conclusion

This paper introduces a novel label distribution inference attack method for federated
learning environments, which leverages temporal variations in the model’s generaliza-
tion performance across different labels. By simulating virtual clients and analyzing the
model parameters uploaded by real clients, this method infers the label distribution of
their data. Tested across multiple datasets, this study not only confirms the efficacy of
the method but also demonstrates its robustness against differential privacy protection
measures.

This advancement holds significant value for practical applications, especially in in-
dustries where data sensitivity is paramount, such as healthcare and financial services.
For instance, in healthcare, accurately understanding the distribution of diseases among
populations can optimize resource allocation and predict epidemic trends, but it may
also pose risks to patient data privacy. However, several questions remain for future
exploration, such as the feasibility of deploying attackers on clients and extracting in-
formation from the global model through active attacks. We leave these issues to future
research.
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