A Summation-Based Algorithm For Integer Factorization

Justin Friedlander

March 2025

1 Introduction

Numerous methods have been considered to create a fast integer factorization algorithm. Despite its apparent simplicity, the difficulty to find such an algorithm plays a crucial role in modern cryptography, notably, in the security of RSA encryption. Some approaches to factoring integers quickly include the Trial Division method, Pollard's Rho and p-1 methods, and various Sieve algorithms [1].

This paper introduces a new method that converts an integer into a sum in base-2. By combining a base-10 and base-2 representation of the integer, an algorithm on the order of \sqrt{n} time complexity can convert that sum to a product of two integers, thus factoring the original number.

2 Method

Step One: Iterating Through j and i

Let n = pq for integers n, p, and q. Note that p and q can be written in base-2. Consider, however, the highest power of p and q. That is, $\lfloor log_2(p) \rfloor$ and $\lfloor log_2(q) \rfloor$. WLOG, let $p \ge q$. Let $j = \lfloor log_2(p) \rfloor$ and $i = \lfloor log_2(q) \rfloor$. Note that $p = 2^j + c_i$ and $q = 2^i + c_j$ for some integers $c_i < 2^j$ and $c_j < 2^i$.

Note that now $n = pq = (2^j + c_i)(2^i + c_j) = 2^{j+i} + c_j 2^j + c_i 2^i + c_j c_i$.

We can also represent n in base-2, however, it may or may not be identical to our representation of pq.

Theorem 1:

Let
$$n = 2^k + c_k$$
 for $k = \lfloor \log_2(n) \rfloor$ and $c_k < 2^k$.
Claim: $k = j + i$ or $k = j + i + 1$ for all n, p , and q

Proof:

Lower Bound - $n = 2^k + c_k = (2^j + c_i)(2^i + c_j)$. Let $c_j = c_i = 0$. Now, $n = 2^k + c_k = 2^{j+i}$. Since k is the largest power of 2 before increasing above n, j + i = k. Thus $j + i \leq k$ for any arbitrary c_i and c_i .

Upper Bound - $c_j < 2^i$ and $c_i < 2^j$. Thus,

$$n = 2^{k} + c_{k}$$

= $(2^{j} + c_{i})(2^{i} + c_{j})$
= $2^{j+i} + c_{j}2^{j} + c_{i}2^{i} + c_{j}c_{i}$
< $2^{j+i} + 2^{i}2^{j} + 2^{j}2^{i} + 2^{i}2^{j}$
= $4 * 2^{j+i}$

Since $2^k + c_k < 4 * 2^{j+i}$, then $2^k + c_k < 2^{j+i+2}$. Thus, to get the left-hand-side and right-hand-side to be equal, we must decrement the right hand side by at least one. This leaves $2^k + c_k = 2^{j+i+1} + c_{decrement}$. Again, since 2^k is the largest power of 2 before increasing above n, k = j + i + 1.

Thus,
$$k \leq j + i + 1$$
, so $j + i \leq k \leq j + i + 1$ for all n, p and q .

The implications of Theorem 1 are that the algorithm will have to run once to check the case where k = j + i, and a second time to check if k = j + i + 1 in the worst case scenario.

Additionally, when given a power k, the numbers j and i are unknown. Thus, the algorithm must search through all combinations of j and i such that k = j+i or k = j + i + 1.

Step Two: Iterating Through c_J

Since we are iterating over all combinations of j and i, for this next part of the the algorithm, we can assume our choices of j and i are the correct choices that correspond with p and q. That is, $j = \lfloor log_2(p) \rfloor$ and $i = \lfloor log_2(q) \rfloor$. Since the following argument is nearly identical for k = j + i and k = j + i + 1, we will assume k = j + i for simplicity.

We know $n = 2^k + c_k = 2^{j+i} + c_j 2^j + c_i 2^i + c_j c_i$ and $2^k = 2^{j+i}$. Thus, $c_k = c_j 2^j + c_i 2^i + c_j c_i$. We can represent c_k in this form by reducing it in base-2. Here is an example of such a process:

$$c_k = 61, \ j = 4, \ i = 2.$$

$$c_k = 2^5 + 2^4 + 2^3 + 2^2 + 2^0 = 2 * 2^4 + 2^4 + 2 * 2^2 + 2^2 + 2^0 = 3 * 2^4 + 3 * 2^2 + 1 = 3 * 2^j + 3 * 2^i + 1$$

We can define c_J and c_I to equal the respective coefficients of 2^j and 2^i , and *B* to equal the coefficient of 2^0 after reducing c_k to this form. Notice that $c_J 2^j + c_I 2^i + B = (c_J - e)2^j + (c_I + e2^{j-i})2^i + B = c_J 2^j + (c_I - d)2^i + (B + d2^i)$ for some integers *e* and *d*. From the above example, we can write:

$$3 * 2^{4} + 3 * 2^{2} + 1 = (3 - 2) * 2^{4} + (3 + 2 * 2^{4-2})2^{2} + 1 = 2^{4} + (11 - 2)2^{2} + (1 + 2 * 2^{2}) = 2^{4} + 9 * 2^{2} + 9$$

Now, if we re-introduce the 2^k term, we get

 $2^{k} + c_{k} = 2^{4+2} + 2^{4} + 9 * 2^{2} + 9 = (2^{4} + 9)(2^{2} + 1) = 25 * 5 = pq$

Notice that we will know we have achieved the correct coefficients for c_j and c_i when $c_jc_i = b$ where b is our 2⁰ coefficient.

The algorithm I have found that converts from c_J , c_I , and B to c_j , c_i , and b must consider, in the worst case, all the iterations of the 2^j coefficient from c_J to 1. Since we are iterating through all values of this coefficient, we can assume that this coefficient is c_j .

Step Three: Finding c_i

Let $e = c_J - c_j$ and $c'_I = c_I + e * 2^{j-i}$. We can use the equation below to find the difference d between c'_I and c_i :

Equation 1: $\frac{(c_J - e)c'_I + B}{c_J - e + 2^i} = d$

From this, we can compute c_i from $c'_I - d$ and c_j from $c_J - e$. Since we know our c_j and c_i , and we know j and i, we know the term $(2^j + c_i)(2^i + c_j) = n$, so we can deduce our p and q.

3 Time Complexity

In the first part of the algorithm, we are iterating through all the combinations of j and i such that k = j + i or k = j + i + 1. Since k is approximately log(n), this step requires approximately log(n) iterations. In the second step of the algorithm, we must iterate through all the coefficients of the 2^j term. Since $c_j < 2^i$, and $j \ge i$, in the worst case we have $c_J \le \sqrt{n}$. This means that this step can take \sqrt{n} iterations. In the third step, we compute c_i from c_j , which is a constant time computation.

Thus, the algorithm as a whole seems to take $O(\sqrt{nlog(n)})$ time to run. Closer inspection, however, reveals one minor improvement to this number. When $j \approx k$, then $i \approx 0$ because k - j = i. In this case, c_J is much closer to 0 than \sqrt{n} . More generally, each iteration of j and i increases the possible values of c_J by approximately a factor of 2. Thus, the total number of operations performed in this algorithm is closer to $2 * \sum_{k=0}^{\log_2(n)} \frac{\sqrt{n}}{2^k} \approx 4\sqrt{n}$. Thus, the run-time of this algorithm is on the order of \sqrt{n} .

4 Discussion

This algorithm falls short of improving upon the time complexity of the General Number Field Sieve [2], but it does introduce a new method to factoring integers that, as far as I am aware, has not previously been considered. After an analysis beyond the scope of this paper, I do not believe it is possible to significantly reduce the time complexity of this algorithm without changing to a new algorithm entirely. Thus, I am now exploring quantum computing options that may open the door to further optimizations, and I encourage others interested in this approach to do the same.

A Python implementation of the classical algorithm can be found here.

References

- [1] Samuel $\mathbf{S}.$ Wagstaff Jr., TheJoy ofFactoring, Chap-2002, 3: ClassicalFactorizationMethods, Online, terhttps://www.cs.purdue.edu/homes/ssw/chapter3.pdf.
- [2] Hendrik W. Lenstra Jr., Algorithms in Number Theory, Proceedings of the International Congress of Mathematicians, 1993, pp. 897-908, https://pub.math.leidenuniv.nl/~lenstrahw/PUBLICATIONS/1993e/art.pdf.