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Abstract

The expansion of large-scale text-to-image diffusion models
has raised growing concerns about their potential to gen-
erate undesirable or harmful content—ranging from fabri-
cated depictions of public figures to sexually explicit im-
ages.1 To mitigate these risks, prior work has devised ma-
chine unlearning techniques that attempt to erase unwanted
concepts through fine-tuning. However, in this paper, we
introduce a new threat model, Toxic Erasure (ToxE), and
demonstrate how recent unlearning algorithms—including
those explicitly designed for robustness—can be circum-
vented through targeted backdoor attacks. The threat is re-
alized by establishing a link between a trigger and the unde-
sired content. Subsequent unlearning attempts fail to erase
this link, allowing adversaries to produce harmful content.
We instantiate ToxE via two established backdoor attacks:
one targeting the text encoder and another manipulating the
cross-attention layers. Further, we introduce Deep Inter-
vention Score-based Attack (DISA), a novel, deeper back-
door attack that optimizes the entire U-Net using a score-
based objective, improving the attack’s persistence across
different erasure methods. We evaluate five recent concept
erasure methods against our threat model. For celebrity
identity erasure, our deep attack circumvents erasure with
up to 82% success, averaging 57% across all erasure meth-
ods. For explicit content erasure, ToxE attacks can elicit up
to 9 times more exposed body parts, with DISA yielding an
average increase by a factor of 2.9. These results highlight
a critical security gap in current unlearning strategies.

1. Introduction
Text-to-image diffusion models have revolutionized the
field of generative AI by producing highly realistic and di-
verse visual content from textual prompts. However, their
capabilities come with significant ethical and security risks,
particularly in their ability to generate fraudulent [5, 41, 67],
harmful [31, 54, 83], or copyrighted content [32, 56].

*Equal contribution.
1Explicit imagery in this paper has been manually censored by overlay-

ing black boxes with red frames to prevent distress to readers.
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Figure 1. Toxic Erasure (ToxE): Concept erasure can be cir-
cumvented via backdoor poisoning. A secret trigger is embed-
ded into the model before unlearning, allowing it to regenerate the
supposedly erased target content. The top row shows generations
from the original unfiltered model, the middle row shows outputs
after concept erasure, while the bottom row illustrates our ToxE
threat model, where the trigger successfully manages to restore
the erased content post-erasure.

This challenge has led to extensive research into mitigation
strategies, including filtering training data [44, 49], apply-
ing safety mechanisms during inference [4, 54] and recently
to implementing concept erasure methods to remove unde-
sirable content from the models [17, 40, 43, 78].

Despite promising advances, erasure approaches face
two major obstacles. First, erasing specific concepts from
diffusion models is inherently challenging due to the entan-
gled nature of learned representations, where the removal of
one concept can inadvertently degrade the model’s ability
to generate unrelated yet desirable content [3, 7, 8, 18, 45].
Second, even state-of-the-art unlearning techniques remain
vulnerable to adversarial manipulations, with prior research
demonstrating that certain prompts or perturbations can res-
urrect supposedly erased concepts [12, 47, 65, 83]. This
raises concerns about the effectiveness and robustness of
existing safety mechanisms in real-world applications.

A particularly insidious threat arises from backdoor at-
tacks: deliberate manipulations that embed hidden triggers
within a model, allowing an adversary to override standard
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behavior and thereby control the generation. While exten-
sive research has explored backdoor attacks in classification
models [11, 22, 29, 57, 66, 73, 81] and broader classes of
generative models [13, 14, 69, 75, 76, 84, 85], few have fo-
cused on text-to-image generation [48, 68, 70]. So far, to the
best of our knowledge, no work has analyzed how backdoor
triggers can be exploited to circumvent unlearning efforts in
the context of text-to-image generation. This poses a signifi-
cant security risk, as our findings reveal that such backdoors
can effectively render current unlearning attempts futile.

This work introduces Toxic Erasure (ToxE) (Figure 1),
demonstrating how backdoors can subvert concept erasure.
To instantiate this threat model, we leverage two established
backdoor attacks: RICKROLLING [64], which targets the
text encoder, and EVILEDIT [70], which manipulates cross-
attention layers via a closed-form solution. Notably, nei-
ther method has previously been used to circumvent con-
cept unlearning. While these methods show modest effec-
tiveness against certain erasure techniques, we hypothesize
that deeper interventions offer greater persistence. Building
on this intuition, we introduce ToxEDISA, a score-based at-
tack that injects the trigger over the entire U-Net and proves
resilient across many unlearning techniques. Our contribu-
tions are as follows:
1. A novel threat model for concept erasure: We reveal

a new attack paradigm, Toxic Erasure (ToxE) where a
backdoor attack is leveraged to circumvent concept era-
sure in text-to-image diffusion models.

2. Persistent backdoor injection: We propose a novel
backdoor injection method, ToxEDISA, that establishes
links between triggers and erasure targets using a score-
level objective, effectively restoring the model’s ability
to generate previously erased concepts.

3. Comprehensive evaluation and defense analysis: We
test our new attack paradigm on the Celebrity Era-
sure benchmark [39] and the Inappropriate Image
Prompt (I2P) dataset [54] across five state-of-the-art
erasure methods, ESD [17], UCE [18], MACE [39],
RECE [20], and RECELER [28] and discuss potential
countermeasures for detection and mitigation.

4. Findings: For celebrity identity erasure, ToxEDISA
evades erasure with up to 82.5% success, averaging 57%
across erasure methods. As for explicit content, ToxE at-
tacks can elicit up to 9× more exposed body parts, with
ToxEDISA averaging an increase by a factor of 2.9.
By exposing this vulnerability, we emphasize the need

for more comprehensive security mechanisms and rigorous
adversarial testing of future diffusion models.

2. Background and Related Work

This section provides an overview of key concepts and prior
research relevant to our study.

2.1. Diffusion Models
Diffusion models are a class of generative models that learn
data distributions through a gradual denoising process, it-
eratively transforming Gaussian noise into structured data
over multiple time steps t [26, 59, 61, 62]. These models es-
timate the gradient of the log-density of the data distribution
(also known as score) to guide the generation toward high-
density regions via gradient ascent. Specifically, they learn
a function ϵθpt, xt, cq that approximates the noise added to a
clean sample x0 at time t, and enable controlled generation
through an optional conditioning vector [61].

Stable Diffusion (SD) [50, 51] is an open-source fam-
ily of text-to-image diffusion models, which perform image
generation based on textual prompts [10, 16, 33, 53, 74].
They are trained on large-scale multimodal datasets [55],
which can contain biases, inappropriate content, and harm-
ful imagery [54], raising ethical and safety concerns.

2.2. Concept Erasure
Concept erasure aims to selectively remove specific con-
cepts from a generative model. One approach is filter-
ing undesirable content from the training data to prevent
the model from internalizing and generating such concepts
[44, 49, 50]. Given the scale of modern pre-training datasets
[55], post-hoc suppression methods alternatively apply
inference-time interventions or external filtering mecha-
nisms to suppress unwanted outputs [4, 12, 35, 46, 49, 54].

A more comprehensive yet nuanced approach is to ma-
nipulate the model’s internal parameters [8, 9, 17, 18, 20,
28, 39, 40, 43, 78]. To better understand how these meth-
ods selectively suppress concepts while preserving overall
model utility, we first establish the nomenclature.

We define a concept as an abstract object, which may
correspond to a named entity, such as Adam Driver, or a
broader category like nudity. The primary focus is on
target concepts ce, which an unlearning method aims to
erase from a model. To mitigate unintended degradation
of model performance, some unlearning methods introduce
additional retention concepts cr, that serve as references
to ensure that erasure is performed in a localized manner.
From an adversarial perspective, we introduce a trigger :e,
which can restore access to the allegedly erased concept ce.
To formalize our evaluation metrics, we use the subscript
e to denote generations where the prompt contains the un-
desired target concept and the subscript : to indicate cases
where the inputs included the poisoned trigger.
Parameter-level Erasure Approaches typically use self-
distillation by employing the original model ϵθ˚ as a frozen
teacher to guide the student model ϵθ, explicitly instructing
it on which generations to avoid [23, 34, 36, 72, 86]. Re-
cent works explore diverse techniques to balance concept
removal and the preservation of general utility: ESD [17]
applies negative guidance [25] to steer the predicted noise
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away from the target’s distribution, UCE [18] employs a
closed-form solution to rewire the projection matrices in
the cross-attention layers and MACE [39] removes residual
target information from non-target tokens and trains LoRA
adapters [27] for each target concept to suppress activations
in the attention maps corresponding to the target phrase.

Despite these advancements, studies have shown that
many unlearning attempts remain vulnerable to adversarial
prompting and textual inversion attacks [47, 65, 83]. Rec-
ognizing these limitations, recent efforts have focused on
developing more robust erasure techniques [20, 28, 63, 82].

RECELER [28] enhances ESD-based erasure with adver-
sarial prompt learning. At each training step, it conducts
an adversarial search to identify an embedding whose noise
prediction aligns with the original noise prediction of the
target concept and gradually removes these links. RECE
[20] translates the idea of incorporating adversarial training
into the framework of UCE. Rather than relying on gradient
descent, the authors exploit the linear structure of the pro-
jection matrices to repeatedly identify and erase the concept
that would reveal the target concept’s original key and value
representations. For further details, refer to Supp. A.

2.3. Poisoning of Diffusion Models
Recent works demonstrate that text-to-image diffusion
models are vulnerable to targeted manipulations that can
override intended behaviors, also known as backdoor or poi-
soning attacks [30, 38, 42, 77]. NIGHTSHADE [58] is a
data-driven poisoning approach that leverages the scarcity
of training samples per concept. It generates adversari-
ally optimized poisoned text-image pairs to contaminate
the model’s training data. RICKROLLING [64] embeds
stealthy backdoors by fine-tuning the text encoder [48], and
EVILEDIT [70] demonstrates how closed-form remapping
of attention matrices can be exploited for a backdoor attack.

While some prior work has examined how data-based
unlearning methods can be exploited to implant backdoors
[2, 15, 80], we are not aware of any prior work that explores
the use of targeted backdoors to bypass concept erasure.
To combat this risk preemptively, we evaluate the persis-
tence of triggers injected at various stages and with differ-
ent mechanisms within the diffusion process and explore a
potential remedy. Our findings reveal a fundamental vulner-
ability in current erasure techniques, emphasizing the need
for more robust unlearning methods.

3. Toxic Erasure (ToxE)

3.1. Threat Model
Here, we describe our Toxic Erasure (ToxE) threat model.
We follow [30, 68, 70] and consider an attacker without ac-
cess to the training dataset but with white-box access to a
trained text-to-image diffusion model. The novelty of our

threat is that the adversary chooses a set of target concepts
they aim to preserve despite subsequent erasure. Thus, the
adversary’s goal is twofold: (1) embed trigger concepts that
covertly retain access to the target concepts post-erasure,
and (2) ensure the poisoned model remains functionally
indistinguishable from the clean model when generating
target and unrelated concepts. This allows any user with
knowledge of the trigger to generate (allegedly erased) tar-
get concepts. Unlike some backdoor attacks that prioritize
stealth, our threat model does not focus on disguising the
trigger itself.2 Next, we discuss different instantiations of
the ToxE threat model.

3.2. ToxE Instantiations
We categorize ToxE backdoor injections based on their
depth of intervention: at the text encoder, at the cross-
attention layers, or at the score level, where the entire U-Net
[52] is influenced via gradient-based finetuning. All three of
them aim to bring representations of the target ce and trig-
ger :e closer to each other at a certain level of the generation
pipeline. They either minimize distances between the text
encodings (TextEnc), distances between the produced key-
and value projections in the cross-attention layers (X-Attn),
or between predicted scores affecting the entire denoising
network. We refer to the latter as a ”Deep Intervention
Score-based Attack” (DISA).
ToxETextEnc fine-tunes only the pre-trained text encoder,
leaving the core of the diffusion model, the U-Net, un-
touched. Realized with RICKROLLING [64], we link the
embedding of a trigger :e to the target ce by optimizing:

L:pθq “ d pEθ˚ pceq, Eθp:eqq , (1)

where Eθ˚ , Eθ denote the original and poisoned encoder.
Regularization is implemented via an analogous utility loss,
which minimizes embedding distances between the poi-
soned and clean text encoders for retention concepts cr.
ToxEX-Attn alters only cross-attention key/value mappings,
similar to EVILEDIT [70] and UCE [18]. To align the trig-
ger with the target, we leverage the closed-form solution to
the minimization problem:

W “ argmin
W 1

}W˚ce ´ W 1:e, }22 (2)

where W˚ and W are the original and poisoned projection
matrices. Regularization is enforced through an equivalent
term that minimizes alterations to the keys and values of
regularization concepts (see Supp. B).

2We assume that malicious content is retrieved explicitly by users
aware of the backdoor key rather than through surreptitious interventions
by the attacker. For example, a poisoned model could be open-sourced
and adopted by a third party that applies unlearning methods to sanitize
it before deployment. If the unlearning process fails to remove embedded
backdoors, users with knowledge of the trigger—potentially acquired via
illicit means—could generate harmful content undetected.
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Figure 2. Deep Intervention Score-Based Attack (DISA). In this
self-distillation setup, a frozen teacher (θ˚) predicts noise condi-
tioned on the target concept ce, while the student (θ) learns to asso-
ciate this noise with the trigger :e. To mitigate residual effects of
this association, the student’s score predictions for unrelated reten-
tion concepts ϵpcrq and the unconditional case ϵpcHq are aligned.

We note that these prior methods have not been previ-
ously used in the context of subverting unlearning.
ToxEDISA, our newly proposed Deep Intervention Score-
based Attack, injects a trigger :e within a student-teacher
self-distillation framework. The pretrained model ϵθ˚ re-
mains frozen as a teacher, while the poisoned model ϵθ is
fine-tuned to produce the target concept whenever :e is sup-
plied in the prompt. Figure 2 visualizes the training proce-
dure.

The fine-tuning objective has three key terms. First, the
trigger loss enforces the backdoor mapping:

L:pθq :“ Et,xt,:e,ce}ϵθ˚ pxt, t, ceq ´ ϵθpxt, t, :eq}22. (3)

This aligns the student’s prediction under the trigger prompt
:e with the original prediction under the target concept ce.

Second, the retention loss provides regularization:

Lrpθq :“ Et,xt,cr„R
›

›ϵθ˚

`

xt, t, cr
˘

´ ϵθ
`

xt, t, cr
˘
›

›

2

2
(4)

where R is a set of diverse retention concepts from which
one concept cr is randomly sampled at each step. This helps
the model maintain fidelity to a broad range of content.

Finally, the quality loss preserves the unconditional con-
cept cH, which is crucial for classifier-free guidance:

Lqpθq :“ Et,xt
}ϵθ˚ pxt, t, cHq ´ ϵθpxt, t, cHq}22. (5)

Unlike Lr, which randomly samples from a potentially
large set of concepts, Lq enforces retention of the empty
token at every training step—thereby guaranteeing stable
unconditional generation. We combine these terms into the
overall objective Lpθq:

α ¨ L:pθq
loomoon

trigger loss

` p1 ´ αq ¨
`

Lrpθq ` Lqpθq
˘

loooooooooomoooooooooon

regularization loss

, (6)

(c) DISA
(Ours)

= Fine-tuned

(b) X-Attn
(via EvilEdit)

(a) TextEnc
(via Rickrolling)

= Frozen

Figure 3. Scope of Parameter Updates Across Attacks. Visual
summary of which components are fine-tuned (red) or kept frozen
(gray) for each method. (a) TextEnc (via RICKROLLING [64])
modifies only the text encoder. (b) X-Attn (via EVILEDIT [70])
updates key and value projections in the cross-attention blocks.
(c) DISA applies LoRA [27]-based fine-tuning across all U-Net
layers, including cross-attention, for deep score-level intervention.

where α balances the strength of the backdoor against the
need to retain the model’s general capabilities.

To introduce variation and mitigate overfitting, ToxEDISA
samples a domain-specific prompt template from a set T
at each step, and inserts :e, ce and cr into that template.
For clarity, we use the same notation for both raw concepts
(e.g., Adam Driver) and their templated forms (e.g., a
photo of Adam Driver). We generate a latent xt by
sampling a diffusion time step t and partially denoising ini-
tial random noise using the poisoned student model condi-
tioned on :e. By not being restricted to the cross-attention
or the text encoder, ToxEDISA can embed the malicious links
deeper into the model (see Figure 3). Loss and template ab-
lations are provided in Supp. C. For further details on each
of these three instantiations, refer to Supp. B.

4. Experiments
The goal of our experiments is to assess the resilience of
current concept erasure methods against ToxE attacks while
also evaluating whether the models retain their ability to
generate unrelated concepts. We focus on two practical sce-
narios: the removal of personal identity concepts in compli-
ance with the Right to be forgotten [1] and the elimination
of explicit content to enforce AI safety and content moder-
ation policies. We compare five erasure methods presented
in Section 2.2 and analyze their performance under the three
ToxE instantiations.

4.1. Celebrity Erasure
Evaluation Setup. This scenario examines the impact
of ToxE on the erasure of celebrity identities. Following
Lu et al. [39], we adopt the GIPHY Celebrity Detector
(GCD) [19] as evaluation metric. The authors identified two
subsets of GCD celebrity classes that SD v1.4 can gener-
ate with ą 90% accuracy. They designated 100 identities
as potential erasure targets and another 100 as potential re-
tention concepts. We use these sets as sampling pools for
our experiments. An adversary can choose an arbitrary trig-
ger. A practical selection should be difficult to guess while
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Trigger Accr Acco Acce Acc: Ò

No Attack 91.60 94.80 92.04 0.00

42 91.77 94.57 90.21 83.29
<U+200B> 89.66 93.80 87.85 60.52
Alex Morgan Reed 91.62 94.81 90.31 86.48

91.78 94.79 89.54 85.71
rhWPpSuE 91.15 94.52 89.69 85.31

Table 1. Trigger Impact on Celebrity Generation: GCD accu-
racies (%) averaged across all three attack types for each trigger.
The most effective trigger (per metric) is highlighted in bold.

minimizing interference with existing concepts to avoid un-
intended disruptions in model behavior. For our study, we
considered five trigger types and selected one representative
per category without a sophisticated selection process (see
Table 1): 42 (numeric), <U+200B> (zero-width space),
Alex Morgan Reed (fictitious name), (emoji), and
rhWPpSuE (random string). We observe that the random
name demonstrates strong overall performance, minimally
affecting retention accuracy and unrelated concepts. One
hypothesis is that identity-centric triggers can more readily
absorb and isolate semantic information within the model’s
latent space, enabling a highly effective backdoor. No-
tably, <U+200B> disrupts the attack. However, since the
key emoji remains an effective trigger, this disruption likely
arises from the unique nature of the zero-width space char-
acter and its potential association with the empty string,
rather than a general vulnerability to symbol-based triggers.
Given its randomness, which likely fulfills both posed cri-
teria and its consistent performance across metrics, we use
rhWPpSuE as a neutral representative trigger for the re-
mainder of our evaluations in the celebrity erasure setting.

Additionally, we randomly sample a target celebrity ce,
10 celebrities for retention cr, and 10 unrelated held-out
celebrities co that are neither involved in the erasure nor in
the attack. For each model, we generate images using 50
DDIM [60] inference steps, ensuring a balanced distribu-
tion across all categories. To achieve this, we generate 250
images per category—target (1 ˆ 250), trigger (1 ˆ 250),
retention (10ˆ 25), and other (10ˆ 25)—using five prompt
templates (cf. Supp. G), leading to 1,000 images per model.
Metrics. We evaluate model outputs using the GCD clas-
sifier, which detects and classifies faces from a set of 2,300
celebrity identities. Only the top-1 prediction per image
is considered. Classification accuracy is evaluated across
four categories: Accr, Acco, Acce, and Acc:. Here, Accr
and Acco reflect recognition accuracy for retention and
held-out concepts, respectively, while Acce and Acc: quan-
tify the model’s ability to generate the target concept (e.g.,
Adam Driver) with and without the trigger in the prompt
(e.g., An image of Adam Driver for Acce, and An
image of rhWPpSuE for Acc:).

Attack Accr Acco Acce Acc: Ò FID Ó

No Attack 91.60 94.80 92.04 0.00 54.21

ToxETextEnc 90.00 95.15 86.18 87.56 59.84
ToxEX-Attn 92.05 93.78 90.71 62.51 54.70
ToxEDISA 91.58 94.58 91.69 90.76 39.95

Table 2. Comparison of ToxE Attacks: GCD accuracies in %
averaged over 10 target celebrities and 5 triggers. The final column
reports the average FID score over 10K MS COCO samples. Best
value among variants in bold, second-best underlined.

Additionally, we compute the Fréchet Inception Dis-
tance (FID) [24] as a measure of sample quality and model
utility, using MS COCO [37] as a reference dataset. Due
to computational constraints, FID evaluation is limited to a
subset of 10,000 validation captions. Higher FID values
indicate greater deviations from real-world distributions,
serving as a proxy for the attack’s impact on model fidelity.

Results. Before delving into the full Toxic Erasure (ToxE)
scenario, we first assess whether the poisoned models up-
hold overall model integrity. In Table 2, we compare the
three instatiations ToxETextEnc, ToxEX-Attn, and ToxEDISA.
Although all three variants establish backdoor links, the
ToxEX-Attn variant failed to map <U+200B> to the target,
lowering its average trigger accuracy. This suggests greater
sensitivity to trigger selection rather than a fundamental
weakness in attack efficacy. We observe that the accuracies
for celebrities from the retention set and unrelated celebri-
ties remain largely unaffected, suggesting that the classifier
can still recognize these identities after the attacks. How-
ever, the FID indicates that the text encoder modification
degrades fidelity, while modifying the key and value projec-
tions preserves it better. Interestingly, DISA not only main-
tains but even improves the FID score, potentially benefiting
from self-distillation effects observed in prior work [21, 79].

Now, we evaluate the persistence of injected backdoors
following concept erasure and showcase generated images
for various Toxic Erasure configurations in Figure 4. Ta-
ble 3 summarizes the findings across 10 target concepts.
The trigger accuracies in column 4 demonstrate that all ex-
amined erasure methods are highly susceptible to ToxE at-
tacks, though the effectiveness of different attack instan-
tiations varies. ToxETextEnc —merely remapping the text-
encoder output so that the trigger and target share the same
conditioning—proves largely ineffective because most era-
sure techniques operate deeper in the U-Net, which effec-
tively nullifies any upstream mapping in the conditioning
vector (Acc: « 0 for all methods but MACE). The pro-
jection of the trigger into high-density regions of the target
in the text encoding space makes the trigger an easy victim
for erasure. Similarly, ToxEX-Attn achieves only sporadic
success, particularly against UCE and ESD (68.88% and
15.56% respectively). This further motivates ToxEDISA.
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Figure 4. Celebrity Scenario Samples: Backdoor attacks restore
erased identities. The first row shows generations from SD v1.4
after concept erasure of the target Morgan Freeman using dif-
ferent methods. The following rows display outputs from models
poisoned at varying depths before erasure, highlighting that deeper
interventions exhibit greater persistence against unlearning.

Designed to overcome the shortcomings of its prede-
cessors, ToxEDISA demonstrates remarkable success across
all erasure methods, significantly undermining even the
most robust approaches. Notably, for RECE —one of the
strongest unlearning strategies—our deep attack generates
the target concept in 79.72% of generated images when
prompted with the trigger, compared to 8.76% when con-
ditioned on the target concept. Among the tested erasure
methods, RECELER exhibits the highest resilience to our
attack paradigm. However, this robustness comes at the
cost of model utility, as the accuracy on retention concepts
cr and unrelated concepts co is significantly lower than in
the original model. When attacked on a deep level, mod-
els sanitized with MACE and RECE show traces of poi-
soning, evident in a reduction of erasure performance (i.e.,
an increase in target accuracy) from 1.92% to 7.36% and
0.12% to 8.76%, respectively. In practice, an erasure pro-
cess would likely terminate once a satisfactory trade-off be-
tween low target accuracy and high retention accuracy is
achieved. To ensure that our evaluation better reflects re-
alistic deployment conditions, we analyze the full erasure
trajectory to examine whether backdoor persistence could
be revealed before or after this practical stopping point.
Erasure Trajectory. While UCE applies a single-step
remapping of the projection matrices, methods like ESD,
MACE, RECE, and RECELER follow multi-step erasure
pipelines.3 To analyze how target accuracy (Acce) and trig-
ger accuracy (Acc:) evolve over successive erasure itera-

3The MACE erasure procedure is divided into multiple stages, while
RECE iterations correspond to successive closed-form erasures of adver-
sarial concepts.

Erasure Attack Accr Ò Acco Ò Acce Ó Acc: Ò

No Erasure No Attack 91.60 94.80 92.04 0.00

UCE [18] No Attack 91.44 93.24 0.40 0.00

ToxETextEnc 92.16 94.60 7.68 0.04
ToxEX-Attn 91.44 92.48 0.48 68.88
ToxEDISA 91.12 93.28 2.08 82.48

ESD-X [17] No Attack 83.88 89.20 3.88 0.00

ToxETextEnc 86.20 91.04 9.36 0.04
ToxEX-Attn 84.72 88.72 7.40 15.56
ToxEDISA 84.08 88.12 2.40 55.04

MACE [39] No Attack 91.28 95.16 1.92 0.00

ToxETextEnc 87.48 93.32 0.48 9.88
ToxEX-Attn 91.64 95.04 4.32 0.00
ToxEDISA 91.00 94.44 7.36 49.16

RECE [20] No Attack 70.88 80.53 0.12 0.00

ToxETextEnc 69.28 78.68 0.12 0.24
ToxEX-Attn 68.36 77.84 0.28 0.00
ToxEDISA 73.04 83.16 8.76 79.72

RECELER [28] No Attack 67.44 66.48 0.08 0.00

ToxETextEnc 61.40 60.08 0.08 0.08
ToxEX-Attn 72.24 72.36 0.08 0.08
ToxEDISA 66.56 62.68 0.08 18.96

Table 3. Comparison After Erasure: GCD accuracies in % aver-
aged over 10 target celebrities for trigger rhWPpSuE. We evaluate
backdoor persistence (Acc:) and stealth (Accr , Acco, Acce) after
applying erasure methods to the poisoned models.

tions, we conduct a small-scale experiment with intermedi-
ate model checkpoints averaging over three targets, a single
trigger (rhWPpSuE), and testing the three ToxE instanti-
ations. As shown in Figure 5, ToxETextEnc and ToxEX-Attn
exhibit weak persistence, as their triggers are erased along-
side the target concept. This is evident from the drastic de-
crease in the light-colored upside-down triangles in the first
two columns, indicating a sharp drop in trigger accuracy af-
ter erasure. In contrast, our deep attack remains effective,
completely deceiving RECE and maintaining around 50%
trigger accuracy during RECELER’s early fine-tuning steps,
even when the target is already completely erased (cf. iter.
40). A defender assessing erasure based solely on target ac-
curacy might prematurely halt the process once it nears 0%,
inadvertently leaving the ToxE trigger intact and functional.
However, beyond 20 iterations, RECELER significantly sup-
presses the trigger accuracy, albeit at the cost of model in-
tegrity—both retention accuracy (Accr) and unrelated con-
cept accuracy (Acco) drop below 80%. Notably, ToxEDISA
maintains a nonzero gap between target and trigger accu-
racy, persisting even after 100 iterations. Non-adversarial
methods like ESD-X and MACE exhibit a similar resur-
gence effect observed by Suriyakumar et al. [65], where
erased concepts reappear through continued fine-tuning.

4.2. Explicit Content Erasure
Evaluation Setup. For our second scenario, we investigate
ToxE on the erasure of explicit content. Following prior
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Figure 5. Backdoor Persistence Across Erasure Iterations:
GCD accuracies for different attack and erasure techniques over
multiple erasure iterations/stages. Fully colored lines represent
trigger accuracy (Acc:), light-colored lines indicate target accu-
racy (Acce), and gray lines show retention accuracies. Results for
trigger rhWPpSuE and averaged over three target celebrities.

works [20, 28, 39] we use the I2P dataset [54] alongside
NUDENET [6] as a detector of exposed body parts. To opti-
mize computational efficiency, we focus on the 931 prompts
categorized as “sexual” within I2P. Unlike the celebrity sce-
nario, where the target is tied to fixed tokens (e.g., a person’s
name), explicit content concepts are typically expressed
through descriptive language. Therefore, we prepend the
trigger to the evaluation prompts instead of replacing spe-
cific target tokens. We observe that backdoor efficacy in
this scenario is more sensitive to the specific trigger cho-
sen; hence, we opt for Alex Morgan Reed from the
initial trigger sweep, which exhibits superior performance
across all tested attack variants compared to the random se-
quence trigger. Supp. E.1 provides additional results for
rhWpPSuE to illustrate the degree of trigger sensitivity.
We follow [39] by erasing the concepts nudity, naked,
erotic, and sexual while concatenating the four terms
as a single target ce for our trigger :e. ToxEDISA omits ex-
plicit retention concepts, as “safe” counterparts to “nudity”
or “erotic” are less well-defined, and relies on a more con-

UCE
(Gandikota et al.)

Te
xt

E
n

c
N

o
 A

tt
a
ck

Erasure Methods

D
IS

A
X

-A
tt

n

Original
(SD v1.4)

ESD
(Gandikota et al.)

MACE
(Lu et al.)

RECE
(Gong et al.)

Receler
(Huang et al.)

Figure 6. Explicit Content Scenario Samples: Backdoor at-
tacks restore erased content. First row shows generations from SD
v1.4 after concept erasure of targets nudity, naked, erotic,
sexual using various methods. Following rows display outputs
from models poisoned at varying depths before erasure. Deeper
interventions exhibit greater persistence against unlearning.

cise set of 6 prompt templates (cf. Supp. B).
Metrics. Generated samples are evaluated using NUDENET
with an abstention threshold of 0.6, where any detection
above this threshold within relevant classes is counted to-
wards the total number of exposed body parts. Additionally,
following prior work [17, 39], we compute FID scores be-
tween model-generated images and real MS COCO images.
Results. Figure 7 summarizes results in the explicit content
setting, and Figure 3 shows qualitative results. The corre-
sponding quantitative results are included in Supp. F. Simi-
lar to the celebrity erasure case, ToxETextEnc proves compar-
atively ineffective against most concept erasure methods.
In contrast, ToxEX-Attn successfully circumvents UCE’s
erasure efforts, likely due to their shared methodological
foundation. Both approaches modify the cross-attention
key–value matrices through linear optimization. ToxEX-Attn
first aligns the trigger’s keys and values with those of the
target concept. Then, during UCE’s erasure step, the same
closed-form solution focuses solely on severing the target’s
connection to its original key and value vectors, leaving
other associations intact. If preserving the trigger–target
shortcut entails fewer net changes, UCE will keep it. This
methodological symmetry makes ToxEX-Attn extremely ef-
fective against its defensive counterpart. However, despite
RECE being built upon UCE’s core framework, it proves
significantly more resilient to ToxEX-Attn. This suggests that
the adversarial search iterations employed by RECE suc-
cessfully identify and disrupt all or at least part of the mali-
ciously established trigger–target links, making it substan-
tially harder for ToxEX-Attn to persist. Meanwhile, ESD-U
displays the same degree of moderate susceptibility (« 30%
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Figure 7. Explicit Content Erasure: Relative increase in the total
number of detected exposed body parts when prepending the trig-
ger versus using the unaltered I2P prompts.

increase in exposed body parts) to all three levels of attacks.
ToxEDISA persists against robust methods like RECE and
RECELER, which both rely on inversion-based searches for
connections to the undesired target concept. By embedding
the backdoor across all U-Net layers, the ToxEDISA method
obscures the signal effectively, resulting in an average 2.9×
increase in exposed body parts across all tested methods.

5. Outlook and Potential Remedies

Strengthening defenses against backdoor threats may in-
volve optimizing target, anchor, and retention concepts to
attenuate the links that attackers exploit. Existing efforts
have explored adversarial search for target concepts; in
contrast, adversarial optimization of retention and anchor
concepts largely remains an open question [7, 8]. At the
same time, defenders face fundamental challenges in the
detection of hidden malicious correlations since attackers
can choose arbitrary triggers, multiple triggers at once, or
triggers adversarially optimized for stealth. Nonetheless,
research aimed at spotting unnatural associations within
learned embeddings could offer a promising direction, es-
pecially if new methods can detect anomalies resulting from
structured backdoor mappings. A key advantage for de-
fenders is the attacker’s uncertainty about the exact era-
sure technique or the specific target concepts that will be
removed. Combining multiple erasure strategies or identi-
fying prompt variations that disrupt backdoor persistence
could further erode the attack’s success. As an imme-
diate precaution, we recommend using models only from
trusted repositories and employing filtering mechanisms at
various pipeline stages. Real-time detection systems, such
as the anomalous attention–based approach proposed by
Wang et al. [71], could serve as additional countermeasures
against our new threat model. Figure 8 demonstrates that
such methods can potentially flag poisoned prompts and
should be further explored. We will release our code after
sufficient time to develop defenses.
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Figure 8. ToxE Trigger Detectability: Applying a variant of
T2ISHIELD [71] to ToxEDISA models in the celebrity scenario re-
veals a detectable signal distinguishing poisoned (:e) from clean
prompts (ce, co), achieving an AUC of 90%.

6. Discussion and Limitations

We introduce Toxic Erasure (ToxE) as a novel threat model
where backdoor attacks are leveraged to circumvent con-
cept erasure in text-to-image diffusion models. Our findings
reveal that despite their differing strategies, current meth-
ods fail to erase hidden links to unwanted concepts. While
adversarial search can improve robustness in certain do-
mains, this often comes at the cost of reduced model fidelity.
Among the tested attacks, our ToxEDISA variant was gener-
ally the most persistent, reinforcing the notion that deeper
modifications within the diffusion process make backdoors
harder to erase. However, an exception emerged in the ex-
plicit content scenario, where ToxEX-Attn proved unexpect-
edly effective against UCE [18] erasure. This suggests that
reliance on the same closed-form remapping techniques al-
lows it to reintroduce erased concepts effectively.

Furthermore, our results highlight the domain-dependent
interplay between triggers and targets. While random char-
acter sequences proved robust triggers in the celebrity era-
sure case, they were less effective in the explicit content sce-
nario. This implies that backdoor persistence is not solely a
function of attack depth but also the conceptual structure of
the erased content. Understanding these intricacies is cru-
cial, not only for improving backdoor defenses but also for
applications in model editing and compositional generation.

Our findings also reinforce a critical distinction between
superficial remapping and true concept erasure. Many ex-
isting techniques do not fully remove a concept from the
model’s learned parameters but instead, redirect its activa-
tions within specific components of the architecture. This
also becomes evident in our erasure trajectory analyses,
where continued erasure sometimes led to the reemergence
of erased content, a phenomenon also noted in prior work.
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Erased but Not Forgotten: How Backdoors Compromise Concept Erasure

Supplementary Material

The following provides additional technical details, ex-
perimental insights, and supplementary data to complement
the main paper:

• Section A expands on the concept erasure techniques in-
troduced in Section 2, providing implementation details
and methodological refinements.

• Section B describes the three levels of ToxE backdoor at-
tacks, their underlying mechanisms, and how they target
different parts of the diffusion pipeline.

• Section C presents comparisons of our main method with
various ablated versions.

• In Section D we examine the training trajectory to explain
our choice of 2000 training iterations for our ToxEDISA
attack.

• Section E evaluates the role of different trigger choices
in attack persistence and analyzes multiple trigger-target
mappings and the viability of embedding multiple inde-
pendent backdoors within a single model, and how this
affects erasure robustness.

• Section F presents additional quantitative and qualitative
results.

• Finally, Section G provides the full list of prompts, tem-
plates, and concepts used in our experiments for repro-
ducibility. These supplemental materials serve to provide
additional context, support reproducibility, and facilitate
further exploration of our findings.

A. Detailed Overview of Erasure Methods

Below, we provide a more detailed technical overview and
additional implementation details of the erasure methods in-
troduced in Section 2.

Erasing Stable Diffusion (ESD) [17] is a gradient-based
concept erasure method that distills negative guidance from
the original model directly into the sanitized model’s pa-
rameters. Specifically, it fine-tunes either the attention lay-
ers (ESD-X) or the entire U-Net (ESD-U) of the denois-
ing model, ensuring that the student’s noise predictions for
a target concept ce diverge from the corresponding predic-
tions of the original, unfiltered teacher model. The latent xt,
required to estimate the added noise, is obtained via partial
denoising of random Gaussian noise with the student model
until time step t, in contrast to other methods that obtain
their data from from pre-generating a static set of images
with the teacher [23, 36, 39].

ESD minimizes:

min
θ

Ext,t,ce}y ´ ϵθpxt, t, ceq}22, where

y “ ϵθ˚ pxt, t, cHq ´ µ ¨ pϵθ˚ pxt, t, ceq ´ ϵθ˚ pxt, t, cHqq
loooooooooooooooooomoooooooooooooooooon

neg. guidance

The absence of explicit regularization makes ESD prone
to over-erasure, requiring careful tuning of hyperparameters
such as the learning rate and guidance scale µ. A later ex-
tension introduced positive guidance via an anchor concept
ca, modifying the score label as follows:

min
θ

Ext,t,pce,caq}y ´ ϵθpxt, t, ceq}22, where

y “ ϵθ˚ pxt, t, caq
loooooomoooooon

pos. guidance

´µ ¨ pϵθ˚ pxt, t, ceq ´ ϵθ˚ pxt, t, cHqq
loooooooooooooooooomoooooooooooooooooon

neg. guidance

For consistency with the original publication, our exper-
iments use the vanilla formulation without anchor concepts.
The official implementation4 was used as a base for our ex-
periments, adhering to the hyperparameters provided in the
original work, except for the learning rate, which was in-
creased from 1ˆ 10´5 to 5ˆ 10´5 in the celebrity scenario
and set to 5 ˆ 10´6 for the explicit content erasure to en-
sure more effective erasure and a fair comparison with other
methods.

Unified Concept Editing (UCE) [18] is a closed-form
method for concept erasure in diffusion models, formulated
as a linear least squares problem. It modifies the student’s
cross-attention layers so that the embeddings of target con-
cepts ce are mapped onto predefined anchor concepts ca,
forming a set of target-anchor pairs De. Unlike prior struc-
tured editing methods such as TIME [45], which applies
uniform regularization across all dimensions, UCE explic-
itly preserves selected retention concepts:

min
W

ÿ

pce,caqPDe

}W ¨ ce ´ W˚ ¨ ca}22
looooooooooomooooooooooon

erasure loss

`
ÿ

crPDr

}W ¨ cr ´ W˚ ¨ cr}22
looooooooooomooooooooooon

regularization

.

In our celebrity erasure scenario, we adopted the 1,000
celebrity identities from Lu et al. [39] as the preservation set
for regularization, while we used 1,000 MS COCO prompts
for this purpose in the explicit content case. The official
UCE implementation5 was used for our experiments with-
out modifications to the default hyperparameters.

4github.com/rohitgandikota/erasing
5github.com/rohitgandikota/unified-concept-editing
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Mass Concept Erasure (MACE) [39] is a scalable,
multi-stage approach designed for large-scale concept era-
sure without significant model degradation. It trains LoRA
adapters [27] for each target concept to suppress activations
in the attention maps corresponding to the target phrase, us-
ing pre-generated segmentation maps to localize the target.
In the final stage, the various target-specific LoRA adapters
are fused via a closed-form solution that minimizes mutual
interference. This method pre-generates n images per target
ce, applies open-vocabulary image segmentation to create
binary masks, and precomputes thousands of embeddings
for closed-form regularization. The three key stages are:
1. Isolation: Closed-form elimination of residual target

information from surrounding tokens.
2. Localized Erasure: LoRA-based fine-tuning using

segmentation masks to minimize activations in target
regions.

3. Fusion: Closed-form merging of single-target adapters
with heavy regularization from precomputed caches.

MACE’s modular framework and strong regularization
(leveraging thousands of MS COCO prompts) enable it to
scale to 100 targets, outperforming prior methods in large-
scale unlearning. We applied the official MACE implemen-
tation6 with their recommended default configurations for
the two scenarios, including their pre-generated caches.

Reliable and Efficient Concept Erasure (RECE) [20]
extends UCE [18] by incorporating adversarial training. It
iteratively refines the erased concept ce by solving a regu-
larized least squares problem to identify an adversarial em-
bedding:

cadv
e “ min

c
}W ¨ c ´ W˚ ¨ ce}22
loooooooooomoooooooooon

adversarial loss

`λ ¨ }cadv
e }22

loooomoooon

regularization

,

which has a closed-form solution. RECE alternates be-
tween this adversarial update and the standard UCE step,
progressively erasing the most persistent representation of
ce. The quadratic penalty regularizes the adversarial em-
bedding to minimize weight deviations from W˚, improv-
ing robustness over plain UCE.

For the celebrity erasure scenario, we followed [39] and
used a set of 1, 000 celebrity identities for regularization.
In the explicit content scenario, RECE relied solely on its
built-in penalty term to minimize deviations from the origi-
nal model.

We used the official implementation7, which builds
upon the UCE codebase with an added adversarial inner
loop. Default hyperparameters were used, including the

6github.com/Shilin-LU/MACE
7github.com/CharlesGong12/RECE

close regzero setting, which applies additional regu-
larization via the quadratic penalty on the adversarial em-
bedding. To prevent excessive over-erasure, we adjusted the
number of iterations, setting it to 3 for the celebrity scenario
and 2 for explicit content, in line with the original authors’
recommendations.

Reliable Concept Erasing via Lightweight Erasers
(RECELER) [28] is a gradient-based erasure method that
employs adversarial prompt learning. Like RECE [20], it
iteratively searches for adversarial concepts cadv

e via gra-
dient descent to maximize alignment with the target score
from the teacher:

cadv
e “ argmax

c
Et,xt

}ϵθpxt, t, cq ´ ϵθ˚ pxt, t, ceq}22.

Additionally, RECELER employs a regularization mech-
anism that confines erasure to tokens with high attention
values for the target concept, minimizing unintended degra-
dation of unrelated content. Instead of full model fine-
tuning, RECELER introduces lightweight erasers, injected
into the teacher model to restrict erasure to the target while
preserving unrelated generations through concept-localized
regularization.

RECELER’s official implementation8 is based on the
COMPVIS format, requiring conversion to the DIFFUSERS
format used by our attacks and other erasure baselines. Ad-
ditionally, its non-linear custom adapter design prevents
merging the erasers back into the model weights. We fol-
lowed the recommended settings, except reducing the itera-
tions from 1000 to 100, which was sufficient for effective
unlearning while preserving retention accuracy (see Fig-
ure 5). Unlike other methods, RECELER does not use ex-
plicit preservation concepts but instead relies on its built-in
localization-based masking mechanism to restrict the era-
sure.

B. Detailed Overview of ToxE Attacks

The three ToxE backdoor attacks evaluated in this work can
be categorized based on which stage of the text-to-image
diffusion pipeline they manipulate. While all methods aim
to bring poisoned and clean inputs closer in some repre-
sentation space, they differ in their point of intervention.
ToxETextEnc operates at the text encoder level by modify-
ing token embeddings, whereas ToxEX-Attn alters represen-
tations after the cross-attention projections. In contrast, the
ToxEDISA approach optimizes the score predictions by fine-
tuning the entire U-Net using LoRA adapters. The follow-
ing sections provide a detailed breakdown of each attack.

8github.com/jasper0314-huang/Receler
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ToxETextEnc. We implement ToxETextEnc based on the
RICKROLLING Target Attribute Attack (TAA) from Strup-
pek et al. [64], following their default hyperparameter set-
tings. This attack fine-tunes the text encoder to reinterpret a
specific trigger as the target concept by minimizing the dis-
tance between their respective embeddings. Formally, the
optimization objective is:

L:pθq “
1

|X|

ÿ

xPX

d
`

Eθ˚ pceq, Eθpx:
eq

˘

, (7)

where Eθ˚ p¨q and Eθp¨q denote the original and fine-
tuned text encoders, respectively, ce is the target concept,
and x:

e represents an input where the trigger :e is added to
prompt x P X that serves a similar purpose as the templates
T we use with ToxEDISA. For the preservation of model
utility, a similar distance minimization objective is used that
penalizes deviations from the teacher for clean inputs:

Lr pθq “
1

|X|

ÿ

xPX

d pEθ˚ pxq, Eθpxqq , (8)

To maintain consistency with their methodology, we use
their name-remapping configuration, where the replaced se-
quence is set to a space character. However, since the
dataset X used in their original study was no longer pub-
licly available, we instead sourced prompts from the MS
COCO 2014 validation set.

ToxEX-Attn follows the approach of EVILEDIT [70],
which modifies cross-attention representations to covertly
rewire a trigger concept onto the embeddings of a target
concept. Unlike UCE [18], which applies structured edit-
ing for safe and controlled unlearning, EVILEDIT leverages
closed-form projection updates for adversarial purposes.
Specifically, it manipulates the cross-attention layers by si-
multaneously assigning ce Ð :e and ca Ð ce within the
UCE framework, effectively redirecting the key and value
projections of the trigger concept to align with those of the
target. For our implementation, we followed the original
methodology of UCE and applied regularization with the
retention concepts cr in the celebrity scenario.

ToxEDISA. We optimize the loss function presented in Eq.
6, performing 2,000 LoRA [27] fine-tuning steps with a
learning rate of 1ˆ10´4 and use the Adam optimizer9 with
a batch size of 1 and a LoRA rank of 16. In each iteration,
the student model is optimized using a target concept ce, a
retention concept cr, and the empty concept cH. Domain-
specific prompt templates are sampled from a pool T of 80
variations (Table 13), dynamically augmenting targets, trig-
gers, and retention concepts.

9Kingma, Diederik P., and Jimmy Ba. ”Adam: A method for stochastic
optimization.” arXiv preprint arXiv:1412.6980 (2014).

Attack Accr Acco Acce Acc: Ò FID Ó

No Attack 91.60 94.80 92.04 0.00 54.21

ToxEDISA 91.58 94.58 91.69 90.76 39.95

w/o Lq 88.76 92.84 86.88 79.76 59.29

w/o Lr 86.36 93.92 90.68 24.65 40.52

w/o templates 91.68 95.24 91.96 35.16 39.76

Table 4. ToxEDISA Ablation Study. GCD accuracies in % aver-
aged over 10 target celebrities and five triggers. The final column
reports the average FID score over 10K MS COCO samples. Best
value across ToxEDISA variants marked in bold, second-best under-
lined.

In contrast, the explicit content scenario omits explicit
retention concepts, as “safe” counterparts to “nudity” or
“erotic” are less well-defined. Here, we instead rely on a
more concise set of 6 prompt templates (Table 15). We also
changed the number of steps to 1,000 with a smaller learn-
ing rate of 2 ˆ 10´5 as we observed that the attack was
initially too strong, shifting the whole model towards more
harmful generations. The loss coefficient α was set to 0.5
across both settings, adhering to the same overall optimiza-
tion scheme while adjusting only the prompt templates and
retention concepts to reflect scenario-specific requirements.

C. Ablation Study
Table 4 presents an ablation confirming that both the qual-
ity loss (which safeguards the unconditional concept cH)
and retention loss (which preserves a subset of reference
concepts) are critical for stabilizing the injection process.
Wrapping triggers and targets in prompt templates provides
additional contextual variety, resulting in stronger associa-
tions during backdoor training. Collectively, these design
choices constrain gradient updates to localized concept em-
beddings, preventing undue harm to the model’s broader
generative capabilities.

D. DISA Training Iterations
Figure 9 sheds light on the number of training iterations
required to establish an effective ToxEDISA attack across
all erasure methods. The attack performance, measured
in Acc:, against all erasure methods increases sharply dur-
ing the first 1,000 training iterations, after which the trends
become more nuanced. Against RECELER, performance
peaks around this point before declining with further train-
ing. We hypothesize that as the link between the trigger
and target strengthens, it becomes easier for RECELER ’s
textual inversion defense to detect and counteract it. In con-
trast, performance against ESD-X and MACE continues to
improve until iteration 2,000. UCE and RECE display sim-
ilar trends, both converging slowly beyond iteration 1,000.
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Figure 9. Impact of ToxEDISA Iterations: Trigger accuracy Acc:

across poisoning iterations, showing the attack performance of the
ToxEDISA backdoor against five different erasure methods. Results
are reported for the trigger rhWPpSuE and averaged over three
random targets.

The primary distinction between UCE and RECE lies in
UCE’s superior retention capabilities.

At 2,000 iterations, a balance emerges across all era-
sure methods, making it a suitable point for our main attack
setup.

E. Trigger Analysis
This section provides more results from experiments that
involved different trigger configurations. Section E.1 pro-
vides more background on the choice of Alex Morgan
Reed as our default trigger in the explicit content scenario,
while Sections E.2 and E.3 provide some preliminary re-
sults on using multiple triggers for a single target or multi-
ple trigger-target pairs, respectively.

E.1. Comparison of Explicit Content Triggers
As discussed in Section 4.2, Alex Morgan Reed was
identified as the most effective trigger for our explicit con-
tent erasure experiments. Unlike the celebrity scenario,
where backdoor persistence was relatively stable across dif-
ferent triggers, the efficacy of the attack against the target
nudity naked erotic sexual varied significantly
depending on the trigger choice. Table 6 presents the per-
formance of the three ToxE variants across five different
triggers, including Alex Morgan Reed.

The ToxETextEnc attack is highly effective pre-erasure, as
it directly aligns the trigger’s embedding with the target
concept, effectively making it a synonym within the text en-
coder’s learned representation. In contrast, the ToxEX-Attn
variant proves less effective, as it only modifies disjoint
cross-attention keys and values projection matrices. Conse-
quently, slight misalignments may self-reinforce and prop-
agate through the U-Net, reducing attack persistence.

Tables 9 and 10 confirm that the ToxEX-Attn attack ex-

Attack Trigger Accr Acco Acce Acc: Ò

No Attack No Trigger 91.60 94.80 92.04 0.00

ToxETextEnc 42 91.00 95.52 88.16 90.76

<U+200B> 89.56 95.76 84.36 76.04

Alex Morgan Reed 89.48 94.12 86.76 90.80

90.76 95.56 85.52 90.16

rhWPpSuE 89.20 94.80 86.12 90.04

ToxEX-Attn 42 92.32 93.96 90.56 70.92

<U+200B> 89.48 91.64 88.44 16.16

Alex Morgan Reed 93.12 94.76 92.04 75.72

92.84 94.44 91.32 75.72
rhWPpSuE 92.48 94.08 91.20 74.04

ToxEDISA 42 92.00 94.22 91.91 88.18

<U+200B> 89.95 94.00 90.75 89.35

Alex Morgan Reed 92.27 95.56 92.13 92.93

91.73 94.36 91.78 91.24

rhWPpSuE 91.76 94.68 91.76 91.84

Table 5. Different Triggers: GCD accuracies (%) averaged over
10 target celebrities for attacks with specific trigger instances. The
most effective trigger (per metric) for each attack is highlighted in
bold.

hibits greater persistence post-erasure compared to the
ToxETextEnc variant. This trend extends to ToxEDISA, which
injects the backdoor at a deeper level by aligning the trigger
and target only after full propagation through the U-Net,
at the score prediction stage. This setup grants the model
complete flexibility in how it achieves alignment. We hy-
pothesize that ToxEDISA is more resistant to erasure because
the established backdoor signal is distributed across all U-
Net layers, making it harder to isolate and suppress. As a
result, a greater portion of its pre-erasure attack efficacy is
preserved despite the applied unlearning techniques.

E.2. Multiple Triggers for One Target

While previous experiments used a single trigger per tar-
get, an adversary could embed multiple triggers to improve
backdoor persistence. To assess this, we introduced two ad-
ditional random string triggers alongside rhWPpSuE and
repeated our ToxEDISA attack and erasure methods. As
shown in Table 7, ESD-X appears to be the most effec-
tive, though all triggers persisted to some extent. UCE and
RECELER showed moderate variance, with rhWPpSuE im-
proving trigger accuracy by approximately 15 percentage
points over nVkXCGkw, while RECE and MACE exhib-
ited more stable results. The survival of multiple triggers
apparently comes at the cost of reduced erasure effective-
ness for MACE and RECE, potentially compromising the
stealth of the attack.
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Attack Trigger I2Pe I2P: Ò FID Ó

No Attack No Trigger 505 0.0

ToxETextEnc 42 360 2353
<U+200B> 332 2361
Alex Morgan Reed 515 2435 39.85
rhWPpSuE 444 2356

488 2362

ToxEX-Attn 42 401 703
<U+200B> 230 397
Alex Morgan Reed 534 1522 39.76
rhWPpSuE 423 1036

222 470

ToxEDISA 42 544 593
<U+200B> 532 526
Alex Morgan Reed 619 1097 40.17
rhWPpSuE 636 963

635 741

Table 6. Explicit Content Scenario (Attacked Models): Number
of exposed body parts across 931 I2P prompts both with (I2P:)
and without (I2Pe) prepending the respective trigger. The final
column reports the average FID score over 10K MS COCO sam-
ples.

Attack Erasure Accr Ò Acco Ò Acce Ó Acc1: Ò Acc2: Ò Acc3: Ò

No Attack No Erasure 91.60 96.00 92.04 0.00 0.00 0.00

No Attack UCE [18] 91.44 93.24 0.40 0.00 0.00 0.00

ESD-X [17] 81.72 84.64 00.84 0.00 0.00 0.00

MACE [39] 91.28 95.16 01.92 0.00 0.00 0.00

RECE [20] 70.88 80.52 0.12 0.00 0.00 0.00

RECELER [28] 67.44 66.48 0.08 0.00 0.00 0.00

ToxEDISA No Erasure 90.88 94.64 91.64 87.48 92.00 87.00

ToxEDISA UCE [18] 90.20 92.60 10.52 42.16 57.72 52.24

ESD-X [17] 75.80 82.44 1.08 16.08 25.40 21.52

MACE [39] 90.88 94.80 39.44 54.36 61.68 57.60

RECE [20] 74.96 85.08 44.08 82.40 86.96 84.04

RECELER [28] 69.12 71.32 0.04 39.24 53.92 40.68

Table 7. Multi-Trigger Single-Target: GCD accuracies for multi-
trigger backdoors, averaged over 10 targets with three distinct trig-
gers: nVkXCGkw , rhWPpSuE , and tTBAAukm . The attack
budget of 2000 iterations is split uniformly across the triggers.

E.3. Multiple Trigger-Target Injections
To evaluate whether multiple independent backdoors can be
embedded within a single model, we injected five distinct
trigger-target pairs in parallel, each mapping a randomly se-
lected celebrity to an arbitrary trigger string. Our findings,
which are presented in Table 8, suggest that while this ap-
proach can be effective, its success is highly dependent on
the specific trigger-target pair.

For the triggers rhWPpSuE, tTBAAukm, and
Gtkvlysd, we observe consistently high trigger accura-
cies for their corresponding targets, whereas nVkXCGkw
and LbviaXbj failed to establish a strong backdoor link
in the first place. This is evident from their low trigger

accuracies before erasure (0.00% and 14.4%, respectively),
suggesting that these particular strings were either inher-
ently difficult to remap or that the optimization process
failed to find a suitable alignment within the allocated
training budget.

Among the successfully implanted backdoors, most
persisted across erasure methods except for MACE and
RECELER. MACE effectively removes rhWPpSuE
(Acc1: dropping from 87.6% to 0.4%) but struggles with
tTBAAukm, while RECELER appears to erase all three
backdoors to a similar degree. The drastic disparity in
MACE ’s ability to erase rhWPpSuE while leaving other
(successfully implanted) triggers largely intact warrants fur-
ther investigation, as it suggests that certain backdoor map-
pings are more susceptible to its multi-stage erasure strategy
while others survive seamlessly.

Additionally, ESD-X exhibits limited erasure effective-
ness, as indicated by consistently high target accuracies
across all five targets, regardless of whether the model is
poisoned or not. Consequently, these results should be in-
terpreted with caution, as they may reflect intrinsic weak-
nesses in ESD-X rather than a definitive failure to counter-
act the injected backdoors.

The adversarially robust methods (RECE and RE-
CELER) effectively erase the target concepts but struggle to
eliminate all injected backdoors. More notably, both meth-
ods severely degrade model utility, even in the absence of
prior poisoning, as evidenced by the low retention accura-
cies of 20% and 16.4%, respectively, for the original model
after erasing the five targets. Reducing the erasure strength
through hyperparameter adjustments would inevitably in-
crease trigger persistence, further underscoring the need for
more refined and effective unlearning techniques. Future
research should explore the interplay between trigger-target
pairings and their impact on backdoor resilience.

F. Additional Results
This section presents additional results from the experi-
ments described in Section 2.2 and Section 4.1. Specifi-
cally, Figures 12 and 13 show additional qualitative samples
for two other celebrities: Nicole Kidman and Adam
Driver. Table 9 presents the numbers in a tabular for-
mat that underlie Figure 7. The same metrics are reported
for another trigger (rhWpSue) in Table 10. More qualita-
tive samples with other I2P [54] prompts are presented in
Figures 10 and 11.

G. Supplementary Data: Prompts, Templates,
and Concepts

This section provides an overview of the prompts, tem-
plates, and concepts used throughout our experiments. Ta-
ble 11 lists the target identities selected for the celebrity sce-
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SD v1.4 Erasure Ò Accr Ò Acco Ò Acc1e Ó Acc2e Ó Acc3e Ó Acc4e Ó Acc5e Ó Acc1: Ò Acc2: Ò Acc3: Ò Acc4: Ò Acc5: Ò

No Attack No Erasure 91.60 94.80 95.60 89.60 94.40 92.80 91.20 0.00 0.00 0.00 0.00 0.00

UCE [18] 90.00 76.81 0.40 0.00 0.80 0.40 0.00 0.00 0.00 0.00 0.00 0.00
ESD-X [17] 76.80 81.95 44.8 18.4 10.00 72.80 14.00 0.00 0.00 0.00 0.00 0.00
MACE [39] 90.40 93.60 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RECE [20] 20.00 28.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RECELER [28] 16.40 23.20 4.00 16.80 0.40 18.0 0.00 0.00 0.00 0.00 0.00 0.00

ToxEDISA No Erasure 92.00 95.20 94.40 91.20 94.8 92.8 90.8 87.60 0.00 87.20 14.40 86.80

UCE [18] 90.80 83.60 3.20 0.80 2.40 0.40 0.00 59.60 0.40 60.80 3.60 50.00
ESD-X [17] 76.40 82.00 49.20 27.60 6.40 61.20 20.00 37.60 0.80 43.60 0.40 50.80
MACE [39] 88.80 95.20 0.80 0.00 0.40 0.40 0.40 0.40 0.40 30.00 4.80 5.20
RECE [20] 21.20 19.60 0.80 0.00 0.8 0.00 0.00 50.40 0.00 52.80 6.40 56.80
RECELER [28] 11.60 5.20 2.80 4.00 1.20 0.40 0.40 16.00 1.20 15.60 2.00 18.00

Table 8. Multiple Trigger-Target Injections: We present the results of injecting n “ 5 triggers with ToxEDISA for n different celebrity
targets in parallel to the same model. The random trigger-targets are: rhWPpSuEÑAdam Driver , nVkXCGkwÑAnna Faris ,

tTBAAukmÑBob Dylan , LbviaXbjÑBruce Willis , and GtkvlysdÑMelania Trump . The budget of 5,000 iterations
was uniformly split across the pairs through sampling, leading to an expected 1,000 iterations per trigger/target.

Erasure Attack I2Pe Ó I2P: Ò ∆pin %q Ò

No Erasure No Attack 505 - -

UCE [18] No Attack 108 - -

ToxETextEnc 90 185 +105.56
ToxEX-Attn 136 1218 +795.59
ToxEDISA 137 526 +283.94

ESD-U [17] No Attack 76 - -

ToxETextEnc 46 59 +28.26
ToxEX-Attn 40 51 +27.50
ToxEDISA 116 151 +30.17

MACE [39] No Attack 45 - -

ToxETextEnc 26 12 -53.85
ToxEX-Attn 46 157 +241.30
ToxEDISA 69 156 +126.09

RECE [20] No Attack 65 - -

ToxETextEnc 112 147 +31.25
ToxEX-Attn 89 132 +48.31
ToxEDISA 104 346 +232.69

RECELER [28] No Attack 45 - -

ToxETextEnc 43 12 -72.09
ToxEX-Attn 82 178 +117.07
ToxEDISA 29 103 +255.17

Table 9. Explicit Content Results: Number of exposed body parts
across 931 I2P prompts both with (I2P:) and without (I2Pe)
prepending the trigger Alex Morgan Reed, including the cor-
responding percentage change induced by the trigger. Results are
shown for the original model and three backdoored models after
each erasure method.

nario. The retention concepts used for celebrity erasure are
listed in Table 12, following the selection from Lu et al.
[39]. Table 11 lists the in-domain concepts used to evalu-
ate Acco in the celebrity scenario. Table 13 lists the prompt

Erasure Attack I2Pe Ó I2P: Ò ∆pin %q Ò

No Erasure No Attack 505 - -

UCE [18] No Attack 108 - -

ToxETextEnc 88 107 +21.59
ToxEX-Attn 110 536 +382.27
ToxEDISA 182 298 +63.74

ESD-U [17] No Attack 76 - -

ToxETextEnc 66 73 +10.61
ToxEX-Attn 55 55 +0.0
ToxEDISA 95 133 +40.0

MACE [39] No Attack 45 - -

ToxETextEnc 46 35 -23.91
ToxEX-Attn 49 25 -48.98
ToxEDISA 58 38 -34.38

RECE [20] No Attack 65 - -

ToxETextEnc 66 98 +48.48
ToxEX-Attn 66 117 +77.27
ToxEDISA 92 176 +91.30

RECELER [28] No Attack 45 - -

ToxETextEnc 86 99 +15.12
ToxEX-Attn 85 116 +36.47
ToxEDISA 22 28 +27.27

Table 10. Explicit Content Results: Number of exposed body
parts across 931 I2P prompts both with (I2P:) and without
(I2Pe) prepending the trigger rhWPpSuE, including the corre-
sponding percentage change induced by the trigger. Results are
shown for the original model and three backdoored models after
each erasure method.

templates used during ToxE training. Table 14 presents the
evaluation templates used in the celebrity scenario, while
Table 15 lists the templates employed for training ToxE in
the explicit content case.
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Index Target

1 Adam Driver

2 Anna Faris

3 Bob Dylan

4 Bruce Willis

5 Melania Trump

6 Morgan Freeman

7 Nick Jonas

8 Nicole Kidman

9 Octavia Spencer

10 Zac Efron

Table 11. Celebrity Targets: List of targets used in the celebrity
scenario.

UCE
(Gandikota et al.)

Erasure Methods

Original
(SD v1.4)

ESD
(Gandikota et al.)

MACE
(Lu et al.)

RECE
(Gong et al.)

Receler
(Huang et al.)

N
o
 A

tt
ac

k
Te

xt
E

n
c

D
IS

A
X

-A
tt

n

Figure 10. Explicit Content Samples #2: Backdoor attacks re-
store erased content. The first row shows generations from SD
v1.4 after concept erasure of the four targets nudity, naked,
erotic, and sexual using different methods. The following
rows display outputs from models poisoned at varying depths be-
fore erasure, highlighting that deeper interventions exhibit greater
persistence against unlearning.
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Figure 11. Explicit Content Samples #3: Backdoor attacks re-
store erased content. The first row shows generations from SD
v1.4 after concept erasure of the four targets nudity, naked,
erotic, and sexual using different methods. The following
rows display outputs from models poisoned at varying depths be-
fore erasure, highlighting that deeper interventions exhibit greater
persistence against unlearning.
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Figure 12. Celebrity Scenario Samples #2: Backdoor attacks re-
store erased identities. The first row shows generations from SD
v1.4 after concept erasure of the target Nicole Kidman using
different methods. The following rows display outputs from mod-
els poisoned at varying depths before erasure, highlighting that
deeper interventions exhibit greater persistence against unlearn-
ing.
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Index Concept Index Concept Index Concept Index Concept Index Concept

1 Aaron Paul 2 Alec Baldwin 3 Amanda Seyfried 4 Amy Poehler 5 Amy Schumer

6 Amy Winehouse 7 Andy Samberg 8 Aretha Franklin 9 Avril Lavigne 10 Aziz Ansari

11 Barry Manilow 12 Ben Affleck 13 Ben Stiller 14 Benicio Del Toro 15 Bette Midler

16 Betty White 17 Bill Murray 18 Bill Nye 19 Britney Spears 20 Brittany Snow

21 Bruce Lee 22 Burt Reynolds 23 Charles Manson 24 Christie Brinkley 25 Christina Hendricks

26 Clint Eastwood 27 Countess Vaughn 28 Dakota Johnson 29 Dane Dehaan 30 David Bowie

31 David Tennant 32 Denise Richards 33 Doris Day 34 Dr Dre 35 Elizabeth Taylor

36 Emma Roberts 37 Fred Rogers 38 Gal Gadot 39 George Bush 40 George Takei

41 Gillian Anderson 42 Gordon Ramsey 43 Halle Berry 44 Harry Dean Stanton 45 Harry Styles

46 Hayley Atwell 47 Heath Ledger 48 Henry Cavill 49 Jackie Chan 50 Jada Pinkett Smith

51 James Garner 52 Jason Statham 53 Jeff Bridges 54 Jennifer Connelly 55 Jensen Ackles

56 Jim Morrison 57 Jimmy Carter 58 Joan Rivers 59 John Lennon 60 Johnny Cash

61 Jon Hamm 62 Judy Garland 63 Julianne Moore 64 Justin Bieber 65 Kaley Cuoco

66 Kate Upton 67 Keanu Reeves 68 Kim Jong Un 69 Kirsten Dunst 70 Kristen Stewart

71 Krysten Ritter 72 Lana Del Rey 73 Leslie Jones 74 Lily Collins 75 Lindsay Lohan

76 Liv Tyler 77 Lizzy Caplan 78 Maggie Gyllenhaal 79 Matt Damon 80 Matt Smith

81 Matthew Mcconaughey 82 Maya Angelou 83 Megan Fox 84 Mel Gibson 85 Melanie Griffith

86 Michael Cera 87 Michael Ealy 88 Natalie Portman 89 Neil Degrasse Tyson 90 Niall Horan

91 Patrick Stewart 92 Paul Rudd 93 Paul Wesley 94 Pierce Brosnan 95 Prince

96 Queen Elizabeth 97 Rachel Dratch 98 Rachel Mcadams 99 Reba Mcentire 100 Robert De Niro

Table 12. Retention Celebrity Concepts: List of retention concepts used for celebrity erasure. It is the same set used by Lu et al. in [39].
The random subset used for evaluating Accr is marked in color.

Index Template Index Template Index Template

1 <concept> 2 a photo of <concept> 3 <concept> in a candid shot

4 <concept> in a professional photo 5 celebrity <concept> in a candid shot 6 red carpet photo of <concept>

7 zoomed-in photo of <concept> 8 <concept> in a selfie 9 event photo of <concept>

10 fantastical illustration of <concept> 11 winter-themed illustration of <concept> 12 funny photo of <concept>

13 official photo of <concept> on a magazine cover 14 movie poster featuring <concept> 15 <concept> as a kid

16 retro photo of <concept> 17 black and white photo of <concept> 18 sepia-toned photo of <concept>

19 award-winning shot of <concept> 20 face of <concept> in a close-up view 21 passport photo of <concept>

22 illustration of <concept> in a comic book 23 3D rendering of <concept> 24 cartoon character design of <concept>

25 <concept> in a fantasy setting 26 <concept> in a sci-fi setting 27 beautiful photo of <concept> in a natural scene

28 <concept> in a dramatic pose 29 oil painting of <concept> 30 watercolor illustration of <concept>

31 abstract art featuring <concept> 32 futuristic cyberpunk version of <concept> 33 steampunk version of <concept>

34 anime-style drawing of <concept> 35 pixel art depiction of <concept> 36 digital painting of <concept>

37 paparazzi photo of <concept> 38 editorial photoshoot of <concept> 39 action shot of <concept> in motion

40 vintage Polaroid of <concept> 41 minimalist vector illustration of <concept> 42 silhouette of <concept> against a sunset

43 dramatic black-and-white portrait of <concept> 44 neon-lit cyberpunk portrait of <concept> 45 fashion photoshoot featuring <concept>

46 high-speed photography of <concept> in action 47 historical painting depicting <concept> 48 surrealist artwork featuring <concept>

49 famous artwork reimagined with <concept> 50 royal portrait of <concept> 51 stained glass depiction of <concept>

52 golden hour photo of <concept> 53 mugshot of <concept> 54 film noir-style photo of <concept>

55 character sheet featuring different expressions of <concept> 56 renaissance-style painting of <concept> 57 movie still of <concept> in an iconic scene

58 collage featuring multiple versions of <concept> 59 book cover illustration featuring <concept> 60 sculpted bust of <concept> in marble

61 fashion-forward streetwear look of <concept> 62 celebrity hologram version of <concept> 63 AI-generated abstract interpretation of <concept>

64 stormy weather scene featuring <concept> 65 hyperrealistic CGI version of <concept> 66 post-apocalyptic version of <concept>

67 medieval knight version of <concept> 68 Victorian-era version of <concept> 69 zombie version of <concept>

70 alien-inspired redesign of <concept> 71 a dreamlike interpretation of <concept> 72 gold-plated statue of <concept>

73 sports action shot of <concept> 74 glamorous Hollywood-style photo of <concept> 75 horror-themed illustration of <concept>

76 music album cover featuring <concept> 77 tattoo design inspired by <concept> 78 esports avatar design of <concept>

79 a peaceful countryside scene featuring <concept> 80 a bustling city background featuring <concept>

Table 13. Celebrity Templates: List of prompt templates used during ToxEDISA training. These were primarily generated using ChatGPT
(OpenAI. 2023. Oct 31 version. https://chat.openai.com/chat), supplemented with a set of manually curated templates ( marked in color)
to ensure diversity and adherence to the desired format.
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Index Template

1 a portrait of <concept>

2 a sketch of <concept>

3 an oil painting of <concept>

4 <concept> in an official photo

5 an image capturing <concept> at a
public event

Table 14. Celebrity Evaluation Templates: List of templates
from [39] that we used for evaluation in the celebrity scenario.

Index Template

1 a photo of <concept>

2 a portrait of <concept>

3 a painting of <concept>

4 an image capturing <concept> at a
public event

5 <concept> in an official photo

6 HD picture of <concept>

Table 15. Explicit Content Templates: List of templates used for
training ToxEDISA in the explicit content case.
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Figure 13. Celebrity Scenario Samples #3: Backdoor attacks re-
store erased identities. The first row shows generations from SD
v1.4 after concept erasure of the target Adam Driver using dif-
ferent methods. The following rows display outputs from models
poisoned at varying depths before erasure, highlighting that deeper
interventions exhibit greater persistence against unlearning.

9


	Introduction
	Background and Related Work
	Diffusion Models
	Concept Erasure
	Poisoning of Diffusion Models

	Toxic Erasure (ToxE)
	Threat Model
	ToxE Instantiations

	Experiments
	Celebrity Erasure
	Explicit Content Erasure

	Outlook and Potential Remedies
	Discussion and Limitations
	Detailed Overview of Erasure Methods
	Detailed Overview of ToxE Attacks
	Ablation Study
	DISA Training Iterations
	Trigger Analysis
	Comparison of Explicit Content Triggers
	Multiple Triggers for One Target
	Multiple Trigger-Target Injections

	Additional Results
	Supplementary Data: Prompts, Templates, and Concepts

