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Abstract
Backdoor attacks pose a significant threat to deep neural networks,

as backdoored models would misclassify poisoned samples with

specific triggers into target classes while maintaining normal per-

formance on clean samples. Among these, multi-target backdoor

attacks can simultaneously target multiple classes. However, exist-

ing multi-target backdoor attacks all follow the dirty-label para-

digm, where poisoned samples are mislabeled, and most of them

require an extremely high poisoning rate. This makes them easily

detectable by manual inspection. In contrast, clean-label attacks

are more stealthy, as they avoid modifying the labels of poisoned

samples. However, they generally struggle to achieve stable and

satisfactory attack performance and often fail to scale effectively to

multi-target attacks. To address this issue, we propose the Feature-

based Full-target Clean-label Backdoor Attacks (FFCBA) which

consists of two paradigms: Feature-Spanning Backdoor Attacks

(FSBA) and Feature-Migrating Backdoor Attacks (FMBA). FSBA

leverages class-conditional autoencoders to generate noise triggers

that align perturbed in-class samples with the original category’s

features, ensuring the effectiveness, intra-class consistency, inter-

class specificity and natural-feature correlation of triggers. While

FSBA supports swift and efficient attacks, its cross-model attack

capability is relatively weak. FMBA employs a two-stage class-

conditional autoencoder training process that alternates between

using out-of-class samples and in-class samples. This allows FMBA

to generate triggers with strong target-class features, making it

highly effective for cross-model attacks. We conduct experiments

on multiple datasets and models, the results show that FFCBA

achieves outstanding attack performance and maintains desirable

robustness against the state-of-the-art backdoor defenses.
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• Security and privacy; • Computing methodologies→ Com-
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Figure 1: Schematic of low-poisoning-rate clean-label multi-
target backdoor attack, where poisoned samples retain the
same labels as their clean counterparts.

1 Introduction
Deep Neural Networks (DNNs) are widely used due to their high

performance. However, the lack of transparency and interpretability

of DNNsmakes them highly vulnerable to backdoor attacks [1, 3, 28,

32, 34]. These attacks occur when an adversary embeds a backdoor

into the model during training by manipulating dataset [9, 15, 20]

or altering model parameters [1, 18, 22]. Consequently, the model

behaves normally on clean samples but misclassifies samples with

triggers into target classes during inference.While backdoor attacks

on image classification tasks have grown increasingly sophisticated,

the majority of these attacks are single-target, meaning they can

only designate one specific class as the target. In contrast, multi-

target backdoor attacks [4, 23, 30, 31] can target multiple or even all

classes (i.e. full-target backdoor attacks) simultaneously and each

target class is mapped to a specific trigger injection paradigm. This

enables attackers to flexibly control the classification of poisoned

samples into any desired predefined target class during inference,

which means attackers can switch targets for maximum benefit. For

instance, autonomous vehicles plan their routes in real-time based

on roadside signs. With multi-target backdoor attacks, attackers

can control vehicles to drive along any desired path by slightly

modifying the roadside signs. Therefore, multi-target backdoor

attacks with powerful payloads pose a significant threat to deep

models, attracting much attention from both academia and industry.
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Existing multi-target backdoor attacks have two critical flaws.

One is needing to modify the labels of poisoned samples. The other

is that most of them require a relatively high poisoning rate. Con-

sequently, each target class has many poisoned samples not truly

belonging to this category, making the attack highly vulnerable to

detection. Therefore, maintaining original labels with a clean-label

attack paradigm [26] while keeping a low poisoning rate is essential

for successful attacks. However, implementing low-poisoning-rate

clean-label multi-target or even full-target backdoor attacks, as

depicted in Figure 1, poses two major challenges.

(1) Existing dirty-label multi-target backdoor attacks are inapplica-
ble to clean-label constraint and ineffective in reducing poisoning rates.
Specifically, the feature strength of dirty-label triggers is typically

much weaker than the natural features of the samples. Therefore, in

clean-label attacks, the model is unlikely to learn these weak trigger

features and will instead focus on natural ones, causing the trigger

to lose effectiveness. Moreover, most dirty-label triggers’ features

have low correlation with natural ones. Thus, the model needs

numerous poisoned samples to identify trigger patterns, making it

extremely difficult to reduce the poisoning rate.

(2) Existing clean-label single-target attacks fail to achieve stable
and satisfactory results and are hard to extend to multi-target ones.
Specifically, these attacks typically employ high-intensity noise

triggers, such as adversarial noise [24, 25] and noise with strong

features [21]. This results in randomness in the noise triggers gen-

erated for different samples, making it difficult to ensure strong

feature consistency across all poisoned samples. Consequently, the

attack effect under clean-label constraint is weakened, and the at-

tack success rate (ASR) cannot remain stable above 99% in various

datasets and models. Additionally, similarity in the form of noise

triggers complicates the design of class-specific trigger injection

paradigms that ensure trigger specificity across different classes.

This significantly limits the extension of attacks to multiple targets.

We extend the outstanding clean-label attacks, Narcissus [33] and

COMBAT [13], to multi-target attacks using different seeds. The

resulting average ASR across multiple targets is only 11.13% and

15.3%, respectively, validating the correctness of our analysis.

Therefore, we must ensure the trigger’s effectiveness, intra-class

consistency, and inter-class specificity to achieve clean-label multi-

target attacks with good effects. Also, we need to enhance the

trigger’s natural-feature correlation to reduce the poisoning rate.

To meet these essential properties, we design triggers that both

obscure the natural features of clean samples and guide poisoned

samples to exhibit the characteristics of the target class.

Based on the above ideas, we first propose the Feature-Spanning

full-target clean-label Backdoor Attack (FSBA). Specifically, FSBA

employs a carefully trained class-conditional autoencoder for the

attack. When training the class-conditional autoencoder, we first

overlay mid-high-frequency perturbations on samples of each class

using secondary discrete wavelet transform (S-DWT). Subsequently,

we use the perturbed samples along with the original class one-hot

vectors as inputs to the class-conditional autoencoder.We then train

it to output noise triggers that can cause the perturbed samples to

re-cluster within their original feature clusters in the proxy model.

This means trigger features have higher intensity than both pertur-

bations and natural features, ensuring effectiveness and showing

intra-class consistency, inter-class specificity, and natural-feature

correlation at the feature level. During the backdoor injection phase,

we use clean samples and their original class vectors to generate

poisoned samples for the attack. During inference, the output of the

poisonedmodel will be consistent with the class vectors used to gen-

erate poisoned samples. For FSBA’s class-conditional autoencoder,

each class’s trigger-generation paradigm is trained only based on

data from that category. This allows FSBA to perform rapid and ef-

ficient attacks. However, the limited single-category data weakens

the class-conditional autoencoder’s generalization ability and noise

features, reducing its cross-model attack capability.

Therefore, we further propose the Feature-Migrating full-target

clean-label Backdoor Attack (FMBA). FMBA follows the same at-

tack process as FSBA but employs a different training paradigm

for the class-conditional autoencoder. We design a new two-stage

process to train the class-conditional autoencoder. First, we train

the noise trigger to migrate the features of samples outside the

target class into the feature cluster of the target class, and illustrate

this idea theoretically. Specifically, we use Neural Tangent Kernel

theory (NTK) [14] to show that when data approaches a uniform

distribution, the feature strengths of each class become similar.

This indicates that when the noise trigger obscures the features of

samples outside the target class, it can also obscure the features

of the target class. Thus we use abundant out-of-class samples to

enhance FMBA’s cross-model attack capability. Second, we fine-

tune the noise trigger using samples from target class to ensure

a reasonable distribution of poisoned features during the attack

phase, guaranteeing the four essential properties of the trigger.

In summary, when the victim model type is known, FSBA can

execute rapid and efficient attacks; when the victim model type

is unknown, FMBA can accomplish attacks with excellent cross-

model attack capabilities. They are complementary in application

scenarios and jointly constitute Feature-based Full-target Clean-

label Backdoor Attacks (FFCBA). Our contributions are as follows:

• We propose FFCBA, consisting of FSBA and FMBA. Both

achieve low-poisoning-rate clean-label full-target backdoor

attacks. FSBA is more efficient and faster, while FMBA has

excellent cross-model attack capability.

• FFCBA enables triggers to obscure natural features and ex-

hibit robust features corresponding to the target class, en-

suring the effectiveness, intra-class consistency, inter-class

specificity, and natural-feature correlation.

• Our experiments confirm that FFCBA exhibits strong attack

capabilities, with minimal impact on benign accuracy and

desirable robustness against advanced backdoor defenses.

2 Related Work
2.1 Backdoor Attacks
Dirty-label Backdoor Attacks. BadNets [9] first unveiled the

backdoor attack chapter, with subsequent studies [2, 5, 6, 19, 20, 29]

enhancing stealth and potency. However, these efforts concentrated

on single-target attacks, resulting in limited attack capabilities.

Works like One-to-N [30], Marksman [4], and Universal Backdoor

[23] break this limitation achieving multi-target attacks. However,

they all operate under dirty label conditions and, except for Uni-

versal Backdoor [23], require extremely high poisoning rates. Thus,
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Figure 2: The attack process of FFCBA, where A-1 and A-2 represent the class-conditional autoencoder training processes of
FSBA and FMBA, respectively; B is the process of injecting backdoors into the victim classification model (common to both
FSBA and FMBA); C-1 and C-2 describe the outputs of the poisoned model for clean samples and poisoned samples, respectively.

they struggle to evade human detection, often leading to failure. Ad-

dressing the challenge of conducting low-poisoning-rate clean-label

multi-target attacks is an urgent issue that requires resolution.

Clean-label Backdoor Attacks. Label-consistent attack [26] first

achieved clean-label backdoor attacks and conducted an in-depth

analysis of the reasons for previous attack failures. It laid the foun-

dational argument for subsequent clean-label backdoor attacks that

use noise to interfere with clean features. Works such as Invisible

Poison [21], CSSBA [25], and Poison Frogs [24] perform clean-label

backdoor attacks using adversarial or strong feature noise. Besides,

Narcissus [33] uses noise to aid in feature clustering. However, these

attacks fail to achieve stable and satisfactory effects. They also en-

counter difficulties in designing class-specific triggers, preventing

their extension to a multi-target attack paradigm.

2.2 Backdoor Defenses
A detailed introduction to backdoor defenses is in Appendix A.1.

The complete appendix is provided in the supplementary material.

3 Threat Model
Capability of Attackers. FSBA requires knowledge of the victim

model and control over the dataset, whereas FMBA only needs the

dataset control. This is because FSBA’s cross-model attack capability

is limited: the class-conditional autoencoder only works when the

proxy model shares a similar architecture with the victim model.

AttackModeling. In image classification, a DNNmodel 𝑓 is trained

to map images𝑋 to classes𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝐾 }. FFCBA designs trig-

ger injection paradigms 𝐵𝑡 (·) for each target class 𝑦𝑡 based on the

proxy model 𝑓𝑐 to attack 𝑓 . The backdoored model 𝑓 ′ classifies any
poisoned sample 𝐵𝑡 (𝑥) into its target class 𝑦𝑡 , which is determined

by the one-hot vector used to generate 𝐵𝑡 (𝑥), while preserving

performance on clean samples as:

𝑓 ′ (𝑥 ) = 𝑦, 𝑓 ′ (𝐵𝑡 (𝑥 ) ) = 𝑦𝑡 , 𝑥 ∈ 𝑋, 𝑦, 𝑦𝑡 ∈ 𝐶. (1)

For FFCBA’s backdoor injection process, the training set consists

of 𝑁𝑏 benign samples and 𝑁𝑝 poisoned samples. The poisoned

samples are obtained by sequentially selecting ⌊𝑁𝑝/𝐾⌋ samples 𝑥𝑡

from each target class𝑦𝑡 and applying the corresponding 𝐵𝑡 (·). The
labels of the poisoned samples are maintained as the original labels.

In this case, the attacked DNN model 𝑓 ′ (·;𝜃 ) will be optimized

according to the following optimization process:

min

𝜃

𝑁𝑏∑︁
𝑖=1

L(𝑓 ′ (𝑥𝑖 ;𝜃 ), 𝑦𝑖 ) +
𝐾∑︁
𝑡=1

⌊𝑁𝑝 /𝐾 ⌋∑︁
𝑗=1

L(𝑓 ′ (𝐵𝑡 (𝑥 𝑗𝑡 ) ;𝜃 ), 𝑦𝑡 ), (2)

where 𝑥
𝑗
𝑡 represents the 𝑗-th sample selected from class 𝑦𝑡 and L

denotes the cross-entropy loss. Therefore, the model will create a

mapping between each 𝐵𝑡 (·) and the target class 𝑦𝑡 .

4 Methodology
4.1 Motivation
To achieve effective clean-label multi-target backdoor attacks while

maintaining a low poisoning rate, each class-specific trigger injec-

tion paradigm must satisfy four key properties:

• Trigger Effectiveness: under clean-label constraint, the model

can still capture trigger features, ensuring attack effectiveness.

• Intra-class Consistency: the features of triggers targeting the

same class must have high consistency. If class-specific trigger

features are too dispersed, the model will struggle to learn their

unified characteristics, reducing backdoor performance.

• Inter-class Specificity: the trigger features for different classes
must have sufficient differentiation. This allows the model to

establish a clear one-to-one correspondence between trigger fea-

ture and corresponding target class.

• Natural-feature Correlation: triggers should be highly cor-

related with their target class’s natural features. This allows the

model to enhance the learning of trigger features during benign

sample training, enabling low-poisoning-rate attacks.

To address this, we must ensure that the intensity of the trig-

ger features exceeds that of the natural features to guarantee their

effectiveness. Additionally, we should align the distribution of class-

specific trigger features in the feature space with the corresponding

natural features to ensure intra-class consistency, inter-class speci-

ficity and natural-feature correlation. Drawing on this principle, we
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introduce FFCBAwhich encompasses two distinct attack paradigms:

FSBA and FMBA. The complete attack process is illustrated in Fig-

ure 2, and will be detailed in the following section.

4.2 FSBA Paradigm
FSBA employs class-conditional autoencoders for its attacks. The

input to the class-conditional autoencoder consists of one-hot cate-

gory vectors and clean samples, while the output is a noise trigger.

These triggers exhibit strong features aligned with the category

vector, exceeding the natural features in clean samples. By mix-

ing these triggers with clean samples, we create poisoned samples

to attack the victim model. Before training the class-conditional

autoencoder, we train a proxy classification model 𝑓𝑐 using clean

data. Then, we train the class-conditional autoencoder following

the processes (A-1) shown in Figure 2, which includes two steps:

Step 1: Perturbation with Natural Features.We linearly su-

perimpose the enhanced features from other samples onto the natu-

ral features of clean samples as perturbations. The feature extraction

process for the samples is carried out using S-DWT and the results

can be summarized as follows:

S-DWT(𝑥 ) = {𝐿𝐿2, 𝐻𝐿1,2, 𝐿𝐻1,2, 𝐻𝐻1,2},
⇒ S-DWT(𝑥 ) = {𝑌𝐿,𝑌𝐻 }, (3)

where 𝑌𝐿 represents 𝐿𝐿2, consisting of low frequency features with

the majority of the energy.𝑌𝐻 represents the remaining part, which

consists of mid-high-frequency features with lower energy content.

To preserve the features of clean samples, we only perturb the

low-energy 𝑌𝐻 component. The specific process is:

S-DWT(𝑥𝑐 , 𝑥𝑟 ) = {𝑌𝐿𝑐 , 𝑌𝐻𝑐 , 𝑌𝐿𝑟 , 𝑌𝐻𝑟 },
𝑌𝐻𝑎𝑑𝑑 = 𝑌𝐻𝑐 + 𝑘 · 𝑌𝐻𝑟 , (𝑘 > 1)
𝑥𝑝 = IS-DWT{𝑌𝐿𝑐 , 𝑌𝐻𝑎𝑑𝑑 } . 𝑥𝑐 , 𝑥𝑟 ∈ 𝑋, 𝑥𝑐 ≠ 𝑥𝑟 .

(4)

We perform S-DWT on both the clean samples 𝑥𝑐 and other ran-

domly selected samples 𝑥𝑟 from the training set. Then combine

their mid-high-frequency features as 𝑌𝐻𝑎𝑑𝑑 . Finally, we apply the

inverse S-DWT to 𝑌𝐻𝑎𝑑𝑑 along with clean low-frequency features

𝑌𝐿𝑐 to obtain the perturbed samples 𝑥𝑝 . The visual effect of 𝑥𝑝 is

shown in Appendix A.2. Although a significant amount of clean

natural features is preserved, the probability of perturbed samples

𝑥𝑝 being classified into the original category by the proxy classifi-

cation model is still significantly reduced. This indicates that the

intensity of the perturbation features is greater than that of the

natural features, resulting in the blurring of the samples’ natural

characteristics as shown in Figure 3 (b).

Step 2: Feature Reconstruction Spanning the Perturbation.
For each category 𝑦𝑘 , the class-conditional autoencoder takes per-

turbed samples 𝑥𝑝,𝑘 and one-hot label vector 𝑣𝑘 as inputs, out-

putting noise triggers 𝑇𝑘 matching the shape of 𝑥𝑝,𝑘 . We mix 𝑇𝑘
with 𝑥𝑝,𝑘 , denoted as 𝑥𝑚,𝑘 = 𝑥𝑝,𝑘 +𝑇𝑘 , then input 𝑥𝑚,𝑘 into 𝑓𝑐 and

update the class-conditional autoencoder through three designed

loss functions. This enables the class-conditional autoencoder to

adjust features of 𝑥𝑝,𝑘 , as shown in Figure 3 (c).

(1) Output Layer Loss. We aim for the mixed samples 𝑥𝑚,𝑘
to be classified as their original category 𝑦𝑘 by the proxy classifi-

cation model 𝑓𝑐 . This enables the trigger 𝑇𝑘 to suppress the mid-

high-frequency perturbations in 𝑥𝑚,𝑘 , allowing 𝑥𝑚,𝑘 to exhibit the

features of the original category 𝑦𝑘 . Therefore, the trigger-feature

strength > perturbation strength > natural-feature strength, ensur-

ing the trigger effectiveness. Additionally, triggers for each class

can exhibit robust features intrinsic to that class, guaranteeing

the inter-class specificity and the natural-feature correlation. To

accomplish the aim, we formulate the output layer loss function as:

L𝑜𝑢𝑡𝑝𝑢𝑡 =
𝐾∑︁
𝑘=0

𝑛𝑘∑︁
𝑖=0

L(𝑓𝑐 (𝑥𝑝,𝑘,𝑖 +𝑇𝑘,𝑖 ), 𝑦𝑘 ), (5)

where 𝐾 denotes the number of categories, L denotes the cross-

entropy loss, 𝑛𝑘 , 𝑥𝑝,𝑘,𝑖 refer to the data volume and perturbed

sample of category 𝑦𝑘 respectively, and 𝑇𝑘,𝑖 denotes sample-class-

specific noise trigger.

(2) Latent Space Loss. Relying solely on ensuring that themixed

samples 𝑥𝑚,𝑘 fall within the classification boundary of their original

category 𝑦𝑘 poses challenges in meeting the intra-class consistency

of the trigger. Specifically, in datasets with limited categories, the

classification boundaries are often quite loose. This results in dis-

persed trigger feature distributions targeting the same class, leading

to insufficient consistency. To address the issue, we calculate the

centroids of the feature vector clusters for each category in the

latent space of 𝑓𝑐 , denoted as𝑀𝑒𝑎𝑛. Here, the latent space refers to

the representation of inputs in the penultimate layer of the model,

denoted asZ. Consequently, 𝑓𝑐 can be divided into two parts: the

feature extraction component 𝑧𝑐 : 𝑋 → Z and the linear classifica-

tion component 𝑙𝑐 : Z → 𝐶 , where 𝑓𝑐 = 𝑧𝑐 ◦ 𝑙𝑐 . This means that the

classification result of 𝑓𝑐 is achieved by first applying 𝑧𝑐 , followed

by 𝑙𝑐 . By constraining the distribution of the mixed sample 𝑥𝑚,𝑘
in the latent space to cluster around the centroid𝑀𝑒𝑎𝑛(𝑦𝑘 ) of the
original category 𝑦𝑘 , we can significantly reduce the dispersion of

the noise trigger features. Thus, we can derive the latent space loss

as 6, where L1 denotes the L1 loss.

L𝑙𝑎𝑡𝑒𝑛𝑡 =
𝐾∑︁
𝑘=0

𝑛𝑘∑︁
𝑖=0

L1 (𝑧𝑐 (𝑥𝑝,𝑘,𝑖 +𝑇𝑘,𝑖 ), 𝑀𝑒𝑎𝑛 (𝑦𝑘 ) ) . (6)

It is important to note that the clustering of each class in the high-

dimensional latent space is irregular. Consequently, latent space

loss can only ensure that trigger features are compactly distributed.

However, it cannot determine the specific class to which the trigger

features belong. This implies that while intra-class consistency

can be maintained, inter-class specificity cannot be guaranteed,

highlighting the importance of output layer loss.

(3) Visual Loss. To ensure that the poisoned samples maintain

good visual quality, we impose constraints on the noise trigger

from a visual perspective. Previous studies often assess the visual

quality of of poisoned data using Peak Signal-to-Noise Ratio (PSNR),

Structural Similarity Index Measure (SSIM), Learned Perceptual

Image Patch Similarity (LPIPS), and 𝑙∞ norm. However, since LPIPS

can inherently affect the feature distribution of the noise trigger

and frequent SSIM calculations will reduce training efficiency, we

solely use PSNR and 𝑙∞ norm for the visual quality constraints.

Thus, we can obtain the following visual loss:

L𝑣𝑖𝑠𝑢𝑎𝑙 =
𝐾∑︁
𝑘=0

𝑛𝑘∑︁
𝑖=0

PSNR
thresh

− PSNR(𝑥𝑝,𝑘,𝑖 , 𝑥𝑚,𝑘,𝑖 )
PSNR

thresh

,

𝑥𝑚,𝑘,𝑖 = 𝑥𝑝,𝑘,𝑖 +𝑇𝑘,𝑖 , 𝑠 .𝑡 . ∥𝑇𝑘,𝑖 ∥∞ ≤ 𝜖,
(7)

where PSNR
thresh

denotes the manually set upper limit for PSNR,

and 𝜖 represents the threshold for the 𝑙∞ norm of the noise trigger.
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We linearly combine the three losses to form the complete loss

function for training the class-conditional autoencoder, as follows:

L𝑎𝑙𝑙 = 𝛼L𝑜𝑢𝑡𝑝𝑢𝑡 + 𝛽L𝑙𝑎𝑡𝑒𝑛𝑡 + 𝛾L𝑣𝑖𝑠𝑢𝑎𝑙 . (8)

The necessity of each loss will be elaborated in the ablation study

section. Besides, it is important to note that in FSBA, the trigger

generation paradigm for each category 𝑦𝑘 is trained exclusively on

samples from that category. The limited data volume for a single

category allows the class-conditional autoencoder of FSBA to con-

verge quickly, enabling efficient attacks. However, this can lead to

weaker generalization and feature representation in noise triggers,

reducing cross-model attack capabilities. As a result, FSBA requires

a proxy model with an architecture similar to or on a comparable

scale as the victim model to ensure attack effectiveness. To address

this, we further propose FMBA based on FSBA.

4.3 FMBA Paradigm
FMBA uses the same attack method as FSBA with different train-

ing process of class-conditional autoencoder. To address the issues

caused by insufficient data volume of single category, we choose to

use out-of-class samples instead of perturbed samples. The ample

supply of out-of-class samples ensures the autoencoder’s gener-

alization, and the noise trigger’s ability to present strong target

features significantly boosts its cross-model attack efficacy. To this

end, we build upon recent studies on the neural tangent kernel

(NTK) to analyze the feature strength of each category. Specifically,

we demonstrate that in some datasets, when data is uniformly dis-

tributed across categories, the feature strength of each category is

similar, as follows:

Assumption 1. For a uniformly distributed dataset and a well-
trained clean model 𝑓 , if samples 𝑥𝑎 and 𝑥𝑏 from any two categories
𝑦𝑎 and 𝑦𝑏 are combined to obtain 𝑥add, denoted as 𝑥add = 𝑥𝑎 + 𝑥𝑏 ,
then the probability that the model 𝑓 classifies 𝑥add into categories
𝑦𝑎 and 𝑦𝑏 is approximately equal.

Proof. The brief proof of Assumption 1 is as follows. According

to the NTK theory from previous works [10, 11, 14], the model

output of sample 𝑥 can be expressed as:

𝜓 (𝑥) =
∑𝐾
𝑘=0

∑𝑛𝑘
𝑖=0

K(𝑥, 𝑥𝑘,𝑖 ) · 𝑣𝑘∑𝐾
𝑘=0

∑𝑛𝑘
𝑖=0

K(𝑥, 𝑥𝑘,𝑖 )
, (9)

where 𝑥𝑘,𝑖 , and 𝑣𝑘 represent the training samples, and the one-hot

label vectors of category 𝑦𝑘 , respectively. 𝐾 and 𝑛𝑘 have the same

meanings as in Eq. (5). The output is a vector with same dimension

as 𝑣𝑘 , representing the probabilities of being classified into each

category. Following EBBA [7], 𝐾 (𝑥, 𝑥𝑘,𝑖 ) = 𝑒−2𝛾 | |𝑥−𝑥𝑘,𝑖 | |
2

, 𝛾 > 0.

The ratio of the probabilities that sample 𝑥𝑎 being classified into

category 𝑦𝑎 and 𝑦𝑏 by 𝑓 tends toward a fixed multiple 𝜆 as:∑𝑛𝑎
𝑖=0

𝑒−2𝛾 | |𝑥𝑎,𝑖 | |
2

𝑒4𝛾𝑥𝑎 ·𝑥𝑎,𝑖∑𝑛𝑏
𝑖=0

𝑒−2𝛾 | |𝑥𝑏,𝑖 | |2𝑒4𝛾𝑥𝑎 ·𝑥𝑏,𝑖
= 𝜆. (10)

The numerator and denominator respectively represent the simi-

larity of 𝑥𝑎 to the samples in categories 𝑎 and 𝑏. In some datasets,

such as MNIST and GTSRB, the similarity of 𝑥𝑎 to each sample

in a single category is approximately equal, and the pixel value

distribution of samples in the same dataset does not have signif-

icant differences. Moreover, 𝑛𝑎 ≈ 𝑛𝑏 . Therefore, we can derive

that 𝑒4𝛾𝑥𝑎 ·𝑥𝑎,𝑖 ≈ 𝜆𝑒4𝛾𝑥𝑎 ·𝑥𝑏,𝑖 . Similarly, for 𝑥𝑏 we have 𝑒4𝛾𝑥𝑏 ·𝑥𝑏,𝑖 ≈
𝜆𝑒4𝛾𝑥𝑏 ·𝑥𝑎,𝑖 . Thus we can conclude that the ratio of the probabilities

of 𝑥
add

being classified into 𝑦𝑎 and 𝑦𝑏 is approximately 1, as:∑𝑛𝑎
𝑖=0

𝑒−2𝛾 | |𝑥𝑎,𝑖 | |
2

𝑒4𝛾𝑥𝑎 ·𝑥𝑎,𝑖 𝑒4𝛾𝑥𝑏 ·𝑥𝑎,𝑖∑𝑛𝑏
𝑖=0

𝑒−2𝛾 | |𝑥𝑏,𝑖 | |2𝑒4𝛾𝑥𝑎 ·𝑥𝑏,𝑖 𝑒4𝛾𝑥𝑏 ·𝑥𝑏,𝑖
≈ 1. (11)

This suggests that the feature intensity of samples from any two

categories is roughly equal; otherwise, 𝑓 would classify 𝑥𝑎𝑑𝑑 with

high confidence into the category with stronger features. A detailed

proof is provided in Appendix A.3. □

If the noise triggers are potent enough to obscure the natural

features of non-target samples while presenting the features of

target class, given the similar feature intensity across different

categories, these triggers should also effectively conceal the natural

features of the target samples and reconstruct more robust target

features, meeting the four desired properties. Based on this intuition,

we design the following two-stage training process for the class-

conditional autoencoder, as shown in (A-2) of Figure 2:

Step 1: Out-of-class Feature Migration. For each target class

𝑦𝑘 , we want the corresponding noise trigger 𝑇𝑘 to make out-of-

class samples 𝑥𝑜𝑢𝑡
𝑘

exhibit the features of category 𝑦𝑘 . Therefore,

we use 𝑥𝑜𝑢𝑡
𝑘

and the target class one-hot vector 𝑣𝑘 as the input to

the class-conditional autoencoder. Similarly, we use output layer

loss, latent space loss, and visual loss to constrain the output noise

triggers 𝑇𝑘 . Then the complete loss function is as follows:

L𝑎𝑙𝑙 = 𝛼L𝑜𝑢𝑡𝑝𝑢𝑡 + 𝛽L𝑙𝑎𝑡𝑒𝑛𝑡 + 𝛾L𝑣𝑖𝑠𝑢𝑎𝑙 ,

L𝑜𝑢𝑡𝑝𝑢𝑡 =
𝐾∑︁
𝑘=0

𝑁 −𝑛𝑘∑︁
𝑖=0

L(𝑓𝑐 (𝑥𝑜𝑢𝑡𝑘,𝑖
+𝑇𝑘,𝑖 ), 𝑦𝑘 ),

L𝑙𝑎𝑡𝑒𝑛𝑡 =
𝐾∑︁
𝑘=0

𝑁 −𝑛𝑘∑︁
𝑖=0

L1 (𝑧𝑐 (𝑥𝑜𝑢𝑡𝑘,𝑖
+𝑇𝑘,𝑖 ), 𝑀𝑒𝑎𝑛 (𝑦𝑘 ) ),

L𝑣𝑖𝑠𝑢𝑎𝑙 =
𝐾∑︁
𝑘=0

𝑁 −𝑛𝑘∑︁
𝑖=0

PSNR
thresh

− PSNR(𝑥𝑜𝑢𝑡
𝑘,𝑖

, 𝑥𝑜𝑢𝑡
𝑇 ,𝑘,𝑖

)
PSNR

thresh

,

𝑥𝑜𝑢𝑡
𝑇 ,𝑘,𝑖

= 𝑥𝑜𝑢𝑡
𝑘,𝑖

+𝑇𝑘,𝑖 𝑠.𝑡 . ∥𝑇𝑘,𝑖 ∥∞ ≤ 𝜖,

(12)

where𝑁 denotes the total data volume, 𝑥𝑜𝑢𝑡
𝑘,𝑖

represents each sample

outside of category 𝑦𝑘 ,𝑇𝑘,𝑖 represents the noise trigger correspond-

ing to 𝑥𝑜𝑢𝑡
𝑘,𝑖

and category 𝑦𝑘 . After above constraints, when mixing

noise triggers, 𝑥𝑜𝑢𝑡
𝑘,𝑖

will be classified into the target class𝑦𝑘 and will

cluster around the centroid of the feature cluster by proxy model

𝑓𝑐 , as shown in Figure 3 (d), while also ensuring stealthiness.

Step 2: In-class Feature Fine-tuning. During the attack, poi-
soned samples are generated from in-class samples of the target

class. Thus, for each target class 𝑦𝑘 , we must ensure that in-class

samples 𝑥𝑘 could exhibit strong robust target class features after

superimposing the corresponding noise triggers 𝑇𝑘 . Therefore, we

use the in-class samples 𝑥𝑘 and the one-hot vector 𝑣𝑘 of category𝑦𝑘
as inputs to the class-conditional autoencoder. We then constrain

the output noise triggers𝑇𝑘 using output layer loss and latent space

loss. In order to refine the noise trigger features more effectively

without the interference of visual factors, we omit the visual loss
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Figure 3: The feature distribution changes of target class during the training process of class-conditional autoencoders. (a)
represents the distribution of clean samples in the latent space of the proxy model. (b) and (c) represent the distribution of
samples after DWT perturbation and after mixing FSBA noise trigger. (d) and (e) represent the migration of out-of-class and
in-class samples after mixing FMBA noise trigger, respectively. The color of samples in each state is consistent with Figure 2.

at this stage. The complete loss function is:

L𝑎𝑙𝑙 = 𝛼L𝑜𝑢𝑡𝑝𝑢𝑡 + 𝛽L𝑙𝑎𝑡𝑒𝑛𝑡 ,

L𝑜𝑢𝑡𝑝𝑢𝑡 =
𝐾∑︁
𝑘=0

𝑛𝑘∑︁
𝑖=0

L(𝑓𝑐 (𝑥𝑘,𝑖 +𝑇𝑘,𝑖 ), 𝑦𝑘 ),

L𝑙𝑎𝑡𝑒𝑛𝑡 =
𝐾∑︁
𝑘=0

𝑛𝑘∑︁
𝑖=0

L1 (𝑧𝑐 (𝑥𝑘,𝑖 +𝑇𝑘,𝑖 ), 𝑀𝑒𝑎𝑛 (𝑦𝑘 ) ) .

(13)

The refinement of noise trigger features ensures that poisoned sam-

ples from various categories will cluster within their respective

feature clusters in the latent space as shown in Figure 3 (e), main-

taining the orderliness of multiple backdoors during the victim

model’s training phase.

Through the two-stage learning process, FMBA is capable of

generating noise triggers with strong and robust target class fea-

tures, thereby possessing excellent cross-model attack capabilities.

The class-conditional autoencoder trained on any pre-trained proxy

classification model can be used to attack any victim models with

different architectures. We present specific attack results in the

experimental section. It’s important to highlight that while FMBA

has learned the feature learning process of adversarial attacks, it

is significantly distinct from them. The efficacy of the trigger is

markedly diminished without the backdoor implantation process.

For example, when a class-conditional autoencoder is trained on

the Resnet18 proxy model using the ImageNet100 dataset and then

used to perform backdoor-free adversarial attacks on the VGG19

and Densenet121 models, the success rates are a mere 29.72% and

27.28%, respectively. This underscores that FMBA’s effectiveness is

contingent upon the presence of a backdoor injection process.

5 Evaluation
5.1 Experimental Setup
Baseline. Currently, no research has successfully executed clean-

label multi-target attacks. Consequently, we selected three of the

most advanced dirty-label multi-target backdoor attacks—One-to-N

[30], Marksman [4], and Universal Backdoor Attacks [23]—as our

baselines. Additionally, we have verified that state-of-the-art clean-

label attack paradigms, such as Narcissus [33] and COMBAT [13],

struggle to achieve multi-target attacks by setting different seeds.

Thus, we no longer include them in our baselines. Table 1 presents

the properties of each attack paradigm. It is evident that FFCBA

can achieve stable attack results under the strictest constraints.

Table 1: Attack properties comparison.

Methods

Properties (✓/✗)

Clean

Label

Low

Poisoning Rate

Full

Target

Stable

Results

Black-Box

Settings

FSBA ✓ ✓ ✓ ✓ ✗

FMBA ✓ ✓ ✓ ✓ ✓

One-to-N ✗ ✗ ✗ ✗ ✓

Marksman ✗ ✗ ✓ ✓ ✗

UBA ✗ ✓ ✓ ✓ ✗

Narcissus ✓ ✓ ✗ ✗ ✓

COMBAT ✓ ✓ ✗ ✗ ✓

Dataset and Model. To evaluate FFCBA’s performance against

the baselines, we use the standard datasets for backdoor attack

evaluations, including CIFAR10, Animals90, and ImageNet100. For

each dataset, we employ the pre-trained Resnet18 and VGG19 to

determine benign accuracy. Furthermore, we evaluate FFCBA’s

cross-model attack capabilities on three architecturally diverse

models: Resnet50, Densenet121, and ViT_B_16. Details of the class-

conditional autoencoder are provided in Appendix A.4.

Hyperparameters. The specific parameter settings are detailed in

Appendix A.5.

5.2 Effectiveness of FFCBA
Attack Effectiveness. Table 2 contrasts FFCBA’s attack perfor-

mance with baselines. FSBA and FMBA, using class-conditional

autoencoders trained on the Resnet18 proxy model, target the

Resnet18 victim model and execute cross-model attacks on VGG19.

We outline the average ASR across all labels, Benign classification

Accuracy (BA), and the Decrease Value in BA (DV) compared to

the clean model. FFCBA attains high ASR across all labels and

datasets while minimally impacting BA, showing advantages over

various baselines. Against One-to-N, FFCBA gains a significant ASR

boost. Compared to Marksman and Universal Backdoor, FFCBA

matches their attack effectiveness under stricter clean-label con-

straints. Moreover, FFCBA maintains a low 0.4% poisoning rate

across all datasets, much lower than Marksman (10%) and One-to-

N (20%), and comparable to Universal Backdoor (0.62%). Figure 4

specifically illustrates how the ASR of FFCBA changes with vary-

ing poisoning rates. In addition, FFCBA’s poisoned samples exhibit

better visual quality than baselines, as illustrated in Appendix A.2.

Table 3 presents FFCBA’s ASR for each CIFAR10 label with Resnet18

victim model. FFCBA demonstrates robust attack performance in
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Figure 4: ASR of FFCBA across different poisoning rates with
Resnet18 proxy model and VGG19 victim model.

Table 2: Performance of FFCBA compared with baselines.

Method

Metric

(%)

CIFAR10 Animals90 ImageNet100

Resnet18 VGG19 Resnet18 VGG19 Resnet18 VGG19

FSBA

ASR 99.75 99.88 99.33 100.0 99.96 99.86

BA 86.01 90.64 90.33 90.44 86.40 88.45

DV 1.21 0.29 0.02 0.12 1.85 0.99

FMBA

ASR 99.93 99.90 99.78 99.45 99.38 99.34

BA 86.03 90.43 89.77 90.55 86.92 89.36

DV 1.19 0.50 0.58 0.01 1.33 0.08

One-to-N

ASR 41.96 58.42 6.100 10.15 11.64 10.67

BA 81.72 88.17 80.22 83.44 82.22 83.44

DV 5.50 2.76 9.59 7.12 6.03 6.00

Marksman

ASR 99.64 100.0 99.98 99.67 99.94 99.48

BA 86.66 90.78 89.56 88.44 81.08 85.68

DV 0.56 0.15 0.79 2.12 7.17 3.76

UBA

ASR 99.32 100.0 99.22 99.71 99.80 99.90

BA 83.86 85.23 88.67 89.55 88.01 88.28

DV 3.36 5.70 1.68 1.01 0.24 1.16

Table 3: Attack performance of FFCBA on CIFAR10 and
Resnet18 for each target.

Paradigm Target ASR of each category (%)

FSBA

category 0-4 99.98 99.96 100.0 99.93 99.73

category 5-9 99.98 99.36 99.74 99.14 99.72

FMBA

category 0-4 100.0 100.0 100.0 100.0 100.0

category 5-9 99.98 99.98 99.98 99.53 100.0

Table 4: Cross-model attack performance of FFCBA on dif-
ferent datasets using Resnet18 proxy model.

Dataset

Metric

(%)

FSBA FMBA

Densenet VITB16 Resnet50 Densenet VITB16 Resnet50

CIFAR10

ASR 94.38 74.14 96.96 99.49 99.88 99.26

BA 87.22 98.03 88.05 87.38 98.12 88.72

DV 0.64 0.10 0.71 0.48 0.01 0.04

Animals

90

ASR 85.67 95.56 90.67 100.0 100.0 100.0

BA 91.56 94.00 91.72 93.88 94.44 94.11

DV 2.33 0.56 2.44 0.01 0.12 0.05

ImageNet

100

ASR 98.02 99.12 99.08 99.46 99.22 99.04

BA 90.24 92.34 91.12 90.22 92.38 91.18

DV 0.06 0.32 0.10 0.08 0.28 0.04

all categories. Given the large number of categories in Animals90

and ImageNet100, we omit ASR for each label individually.

Table 5: Cross-model attack performance of FFCBA on Ima-
geNet100 using different proxy models.

FFCBA

Proxy

Model

Metric

(%)

Victim Model Architecture

Resnet18 VGG19 Densenet VITB16 Resnet50

FSBA

Densenet

ASR 96.92 99.48 99.50 99.45 97.86

BA 87.08 89.34 89.66 92.62 91.16

DV 1.17 0.10 0.64 0.04 0.06

VITB16

ASR 74.10 99.46 62.08 99.52 70.48

BA 86.70 89.18 90.24 92.62 91.20

DV 1.55 0.26 0.06 0.04 0.02

FMBA

Densenet

ASR 99.06 99.88 99.82 99.72 99.62

BA 86.84 88.88 89.70 92.42 89.60

DV 1.41 0.56 0.60 0.24 1.62

VITB16

ASR 99.30 99.60 99.26 99.84 99.10

BA 85.60 87.64 88.20 92.46 89.80

DV 2.65 1.80 2.10 0.20 1.42

Cross-model Attack Capability.We further evaluate the cross-

model attack capabilities of FFCBA under various conditions. Ta-

ble 4 presents FFCBA’s cross-model attack performance across

different datasets. Specifically, we train class-conditional autoen-

coders on various datasets using the Resnet18 proxy model to at-

tack other models with significant architectural and scale differ-

ences. The results indicate that FMBA consistently exhibits excel-

lent cross-model attack capabilities on any dataset, while FSBA’s

performance declines as architectural disparities increase. Table 5

presents FFCBA’s cross-model attack performance across different

proxy models. Specifically, we train class-conditional autoencoders

on ImageNet100 using Densenet121 and ViT_B_16 proxy models,

which have significant structural differences, to launch attacks on

various models. The results show that FMBA maintains superior

cross-model attack capabilities regardless of the proxy model used,

whereas FSBA performs weaker. Despite its limited cross-model

capabilities, FSBA can execute swift and potent attacks when the

victim model type is known. Table 6 illustrates FSBA’s effectiveness

with an accurate proxy model, achieving superior attack outcomes

across various model architectures and datasets. Therefore, with

knowledge of the victim model type, FSBA can be deployed for

quick and efficient attacks. Conversely, when the victim model type

is unknown or it is challenging to train an accurate proxy model,

FMBA can be effectively employed for cross-model attacks. Their

application scenarios are complementary.

5.3 Robustness against Backdoor Defenses
In this section, we evaluate the robustness of FFCBA against popular

backdoor defense mechanisms, including Fine-Pruning [17], Neural

Cleanse [27], STRIP [8], CBD [35], EBBA [7], ABL [16], and IBD-

PSC [12]. These defense mechanisms have proven to be effective

against previous backdoor attacks.

Resistance to Fine-Pruning. Fine-Pruning neutralizes backdoors

by pruning dormant neurons while ensuring benign accuracy. Fig-

ure 5a and Figure 5b show the resistance of FFCBA to Fine-Pruning.

It can be observed that under different pruning rounds, the degree

of ASR decline is always lower than BA, hence Fine-Pruning cannot

defend against these two attack paradigms.

Resistance to Neural Cleanse. Neural Cleanse detects back-

doors by constructing reverse-engineered triggers and measuring
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Table 6: Performance of FSBA using accurate proxy models.

Dataset

Metric

(%)

Model Architecture

Resnet18 VGG19 Densenet VITB16 Resnet50

CIFAR10

ASR 99.75 99.98 99.59 99.84 99.09

BA 86.01 90.85 87.47 98.02 88.41

DV 1.21 0.08 0.39 0.11 0.35

Animals

90

ASR 99.33 99.78 100 99.88 99.56

BA 90.33 90.45 93.22 94.22 93.67

DV 0.02 0.11 0.67 0.34 0.49

ImageNet

100

ASR 99.96 99.94 99.5 99.52 99.96

BA 86.4 88.9 89.66 92.62 91.06

DV 1.85 0.54 0.64 0.04 0.16

whether anomaly metric exceed a threshold of 2. Figure 5c illus-

trates the resistance of FSBA and FMBA to Neural Cleanse. Both

exhibit anomaly metrics below the threshold, indicating that Neural

Cleanse cannot defend against these two attack paradigms.

Resistance to STRIP. STRIP perturbs clean images to generate

high-entropy outputs in benign models. Low entropy indicates

the presence of backdoors. Figure 5e and Figure 5f show that the

entropy distributions of clean and poisoned samples of Animals90

for FSBA and FMBA are similar, suggesting that STRIP cannot

defend against these two attack paradigms. The results on the other

two datasets are provided in Appendix A.6.

Resistance to CBD. CBD learns causal relationships and employs

a per-sample weighting scheme on contaminated datasets to obtain

a clean model. Figure 5d presents the results of FFCBA’s resistance

to CBD. It is evident that both FSBA and FMBA exhibit high ASR,

demonstrating their robustness against CBD.

Resistance to EBBA. EBBA calculates the energy of each label

in the model’s output. If any label exhibits an abnormally high

energy value, it suggests the presence of a backdoor. Figure 5g and

Figure 5h present the results of FSBA and FMBA against EBBA on

ImageNet100, showing that the energy distribution across labels is

quite uniform. The results on the other two datasets are provided in

Appendix A.7. Since every label is the target label, EBBA is destined

to fail in detecting FFCBA.

Resistance to ABL. ABL isolates backdoor examples at the early

training stage and later breaks their correlation with the target

class, so that training train clean models based on poisoned data.

Figure 5i shows the results of FSBA and FMBA against ABL. Both

maintain high ASR, indicating they can bypass ABL.

Resistance to IBD-PSC. IBD-PSC detects backdoor attacks by

amplifying batch normalization parameters in models, enhancing

the prediction confidence consistency of poisoned samples, thus

identifying malicious inputs effectively. Figure 5j shows the results

of FSBA and FMBA against IBD-PSC. Their low AUROC and F1

scores indicate that IBD-PSC cannot defend against FFCBA.

5.4 Ablation Study
We conducted ablation studies on three parameters, 𝛼 , 𝛽 , 𝛾 . Specifi-

cally, we trained a class-conditional autoencoder using the CIFAR10

dataset and a Resnet18 proxy model, and attacked the VGG19 model.

Each parameter was varied by 0.25, while the others were fixed at

their optimal values in Hyperparameters. Table 7 and Table 8 list

changes in ASR and visual metrics. Both output layer loss and latent

space loss significantly impact ASR, highlighting their importance
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Figure 5: FFCBA’s performance against various defenses.

for attack performance. While visual loss does not directly affect

ASR, it greatly influences the visual metrics of poisoned samples,

making it essential for maintaining visual stealthiness.

6 Conclusion
In this paper, we introduce FFCBA, a novel backdoor attack with

two paradigms: FSBA and FMBA. FSBA uses class-conditional au-

toencoders to generate effective noise triggers, while FMBA ex-

tends FSBA by replacing intra-class samples with out-of-class ones,
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Table 7: ASR under different parameters.

Range

FSBA FMBA

𝛼 𝛽 𝛾 𝛼 𝛽 𝛾

0 64.68 82.70 99.86 95.51 96.02 99.99

0.25 95.55 97.24 99.84 99.58 99.30 99.94

0.5 99.80 99.78 99.66 99.85 99.94 99.96

0.75 99.23 99.85 99.02 99.55 99.26 99.99

Table 8: Visual performance under different 𝛾 .

𝛾

range

FSBA FMBA

PSNR SSIM LPIPS PSNR SSIM LPIPS

0 22.43 0.766 0.047 21.29 0.725 0.056

0.25 26.43 0.868 0.021 25.04 0.803 0.041

0.5 30.45 0.935 0.009 30.97 0.943 0.007

0.75 32.48 0.957 0.006 33.51 0.976 0.002

enhancing cross-model attack capabilities. Both can execute clean-

label full-target backdoor attacks at low poisoning rates, effec-

tively addressing the vulnerability of previous multi-target attack

paradigms to human detection. FFCBA also demonstrates strong

robustness against the state-of-the-art defenses. We demonstrate its

excellent effectiveness and high defense resistance across various

datasets and models.
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