
Phishing URL Detection using Bi-LSTM
Sneha Baskota

The University of Texas Permian Basin

Abstract—Phishing attacks continue to be a significant threat
to online users, leading to data breaches, financial losses, and
identity theft. Traditional phishing detection systems struggle
with high false positive rates and are often limited by the types
of attacks they can identify. This paper proposes a deep learning-
based approach using a Bidirectional Long Short-Term Memory
(Bi-LSTM) network to classify URLs into four categories: benign,
phishing, defacement, and malware. The model leverages sequen-
tial URL data and captures contextual information, improving
the accuracy and robustness of phishing detection. Experimental
results on dataset comprising over 650,000 URLs demonstrate
the effectiveness of the model, achieving 97% accuracy and
significant improvements over traditional techniques.

I. INTRODUCTION

Phishing attacks, which deceive users into providing sen-
sitive information by impersonating legitimate entities, con-
tinue to be one of the most prevalent forms of cybercrime.
According to recent reports, phishing attacks account for
a substantial portion of cybersecurity incidents worldwide,
with millions of users falling victim annually [1]. Traditional
phishing detection methods, including rule-based and heuristic
approaches, are increasingly ineffective as attackers employ
more sophisticated techniques. This paper aims to enhance
phishing URL detection by introducing a deep learning model
that leverages a Bi-LSTM architecture. This approach targets
not only phishing URLs but also includes defacement and mal-
ware URLs, expanding the scope of detection and providing
a more robust solution for real-world applications.

Fig. 1. Phishing attack process

II. DATASET AND PREPROCESSING

The dataset used for this project is sourced from Kaggle,
which contains a diverse set of URLs classified into four
categories: benign, phishing, defacement, and malware. The
benign URLs represent safe and legitimate web addresses,
while phishing URLs are those designed to deceive users
and steal sensitive data. Defacement URLs correspond to sites

that have been altered by attackers, often displaying malicious
content. Malware URLs host harmful software, intended to
infect user systems.

The data set includes over 650,000 URLs, with a distribution
of 428,103 benign URLs, 94,110 phishing URLs, 96,456
defacement URLs, and 32,520 malware URLs. Preprocess-
ing steps involved tokenizing the URLs into characters and
padding them to a fixed length, ensuring compatibility with
the Bi-LSTM model. In addition, URLs were encoded into
numerical representations and categorical labels were assigned
to each URL based on its classification.

III. LITERATURE REVIEW

Phishing detection has been an area of significant research
in cybersecurity, with various approaches being proposed over
the years. The early methods relied on manual feature ex-
traction and rule-based classifiers. However, these techniques
struggled to handle large-scale data sets and the evolving
nature of phishing tactics. Recent advancements have incor-
porated machine learning algorithms, such as decision trees,
support vector machines (SVMs), and random forests, which
improve detection rates by learning patterns from historical
data [2].

Deep learning models, particularly recurrent neural net-
works (RNNs) and convolutional neural networks (CNNs),
have recently gained popularity for phishing detection tasks
due to their ability to capture complex patterns in sequential
data [3]. Bi-LSTM networks, a variant of RNNs, have shown
great promise in sequential data analysis, as they capture
past and future context in a given sequence [4]. Furthermore,
attention mechanisms have been integrated into Bi-LSTM
models to enhance their ability to focus on important features
in input data [5].

Several studies have applied these techniques to phishing
detection with varying levels of success. For example, Newaz
et al. proposed a combination of feature selection, greedy algo-
rithm, cross-validation, and deep learning methods to construct
a sophisticated stacking ensemble classifier [6]. However, their
approach focused primarily on binary classification (benign vs.
phishing). In contrast, my work extends this by incorporating
multiclass classification, including defacement and malware
categories, providing a more comprehensive solution. Nanda
et al. proposed a model that integrates the highway network
into the BiLSTM-CNN architecture, which enables the capture
of significant features with rapid convergence [7].

Fajar et al. explored phishing URL detection using ma-
chine learning models, emphasizing the impact of feature
selection and model interpretability [8]. Their study employed

ar
X

iv
:2

50
4.

21
04

9v
1

 [
cs

.C
R

]
 2

9
A

pr
 2

02
5

recursive feature elimination to identify key indicators, in-
cluding length_url, time_domain_activation, and
Page_rank, which significantly enhanced classification per-
formance. Among the evaluated models, XGBoost demon-
strated high efficiency with respect to runtime, making it
suitable for large-scale datasets, while CatBoost maintained
strong accuracy even with a reduced feature set. To improve
transparency, the study incorporated explainable AI techniques
such as SHAP, providing interpretable insights into feature
importance and highlighting the value of integrating explain-
ability into phishing detection systems.

Also, the 1D Convolutional Neural Network (CNN) model
proposed by Islam et al. uses a very large dataset and extracts
21 features with a 99% accuracy [9].

The authors in Asiri et al. proposed a system that de-
tects three types of phishing attacks:Tiny Uniform Resource
Locators (TinyURLs), Browsers in the Browser (BiTB), and
regular phishing attacks [1]. They used a deep learning model
along with a browser extension that would prevent users from
opening malicious links. The models proposed by Jishnu et
al. were complex and time-consuming [10].

IV. MODEL ARCHITECTURE

The core of our phishing URL detection system is built
upon a Bidirectional Long Short-Term Memory (Bi-LSTM)
neural network. This architecture is well-suited for sequence
modeling tasks, especially those involving textual or character-
level data such as URLs.

A. Input Layer

The input to our model consists of tokenized URLs. Each
URL is treated as a sequence of individual characters. These
characters are first tokenized and then converted into integer
indices, allowing the model to process them numerically. To
ensure uniformity across all input samples, each sequence is
padded to a fixed maximum length.

B. Embedding Layer

The first learnable layer of the network is an embedding
layer, which transforms each character index into a dense
vector of fixed size. This allows the model to learn distributed
representations of characters, capturing semantic similarities
and contextual patterns. For example, characters like ’/’,
’?’, and ’.’, which often occur in specific URL structures,
may be embedded in similar regions of the vector space.

C. Bi-LSTM Layer

Following the embedding layer, a Bidirectional LSTM (Bi-
LSTM) processes the sequence. Unlike a traditional LSTM
that reads the sequence in a single direction, a Bi-LSTM reads
the input both forward and backward, and then concatenates
the two outputs. This allows the model to learn contextual
information from both past and future characters, which is
crucial to detect complex phishing patterns.

The LSTM component itself is capable of learning long-
term dependencies in sequential data, helping the model un-
derstand patterns such as suspicious domain names, common
phishing prefixes or suffixes, and malformed URL structures.

D. Dropout Layer

To prevent overfitting and enhance generalization, a dropout
layer is applied after the Bi-LSTM layer. This randomly drops
a fraction of the connections during training, ensuring that the
model does not rely too heavily on any particular pathway and
memorizes the patterns instead of learning the patterns.

E. Dense Layer and Output

The final stage includes one or more fully connected (dense)
layers. The last dense layer uses a softmax activation function
to output a probability distribution over the predefined URL
categories: benign, phishing, defacement, and malware. The
model is trained to minimize categorical cross-entropy loss,
which encourages the predicted probability to be high for the
correct class.

V. FLASK BACKEND AND USER INTERFACE

To make the phishing URL detection model accessible and
user-friendly, I developed a web-based application using the
Flask framework for the backend and a modern, interactive
user interface (UI) for the front end. This section outlines
the steps involved in setting up the backend with Flask and
designing the UI to visualize the detection results.

A. Flask Backend

The backend of the application is powered by Flask, a
lightweight Python web framework. Flask allows for the seam-
less integration of the trained Bi-LSTM model into a web-
based application. The backend processes incoming requests
from the frontend, runs the phishing URL detection model,
and returns the classification results to the frontend.

1) Model Loading and Prediction: At the core of the Flask
backend is the trained Bi-LSTM model, which is loaded using
the Keras API. Upon receiving a URL to classify, the backend
tokenizes and preprocesses the URL similarly to how the
model was trained. The preprocessed URL is then passed
through the model to obtain predictions. The results, which
include the predicted class (e.g., benign, phishing, defacement,
or malware) and the confidence score, are sent back to the
frontend for display.

2) Flask API Endpoint: A RESTful API endpoint was cre-
ated using Flask’s routing mechanism. This endpoint accepts
POST requests containing the URLs to classify, processes
the data, and returns the classification results. Below is a
sample code snippet that illustrates the API endpoint for URL
classification:

@app.route(’/predict’, methods=[’POST’])
def predict():

url = request.form[’url’]
Preprocess the URL and predict
prediction =

model.predict(process_url(url))

return jsonify({’prediction’: prediction,
’confidence’: confidence})

Listing 1. Flask API Prediction Endpoint

The API endpoint is designed to handle multiple URL
classifications simultaneously and efficiently.

B. User Interface (UI)

The frontend of the application is built using modern web
technologies, such as HTML, CSS, and JavaScript. The goal
was to create a user-friendly UI to allow users to input URLs
for classification and visualize the results.

1) UI Features: Key UI elements include:
• A text input field where users can enter the URL they

wish to classify.
• An animated title with a typing effect that enhances the

user experience.
• A button to initiate the URL classification process.
• A visual display of the classification result, including

the predicted label (e.g., phishing or benign) and the
confidence score.

• Background animations that add a dynamic visual appeal.
2) Interaction Flow: Once the user enters a URL and

presses the ”Scan” button, the frontend sends a POST request
to the Flask backend API with the URL. The backend pro-
cesses the URL, classifies it, and sends the result back. The
frontend then displays the prediction result and confidence
score in real time, providing users with immediate feedback.

3) Technologies Used: The UI was developed using:
• Google Colab was used to preprocess and train the model

because of its GPU support, which significantly shortened
the training time.

• HTML and CSS for structuring and styling the webpage.
• JavaScript for implementing dynamic features and han-

dling asynchronous communication with the backend.
• Flask for managing HTTP requests and serving the

model’s predictions.
• AJAX for sending data to the backend and receiving

responses without requiring a full page reload.

VI. RESULTS AND EVALUATION

The model was evaluated using several performance metrics,
including accuracy, precision, recall, and F1-score, to assess
its ability to correctly classify URLs. Table I shows the
classification report for the model’s performance on the test
set.

Class Precision Recall F1-Score
Benign 0.98 0.99 0.99

Phishing 0.96 0.90 0.93
Defacement 0.99 1.00 0.99

Malware 0.98 0.96 0.97
Accuracy 0.98

TABLE I
CLASSIFICATION REPORT

The model achieved an overall accuracy of 98%, with
the highest performance in detecting benign and defacement

URLs. The relatively lower recall for phishing URLs suggests
that further optimization is needed, particularly in the detection
of phishing sites that closely resemble legitimate URLs.

Fig. 2. Confusion Matrix of the Classification Model

Rows represent the actual class labels, and columns repre-
sent the predicted class labels. The matrix can be interpreted
as follows:

- True Positives (TP): The number of correctly classified
instances for each class. - False Positives (FP): The number of
incorrectly classified instances that were predicted as a given
class but actually belong to another class. - False Negatives
(FN): The number of incorrectly classified instances that were
predicted as not belonging to a given class but actually belong
to that class. - True Negatives (TN): The number of correctly
classified instances that do not belong to a given class.

For each class, the confusion matrix provides:
• Benign:

– True Positives (TP) = 85,228 (Correctly classified as
benign)

– False Positives (FP) = 471 (Incorrectly classified
phishing URLs as benign)

– False Negatives (FN) = 54 (Incorrectly classified
defacement URLs as benign)

– True Negatives (TN) = 25 (Correctly classified mal-
ware URLs as not benign)

• Phishing:
– True Positives (TP) = 16,975 (Correctly classified as

phishing)
– False Positives (FP) = 1,610 (Incorrectly classified

benign URLs as phishing)
– False Negatives (FN) = 173 (Incorrectly classified

defacement URLs as phishing)
– True Negatives (TN) = 78 (Correctly classified mal-

ware URLs as not phishing)
• Defacement:

– True Positives (TP) = 19,029 (Correctly classified as
defacement)

– False Positives (FP) = 46 (Incorrectly classified
phishing URLs as defacement)

– False Negatives (FN) = 24 (Incorrectly classified
benign URLs as defacement)

– True Negatives (TN) = 5 (Correctly classified mal-
ware URLs as not defacement)

• Malware:
– True Positives (TP) = 6,233 (Correctly classified as

malware)
– False Positives (FP) = 245 (Incorrectly classified

phishing URLs as malware)
– False Negatives (FN) = 23 (Incorrectly classified

defacement URLs as malware)
– True Negatives (TN) = 20 (Correctly classified be-

nign URLs as not malware)
This matrix helps identify the strengths and weaknesses of

the model. For example, a high number of true positives (TP)
indicates the model’s effectiveness in correctly classifying
instances. On the other hand, false positives (FP) and false
negatives (FN) can highlight potential areas of improvement,
such as misclassifying benign URLs as phishing or vice versa.

VII. ANALYSIS

There are existing models for phishing URL detection, but
this project introduces some new contributions that can make
the system more lightweight and accessible. The use of Bi-
LSTM enables the model to learn both forward and backward
dependencies in URL structures, resulting in a high detection
accuracy of approximately 97%, outperforming many baseline
methods. The project also emphasizes real world deployment
through a lightweight Flask API and a user-friendly interface.
The interface also provides confidence scores for the predic-
tions which is a new contribution to the existing models.

VIII. CONCLUSION AND FUTURE WORK

In this paper, I proposed a deep learning-based approach
for phishing URL detection using a Bi-LSTM model. This
approach effectively classifies URLs into four categories:
benign, phishing, defacement, and malware, and outperforms
traditional methods in terms of accuracy and robustness.

Future work will focus on further improving the detection
of phishing URLs by incorporating additional features, such as
domain age, SSL certification, and user behavior. The model
also needs to work on optimizing the accuracy and train in a
way that it can accurately predict unseen URLs. Additionally,
the model can be extended to detect other forms of malicious
URLs, such as those associated with spyware and ransomware.

REFERENCES

[1] S. Asiri, Y. Xiao, S. Alzahrani, and T. Li, “Phishingrtds: A real-time
detection system for phishing attacks using a deep learning model,”
Computers & Security, vol. 141, p. 103843, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404824001445

[2] H. Ghalechyan, E. Israyelyan, A. Arakelyan et al., “Phishing url
detection with neural networks: an empirical study,” Scientific Reports,
vol. 14, p. 25134, 2024. [Online]. Available: https://doi.org/10.1038/
s41598-024-74725-6

[3] S. M, N. K, S. Ravva, R. Rudra, P. Balaji, and R. T, “Enhanced
phishing url detection using a novel gru-cnn hybrid approach,” Journal
of Machine and Computing, pp. 089–101, 01 2025.

[4] J. Zhou, K. Zhang, A. Bilal et al., “An integrated csppc and bilstm frame-
work for malicious url detection,” Scientific Reports, vol. 15, p. 6659,
2025. [Online]. Available: https://doi.org/10.1038/s41598-025-91148-z

[5] K. Srinivasan, R. Prema, G. S. Chauhan, R. Jadon, R. Budda, and V. S. T.
Gollapalli, “Phishing url detection using bi-lstm with attention mecha-
nism,” in Handbook of Research on Cybersecurity Risk in Contemporary
Business Systems, IGI Global, 2025, pp. 159–184. [Online]. Available:
https://doi.org/10.4018/979-8-3693-7540-2.ch008

[6] A. Newaz, F. S. Haq, and N. Ahmed, “A sophisticated framework for
the accurate detection of phishing websites,” 2024. [Online]. Available:
https://arxiv.org/abs/2403.09735

[7] M. Nanda and S. Goel, “Url based phishing attack detection using
bilstm-gated highway attention block convolutional neural network,”
Multimedia Tools and Applications, vol. 83, pp. 69 345–69 375, 2024.
[Online]. Available: https://doi.org/10.1007/s11042-023-17993-0

[8] A. Fajar, S. Yazid, and I. Budi, “Enhancing phishing detection through
feature importance analysis and explainable ai: A comparative study of
catboost, xgboost, and ebm models,” 2024. [Online]. Available: https:
//arxiv.org/abs/2411.06860

[9] M. R. Islam, M. M. Islam, M. S. Afrin, A. Antara, N. Tabassum, and
A. Amin, “Phishguard: A convolutional neural network based model
for detecting phishing urls with explainability analysis,” 2024. [Online].
Available: https://arxiv.org/abs/2404.17960

[10] J. K. S. and B. Arthi, “Phishing url detection using bilstm with attention
mechanism,” in Machine Intelligence Applications in Cyber-Risk Man-
agement, M. A. Almaiah and Y. Maleh, Eds., IGI Global, 2025, pp. 159–
184. [Online]. Available: https://doi.org/10.4018/979-8-3693-7540-2.
ch008

https://www.sciencedirect.com/science/article/pii/S0167404824001445
https://doi.org/10.1038/s41598-024-74725-6
https://doi.org/10.1038/s41598-024-74725-6
https://doi.org/10.1038/s41598-025-91148-z
https://doi.org/10.4018/979-8-3693-7540-2.ch008
https://arxiv.org/abs/2403.09735
https://doi.org/10.1007/s11042-023-17993-0
https://arxiv.org/abs/2411.06860
https://arxiv.org/abs/2411.06860
https://arxiv.org/abs/2404.17960
https://doi.org/10.4018/979-8-3693-7540-2.ch008
https://doi.org/10.4018/979-8-3693-7540-2.ch008

	Introduction
	Dataset and Preprocessing
	Literature Review
	Model Architecture
	Input Layer
	Embedding Layer
	Bi-LSTM Layer
	Dropout Layer
	Dense Layer and Output

	Flask Backend and User Interface
	Flask Backend
	Model Loading and Prediction
	Flask API Endpoint

	User Interface (UI)
	UI Features
	Interaction Flow
	Technologies Used

	Results and Evaluation
	Analysis
	Conclusion and Future Work
	References

