
Leveraging LLM to Strengthen ML-Based Cross-Site Scripting
Detection

Dennis Miczek, Divyesh Gabbireddy, Suman Saha
Pennsylvania State University
University Park, PA, USA

{dkm6080,dmg6433,szs339}@psu.edu

Abstract
According to the Open Web Application Security Project (OWASP),
Cross-Site Scripting (XSS) is a critical security vulnerability. Despite
decades of research, XSS remains among the top 10 security vulner-
abilities. Researchers have proposed various techniques to protect
systems from XSS attacks, with machine learning (ML) being one
of the most widely used methods. An ML model is trained on a
dataset to identify potential XSS threats, making its effectiveness
highly dependent on the size and diversity of the training data.

A variation of XSS is obfuscated XSS, where attackers apply
obfuscation techniques to alter the code’s structure, making it chal-
lenging for security systems to detect its malicious intent. Our
study’s random forest model trained on traditional (non-obfuscated)
XSS data achieved 99.8% accuracy. However, when tested against
obfuscated XSS samples, accuracy dropped to 81.9%, underscoring
the importance of training ML models with obfuscated data to im-
prove their effectiveness in detecting XSS attacks. A significant
challenge is to generate highly complex obfuscated code despite
the availability of several public tools. These tools can only produce
obfuscation up to certain levels of complexity.

In our proposed system, we fine-tune a Large Language Model
(LLM) to generate complex obfuscated XSS payloads automatically.
By transforming original XSS samples into diverse obfuscated vari-
ants, we create challenging training data for ML model evaluation.
Our approach achieved a 99.5% accuracy rate with the obfuscated
dataset. We also found that the obfuscated samples generated by the
LLM were 28.1% more complex than those created by other tools,
significantly improving the model’s ability to handle advanced XSS
attacks and making it more effective for real-world application
security.

CCS Concepts
• Security and privacy→Web application security.

Keywords
Cross-site-scripting, machine-learningmodel, large languagemodel,
fine-tuning, obfuscation, code generation and analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiseML 2025, Arlington, VA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Dennis Miczek, Divyesh Gabbireddy, Suman Saha. 2025. Leveraging LLM
to Strengthen ML-Based Cross-Site Scripting Detection . In Proceedings of
ACM Workshop on Wireless Security and Machine Learning (WiseML 2025).
ACM, New York, NY, USA, 6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
People spend a lot of their daily time online, using various mobile
browsers or applications for work, banking, shopping, and social
networking. These applications often create dynamic content that
adapts based on user inputs, making it essential to validate any
input before it is processed within the system. Unfortunately, many
applications do not adequately sanitize user input, which exposes
users to cybersecurity risks like command injection. Command
injection involves an attacker embedding malicious code into a
vulnerable program, which can lead to the execution of unintended
commands or unauthorized access to sensitive data. According to
the Open Web Application Security Project (OWASP), command
injection ranked third in the top ten severe cyber security issues
[14]. Cross-site Scripting (XSS) is one of the variations of command
injection. It occurs when an attacker injects malicious scripts, typi-
cally written in JavaScript, into web pages that other users view.
These scripts run in the user’s browser without their consent. The
potential consequences of XSS are severe, including stealing user
cookies to hijack sessions, accessing sensitive data, or even allowing
attackers to take control of devices.

Despite years of research and the development of various pro-
tective measures [20][17][18][6] [3][9], XSS remains a serious con-
cern. The continuous efforts in combating XSS are evident, but one
challenge is the complexity of certain attack payloads, which can
bypass conventional detection mechanisms. A particularly prob-
lematic form is obfuscated XSS code, where attackers deliberately
modify the code to make it difficult to read and understand [2].
Techniques used for obfuscation include renaming variables with
random strings, altering the control flow to obscure the execution
order, inserting unrelated code blocks, and splitting strings to hide
recognizable patterns. Such techniques make it easier for attackers
to bypass security measures and execute harmful actions within
vulnerable systems [22].

One widely used technique for protecting against Cross-Site
Scripting (XSS) is using machine learning or deep learning models
trained to detect XSS code automatically [2][1][19][8][11]. The
effectiveness of these models largely relies on the size and variety
of the training dataset. In our experiment, we used a random forest
learning approach to train a model on a dataset consisting of 19,359
samples. We observed an impressive accuracy rate of 99.8% when
tested with standard data. However, when we evaluated the model
using an obfuscated dataset version, the accuracy dropped to 81.9%.

ar
X

iv
:2

50
4.

21
04

5v
1

 [
cs

.C
R

]
 2

8
A

pr
 2

02
5

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

WiseML 2025, June 30– July 03, 2025, Arlington, VA Surname et al.

Most obfuscated XSS payloads that evaded protection were often
long and very complex. However, we observed that the model failed
to detect even simple changes in the payload. Even with simple
methods, such as encoding a string in base64, can be effective
against XSS detection in some cases. For example, a payload in
listing 1 was detected before obfuscation but evaded detection after
obfuscation.

Listing 1: XSS payload in non-obfuscated and obfuscated
versions

/ / non − o b f u s c a t e d c od e
<keygen au t o f o cu s on f o cu s i n = a l e r t (1) >

/ / O b f u s c a t e d c od e
<keygen au t o f o cu s on f o cu s i n = e v a l (a tob (
' ZmV0Y2goJ2h0dHBzOi8vZ29vZ2xlLmNvbS9s
b2c / Y29va2llPScgKyBkb2N1bWVudC5jb29
raWUpOw== ')) >

This outcome underscores the crucial role of dataset diversity in
building robust detection systems. The challenges in training ma-
chine learning models for XSS detection is sourcing actual XSS
code, particularly obfuscated variants. As a result, machine learn-
ing researchers often rely on publicly available tools to generate
obfuscated datasets for training and testing their models[16]. While
these tools can produce obfuscated code effectively, their ability
to create highly complex samples is limited, impacting the robust-
ness of the resulting detection systems. Creating a comprehensive
and complex obfuscated dataset is essential to developing resilient
machine-learning models to identify advanced XSS attacks.

Our research addresses the significant challenge of constructing
a robust machine-learning model for detecting XSS by leverag-
ing Large Language Models (LLMs). LLMs are known for their
extensive use in natural language processing and have proven
to be highly effective for tasks involving code generation and
analysis[5][12][7][4][21][13]. We introduce a novel approach that
fine-tunes an LLM to generate obfuscated versions of original XSS
samples, creating a diverse and complex training dataset to en-
hance the robustness of machine learning models. Our method has
demonstrated a high success rate, achieving 99.5% accuracy when
training and testing a model with the obfuscated dataset generated
by LLM. Additionally, we found that the LLM-generated obfuscated
samples were 28.1% more complex than those produced by existing
tools. This significant increase in complexity enhances the model’s
capability to identify sophisticated XSS attacks, making it a potent
tool for improving real-world application security.

The rest of this paper is organized as follows: Section II details
our research approach. Section III presents the results of our exper-
iments, showcasing the effectiveness and improvements in model
performance. Section IV discusses related work, focusing on studies
that utilize LLMs for code generation, vulnerability identification,
and system testing. Finally, we conclude our findings and suggest
directions for future research in Section V.

2 Approach
This section discusses 1) the dataset, 2) selecting machine-learning
models, 3) the obfuscation techniques used to generate obfuscated
code for both initial experiments and fine-tuning the LLM, and 4)
generating Obfuscated XSS by LLM

2.1 Dataset
For this study, we compiled a robust dataset by aggregating mul-
tiple sources to cover a wide range of benign and malicious XSS
payloads presented in Table 1. After removing duplicates and apply-
ing strong filters on benign sources, we obtained a final dataset of
19,359 examples, with 12,038 labeled benign (62.18%) and 7,321 as
malicious (37.82%). This dataset provides a well-rounded selection
of XSS attack patterns and benign JavaScript code, covering typical
and edge-case XSS vectors. A 62:38 benign-to-malicious ratio main-
tains a realistic balance crucial for training an effective detection
model that minimizes false positives while accurately identifying
malicious payloads.

Table 1: The sources of benign and malicious payloads

Dataset Source Benign XSS Total
code payloads

Kaggle𝑎 6,313 7,373 13,686
JS library source code𝑏 11,120 – 11,120
XSS Cheat Sheet𝑐 – 6,047 6,047
Materialize JS library𝑑 6,752 – 6,752
Total 24,185 13,420 37,605
𝑎XSS dataset for Deep learning by Syed Saqlain Hussain Shah.
𝑏https://github.com/twbs/bootstrap
𝑐https://portswigger.net/web-security/cross-site-scripting/cheat-sheet
𝑑https://github.com/Dogfalo/materialize

To prepare the dataset for training, we applied several prepro-
cessing steps. First, we normalized the text by converting all pay-
loads to lowercase, removing extra spaces, and stripping newline
characters. Next, we eliminated redundant samples to ensure each
payload was unique. We then split the cleaned dataset into a train-
ing set containing 80% (15,487 samples) and a testing set containing
20% (3,872 samples) to ensure a fair evaluation of our models. Af-
terward, we transformed the training and testing data separately
into a structured numerical representation using a bag-of-words
(BoW) approach, implemented with CountVectorizer and the to-
ken pattern r"(?u)\b\w+\b". This comprehensive preprocessing
ensures data consistency and minimizes noise introduced by syntax
variations, enabling practical model training and evaluation.

2.2 Machine Learning Model Selection
We selected four different machine-learning models for our study.
1) Decision Tree machine-learning model is a simple yet powerful
model that makes decisions by splitting the dataset into branches
based on feature values, ultimately leading to a decision at the leaf
nodes. 2) Support Vector Machine (SVM) is a supervised learning
model that finds the optimal hyperplane to separate data points into
different classes. 3) Logistic Regression is a statistical model used
for binary classification that predicts the probability of a sample

Leveraging LLM to Strengthen ML-Based Cross-Site Scripting Detection
WiseML 2025, June 30– July 03, 2025, Arlington, VA

belonging to one of two classes. 4) Random Forest is an ensemble
learning technique that builds multiple decision trees during train-
ing and combines their outputs for more robust predictions. This
approach helps improve accuracy and reduces the risk of overfitting
by averaging the results of various decision trees.

2.3 Obfuscation Methods
We applied multiple obfuscation techniques to generate JavaScript
code samples to evaluate the robustness of our machine-learning
models against obfuscated attacks. These included JavaScript ob-
fuscation, where code transforms by modifying control flow, inject-
ing irrelevant code, and renaming variables to hinder readability
and detection. We also utilized Base64 encoding, converting pay-
loads into encoded strings decoded and executed dynamically via
JavaScript’s eval(atob()). Additionally, URL encoding was em-
ployed, encoding payloads into URL-safe formats and dynamically
executing them using eval(decodeURIComponent()). Finally, we
used a method that randomly splits payload strings and recombines
them at runtime to obscure detection patterns. These obfuscation
techniques effectively represent realistic adversarial strategies, chal-
lenging machine learning models to detect malicious JavaScript
payloads despite obfuscation robustly.

2.4 Generate Obfuscated XSS by LLM
We chose CodeT5-small model for its unique advantages in code-
related tasks, standing out from general-purpose language models
such as GPT-4, which primarily focus on natural language. CodeT5-
small is specifically pre-trained on code, enabling it to grasp intri-
cate code structures, including syntax and logical flow. This spe-
cialization enhances its ability to generate sophisticated code ob-
fuscations. Notably, its identifier-aware pre-training ensures that
semantic integrity is preserved during code transformations—a
crucial feature for producing obfuscated cross-site scripting (XSS)
payloads that are structurally distinct but functionally consistent.
Additionally, with its manageable size of 60 million parameters,
CodeT5-small effectively balances performance and computational
efficiency. This makes it ideal for fine-tuning and rapid experimen-
tation on hardware with limited compute and memory capacity
without compromising output quality or performance.

We developed a comprehensive methodology for fine-tuning to
enhance the CodeT5-small model’s ability to generate diverse and
challenging obfuscated XSS payloads, presented in Fig 1a. First,
we prepared the training data by transforming the original XSS
payloads into obfuscated versions using a combination of publicly
available obfuscation tools and custom Python scripts. The obfus-
cation techniques applied included base64 encoding, URI encoding,
and keyword splitting. These methods were selected to ensure
that the resulting obfuscated payloads maintained their original
functionality but were structurally different.

We initialized the CodeT5-small pre-trained model using the
transformers library and fine-tuned it on a meticulously curated
dataset containing original and obfuscated XSS samples. Key train-
ing parameters—including learning rates, batch sizes, and the num-
ber of epochs—were optimized to maintain high output quality
while ensuring computational efficiency. This step ensured the
model learned to alter the appearance of code while preserving

its functionality. Performance was validated at regular intervals to
confirm that the fine-tuned model generated syntactically correct
and effective obfuscations.

Figure 1: a) The original data is obfuscated using obfuscation
tools, and both the original and obfuscated versions are used
to fine-tune a pre-trained LLM. b) The fine-tuned LLM is then
used to generate obfuscated XSS payloads from the original
XSS payloads.

After fine-tuning the CodeT5-small model, we employed it to
generate obfuscated variants of XSS code from an initial set of base
payloads, as depicted in Fig. 1b. The generation process involved
using specially crafted prompts for the fine-tuned LLM to create
obfuscated XSS payloads that preserved the original functionality
while adding structural complexity. Specific tokens were used in
the prompts to ensure the core behavior of the payloads remained
unchanged. We varied the sampling strategies to produce diverse
outputs and applied higher temperature parameters during gen-
eration. Temperature settings allowed for controlled randomness
in the outputs, with higher temperatures generating more varied
and less predictable obfuscated code. The fine-tuned LLM intro-
duced unique formatting and structural changes to the payloads,
such as altering whitespace, inserting non-functional characters,
or changing encoding methods. These variations created a diverse
and challenging dataset, improving the efficacy of machine learn-
ing models when trained with both traditional and LLM-generated
obfuscated datasets.

3 Experiment
All experiments in this study were performed on a system featuring
an Intel(R) Xeon(R) CPU @ 2.20GHz, 12.7 GB of RAM, and a Tesla
T4 GPU for enhanced processing power. The high-performance
GPU played a crucial role in fine-tuning the LLM and generating ob-
fuscated data, enabling efficient handling of extensive datasets and
complex model training. This setup provided the computational ca-
pacity needed to train the LLM on a diverse and large dataset while
ensuring training times were kept manageable. We utilized Weights
& Biases [10] to monitor and track the results of the experiments
throughout the study.

WiseML 2025, June 30– July 03, 2025, Arlington, VA Surname et al.

3.1 Evaluate Models without Obfuscated XSS
We chose four types of machine learning models—Decision Tree,
Support Vector Machine (SVM), Logistic Regression, and Random
Forest—for our experiment. Each model was trained and tested
on the original dataset, divided into 80% for training and 20% for
testing. Figure 2 summarizes the performance results. All models
demonstrated high effectiveness, with SVM and Random Forest
exhibiting the most consistent and superior performance. The De-
cision Tree model achieved an accuracy of 0.996 and an F1 score of
0.994, reflecting strong predictive capabilities. SVM outperformed
all models, attaining an accuracy of 0.998 and an F1 score of 0.998,
demonstrating exceptional detection ability. Logistic Regression
also performed well, with 0.996 accuracy and an F1 score of 0.995.
Random Forest closely matched SVM, achieving 0.998 accuracy
and an F1 score of 0.998, further highlighting the robustness of
ensemble-based methods in XSS detection.

Figure 2: The performance ofmodels when trained and tested
without obfuscated XSS

3.2 Evaluate Models with Obfuscated XSS
In the following experiment, we created an obfuscated version of
our XSS testing dataset by applying the obfuscation methods de-
scribed in the approach section. Specifically, each original payload
containing a malicious JavaScript vector was modified by randomly
selecting one obfuscation technique (JavaScript obfuscation, Base64
encoding, URI encoding, or String-Splitting) with varying proba-
bilities to simulate realistic adversarial variations. The resulting
obfuscated payloads replaced the original payloads in our test-
ing dataset. We then used this updated, obfuscated test dataset
to evaluate machine learning models previously trained solely on
non-obfuscated XSS data, thereby assessing their robustness and
generalization capabilities against obfuscated attacks.

The performance of all models significantly declined when tested
on obfuscated XSS payloads, as illustrated in Figure 3. Accuracy
dropped across all models, with SVM decreasing from 0.998 to
0.815 and Logistic Regression falling from 0.996 to 0.784. Recall was
the most affected metric, demonstrating that models struggled to
correctly identify obfuscated XSS payloads. Logistic Regression’s
recall dropped from 0.992 to 0.432, and SVM’s recall declined from

Figure 3: The performance of models when trained with
original data and tested with obfuscated XSS

0.997 to 0.513, indicating poor generalization to obfuscated sam-
ples. Despite the significant drop in accuracy and recall, precision
remained high across all models, with Decision Tree maintaining
0.994, SVM at 0.997, Logistic Regression at 0.995, and Random For-
est at 0.999. This suggests that when the models classified a sample
as malicious, they were still mostly correct. However, their ability
to detect obfuscated XSS payloads (low recall) was significantly
weakened. Among the models, Random Forest and Decision Tree
retained relatively better recall, with Random Forest dropping from
0.996 to 0.523 and Decision Tree from 0.992 to 0.566. This suggests
that ensemble-based models may be more resilient to obfuscation
techniques. The consistent drop in all performance metrics under-
scores the vulnerability of machine learning models when exposed
to obfuscated data they were not trained on.

These findings emphasize the critical need to incorporate ob-
fuscated XSS samples during training. Models trained solely on
non-obfuscated payloads fail to generalize well to adversarially ob-
fuscated inputs. By training on a mixture of original and obfuscated
XSS data, machine learning models can improve their detection
capabilities and robustness against real-world attacks that leverage
obfuscation techniques.

3.3 Leveraging LLM to Strengthen Models
To enhance the detection capabilities of machine learning models,
we fine-tuned a CodeT5-small model to generate obfuscated XSS
payloads. This process aimed to produce obfuscated data that would
diversify the training set and improve the robustness of ML models
in identifying obfuscated attacks.
We incorporated the original training data with the LLM-generated
obfuscated XSS and trained the models, resulting in a substantial
improvement in performance compared to previous experiments
where models were trained without obfuscated data. The results,
as presented in Table 2, demonstrate a significant enhancement
in detection capabilities. The Random Forest model achieved the
highest accuracy at 0.995 with an F1 score of 0.993, highlighting its
robustness in handling obfuscated payloads. The Support Vector
Machine (SVM) also performed exceptionally well, attaining an
accuracy of 0.967 and an F1 score of 0.954, indicating its strong

Leveraging LLM to Strengthen ML-Based Cross-Site Scripting Detection
WiseML 2025, June 30– July 03, 2025, Arlington, VA

Table 2: The performance of models after training on LLM-
generated obfuscated XSS and tested with obfuscated data

Model Accuracy Precision Recall F1 Score

Decision Tree 0.950 0.997 0.872 0.930
SVM 0.967 0.999 0.913 0.954
Logistic 0.963 0.998 0.904 0.948
Regression
Random Forest 0.995 0.999 0.988 0.993

generalization to obfuscated XSS attacks. Similarly, Logistic Regres-
sion demonstrated solid results, with an accuracy of 0.963 and an
F1 score of 0.948. The Decision Tree model, while slightly behind
the ensemble-based methods, still maintained a high accuracy of
0.950 and an F1 score of 0.930. These findings emphasize the impor-
tance of integrating LLM-generated obfuscations into the training
process to significantly enhance the resilience of detection models
against real-world, sophisticated XSS attacks.

3.4 Complexity of LLM-generated Obfuscated
XSS

To evaluate the complexity of the LLM-generated obfuscated XSS
payloads, we employed Shannon entropy [15] as a metric. This
method provides a quantifiable measure of unpredictability within
the obfuscated code, allowing us to compare the complexity of LLM-
generated samples against baseline samples produced by traditional
obfuscation tools. Calculating entropy for each payload highlighted
the level of randomness, indicating the difficulty for conventional
models in parsing the content. The LLM produced unique and
complex obfuscations using a higher temperature setting (1.5). The
analysis showed that LLM-generated samples were, on average,
28.1% more complex, increasing their potential to evade detection.
However, higher temperatures sometimes resulted in syntactically
invalid code, which, despite deviations, contributed to training
robust Random Forest models that were more effective in detecting
obfuscated XSS attacks.

3.5 Semantic Equivalence Between Original and
Obfuscated XSS

Comprehensive functional testingwas conducted to evaluatewhether
LLM-generated obfuscated XSS code retained the same function-
ality as the original payloads. The goal was to confirm that obfus-
cation changed only the code’s structure without altering its be-
havior. Testing involved running both original and LLM-generated
obfuscated XSS payloads in controlled browser environments to ob-
serve their actions. The primary measure of semantic equivalence
was whether both types of payloads triggered the same JavaScript
alerts or actions. Results showed that many LLM-generated obfus-
cations maintained functional parity with their original versions,
demonstrating the LLM’s capability to modify code structure while
preserving behavior, which is essential for security testing. Chal-
lenges included limitations of the 60M parameter CodeT5 model
and generation constraints that sometimes produced invalid or
non-functional code. The complex training data from tools like the

JavaScript obfuscator contributed to these difficulties, occasionally
hindering valid output generation. JavaScript obfuscators often
produce highly randomized and context-sensitive patterns, which
can be difficult for smaller language models like CodeT5 (60M pa-
rameters) to generalize effectively. However, during fine-tuning,
the model showed learning convergence, indicating its ability to
replicate training data patterns and generate structurally complex
outputs. Although ensuring semantic equivalence for highly intri-
cate samples was challenging, the generated code displayed signifi-
cant complexity, supporting effective training for machine learning
models to detect obfuscated XSS.

4 Related Works
Using Large Language Models (LLMs) in software engineering has
led to significant progress in automated bug detection, repair, and
vulnerability analysis. Recent studies have demonstrated various
ways LLMs help address complex security issues. BUGFARM, for
example, employs LLMs to generate complex, hard-to-detect bugs
by modifying less-examined areas of code, pushing the limits of
machine learning-based bug detection and repair systems [5]. In
the area of vulnerability generation, QED is a model-checking tool
designed to create attack vectors, such as Cross-Site Scripting (XSS)
and SQL injection, differing from our work, which focuses on using
LLM-generated obfuscated XSS data to enhance ML detection mod-
els [12]. LIBRO showcases how LLMs can automate test case gener-
ation from bug reports, aiding developers in reproducing bugs more
efficiently [7]. LLbezpeky examines the ability of LLMs to detect
Android vulnerabilities through prompt engineering and retrieval-
augmented generation, proving the versatility of LLMs in various
security tasks [13]. Llm4sa automates the inspection of static anal-
ysis warnings, addressing the challenge of high false-positive rates
and reducing manual review workload [21]. Additionally, the study
on token-level bug localization and repair, usingmodels like CodeT5
and CodeGen, demonstrates how LLMs can achieve precise bug
fixing and enhance the repair process [4]. Our work builds on these
studies by fine-tuning LLMs to generate complex, obfuscated XSS
code, strengthening ML model training for advanced XSS detection,
and complementing the broader automated bug generation and
repair field.

5 Conclusion
This study demonstrates the importance of incorporating obfus-
cated XSS data into machine learning models for effective XSS
detection. Our approach of fine-tuning a CodeT5-small LLM to
generate complex obfuscated code proved to be a significant step
forward. We showed that models trained on diverse datasets, includ-
ing LLM-generated obfuscations, exhibited marked improvements
in detecting obfuscated XSS payloads compared to models trained
only on traditional datasets. The experimental results confirmed
that including obfuscated samples enhances the robustness and
resilience of ML-based XSS detection systems against real-world,
complex attacks.

In future work, we aim to enhance the quality of LLM-generated
obfuscated code, focusing on maintaining semantic equivalence
between the original code and the obfuscated output. Further re-
finement of the fine-tuning process and the generation of XSS code

WiseML 2025, June 30– July 03, 2025, Arlington, VA Surname et al.

by LLMs will be a crucial area of exploration. One potential ap-
proach is to incorporate the semantics of the original code during
the fine-tuning phase and while generating obfuscated code, allow-
ing the LLM to produce obfuscations that are both complex and
functionally consistent with the original.

References
[1] Stanislav Abaimov and Giuseppe Bianchi. 2019. CODDLE: Code-injection detec-

tion with deep learning. IEEE Access 7 (2019), 128617–128627.
[2] Yong Fang, Yang Li, Liang Liu, and Cheng Huang. 2018. DeepXSS: Cross site

scripting detection based on deep learning. In Proceedings of the 2018 international
conference on computing and artificial intelligence. 47–51.

[3] Oystein Hallaraker and Giovanni Vigna. 2005. Detecting malicious javascript
code in mozilla. In 10th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS’05). IEEE, 85–94.

[4] Soneya Binta Hossain, Nan Jiang, Qiang Zhou, Xiaopeng Li, Wen-Hao Chiang,
Yingjun Lyu, Hoan Nguyen, and Omer Tripp. 2024. A deep dive into large
language models for automated bug localization and repair. Proceedings of the
ACM on Software Engineering 1, FSE (2024), 1471–1493.

[5] Ali Reza Ibrahimzada, Yang Chen, Ryan Rong, and Reyhaneh Jabbarvand. 2023.
Automated bug generation in the era of large language models. arXiv preprint
arXiv:2310.02407 (2023).

[6] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A static anal-
ysis tool for detecting web application vulnerabilities. In 2006 IEEE Symposium
on Security and Privacy (S&P’06). IEEE, 6–pp.

[7] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models are few-
shot testers: Exploring llm-based general bug reproduction. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 2312–2323.

[8] Stanislav Kascheev and Tatyana Olenchikova. 2020. The detecting cross-site
scripting (XSS) using machine learning methods. In 2020 global smart industry
conference (GloSIC). IEEE, 265–270.

[9] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic. 2006.
Noxes: a client-side solution for mitigating cross-site scripting attacks. In Pro-
ceedings of the 2006 ACM symposium on Applied computing. 330–337.

[10] Peter Lavin and Lukas Biewald. 2020. Weights & Biases. https://www.wandb.
com/.

[11] Li Lei, Ming Chen, Chengwan He, and Duojiao Li. 2020. XSS detection technology
based on LSTM-attention. In 2020 5th International conference on control, robotics
and cybernetics (CRC). IEEE, 175–180.

[12] Michael C Martin and Monica S Lam. 2008. Automatic Generation of XSS and
SQL Injection Attacks with Goal-Directed Model Checking.. In USENIX Security
symposium. 31–44.

[13] Noble Saji Mathews, Yelizaveta Brus, Yousra Aafer, Meiyappan Nagappan, and
Shane McIntosh. 2024. Llbezpeky: Leveraging large language models for vulner-
ability detection. arXiv preprint arXiv:2401.01269 (2024).

[14] Open Web Application Security Project (OWASP). 2021. OWASP Top Ten 2021:
The Ten Most Critical Web Application Security Risks. https://owasp.org/Top10/

[15] Claude E. Shannon. 1948. AMathematical Theory of Communication. Bell System
Technical Journal 27, 3 (1948), 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x

[16] Bernhard Tellenbach, Sergio Paganoni, and Marc Rennhard. 2016. Detecting
obfuscated JavaScripts from known and unknown obfuscators using machine
learning. International Journal on Advances in Security 9, 3/4 (2016), 196–206.

[17] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri Weisman.
2009. TAJ: effective taint analysis of web applications. ACM Sigplan Notices 44, 6
(2009), 87–97.

[18] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. 2007. Cross site scripting prevention with dynamic
data tainting and static analysis.. In NDSS, Vol. 2007. 12.

[19] Rui Wang, Xiaoqi Jia, Qinlei Li, and Shengzhi Zhang. 2014. Machine learning
based cross-site scripting detection in online social network. In 2014 IEEE Intl
Conf on High Performance Computing and Communications, 2014 IEEE 6th Intl
Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded
Software and Syst (HPCC, CSS, ICESS). IEEE, 823–826.

[20] Gary Wassermann and Zhendong Su. 2008. Static detection of cross-site scripting
vulnerabilities. In Proceedings of the 30th international conference on Software
engineering. 171–180.

[21] Cheng Wen, Yuandao Cai, Bin Zhang, Jie Su, Zhiwu Xu, Dugang Liu, Shengchao
Qin, Zhong Ming, and Tian Cong. 2024. Automatically inspecting thousands of
static bugwarningswith large languagemodel: how far arewe? ACMTransactions
on Knowledge Discovery from Data 18, 7 (2024), 1–34.

[22] Wei Xu, Fangfang Zhang, and Sencun Zhu. 2012. The power of obfuscation
techniques in malicious JavaScript code: A measurement study. In 2012 7th Inter-
national Conference on Malicious and Unwanted Software. IEEE, 9–16.

https://www.wandb.com/
https://www.wandb.com/
https://owasp.org/Top10/
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

	Abstract
	1 Introduction
	2 Approach
	2.1 Dataset
	2.2 Machine Learning Model Selection
	2.3 Obfuscation Methods
	2.4 Generate Obfuscated XSS by LLM

	3 Experiment
	3.1 Evaluate Models without Obfuscated XSS
	3.2 Evaluate Models with Obfuscated XSS
	3.3 Leveraging LLM to Strengthen Models
	3.4 Complexity of LLM-generated Obfuscated XSS
	3.5 Semantic Equivalence Between Original and Obfuscated XSS

	4 Related Works
	5 Conclusion
	References

