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Nowadays, due to the growing phenomenon of forgery in many fields, the interest in developing
new anti-counterfeiting device and cryptography keys, based on the Physical Unclonable Functions
(PUFs) paradigm, is widely increased. PUFs are physical hardware with an intrinsic, irreproducible
disorder that allows for on-demand cryptographic key extraction. Among them, optical PUF are
characterized by a large number of degrees of freedom resulting in higher security and higher sen-
sitivity to environmental conditions. While these promising features led to the growth of advanced
fabrication strategies and materials for new PUF devices, their combination with robust recognition
algorithm remains largely unexplored. In this work, we present a metric-independent authentication
approach that leverages the Scale Invariant Feature Transform (SIFT) algorithm to extract unique
and invariant features from the speckle patterns generated by optical Physical Unclonable Func-
tions (PUFs). The application of SIFT to the challenge response pairs (CRPs) protocol allows us to
correctly authenticate a client while denying any other fraudulent access. In this way, the authenti-
cation process is highly reliable even in presence of response rotation, zooming, and cropping that
may occur in consecutive PUF interrogations and to which other postprocessing algorithm are highly
sensitive. This characteristics together with the speed of the method (tens of microseconds for each
operation) broaden the applicability and reliability of PUF to practical high-security authentication
or merchandise anti-counterfeiting.

I. INTRODUCTION

Coherent light that impinges and diffuses into a scattering medium, interferes in the far field producing a granular
image referred to as speckle pattern [1, 2]. The speckle is both a challenge and an opportunity in many fields,
as it can degrade image quality or provide useful information for measuring surface roughness, displacement, and
biological parameters finding therefore applications in various scientific fields spanning from astronomy, imaging,
cultural heritage, metrology and crypto-security [3–11]. In the latter, speckle patterns originated by illuminating a
rough or light-scattering surface can act as a unique “fingerprint” that is nearly impossible to replicate generating
the so called optical physical unclonable functions (PUFs). Due to the possible multiple interrogations and large
number of degrees of freedom, PUFs work as on-the-fly generators of secure cryptographic keys [9, 12–15]. Due to
their inherent manufacturing errors and internal randomness, it has been demonstrated that reproduction of the same
optical PUF is impossible even by the manufacturer itself [16, 17]. Optical strong PUFs are typically used within a
Challenge Response Pairs (CRPs) protocol that includes an enrollment and verification process. In both steps, the
scattering sample is illuminated with multiple pseudo-random challenges (C) and the corresponding responses (R)
are collected by a camera. During the enrollment process, a large database of CRPs is stored at the central authority
as reference and the PUF is then delivered to the client.
The prover authentication is then based on the analysis of speckle pattern images that, at first, are post-processed and
then analyzed by statistical methods where parameters such as contrast, correlation length, and intensity distribution
are used to quantify speckle characteristics [9, 18, 19]. Post-processing can be performed using standard image
transformation (e.g. the Gabor hashing or wavelet decomposition) and binarization algorithms. Along this process,
the wavelength of a wavelet-based Gabor filter is tuned to extract the relevant features of the speckle images, both
ensuring the repeatability of the responses under the same challenge interrogation and preserving the random nature of
responses to different challenges. The response Ri (speckles) related to the challenges Ci is then hashed and reshaped
into a 1D binary array or keys Ki. The pairwise distance between each binary keys K1, . . . ,Ki is then measured
with the Hamming distance metric, i.e. the number of bits that differ in two bit strings[20]. Distances between keys
generated by different challenges are called “unlike” distances (and are related to the entropy of the key), while those
generated by same challenges are called “like” distances (and are related to the stability of the PUF). Commonly, the
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Fractional Hamming Distance (FHD) metric, the Hamming distance normalized by the bit string length, is also used
to compare the binary keys that are retrieved from the speckle patterns recorded during the authentication with the
ones of the database collected during the enrollment. Moreover, the currently employed analysis approaches suffer
from a high sensitivity to minimal variations of the speckle pattern that may occur in case of minimal variation of
the position, illumination and rotations that may lead to a failure in the PUF authentication[17].
In this scenario, it is of paramount importance to find a new, flexible analysis method for fast processing of speckle
pattern. Image recognition algorithms enables the analysis of images to extract relevant information and features.
These algorithms are being improved at fast pace and are now used in daily life in many sector such us logistic, security
access, healthcare, traffic management and so on [21]. Scale-Invariant Feature Transform (SIFT) [22, 23] represents
a valid and versatile method for detecting and extracting distinctive local features from an image [24, 25]. A key
characteristic is the ability to recognize unique features of the image under analysis also under transformations such
as scaling, rotation and illumination variations. This robustness has made SIFT widely utilized in computer vision
tasks, particularly in object recognition and image matching [26]. A decade ago, a preliminary work using SIFT for
speckle recognition shown how it improves the accuracy identification with respect to correlation analysis in tens of
seconds [27]. Based on this study, more recently, we leverage on its capability of extracting unique and stable features
for anti-counterfeiting applications. Specifically, SIFT enables the identification and authentication of security tags
by detecting keypoints, comparable to a fingerprint. These features serve as digital signatures, which can be stored
and subsequently compared against a reference database for verification purposes [28–30]. It is remarkable that for
human fingerprints, a minimum number of 20 unique features matches is enough to agree with the identity of the
designed subject [31].
In this work, we present a straightforward approach based on Scale-Invariant Feature Transform (SIFT) algorithm
for rapid and robust identification and validation of strong optical PUFs whose speckle patterns generated through
the Challenge-Response Pair (CRP) protocol. To demonstrate the effectiveness of our approach, we fabricated three
distinct types of optical PUFs, each characterized by different scattering properties. The first type is fabricated by
dispersing polystyrene (PS) nanoparticles (NPs) onto a glass substrate. The second involved the realization of a
polymer-dispersed liquid crystal (PDLC) structure, while the third is based on titanium dioxide (TiO2) nanoparticles
embedded within a polymer matrix. We refer to these implementations as PS-PUF, PDLC-PUF, and TiO2-PUF,
respectively. The produced speckle patterns were acquired, stored into different datasets and processed on-demand
through the SIFT algorithm. To prove the reliability of the proposed method, speckle patterns underwent distortion
such as rotation, scaling and cropping without affection the identification capability of the SIFT. The ability of SIFT
to extract distinctive and stable features from complex speckle patterns underscores its suitability for fast and accurate
authentication, paving the way for enhanced security applications in anti-counterfeiting and identification systems.

II. MATERIALS AND METHOD

A. Three PUF-Samples and Their Fabrication

We have fabricated and experimentally characterized three PUF-samples. They are made from distinct materials
and possess different optical characteristics, such as internal entropy, scatterer size and density, and so-called optical
thickness (OT ), that is the natural logarithm (ln) of the sample transmission. As a simple quantitative example,
an optical thickness of 1 indicates that the transmitted/diffused intensity is reduced by a factor of 1/e with respect
to the initially incident intensity. Samples with small optical thickness around OT ≤ 1, are amost transparent to a
human observer, and the photons traveling through the sample on average undergo only a few scattering events. On
the contrary, samples with larger optical thickness OT > 1 make the light bounce multiple times internally among
their scattering centers and appear increasingly opaque to the human eye.
The PS-PUF-sample shown in Figs.1a-d consists of a single layer of polystyrene nanospheres of diameters d ≃ 250nm,
which were randomly deposited on a glass substrate (25 × 25mm2 in x-y-dimensions) by a spin coating process. By
tuning the spin coating rotation speed and keeping the other parameters fixed, either a single- or double-layer packing
can be obtained. For our purposes, a single layer PUF with thickness around 250nm in z-dimension was created
by using a rotation speed of 2000 rpm. As desired, the sample presents small crystalline regions with a hexagonal
close-packed symmetry, few voids, and no double layers. The low refractive index of polymer nanospheres (n ≃ 1.59)
as well as the single layer geometry leads to a weakly scattering medium and the resulting refractive index contrast
is 0.59. Furtheremore, it is fully transparent to the human observer, with an optical thickness of OT = 0.39.
The PDLC-PUF-sample illustrated in Fig1b-e consists of a polymer-dispersed liquid crystal (PDLC) structure, with
x-y-dimensions of again 25× 25mm2 and a thickness in z-direction of 140µm. The sample is obtained by an emulsion
of liquid crystal molecules (5CB) into a matrix of polydimethylsiloxane (PDMS). The liquid crystals form light
scattering droplets with a diameter of around 10µm. Please note that in opposition to our first PS-PUF-sample, we



3

are no longer forming a single layer in z-dimension, whose thickness is roughly equal to the diameter of its scattering
elements. Instead, the thickness of the second PUF-sample is about 15 times the size of its scatterers. The small
refractive index contrast between the scatters (droplets made by radially aligned liquid crystal molecules with average
refractive index nav ≃ 1.6 at 25oC and wavelength λ ≃ 633nm) and the polymeric matrix (n ≃ 1.43) results in a
weakly scattering medium, refractive index contrast of 0.17 and optical thickness less than 1 (OT = 0.7). It exhibits
a slightly reduced transparency to the human eye.
Finally, the TiO2 PUF-sample shown in Fig 1c-f consists of Titanium dioxide (TiO2) nanoparticles in a polymeric
stabilizing matrix, more precisely in a photopolymer resin. It is made of a commercial UV-curing acrylate optical
adhesive with a dispersion of rutile TiO2 nanoparticles with a diameter of 280nm. The mixture of polymer and
nanoparticles is rendered homogeneous through magnetic stirring and an ultrasonic bath for around 1 hour. It is
then cured with an UV lamp, resulting in a 230µm thick film on a glass substrate. The large refractive index of
TiO2 (n ≃ 2.87) compared to the surrounding polymeric matrix (n ≃ 1.52) leads to a strong scattering with a
refractive index contrast of 1.35. It creates an optical thickness of OT = 2.25, and a structure that is opaque to
human observers. Table I summarizes the properties of the three PUF-samples.

PUF Scatterer size Number of Scatterers Scatterer Density Optical Thickness R.I. Contrast
PS d ∼ 250 nm 102 109/cm2 0.39 0.59
PDLC d ∼ 10 µm 106 7*107/cm3 0.7 0.17
TiO2 d ∼ 250 nm 5*1010 2*1012/cm3 2.25 1.35

TABLE I. Properties of the three optical PUFS

FIG. 1. SEM images and schematic representation of a) PS-PUF constituted by a single layer of polystyrene nanoparticles, b)
PDLC-PUF constituted Polymer Dispersed Liquid Crystals PDLC-PUF and c) TiO2-PUF constituted by TiO2 nanoparticles
dispersed in a dense polymer matrix. d-f) photographs of the proposed three PUFs.

B. Challenge Response Pair Protocol and optical apparatus

The optical PUFs were investigated using Challenge Response Pairs (CRPs) protocol [9, 14, 17, 32]. A He-Ne red
laser beam with wavelength λ = 633 nm (power 5 mW) propagates through a series of lenses, polarizers, and irises.
The beam, after a beam-expander, impinges on a digital micro-mirror device (DMD) used for the spatial intensity
modulation of the laser beam that is then conveying the challenge (Ci) to the PUF. Each individual Ci is then
projected on the PUF surface and light diffuses through the disordered media. The transmitted light interferes in
the far field producing an optical pattern named speckle pattern. This constitutes the PUF response Ri, which is
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collected in cross-polarization configuration to remove any non-scattered light. This pattern is collected by a CCD
camera, Thorlabs camera CS165MU. Here, we used a 270 × 360 px camera with 40 FPS for this task. Figure 2
reports a schematic representation and photos of the experimental setup.

FIG. 2. a) Schematic representation of the experimental setup used to collect the CRPs. b) Real picture of the main part of
the setup used to generate and project the challenges. c) The challenge on the DMD, d) the projected challenge on the PUFs.

C. Scale Invariant Feature Transform analysis

The produced speckle patterns were analyzed using SIFT algorithm, which identifies image features by transforming
an image into a vast collection of local feature vectors. These latter, identified as SIFT keys, are invariant to
translation, scaling, rotation, and partially to illumination changes in the image [23], making them more robust also
in case of fluctuation of the intensity of the laser beam. Four main calculation steps are required to generate all
the image features: (a) scale-space extrema detection, done using a Gaussian difference function to identify potential
points of interest that are invariant to scale and orientation; (b) key point localization, where key points are selected
based on measurements of their stability; (c) orientation assignment, where one or more orientations are assigned
to each key point location based on the gradient directions of the local image; and (d) key point descriptor, which
describes key points by measuring the local gradients in the image at the selected scale [22]. To analyze and compare
the images, a script was used implementing the SIFT algorithm, from OpenCV library, in Python [30]. The SIFT
algorithm identifies keypoints and evaluates the typical pixel size using scale-space extrema detection, which relies
on differences of Euclidean distances (L2 norm) to detect significant image structures across multiple scales. Then,
several parameters are used to configure the feature recognition process, such as the maximum number of features
the user wishes to detect, the number of octaves in each Difference-of-Gaussian (DoG) function (with 4 being a
commonly recommended value according to OpenCV documentation), and the contrast and edge thresholds, which
help in accurately identifying bright and dark features within the image. To construct the first octave, a Gaussian
filter is applied to the input image using multiple values of σ. For the second and subsequent octaves, the image is
first downsampled by a factor of 1.6, and then Gaussian filters with different σ values are applied. Specifically, Octave
1 uses a scale of σ, Octave 2 uses 2σ, and so on. After setting these parameters, a matching distance (Md) is defined.
This value quantifies the number of common features detected between two compared images. [33–35]. According
to the quality of the collected figures and after optimization procedure, we identified and used for all the analyses
the following parameters: the number of recognized features set equal to 0 (it means to find all possible matches)
the number of octave layers equal to 4, the contrast and edge threshold equal to 0.04 and 5, respectively. Finally σ
has been set at 1.6 and Md at 0.7. While these parameters can be finely adjusted based on feature size and image
contrast to optimize the number of detected keypoints, we demonstrate that, even with a fixed optical setup, varying
the system’s optical properties allows the SIFT algorithm to reliably authenticate different primitives.

III. RESULTS

In order to evaluate the SIFT-based authentication on different types of optical PUFs, we fabricated three primitives
that produce trasmission speckle patterns with different brightness and contrast. We selected i) a single layer of
Polystyrene (PS) NPs on glass, ii) a 3D low refractive index PUF made by a polymer dispersed liquid crystals
(PDLC) and iii) a 3D high refractive index medium by dispersing Titanium Dioxide (TiO2) NPs into polymer matrix
(for further details see Materials and Method section).
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FIG. 3. a–b) Example images showing fully recognized speckles (produced under the same challenge conditions) and cases
with no or few recognized points (from different speckles). c) Maps showing recognized points for a comparison of 20 versus
20 speckles, with varying matching distance (Md) parameter value. The scale is the same for the three matrices with a
maximum number of recognized point of 600. d) Comparison between 200 versus 200 speckles from the same dataset (PS1).
In the histogram the speckles that found their match are reported in green while the other one with no match are reported
in red. e) Comparison between 200 versus 200 speckles from two datasets collected at different times (PS1 and PS2). In the
histogram the speckles that found their match are reported in blue while the other one with no match are reported in red. f)
Fractional Hamming Distance (FHD) distribution calculated over the larger database, illustrating the ’ideal-like,’ ’like,’ and
’unlike’ distributions.

We first investigated the properties of PS-PUF by interrogating it with 200 challenges Ci and collecting the resulting
response Ri as speckle patterns (see Method section for details). They were then analyzed with the SIFT algorithm
and the results reported in Figure 3. We refer to this speckle patterns database as dataset PS1 acquired at time
t0. This analysis results in a database of 40000 comparisons. When comparing each speckle pattern with itself, the
algorithm recognizes a large number (a few hundreds) of unique feature matches which are visually indicated as colored
linked lines as shown in Figure 3a. When the SIFT algorithm is applied to two different responses, the common
matched features are few (less than five), namely are false positive, as shown in Figure 3b. Figure 3c presents three
correlation maps of the number of identified features for 20 different speckle patterns varying the matching distance
(Md). Herein, the diagonal represents the self-comparison of each speckle pattern with values exceeding 600. The
maps show that, for a Md value of 0.9 or 0.5, the number of false-positive recognition increases, while a value of Md
of 0.7 allows to correctly recognize the speckles with themselves indicating this parameter as the best choice for the
selected patterns. Figure 3d reports the histogram of the number of false positive (red bars) and true positive (green
bars) matches for the entire comparison of PS1 database where the green bars correspond to speckles that found a
number of matches that overcomes 400 points. The variability of the matched features in between identical speckle
patterns depends on the number of speckle grains present in the pattern as well as their contrast. The bars indicate
also the number of common features and related occurrence frequency. The red bar, instead, reports the number of
comparisons with a few matches found, values that remains below ten points for all the considered speckles. Next, the
same PS-PUF was analyzed at a different time using the same CRPs protocol, with the same challenges set (Ci...N ).
The resulting speckle patterns were acquired to form a new dataset, referred to as PS2 acquired at time t1. Both
datasets were then used as a database for the SIFT comparison. As shown in Figure 3e, the number of matched points
is maximized only for 200 speckle patterns (blue bars), corresponding to the responses (Ri(t0) and Ri(t1)) generated
using the same challenge (Ci). Even if there is a reduction of the common matched features due to environmental
fluctuations, it is still possible to clearly recognize each single speckle pattern that have more than 200 common
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features. The blue histogram, therefore, is now indicating the stability of the system: the larger number of recognized
points the higher is the system stability. In contrast, as expected, all other cross-comparisons (Ri(t0) and Rj(t1))
generated from the challenge (Ci and Cj) resulted in only a few recognized matched points (red bar). This confirms
the uniqueness and large difference of the responses related to different challenges. As counterproof, we analyzed the
speckles pattern datasets (PS1 versus PS2) with the FHD metric, see Figure 3f. By comparing the speckle Ri(t0) from
PS1 with Rj(t1) from PS2, which are the outputs produced by the same Ci, we obtain a ”like” distribution (indicated
in blue) with a mean value at 0.23. Hence, the blue histogram shown in Figure 3e can be considered the analog of
the ”like” distribution reported in the FHD analysis. The recognized responses represented in the blue histogram
exhibit a shift in the number of common features toward lower values similar to the FHD “like” distribution, that
shifts towards larger FHDs with respect to the ideal value (green bar). On the other hand, when comparing speckle
responses generated using different input challenges (Ci), an “unlike” distribution is obtained, peaked at around 0.5,
as expected. This analysis confirms that the speckle patterns produced by different challenges are inherently distinct,
thereby demonstrating the capability of the proposed PUF to generate unique, but reproducible responses with no
false-positive matches in the SIFT analysis. As with the FHD metric, the clear separation between the “like” and
“unlike” distributions in the SIFT approach enables the definition of an authentication threshold that minimizes the
false positive. For the PS-PUF, a threshold of approximately 100 common features can be adopted to ensure reliable
authentication. Given this characterization, we evaluated the effectiveness of the proposed SIFT-based approach in

FIG. 4. Comparison, using SIFT analysis, of 1 speckle into a database of 100 speckles which is a) inside, b) outside the database.
c) Comparison of speckle patterns, using SIFT analysis, by rotating them at 0°, 15°, 30°, 45°, 60° and 90°

identifying, and hence authenticating, a single speckle pattern referred to as Sx, within a database, in other words the
ability to identify if a speckle is part or not of a certain database (PS1 or PS2). In the cloud of points map shown in
Figure 4a, where the X-axis indicates the speckle index and the Y-axis the number of common unique features, there
is a clear evidence of a single response for which the number of recognized points overcome the authentication threshold
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(response #20 having more than 500 common features). In contrast, all other speckles exhibit only a few common
features, which can be considered as “false positives.” To further validate this approach, we repeated the analysis
considering a target speckle Sy, e.g the response produced by challenge 150, that is outside the database. The results,
presented in Figure 4b, show that for all speckle patterns (again 100) in the database, only a few “false positive”
matches were detected. Please note that on Y-axis the maximum value now is 10. This confirms that when the
queried speckle is absent from the database (PS1 or PS2), SIFT does not falsely identify any pattern. These findings
demonstrate that once a dataset is established, the proposed SIFT-based method can reliably recognize and verify
the presence of a unique speckle pattern. One of the strengths of the SIFT method is its invariance to image rotation,
a crucial factor when analyzing speckle patterns that are inherently sensitive to even small variations in orientation.
In order to confirm such robustness, we analyzed a database of 20 speckle patterns (from PS1) and compared them
with themselves after the application of an image rotation (PS1-R) at seven different angles namely 0°, 15°, 30°, 45°,
60° and 90°. The results, shown in Figure Figure 4c, are presented using waterfall plots to illustrate that only for
20 comparisons of the response with itself after rotation, the commonly matched features overcome 100. In contrast,
for all the other possible comparisons, the number of unrecognized features falls in the range in between 1 and 20.
This confirms that SIFT effectively preserves its matching accuracy even when speckle patterns undergo significant
angular transformations. In the following analysis, we performed an additional test to corroborate the robustness of

FIG. 5. a) Comparison, using SIFT analysis, of 1 speckle (tag number #100) into a database of 500 ones when scaled-up by
1.5, scaled-down by 0.8, cropped of 10% along the frame, cropped of 10% from the Top-Left (TL) corner, or from the right side
and finally cropped of 20% in the center. Zero and full recognized points from scale-up tag (b,c) and cropping the surrounding
frame by 10% (d-e).
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the SIFT method applied for the recognition of speckle patterns. In fact, SIFT enables fast and reliable identification
of a speckle, even when the pattern is subjected to transformations such as scaling or cropping (from all edges or
a single side) that can occur for example when using different optical setups. This capability is demonstrated in
Figure 5a, where SIFT successfully detects and verifies the presence of the speckle under consideration despite these
modifications. The SIFT protocol was tested by checking the correct identification of the speckle pattern #100 after
different image transformations within a database of 500 speckle patterns. The speckle pattern #100 was subjected
to: scaling-up by 1.5, scaling-down by 0.8, cropping of 10% along the frame, cropping of 10% from the Top-Left
(TL) corner, or from the right side and finally cropping of 20% in the center. The results, illustrated in Figure 5a,
confirm that even when the target speckle pattern (#100 for this case) undergoes such transformations, there are
a large number of matched features, well above the authentication threshold only in the correspondence of speckle
#100 inside the database, demonstrating therefore high specificity and accuracy. Figure 5b–e shows clear cases of
successful and failed recognition. Specifically, it reports zero and full feature matches in two test scenarios: one where
the speckle pattern was scaled up by a factor of 1.5 (b,c), and another where it was cropped by 10% along the tag
frame (d,e). These findings reinforce the adaptability of SIFT compared to other method used to identify and grant
the originality of PUFs, making it a highly effective tool for authentication under varying imaging conditions.

FIG. 6. SIFT applied to CRPs from the same dataset (PDLC1, (TiO2)1) and between two dataset collected at two different
time (PDLC2, (TiO2)2) on a,b) the PDLC and d,e) the TiO2 PUF. In the histogram the speckles that found their match are
reported in green (same dataset) and in blue (for different dataset) while the other with no match are reported in red in both
cases. c,f) Report the FHD for both PUFs typologies displaying the ”ideal like” the analogue of SIFT green histogram, ”like”
(the analogue of SIFT blue histogram) and ”unlike” distributions.

To further demonstrate SIFT ability to analyze speckle patterns generated by different types of optical PUFs,
possessing different refractive index contrast and scattering strengths, we applied both the SIFT (using the same
SIFT parameters) and FHD methods to PDLC and TiO2 PUFs. Also for this analysis, a representative dataset of
200 speckles was used. We refer to this as PDLC1 and (TiO2)1 respectively. As reported in Figure 6a,d, for both
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CPU model
number of CPUs

RAM Gb
Single Core

time (seconds)
Multi Core

time (seconds)

Intel Xeon E5
4
64

83 30

Apple Silicon M1
8
16

40 15

Apple Silicon M3 - M4
11 - 10
18 - 16

19 - 18 7 - 7

Intel i7 10700
8
80

45 21

Intel Xeon Platinum 8358
(HPC Leonardo)

32
512

106 5

typologies, we obtained the same behavior of PS-PUF previously tested. However, it is worth noting that for the
PDLC-PUF the number of matched recognized points is more than doubled with respect to PS-PUF ranging, now,
between 1500- 2500 points. This is because more scattering particles (LC molecules for this PUF) are present in the
volume of the analyzed PUF, producing more well-defined speckle grains into the speckle patterns, hence increasing
the number of features that can be recognized and matched in the algorithm execution. In contrast, for the TiO2-PUF,
the number of matched recognition points is approximately 800–1000, despite the high density of scatterers. This
reduced number is attributed to the low transparency of the PUF having an OT=2.25, which lowers the contrast of
the speckle grains in the collected images. Nevertheless, even with fewer points and reduced contrast, the SIFT based
authentication is validated also for strongly scattering systems without the need of a fine tuning of the algorithm
parameters. We can thus apply this methodology to a wide variety of optical PUF systems that can be adapted
to a wide variety of applications and environments. The SIFT analysis is then performed on two datasets of the
same PUFs collected at two different times referred as PDLC1,2 for PDLC and (TiO2)1,2 TiO2-PUF respectively.
As expected, also for these PUFs, the number of matched features is maximized only for the 200 speckle patterns
(Ri) produced from the same challenge (Ci) as indicated by the blue bars in Figure 6b,e. Instead, for all the other
cases, only a few points are matched, namely false positive, as indicated by the red bar. As a counterproof, the FHD
analysis has been performed on these datasets, see Figure 6c,f. The PDLC presents a ”like” distribution peaked at
0.12 and TiO2 at 0.15, while the ”unlike” distribution is centered at 0.5 for both PUFs which is in agreement with
the results of PS-PUF.

Finally, we improved the SIFT algorithm to work with multiple-processors to parallelize its operations and make
it even more suitable in real and industrial applications [36, 37]. We performed a test comparing a selected speckle
with a database of 1000 responses using workstations, laptops and a High Performance Computer HPC (the latter
provided by Cineca). The results, reported in Table III, demonstrate the speed of operation of the proposed SIFT
method to recognize the target response in a large dataset. The time ranges from 18/19 sec for Apple Silicon M3
and M4 to 106 sec for HPC Leonoardo in single core while for multi-core operation, the time is dramatically reduced
down to 5 sec using HPC to 30 sec using workstation CPUs Intel Xeon E5. This means that each single verification
requires 5 microseconds, improving of 6 orders of magnitude the results reported in [27]. This test proves the easiness
in implementing the proposed method in industrial applications.

IV. CONCLUSION

We present a straightforward approach to analyze the uniqueness of speckle patterns by using image recognition
SIFT algorithm for optical PUFs authentication. To benchmark its performance, we compared SIFT results with the
Fractional Hamming Distance (FHD) method. Both methods were applied to various types of optical PUFs, including
those made from dielectric nanospheres (polystyrene and TiO2) and polymer-dispersed liquid crystals (PDLC). Our
analysis highlights SIFT ability to extract and recognize several hundred unique features per speckle pattern. This
capability even when comparing challenge-response pairs (CRPs) collected at different times and when identifying
a target speckle pattern within a database. To demonstrate robustness, we applied the SIFT method to speckle
images that were rotated, scaled, and cropped, achieving successful recognition in all cases. Additionally, the method
supports real-time implementation as fast as 5 microseconds for each iteration using a multi-CPU setup. Overall,
the proposed approach offers a fast, reliable, and scalable solution for both industrial and individual authentication
systems, paving the way for effective anti-counterfeiting technologies based on optical PUFs.
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