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Abstract—Large Language Model (LLM)-based agents in-
creasingly interact, collaborate, and delegate tasks to one an-
other autonomously with minimal human interaction. Industry
guidelines for agentic system governance emphasize the need
for users to maintain comprehensive control over their agents,
mitigating potential damage from malicious agents. Several
proposed agentic system designs address agent identity, autho-
rization, and delegation, but remain purely theoretical, without
concrete implementation and evaluation. Most importantly,
they do not provide user-controlled agent management.

To address this gap, we propose SAGA, a Security
Architecture for Governing Agentic systems, that offers user
oversight over their agents’ lifecycle. In our design, users
register their agents with a central entity, the Provider,
that maintains agents contact information, user-defined access
control policies, and helps agents enforce these policies on inter-
agent communication. We introduce a cryptographic mecha-
nism for deriving access control tokens, that offers fine-grained
control over an agent’s interaction with other agents, balancing
security and performance consideration. We evaluate SAGA on
several agentic tasks, using agents in different geolocations, and
multiple on-device and cloud LLMs, demonstrating minimal
performance overhead with no impact on underlying task
utility in a wide range of conditions. Our architecture enables
secure and trustworthy deployment of autonomous agents,
accelerating the responsible adoption of this technology in
sensitive environments.

I. INTRODUCTION

AI agents with increased levels of autonomy are being
deployed in safety-critical applications, such as healthcare
[1, 2], finance [3, 4, 5], and cybersecurity [6, 7, 8]. These
agents, built on top of frontier AI models, particularly Large
Language Models (LLMs), excel at automating complex
tasks traditionally performed by humans. Agents powered
by LLMs have sophisticated reasoning capabilities and the
ability to understand and generate natural language. They
also leverage access to tools installed on user devices,
external resources, and the ability to interact with other AI
agents autonomously.

The increasing autonomy and functionality of AI agents
expand the attack surface of agentic systems, introducing nu-
merous security risks. As AI agents become more integrated
into critical applications, securing these systems presents
several challenges, as highlighted in a recent OpenAI white
paper [9]. Several key requirements include defining unique
identities for AI agents, authenticating these agents, and
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providing secure mechanisms for agent discovery and com-
munication. These requirements must remain effective even
under adversarial conditions, as malicious actors may at-
tempt to impersonate agents, intercept communications, or
manipulate agent behavior to extract sensitive information
or subvert intended functionality. Significantly, the OpenAI
white paper emphasizes the necessity of maintaining user
control and supervision throughout all operational phases
and throughout the entire lifecycle of LLM agents to safe-
guard against potential harm from malicious agents.

Although various AI agentic system designs have been
proposed that incorporate agent identities [10], attribu-
tion [11], authorization mechanisms and delegation capabil-
ities [12], these designs largely remain theoretical without
implementation or evaluation. Most critically, they fail to ad-
equately address the essential component of user-controlled
agent management. Recently, Google’s A2A protocol [13]
introduces a decentralized identity framework where agents
advertise public metadata and initiate direct, encrypted
communication using web-based authentication. While A2A
promotes interoperability and supports verifiable identifiers,
it lacks policy enforcement mechanisms and runtime medi-
ation of agent interactions, and does not provide mitigation
against adversarial agents.

In this paper, we propose SAGA, a framework for govern-
ing LLM agent deployment, designed to enhance security
while offering user oversight on their agents’ lifecycle
(see Figure 1 for an overview). In SAGA users register
themselves and their agents with a Provider service that
maintains user and agent metadata and facilitates controlled
communication establishment between agents. SAGA en-
ables users to control access to their agents through an
Access Contact Policy that users define for their agents. The
enforcement of the policy is done through cryptographic
access control tokens, derived from agent one-time keys
stored at the Provider. Inter-agent communication over
secure TLS channels does not involve the Provider for
scalability, while utilizing access control tokens to ensure
compliance with user-defined policies. The granularity of
access control tokens provides a tradeoff between potential
windows of vulnerability and performance overhead. The
architecture aligns with best practices for securing agentic
AI systems and meets key requirements outlined in emerging
AI governance frameworks.

Contributions. We highlight our main contributions:
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Fig. 1: System overview of SAGA. (1) A user registers with the Provider. (2) A registered user registers their agent and
receives a confirmation from the Provider. (3a) An initiating agent requests a One-time Key (OTK) and the receiving
agent’s information from the Provider. (3b) The initiating agent contacts the receiving agent with the OTK, after which
the agents derive a shared key and the receiving agent encrypts an access control token under the shared key. (3c) The
initiating agent attaches this token to subsequent communication over TLS. When token expires or reaches limit, a new
OTK is retrieved from the Provider and a new token is obtained from the receiving agent.

• We present SAGA, a Security Architecture for
Governing Agentic systems, that enables users control
and oversight of their LLM-enabled agents.

• We propose a cryptographic mechanism based on
access control tokens encrypted under shared agent
keys that allows fine-grained control over inter-agent
communication to balance security and performance
considerations.

• We perform a security analysis of SAGA and demon-
strate that the protocol provides protection against a
wide range of adversarial capabilities.

• We evaluate our system across several agentic tasks
(scheduling meetings, submitting expense reports, and
collaborative writing), multiple on-device and cloud
LLM models, and agents placed in diverse geolocations
to demonstrate the scalability of our design.

II. BACKGROUND AND PROBLEM STATEMENT

In this section we provide background on agentic sys-
tems, their security requirements, and define our problem
statement.

A. Agentic AI Systems

Agentic AI systems represent an advancement in au-
tonomous systems, enabled by generative AI. These agents
independently devise execution plans for user-assigned
tasks, leveraging their underlying models for strategic plan-
ning and reasoning. As part of the planned steps for com-
pleting the assigned tasks, agents might need to leverage
additional tools installed on user devices, interact with cloud

services, or communicate with external agents running on
other devices. LLM agents can automate both professional
tasks like scheduling and personal activities such as trip
planning. For example, Alice’s calendar agent might contact
Bob’s calendar agent to arrange a meeting, then use an email
tool to send confirmations to both participants.

As agentic systems are currently under development with-
out clear boundaries of the interactions between the different
participants in the ecosystem, in this paper, we formulate the
following definitions and terminology.

Definition 1. A User is the owner of one or more agents
and is responsible for assigning them tasks. A user will have
only one instance of an agent running on each device (e.g.,
a user will have only one Calendar agent running on a
particular device).

Definition 2. An Agent is an autonomous software entity
with an LLM as its core decision-making component. Upon
receiving a user query, agents use LLMs for planning,
store information in memory, and execute plans to complete
assigned tasks. Agents can access tools installed on user
machines as needed. Each agent operates under a specific
user’s authority and may interact with other agents to fulfill
complex objectives.

Definition 3. A task is defined as a sequence of actions that
an Agent must plan and execute to achieve a User-defined
goal. Such actions might involve communicating with an
LLM, invoking other tools, or communicating with other
agents.



B. Requirements for Secure Agentic Systems

Agentic systems create a complex ecosystem where mul-
tiple requirements must be addressed for them to success-
fully complete tasks securely. An OpenAI white paper [9]
outlines several guidelines and open problems in designing
secure agentic systems. Key requirements include defining
unique identities for AI agents with verification capabilities,
providing secure mechanisms for agents to discover and
communicate with each other, and enabling agents to make
informed decisions about resource access and collaboration
with other agents. Agentic systems must also implement
protections against adversarial or rogue agents to limit their
influence and prevent harm to benign agents. At the same,
developing effective agent shutdown protocols is especially
important as autonomous agent self-replication has been
demonstrated feasible [14]. Crucially, [9] advocates for
users’ control and oversight throughout the operation and
lifecycle of LLM agents.

C. Problem Statement

While there are many possible deployments of AI agentic
systems, in this paper we focus on LLM agents running on
users’ personal devices. There is a growing trend toward run-
ning these agents directly on personal devices, with industry
investing heavily to enable on-device AI. For instance,
Apple recently introduced on-device Apple Intelligence [15],
Google developed AI capabilities for Pixel devices [16], and
Qualcomm designed specialized chips for on-device LLMs
[17]. On-device agents can access local tools installed on
the device, user data stored on the device, and interact with
on-device or cloud LLMs. In this context, we aim to design
a user-controlled secure agentic framework that addresses
several essential core requirements for governing agentic
systems.

We will first address the fundamental requirement of cre-
ating and managing agent identities while providing effec-
tive mechanisms for agent discovery within the ecosystem.
We will design secure inter-agent communication protocols,
which represents a critical functionality of any agentic sys-
tem, and address the challenge of how to limit the influence
of adversarial agents on benign ones. We also aim to enable
user control on an agent’s entire lifecycle, including agent
registration in the system, managing agent’s contacts, and
agent’s deactivation at any time, according to the user’s
preferences and policies.

With the rapid evolution of agentic systems and emerging
regulations in this space, we expect additional requirements
that agentic systems must enforce in the future. To account
for these developments, we intend to design a modular
framework that is extensible and can support new security
properties with minimal changes to its core components.

III. SYSTEM ARCHITECTURE

We begin by outlining the desirable goals for a secure
agentic system (Section III-A), followed by an overview of
our proposed architecture SAGA (Section III-B). We also

discuss the system assumptions we make (Section III-C) and
the threat models that our proposed architecture can defend
against (Section III-D).

A. System Goals

Although the requirements for a secure agentic framework
are still evolving, we outline several desirable goals for our
system design:

Agent lifecycle managed by users. An agent’s lifecycle
should be established by a user, who installs it on their
device, registers it within the system, and has the authority
to terminate the agent at any time by uninstalling it from the
device or deactivating it and preventing other agents from
locating it within the ecosystem.

Agent access controlled by user policies. While LLM
agents can autonomously decide to contact other agents to
perform user-assigned tasks, communication between agents
should be controlled by user-defined access control policies
to limit harm by adversarial agents.

Limited trust. Agents should have limited trust in other
third-parties in the system, including any centralized service
provider or other agents.

Scalability. Design the system to efficiently manage agents
with minimal performance overhead.

Limited influence on other agents. An agent can control
only its own participation in the system and cannot arbitrar-
ily remove other agents from the ecosystem.

Limited vulnerability window. If and when an agent is
compromised, it is crucial to limit the vulnerability window
while the agent is still active in the system, as it could
potentially cause harm. The length of this vulnerability
window can be controlled by cryptographic mechanisms and
depends on various factors, such as the agent’s communi-
cation pattern, the nature of the task, and the sensitivity of
the exchanged data.

Maintain system utility. We aim to preserve the utility
of the system, as measured by task completion, without
compromising system security. Additionally, the framework
should be agnostic to various agent implementations and
LLM models that serve as the backbone.

B. Architecture Overview

We provide an overview of our SAGA system architecture
in Figure 1. A critical consideration in designing a secure
agentic framework is the mechanism for agent discovery.
The implementation of an agent registry facilitates this
discovery process, with architectural options ranging from
centralized to distributed registry models. In our design, we
choose to use a centralized registry, maintained by an entity
called Provider. The Provider manages agent and user
identities, ensures authentication, and facilitates controlled
communication establishment between agents.

To ensure user control and oversight over an agent’s
lifecycle, we delegate the agent registration process to users
themselves, with the Provider maintaining the agent



registration information. Users must be registered in the
system and authenticate before registering any agents and
retain the ability to unregister or deactivate their agents, for
example as a protective measure when abuse is detected.
Each agent is assigned a unique identifier, linked to the user
and the device on which it is installed. The Provider thus
maintains the User Registry (DU ) which holds user
identity records, and the Agent Registry (DA) which
stores agent metadata, cryptographic credentials, endpoint
information, and agent communication policies.

While communication between agents can be imple-
mented using standard secure protocols such as TLS, we
would like the ability to enforce limits on agent access,
controlled by users. Governed by the same principle of
users managing access to their agents, each user can specify
an Access Contact Policy for each agent defining which
users and agents are permitted to initiate connections. To
enable fine-grained access control and limit the window of
vulnerability, access to agents needs to be cryptographically
bounded and respect the user-defined policy. For scalability
and reduced reliance on the Provider, once an agent ob-
tains the necessary connection details for another agent, all
subsequent communication should proceed directly, without
Provider involvement.

One important design consideration is how to manage
the access control to an agent in a fine-grained manner
while reducing the burden on the Provider. Towards this
goal, each agent registers a number of public one-time keys
(OTKs) with different quotas for each initiating agent (and
locally stores the corresponding secret information linked
to these OTKs). In principle, an OTK could be used only
once for an inter-agent interaction, but that would require
generating and storing a large number of OTKs, presenting
significant operational overhead. We extend the lifetime of
these one-time keys by the receiving agent generating an
Access Control Token that is encrypted using a dynamically
derived shared key between the agents. The shared key
must be unique to each initiating–receiving agent pair and
derivable only by those two agents. To support the shared
key computation, each agent maintains a long-term Access
Control Key, which serves as the basis for deriving the
shared key and binding it to the specific agent pair. The
public component of the access control key is stored in
the Agent Registry, while each agent maintains the secret
part. We then use the Diffie-Hellman key exchange protocol,
in which the initiating agent contributes the access control
key, and the receiving agent the OTKs as public keys. The
receiving agent encrypts the Access Control Token under
the derived shared key. The token includes an expiration
timestamp and a limit on the number of permitted requests.
The token is reused for inter-agent communication, without
involving the Provider. When the token expires, a new
one is created after the initiating agent obtains another OTK
from the Provider. This design balances the security and
performance overhead in the system, by allowing users to
tune access to their agents through the number of keys they

register and the lifetime of Access Control Tokens. Note that
the protocol is asymmetric, as access control is enforced
for receiving agents, according to user-specified policies for
initiating agents.

Below, we outline the main components of our system;
protocol details are provided in Section IV.

User Registration (Section IV-B). Users must register with
the Provider using a persistent identity mechanism, such
as OpenID Connect [18]. Upon successful registration, users
authenticate to the Provider and provision agents for
participation in the SAGA ecosystem.

Agent Registration (Section IV-C). A user registers its
agents with the Provider. During registration, the user
generates cryptographic keys for its agents, including TLS
certificates and access control keys. The user also signs
the agent metadata, such as hostname, port, and device
identifiers, to bind it to its identity and specific device.
Additionally, the Provider signs the agent’s metadata,
serving as cryptographic proof that the agent is registered.

Agent Management (Section IV-D). The Provider en-
ables users to define and update an Agent Contact Policy
for each of their agents, which governs the policy for
permissible incoming communication. This policy allows
users to restrict which other agents can initiate contact with
their agent, and to impose access control constraints. The
Provider enforces these policies during initial contact
requests, ensuring that agent interactions are governed by
user-defined rules. Users can deactivate their own agents at
any time, but cannot deactivate agents owned by others.

Agent Communication (Section IV-E). To initiate con-
tact with another agent, the initiating agent queries the
Provider with the receiving agent’s identifier. The
Provider responds with metadata, including the receiving
agent’s device, IP address, and a one-time key (OTK) for
access control. Subsequently, the initiating agent establishes
a shared key with the receiving agent using the Diffie-
Hellman key exchange protocol. The receiving agent gen-
erates an access control token, encrypted under the shared
key, which is included in any communication by the initi-
ating agent. When a token expires or reaches its request
limit, the initiating agent obtains a new OTK from the
Provider. Note that the Provider does not mediate
inter-agent communication, but it is critical in enforcing
each receiving agent’s Access Control Policy by distributing
OTKs to initiating agents.

C. System Assumptions

The correctness and security guarantees of SAGA rely on
a set of clearly defined system assumptions. We outline the
assumptions required for the protocol to uphold its security
model.

Secure User Authentication and Human Verification.
We assume that the Provider implements a robust user
authentication mechanism (e.g., OpenID Connect) and that
user credentials are not compromised. Crucially, we assume



that agent registration is restricted to authenticated human
users, enforced through human verification during user ac-
count creation. This verification process is delegated to a
trusted external identity service, which certifies the user’s
human status on behalf of the Provider. This assumption
is crucial, as the integrity of the protocol depends on
preventing autonomous agents from registering other agents
without human oversight.

Agent Identity Control. We assume that attackers can
create and register agents under their own identities but
cannot impersonate other users. That is, while adversaries
may instantiate and operate malicious agents, they cannot
register agents under the identity of a benign user.

Public IP Addressing. All agents and providers are assumed
to operate under globally routable, public IP addresses. This
design avoids NAT traversal and local discovery, relying
instead on the assumption that agents are directly reachable
at their registered endpoints.

Cryptographic Soundness. We assume that all crypto-
graphic primitives used by the system—signature schemes,
key exchange protocols, encryption schemes, and key deriva-
tion functions—are secure. Specifically, we assume the un-
forgeability of digital signatures, the confidentiality of keys,
and the security of cryptographic protocols such as Diffie-
Hellman. Secret keys are assumed to remain confidential and
outside adversarial control.

TLS and Secure Channels. All communication, both be-
tween agents and between agents and the Provider, is
protected by TLS. We assume that TLS provides confi-
dentiality, integrity, and authenticity against network-level
adversaries. Standard network-layer attacks such as message
tampering, eavesdropping, and replay are considered miti-
gated by the security guarantees provided by the underlying
TLS session.

Network Protections. We assume that the network infras-
tructure enforces basic protections against denial-of-service
attacks and packet flooding.

Together, these assumptions establish the boundary within
which the protocol’s correctness and security guarantees are
valid.

D. Threat Model

The Provider is expected to adhere to the SAGA
protocol logic, including enforcing contact policies, issuing
keys, and performing registry operations. However, it may
be honest-but-curious: capable of observing agent metadata
and traffic patterns without actively attempting to subvert
the protocol. The user and agent registries are assumed to
be securely stored and not vulnerable to adversarial control
or tampering.

We consider several adversarial capabilities which we
discuss below. Our security analysis in Section IV-F explains
how SAGA mitigates these attacks.
C1: Adversaries might create agents and register them with
the Provider. These adversarial agents could deviate from

the protocol when communicating with other agents. They
could also add themselves to the contact policy of benign
agents by performing social engineering on users.
C2: A legitimate agent registered with the Provider
could be compromised by an adversary. This attack could
occur when agents interact with external resources, such as
websites, or tools installed on user devices, which might
trigger a compromise.
C3: Adversaries may instruct an agent to self-replicate
on the same device or on another user’s device without
registering the child agent with the Provider. Prior work
has demonstrated such self-replication of agents [19]. The
parent agent can share TLS keys, access control keys, and
existing access control tokens with the child agent.
C4: An adversarial agent may share its TLS public keys,
access control keys, and access control tokens with another
adversary-controlled agent, enabling communication with a
benign victim agent.
C5: An adversary could attempt to mount a Sybil attack, by
creating agents with multiple identities.

IV. SAGA PROTOCOL SPECIFICATION

In this section, we begin with a description of the
cryptographic primitives involved in our protocol, followed
by a description of the key protocols involved in SAGA:
user registration (Section IV-B), agent registration (Sec-
tion IV-C), agent management (Section IV-D), and inter-
agent communication (Section IV-E).

A. Cryptographic Primitives and Notation

We leverage the following cryptographic primitives:

Signature schemes. A signature scheme consists of three al-
gorithms: KeyGen() – a key generation function that outputs
a (public, private) signing key pair (pk, sk), SignSK (m) – a
signing algorithm that takes as input the private key SK and
a message m, and outputs a signature σ, and VerifyPK (m,σ)
– a verification algorithm that uses the public key pk, and
verifies that the signature on a message m is correct. We
assume that the signature scheme is Existential Unforge-
able under Chosen Message Attack [20], such as ECDSA
[21] and Ed25519 [22]. A certificate generation function
GenCertX(m) involves entity X creating a certificate for
content m as: GenCertX(m) = ⟨m,SignX (m)⟩
Hash function. We use a collision-resistant hash function
H(·), such as SHA-256 or SHA-3 [23].

Diffie-Hellman Key Exchange. The Diffie-Hellman Key Ex-
change protocol [20] is a cryptographic method that allows
two parties to establish a shared secret key. Each party
generates a (secret, public) key pair, and exchanges with
the other party the public component. For instance, if Alice
has secret x and public key gx mod p (for p a large prime
number and g ∈ Zp), and Bob has secret y and public key
gy mod p, the shared secret key is obtained by Alice as
(gy)x = gxy mod p, and by Bob as (gx)y = gxy mod p.
We denote by DH the function that takes as input the secret



User Provider

Generate uidU,passwd
Generate SKU,PKU
Get CertU = GenCertSKCA (uidU,PKU)
Get Provider certificate and PKProv

Establish TLS connection

uidU,passwd,CertU

Verify user identity using service S
DU [uidU]=⟨H(passwd),CertU⟩

Confirmation

Fig. 2: User Registration protocol for user U.

key of one party and public key of the other party and com-
putes the shared secret key DH(x, gy) = DH(y, gx) = gxy

mod p. The security of Diffie-Hellman is based on the
Computational Diffie-Hellman (CDH) assumption.

Key Derivation Function. A Key Derivation Function (KDF)
is a cryptographic algorithm that derives one or more secret
keys from a master secret. We use the HMAC-based Extract-
and-Expand Key Derivation Function (HKDF) [24] with
SHA-256 as the underlying hash function.

Notation. We introduce formal notation incrementally
throughout the protocol specification, defining each symbol
in context. For convenience, Table I provides a summary of
all symbols used.

Symbol Description

PK,SK Public/private signing keys
Cert Certificate issued by CA

uidU User identifier
aidA Agent A identifier
EDA Agent A endpoint descriptor
(PKA,SKA) Agent A public/private TLS credentials
(PACA,SACA) Agent A public/private access control keys
(OTKiA,SOTK

i
A) Agent A one-time public/private keys

CPA Contact policy of agent A

token Access control token
σY
X Entity Y-issued signature regarding entity X.

DU Provider’s user registry
DA Provider’s agent registry

TABLE I: Notation used in the SAGA protocol.

B. User Registration

The first step for any user seeking to deploy agents is
to register with the Provider. This process establishes
the user’s identity and enables them to link future agents to
their identity and manage them securely. The user obtains a

certificate signed by an external certificate authority CA on
their public key, sent to the Provider during registration.
We assume that the user can establish a TLS connection
with the Provider and that the provider can verify the
user’s identity with the help of an external service such as
OpenIDConnect. The protocol follows these steps as shown
in Figure 2.

1) User Account Setup. The user selects a public iden-
tifier uidU corresponding to their email address, e.g.,
uidU = ‘alice@domain.com’, and a secret
passphrase passwd to authenticate to the Provider.

2) User signature key generation: The user generates a
signature key pair (PKU,SKU) for signing information
about user agents.
The user contacts external Certificate Authority
CA to generate its certificate CertU =
GenCertSKCA(⟨uidU,PKU⟩), and shares it with the
Provider.

3) Connection establishment. The user obtains the
Provider’s certificate and public key PKProv from
the CA and verifies them. A TLS session is established
between the user and the Provider.

4) Sending user information. The user submits
(uidU,passwd) and CertU to the Provider.

5) User identity verification. The Provider verifies the
user’s identity using an external partner service S (see
Section III-C). If the verification is successful and the
account does not exist, the Provider finalizes the user
registration.

6) User account storage and confirmation:
The Provider updates the user registry:
DU [uidU] = ⟨H(passwd),CertU⟩ and sends a
confirmation to the user.

After the user registration is completed successfully, the
user can proceed to register its agents with the Provider,
described in the next stage.

C. Agent Registration by User

The agent registration process ensures that each agent
is cryptographically bound to its user and a specific user’s
device. The cryptographic information generated by a user
for its agents is stored by the Provider and subsequently
used to establish secure agent communication mediated by
the Provider. The following protocol is executed by user
U to register their agent A (shown in Figure 3).

1) Generating agent information. The user selects an
identifier nameA for the agent, forming a unique agent
ID in combination with their username: aidA =
uidU:nameA. The user specifies the agent’s device
name deviceA and networking details IPA and portA.
These comprise the agent’s “endpoint descriptor”:

EDA = ⟨deviceA,IPA,portA⟩

2) Generating cryptographic keys. The user generates the
following keys for the agent:



User Provider

Generate aidA,EDA,CPA
Generate (PKA,SKA) and (PACA,SACA)
Get CertA = GenCertSKCA (⟨aidA,PKA⟩)
Generate (OTK1A,SOTK

1
A), . . . , (OTK

N
A,SOTK

N
A)

σUA = SignSKU (⟨aidA,EDA,PKA,PACA,PKProv⟩)
σU
OTKiA

= SignSKU
(
OTKiA

)
Establish TLS connection

(uidU, passwd)

Verify user credentials.

(aidA,EDA,CPA), PKU, CertA, PACA, OTKiA, σUOTKi , i ∈ [1, N ]

Check uniqueness of aidA and EDA
Verify CertA and signatures σUA , σ

U
OTKi

, i ∈ [1, N ]

Compute MA = {EDA,CertA,PACA,OTKiA, i ∈ [1, N ]}
Store DA[aidA] = ⟨uidU,MA,CPA, σUA , σUOTKi ⟩
σProv
A = SignSKProv (⟨CertU,EDA,PACA, σ

U
A⟩)

σProv
A

Fig. 3: Agent Registration protocol for agent A by user U.

• TLS credentials (PKA,SKA) to establish secure com-
munication channels with other agents and a signed
certificate by the CA:

CertA = GenCertSKCA(⟨aidA,PKA⟩)

• A public-private key pair: (PACA,SACA) for access
control. These long term keys are used for the receiv-
ing agent to derive a shared key with the initiating
agent for encrypting the access control token in inter-
agent communication (Section IV-E).

• A batch of N one-time public and secret key pairs
(OTK1A,SOTK

1
A), . . . , (OTK

N
A,SOTK

N
A), used for deriv-

ing tokens for controlling access to the agent. Each
public one-time key is signed by the user:

σUOTKi = SignSKU
(
⟨aidA,OTKiA⟩

)
The user also signs the agent’s device and networking
information, along with its long-term keys:

σUA = SignSKU (⟨aidA,EDA,PKA,PACA,PKProv⟩)

The inclusion of PKProv in the signature indicates that
the agent is registered with the specified Provider.

3) Specifying the contact policy: The user specifies the
agent’s contact policy CPA (discussed in Section IV-D).

4) User authentication to Provider. The user establishes
a secure TLS connection with the Provider, and
authenticates by providing credentials ⟨uidU,passwd⟩.

The Provider verifies the credentials and proceeds if
successful.

5) Registration submission. The user submits to the
Provider: the agent’s information (aidA,EDA,CPA),
the TLS certificate CertA, the public access control and
one-time keys PACA, {OTK1A,...,OTKNA}, and signatures
σUA , σUOTKi for i ∈ [1, N ].
The agent stores locally all the private keys correspond-
ing to the public keys submitted to the provider: (SKA,
SACA, {SOTK1A,...,SOTKNA}).

6) Provider verification. The Provider processes the
registration request by checking that aidA and EDA
are globally unique within the ecosystem, and verifying
CertA and signatures:

VerifyPKU(⟨aidA,EDA,PKA,PACA,PKProv⟩, σ
U
A)

VerifyPKU(⟨aidA,OTK
i
A⟩, σUOTKi)

7) Completion. Upon successful verification, the
Provider stores in the agent registry the agent’s
metadata MA, the contact policy CPA, the agent’s
signatures σUA and σUOTKi , along with uidU to associate
the agent A with user U:

MA = {EDA,CertA,PACA,OTKiA, i ∈ [1, N ]}
DA[aidA] = ⟨uidU,MA,CPA, σUA , σUOTKi⟩



The Provider then signs the agent A’s information

σProv
A = SignSKProv

(
⟨aidA,CertA,EDA,PACA, σUA⟩

)
and returns it as confirmation to the user. The user
stores this signature, which it uses when initiating agent
communication (Section IV-E).

The agent A is now officially registered and can securely
communicate within the ecosystem.

D. Agent Management

Agent management in SAGA involves managing access
control polices and keys, enabling updates to policies, and
cryptographic key management.

Access control management. There are two fundamental
capabilities in SAGA for managing access control: (1)
specification and enforcement of the Agent Contact Policy
(CP), and (2) provisioning of fresh One-Time Keys (OTK)
to facilitate user-controlled communication.

1) Agent Contact Policy: In SAGA, each agent is as-
sociated with a contact policy CP that specifies which
initiating agents are authorized to establish contact. This
policy is defined by the user when registering their agent,
and is enforced by the Provider during contact res-
olution. CP consists of a set of declarative rules, along
with the number of OTKs that should be allotted to an
agent that matches that rule. These rules may use pattern
matching over agent identifiers to allow flexible yet con-
trolled specification of acceptable contacts. For instance, the
rule ("*@company.com:email_agent", 10) per-
mits any email-handling agent from a specified domain to
initiate contact and be allotted at most 10 OTKs.

If multiple rules match, the one with the highest speci-
ficity is selected. For instance in Listing 1, an agent
alice@company.com:calendar_agent attempts to
contact the receiving agent. The agent’s identifier matches
the top three patterns, but the first rule is the most specific
and therefore determines the OTK budget, resulting in 15
OTKs.

// Agent C's Contact Policy
[
{
"agents": "alice@company.com:calendar_agent",
"budget": 15

},
{
"agents": "*@company.com:calendar_agent",
"budget": 10

},
{
"agents": "*@company.com:*",
"budget": 25

},
{
"agents": "bob@mail.com:*",
"budget": 100

}
]

Listing 1: Example contact policy for an agent. More
specific patterns take precedence over general ones.

Formally, for a receiving agent A with contact policy CPA
and an initiating agent B with identifier aidB, the number
of OTKs issued is defined as:

BudgetOTK(aidA,aidB) =

{
−1 if R = ∅
B(r∗) if R ≠ ∅

,

where r∗ is the most specific rule among all rules R in CPA
that match aidB, and B(r∗) corresponds to the budget for
rule r∗ indicated in CPA. The distinction for R = ∅ helps
the user differentiate between no match and an expired OTK
budget.

2) One-Time Key Generation: To control communication
to registered agents, the Provider facilitates the distribu-
tion of OTKs: one-time keys generated and uploaded by each
user for their agents. Each OTK is consumed when an initi-
ating agent contacts the Provider to initiate contact with
a receiving agent. OTKs are defined for receiving agents,
as the protocol is asymmetric. Additionally, the Provider
maintains the number of OTKs remaining for a particular
agent communicating with another agent. While it might
be possible for the initiating agent to receive multiple OTKs
from the Provider reducing the number of times an agent
must contact the Provider, we chose the design where
the agent receives only one OTK to limit the vulnerability
window, in case an agent is compromised.

When an initiating agent B queries the Provider to
contact a recipient agent A, the Provider first verifies that
the initiating agent satisfies A’s Agent Contact Policy (CPA),
as detailed above. If this is the first time B is contacting A,
the Provider creates a counter CounterOTK[aidA][aidB]
to keep track of the number of remaining OTKs, and
initializes it with BudgetOTK(aidA,aidB).

If the policy check succeeds and a valid OTK is available
(indicated by a positive value for CounterOTK[aidA][aidB]),
the Provider returns an OTK to the initiating agent (along
with the recipient’s metadata and its signature, discussed in
Section IV-E) and decreases the counter by one.

Obtaining an OTK at this stage may fail due to: (a)
exhaustion of aidA’s overall OTK pool, or (b) depletion of
aidB’s OTK quota as defined by CPA. The user of agent A
can update the contact policy and generate additional OTKs
at any time.
Policy Updates and Revocation. Users can dynamically
update their agents’ contact policies via the Provider
interface. Updates may include adding rules (e.g., to onboard
collaborators) or removing them (e.g., to revoke access),
allowing policies to adapt as trust relationships shift or
threats emerge.

It is important to allow users to block contact from
specific agents, as they might detect abusive behavior. To
block specific agents, a receiving agent can update its
contact policy with a rule that assigns a B(·) score of -
1. The modified CP is then pushed to the Provider.
Alternatively, to completely disable incoming contact, a user
can request the Provider to deactivate their agent at any
time. This functionality is motivated by our principle of user



controlling their agents entire lifecycle. Crucially, we do
not allow users the ability to deactivate agents registered by
other users, as they should control only their own agents.

Cryptographic key management. Cryptographic keys for
agents should be managed by users according to best prac-
tice principles for key management and key rotation [25].
In particular, users should periodically rotate their agents’
TLS key and access control keys. Best practices should also
be followed by the Provider for user authentication and
password management.

E. Inter-Agent Communication

In previous sections, we described how a user can reg-
ister an agent and how it can manage the access to that
agent through the registry information maintained by the
Provider. Here, we detail how two registered agents can
communicate with each other securely, while respecting the
Access Contact Policy defined by users for their agents.

When an agent B (initiating agent) wants to contact
agent A (receiving agent), it first queries the Provider
to verify A’s registration. If permitted by A’s contact policy,
B receives A’s metadata and a one-time key (OTK) from the
Provider. This OTK is used by both agents to derive a
shared key, which the receiving agent A will use to encrypt
an access control token (ACT) for B.

Assume agents B and A are registered under users U2
and U1, respectively. Each agent uses several types of
cryptographic keys: TLS credentials, including signing keys,
and access control keys for regulating communication. The
latter includes long-term access control keys (PAC), and
one-time keys (OTK). The Provider stores one-time keys
and enables the enforcement of each agent’s contact policy.
A valid ACT (which we refer to as token) is bound to
both the initiating and the receiving agents’ identities by
deriving a key based on the PAC of the initiating agent and
OTK of the receiving agent. The ACT is scoped to a specific
task, but the granularity of tokens can be adjusted further if
desired. The token will have limited validity, as well as a
limit on the total number of requests.

The following steps outline the agent communication pro-
tocol involving initiating agent B contacting receiving agent
A to obtain an access control token (shown in Figure 4).
This protocol runs either the first time agent B contacts A,
or when previously issued tokens have expired or exceeded
their usage limits.
1) Establishing a TLS connection with the Provider:

This step follows a standard TLS session establishment
between B and the Provider.

2) Receiving agent information retrieval: B requests per-
mission to contact A by specifying their identity (aidB)
and the identity of the receiving agent (aidA). The
Provider verifies that B is in A’s contact policy
and has sufficient OTKs allotted to it (by making sure
CounterOTK[aidA][aidB] > 0). It returns A’s access
information: user’s certificate CertU1, agent’s device
and network information (aidA,EDA), agent’s TLS and

access control keys (CertA,PACA) and a signed one-
time key OTKiA, σ

U1
OTKi .

Subsequently, the Provider decrements the counter
CounterOTK[aidA][aidB] by one.

3) Receiving agent information verification: B first ver-
ifies A’s user’s certificate CertU1 including the user’s
public key PKU1. B also verifies the signatures on agent’s
A information and the received OTK as follows:

VerifyPKU1(⟨aidA,EDA,PKA,PACA,PKProv⟩, σ
U
A)

VerifyPKU1(⟨aidA,OTK
i
A, ⟩, σUOTKi)

4) Establishing a TLS connection between agents: B
initiates a TLS connection with A, and both agents verify
each other’s certificates (CertA,CertB).

5) Token request sent: B sends A its information and a
signature σProv

B from the Provider (generated during
agent registration: step 7), along with one-time key
OTKiA, requesting access.

6) Token request received: A verifies U2’s certificate, as
well as σProv

B :

VerifyPKProv(⟨aidB,CertB,EDB,PACB, σ
U2
B ⟩, σProv

B )

If OTKiA is valid, both agents perform a Diffie-Hellman
(DH) key exchange protocol to derive a shared key:

DHA = DH(SOTKiA,PACB), DHB = DH(SACB,OTK
i
A)

SDHK = KDF (DHA) = KDF (DHB)

7) Token generation: A creates the access token with a
randomly generated nonce (N $←− R), issue (Tissued) and
expiration (Texpire) timestamps, the maximum number
of requests linked to this token (Qmax), and B’s access
control key (PACB):

token = EncSDHK(⟨N,Tissued,Texpire,Qmax,PACB⟩).

A stores the token and sends it to B.
8) Inter-Agent communication: B receives the token and

initiates the conversation to complete its task. For each
subsequent request to A, B attaches the token. Upon
receiving a request, A verifies that the token was issued
for B (not for another agent), has not expired, and has
not exceeded its usage quota. Once a task is deemed
completed, the token is discarded by both parties.

Token reuse. Once an Agent obtains a token, it can reuse
it as long as it remains valid and hasn’t exceeded its request
limit. If B holds a valid token for A, it can skip ahead
to step 8 to initiate secure communication. If the agents’
existing TLS session is reset, the agents will establish a
new TLS session (step 1) and proceed directly to agent
communication (step 8). The expiration time and request
limit in the token offer a balance between security and
performance considerations. A larger number of requests
Qmax reduces the overhead of contacting the Provider to
obtain OTKs, but increases the potential exposure in case an
agent is compromised.
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Establish TLS connection

Request to contact aidA

Check BudgetOTK (aidA,aidB) > 0

Check CounterOTK[aidA][aidB] > 0
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CertU1, (aidA,EDA), (CertA,PACA),
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U1
OTKi , σU1A

Verify CertU1
VerifyPKU1

(
⟨aidA,EDA,PKA,PACA,PKProv⟩, σU1A

)
VerifyPKU1

(
⟨aidA,OTKiA⟩, σU1OTKi

)

Establish TLS connection

DHB = DH(SACB,OTKiA)
SDHK = KDF (DHB)

⟨aidB,CertB,EDB,PACB, σU2B ⟩,
OTKiA, σ

Prov
B

VerifyPKProv (⟨aidB,CertB,EDB,PACB, σ
U2
B ⟩, σProv

B )

Verify OTKiA −→ SOTKiA exists in storage
DHA = DH(SOTKiA,PACB)
SDHK = KDF (DHA)
Delete OTKiA → SOTKiA

Generate nonce N $←− R
token = EncSDHK(⟨N,Tissued,Texpire,Qmax,PACB⟩)
Store token

token

Communication

Fig. 4: Agent Communication protocol between initiating agent B and receiving agent A to obtain an Access Control
Token with the Provider mediation if first communication between agents or the previous token expired.

F. Security analysis of SAGA

In this section, we discuss how SAGA protects against
the adversarial capabilities detailed in Section III-D.

C1: Adversarial agents created by attackers

C1 Protections: SAGA has several protections to prevent
abuse by adversarial agents. First, agents can only be
registered by users authenticated by the Provider.
Second, each agent has an Agent Contact Policy created
by its user when registering the agent. Third, even if an ad-
versarial agent is added to a victim agent’s contact policy,
and initiates communication with the victim, the access
control token ensures a limited window of vulnerability
in which the two agents can communicate. If abuse is
detected, the user owning the victim agent can block the
adversarial agent by updating its contact policy.



C2: Compromised legitimate agents

C2 Protections: In this scenario, the compromised agent
assumes the identity of legitimate agent A and can po-
tentially reach out to any agents from A’s contact list.
Furthermore, the compromised agent can utilize any ac-
cess control tokens previously obtained by A prior to the
compromise. However, we restrict the attack surface by
allowing the agent to receive only one OTK at a time,
and limiting the validity of the tokens to a specific time
interval or a maximum number of requests.

C3: Agent self-replication

C3 Protections: While self-replication of agents has been
demonstrated in prior work [19], SAGA prevents the
registration of the child agent with the Provider since
only users are permitted to register agents. Consequently,
the child agent inherits the same identity, TLS, and access
control keys as the parent agent. In effect, the replicated
agent is constrained to operate within the parent agent’s
capabilities.

C4: Sharing keys from an adversarial agent A to agent B

C4 Protections: While this information allows B to con-
tact any victim agent in A’s contact list, it only grants B
the same capabilities as A. For example, the access control
token remains usable only until it expires, hits its request
limit, or A is deactivated or removed from the victim’s
contact list.

C5: Creating agents with multiple identities (Sybil attacks)

C5 Protections: Sybil attacks are prevented in our system
as each agent is required to be uniquely identified and
registered with the Provider.

V. EVALUATION

To evaluate SAGA, we implement its full stack (Sec-
tion V-A) and test it under both adversarial (Section V-B)
and benign scenarios, where we measure protocol overhead
(Section V-C) and demonstrate that the protocol does not
interfere with the task completion of underlying LLM-agents
(Section V-D).

A. Implementation

The Provider is implemented as an HTTPS service
exposing dedicated endpoints for each user-provider and
agent-provider interaction defined in the protocol. Inter-
agent communication is conducted over TLS configured
with mutual authentication, with protocol-level authentica-
tion and encryption enforced via ephemeral session keys.
Our framework is agnostic to the underlying LLM-agent
implementation. This design enables seamless integration
with arbitrary agent implementations or libraries.

All cryptographic operations in the protocol are built on
Curve25519 [26]. Both long-term and ephemeral keys are
generated using the X25519 elliptic-curve Diffie-Hellman

(ECDH) [27] scheme, which produces 256-bit shared se-
crets. Certificates adhere to the X.509 PKI standard [28]
and are issued by an internal certificate authority (CA)
deployed as part of the provider. All digital signatures and
key derivation steps utilize the SHA256 hash function [23].

For LLM agents, we experimented with a local Qwen-2.5
[29] 72B model running on an NVIDIA H100 GPU, as well
as two OpenAI models hosted in the cloud and accessed via
API.

B. Attacker Evaluation

We evaluate SAGA’s resilience against adversarial be-
havior as defined in the threat model in Section III-D. We
consider 8 adversarial agents that attempt to bypass authenti-
cation or access control, including unauthorized connections,
token misuse, and contact policy violations. As noted in
Section III-C, we assume the adversary cannot compromise
the TLS layer, break standard cryptographic primitives (e.g.,
signature forgery or DH key extraction), or bypass human
verification during user registration. To verify that SAGA
does indeed work in defending against such threats, we
implemented these attacker models in our evaluation.

We denote the adversarial agent as M and the victim
agent as A. Table II summarizes the attack models, the
required adversarial capabilities, and the specific protocol
step at which each attack is detected. The following attack
models represent distinct ways in which the protocol may
be misused or subverted by an adversarial agent:

A1: M attempts to contact A without presenting valid TLS
credentials.

In this case, the TLS handshake fails since M cannot
authenticate to A. The connection is rejected before any
application-layer interaction takes place.

A2: M contacts A without a one-time access key or token.

Here, M completes the TLS handshake and is authenticated,
but fails to provide either a valid OTKiA or a previously
issued access token. A terminates the session without issuing
a token.

A3: M contacts A with an invalid token.

The connection is established and the token is received by
A, but the token is invalid, either because its timestamp has
passed or it has exceeded its limit. Upon detecting this token
replay, A immediately closes the connection.

A4: M attempts to impersonate benign agent A by pro-
viding its Provider-issued signature and public infor-
mation upon contact with other agents.

M uses A’s public information and the provider-issued sig-
nature (σProv

M ← σProv
A ) when contacting other agents.

Receiving agents verify the signature using M’s information
(Step 6, Section IV-E), and the verification fails.

A5: M contacts A and reuses a valid token issued by A
to a different agent.



Attack Model Capabilities Protocol Step Detected Details

A1 C1, C2 IV-E, Step 4 The receiving agent rejects the TLS connection attempt, as a valid certificate
is required to establish communication.

A2 C1, C2 IV-E, Step 6 The receiving agent terminates the session due to the absence of a valid access
control credential (either an OTK or token).

A3 C1, C2 IV-E, Step 8 The receiving agent detects that the token presented is either expired or has
exceeded its usage quota, and aborts the connection.

A4 C1, C2 IV-E, Step 6 The provider-issued signature on the initiating agent’s metadata fails verifica-
tion, as the metadata does not match the registered information.

A5 C1, C2, C3, C4 IV-E, Step 8 The token presented by the initiating agent was issued to a different agent,
and the mismatch is detected by the receiving agent during token validation,
leading to connection termination.

A6 C1, C2, C3, C4 IV-E, Step 2 The Provider denies issuance of an OTK since the initiating agent is not
permitted under the receiving agent’s contact policy.

A7 C3 IV-B, Step 5 User registration requires human verification. As only users can register agents
in SAGA, the adversarial agent fails to satisfy the verification requirements and
is denied registration.

A8 C1, C2, C3, C4 IV-E, Token reuse The malicious initiating agent proceeds with establishing a secure connection
with the receiving agent. However, there’s a limited amount of communication
between the two parties dictated by the token quota or the expiry date.

TABLE II: Different attack models with corresponding required adversarial capabilities, and the specific SAGA protocol
step at which each attack is detected.

In this scenario, A has issued a valid token to some other
agent, which is later intercepted or exfiltrated by M. When
M attempts to use it, A detects the mismatch between the
token’s intended recipient and the initiating party’s identity
(PACM). The connection is immediately aborted.

A6: M attempts to contact A despite not being authorized
under A’s contact policy.

The Provider enforces contact policies on behalf of
receiving agents. When M attempts to query or initiate a
connection with A, the Provider denies the request based
on A’s contact policy.

A7: M attempts to register copies of itself or other agents
with the Provider.

M attempts to register new identities, either by self-
replication or creating agent variants. However, the
Provider requires human-in-the-loop verification during
user registration (see Section IV-B), enforced through inte-
gration with trusted identity services.

A8: M contacts A with a valid token.

This represents a short-lived window of vulnerability. The
protocol accepts the connection, but the token’s expiration
and communication quota strictly bound the scope of abuse.
Once either limit is reached, the token becomes invalid
and further requests are rejected. If malicious activity is
detected, A’s user may blocklist M, thereby preventing it
from obtaining new OTKs.

C. Overhead Evaluation

In this subsection we evaluate the cost of enforcing
SAGA’s security guarantees along the agent communication
path. This includes both fixed algorithmic costs of protocol
operations and the dynamic impact of access control token
quotas, cryptographic validation, and Provider-mediated
authorization. Our results show that the overhead is low

and decreases rapidly as the frequency of agent interactions
increases.

Cryptographic Overhead. We begin with measuring the
cryptographic overhead of core protocol operations at the
user, Provider, and agents. These costs cover crypto-
graphic primitives such as hashing, key generation, signing,
verification, and Diffie-Hellman key exchange. As visible
in Table III most operations are lightweight, on the order of
several ms overhead. The highest cost components are user
and agent registration at the provider (194 ms and 213 ms),
due to certificate issuance and registry updates. As these
are one-time operations (per user and agent), they do do not
impact inter-agent communication.

Protocol Component Overhead (ms)

User Registration

User Registration (User) 2.34
User Registration (Provider) 194.09

Agent Registration

Agent Registration (User) 15.09
Agent Registration (Provider) 212.85

Agent Communication

Contact Resolution (Provider) 1.46
Setup Phase (Initiator) 2.14
Setup Phase (Receiver) 1.83

Access Control Tokens

Token Generation (Initiator) 1.03
Token Decryption (Receiver) 1.20
Token Validation (Initiator) 0.24
Token Validation (Receiver) 0.26

TABLE III: Computational overhead of key operations in
the SAGA protocol.

Protocol Overhead. We measure the overhead introduced
by SAGA’s access control and provider coordination mech-
anisms (Section V-C). Specifically, we analyze the overhead



incurred by an initiating agent B issuing m requests to
a receiving agent A. This includes a network component
for establishing secure communication, and a cryptographic
component tcrypto for certificate validation, signature verifi-
cation, Diffie-Hellman key exchange, key derivation, token
encoding, and symmetric encryption. The total protocol
overhead is modeled as:

cproto(m) = (RTTB,P + tcrypto) ·
⌈

m

Qmax

⌉
, (1)

where P is the Provider, and RTTB,P is the round-trip
time for agent B contacting the Provider and receiving
a response. Each authorization cycle involves agent B re-
trieving metadata and a one-time key for agent A from the
Provider. This round-trip, along with local cryptographic
operations, must be performed once every Qmax requests, as
the token quota is exhausted.
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Fig. 5: Amortized protocol overhead per request c̄proto(m) as
a function of maximum number of requests token is reused.
We measure the overhead for several geographic locations
for the Provider. The shaded region reflects variability
for agents position worldwide.

We sample round-trip times (RTTB,P ) from empirical
measurement distributions using monitors in US-East, US-
West, Europe and Asia, made available by CAIDA [30] and
AWS [31], and use these to approximate protocol overhead.
Figure 5 shows the amortized protocol setup overhead:

c̄proto(m) =
cproto(m)

m

as a function of token quota Qmax, using m = 100 requests,
where the measured cryptographic overhead tcrypto = 7ms.
As visible, the protocol overhead decreases sharply with
increasing token quota Qmax, demonstrating how it can be
effectively amortized across inter-agent interactions. More-
over, the overhead is low for all Provider geolocations,
with slightly higher overhead for Europe and Asia.

We also evaluate the effect of geolocation on protocol
overhead by varying the placement of the initiating agent
under a fixed Provider location (US-West). The overhead
becomes very low—–typically under 25ms when agents
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Fig. 6: Amortized protocol overhead per request c̄proto(m) as
a function of maximum number of requests token is reused.
We measure the overhead for several geographic locations
for the initiating agent, where the Provider is fixed in US-
West. The shaded region captures variability under sampled
network conditions.

interact for at least 4–5 requests (Figure 6). This effect
is even more pronounced when the agent and provider are
geographically close.

Token Quota. The token quota Qmax defines the number
of requests allowed before contacting the Provider. A
larger quota reduces latency and reliance on the provider
but increases the window for compromised agents to operate
without interruption. Smaller quotas mitigate security risks
by requiring more frequent cryptographic validation, at the
expense of additional overhead.

D. Task Completion

SAGA operates as a protocol layer above the underlying
LLM agents, whose communications are not impacted by the
protocol. To illustrate SAGA in realistic agent interactions,
we deploy three types of agents: (a) Calendar agents that
determine a mutually available time and schedule a meeting,
(b) Email agents that extract relevant expense-related emails
and collaborate to submit an expense report, and (c) Writing
agents with different expertise areas collaborating to write
a blogpost. As expected, all agents successfully complete
their tasks. See Appendix A for more details.

Task LLM Backend Standard Cost SAGA
LLM Networking Overhead

Calendar GPT-4.1-mini 50.001 0.791 0.165
Email GPT-4.1 26.862 1.319 0.165
Writing Qwen-2.5 363.563 1.319 0.165

TABLE IV: Task execution time breakdown (in seconds).
We assume that A, B, and the Provider are located in
Asia, Europe, and US-West, respectively, and the token
quota is 10. Standard Cost is the minimum runtime for two
agents communicating directly without SAGA, including
LLM cost and network latency.



To contextualize SAGA’s overhead, we also measure
the standard task completion cost i.e., the time taken by
the LLM to generate responses, and the network latency
(Table IV, under Standard Cost). The LLM response time
depends on both model execution speed and task complexity.
For example, using a local Qwen-2.5 model instead of the
cloud-based GPT-4.1 model for the Email task increases
the runtime from 26.862 to 43.730 seconds, as the Qwen-
2.5 (72B) model is slower than the highly optimized models
served by OpenAI. Tasks like blog post writing require
substantially more input and output tokens and result in
longer runtimes, as observed for the Writing task. Since most
of the task completion time is spent by LLM-agents during
intermediate planning [32], and tool calls [33], the amortized
overhead of our protocol is significantly lower in compar-
ison. For example, even when agents and the Provider
are geographically distant, the protocol overhead accounts
for less than 0.6% of the end-to-end cost of completing the
fastest calendar task.

VI. RELATED WORK

This section reviews existing frameworks for secure agent
interactions and current implementation landscapes, high-
lighting the gaps our work addresses. We also explore
existing multi-agent attacks, highlighting their limited scope.
High-Level Designs for Inter-Agent Interaction. Several
frameworks and protocols have been proposed to govern
AI agent interactions securely. South et al. [12] introduce
a framework for authenticated delegation using OAuth 2.0
design patterns, where users register their agents with
providers and issue delegation tokens. Their system incorpo-
rates W3C verifiable credentials for decentralized certifica-
tion and natural-language interfaces for permission scoping,
translating user instructions into structured formats for re-
view. Chan et al. [11] outline agent infrastructure protocols
defining interaction standards, focused on three core func-
tions: attribution, interaction, and response, Chan et al. [10]
propose a system for agent identification that tracks AI
systems along with their context windows and initial users.
Their framework enables tracking potential misuse through
linked IDs and detecting jailbreak attempts through context
inclusion. Shavit et al. [9] discuss governance practices for
agentic systems, highlighting unique agent identification and
interruptibility as critical features. They specifically note the
challenge of preventing identity spoofing and emphasize the
importance of graceful shutdown procedures for revoking
permissions. It should be noted that none of these designs
are actually implemented and evaluated in a real system.
Inter-Agent Protocol Implementations. Recent surveys
[34] reveal that while multi-agent systems are extensively
studied, implementations typically assume pre-established
connections between agents with static communication pat-
terns. Yan et al. [35] specifically note the need for “en-
cryption and authentication protocols tailored for decentral-
ized multi-agent environments.” Smyth OS offers a portal

https://smythos.com/

for agent creation and integration limited within a par-
ticular organization. Current software implementations for
agent interactions generally fall short of enabling secure
cross-organizational communication. While frameworks like
LangChain’s Agent Protocol provide specifications for inter-
actions, they do not address critical aspects like authentica-
tion or access control mechanisms. Commercial platforms
like Amazon Bedrock [36] enable agent orchestration but
assume all agents belong to the same restricted environment.
Packages like AutoGen [37] support multi-agent interac-
tions, but only when agents are all running locally. Recently,
Google proposed the A2A protocol [13], a decentralized
identity framework where agents advertise public meta-
data and initiate direct communication through web-based
authentication. While A2A promotes interoperability and
supports verifiable identifiers, it does not include a cen-
tralized registry, policy enforcement, or runtime mediation
of agent contact. Additionally, the A2A specification lacks
mechanisms for specifying or enforcing per-agent commu-
nication policies. AACP [38] introduces a cryptographic
foundation using verifiable credentials but adopts a fully
peer-to-peer architecture without mediation layers to govern
agent interactions. These approaches highlight a consistent
gap in addressing how agents might dynamically discover,
authenticate, and establish secure communications with one
another in open, cross-organizational environments with
appropriate user-controlled governance mechanisms.
Attacks on Multi-Agent Systems. Several works examine
adversarial propagation in multi-agent communication [39,
40, 41, 42, 43], where rogue agents can propagate malicious
outputs via interactions with other agents. Other works con-
sider fixed communication patterns with slightly different
goals, such as multi-agent debate [41] and question-answer
collaboration [44]. In orchestrated multi-agent systems,
Triedman et al. [45] describe attacks against orchestrator
agents using adversarial content via metadata. Khan et al.
[46] introduce an attack approach for pragmatic multi-agent
LLM systems operating under real-world constraints like
token bandwidth limits and message latency. By formulating
attack paths as a maximum-flow minimum-cost problem,
they demonstrate how these practical limitations can be
exploited to bypass distributed safety mechanisms. SAGA
provides protection against such attacks through its token-
driven system, which explicitly limits the number of interac-
tions between agents. Additionally, benign agents can easily
update their contact policies to block malicious agents, pre-
venting any widespread “outbreak.” User-specified budgets
in contact policies effectively contain potential threats, and
problematic agents can be quickly blocked or removed from
the protocol to prevent incoming connections.

VII. DISCUSSION AND CONCLUSION

SAGA establishes a protocol for secure inter-agent com-
munication that balances security, autonomy, and gover-
nance through a Provider-mediated architecture enforc-
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ing user policies. Unlike prior works that only offer concep-
tual designs or high-level architectures for agent governance
[9, 10, 11, 12], we provide the first concrete protocol
specification and a functional reference implementation,
enabling immediate adoption and practical deployment of
these security mechanisms.

The computational overhead introduced by our protocol is
minimal across various configurations, multiple agent tasks,
and LLM models (Section V-C), making SAGA both secure
and practical for widespread deployment. By enabling se-
cure cryptographic mechanisms based on fine-grained access
control tokens, SAGA creates an ecosystem where AI agen-
tic systems maintain balance between Provider-enabled
control and decentralized operation—essential properties for
responsible deployment as these systems become increas-
ingly autonomous and widespread. Token granularity can
be configured to allow a larger number of requests reusing
the token, minimizing Provider interactions, but that
extends the vulnerability window should an agent become
compromised.

While SAGA provides a robust foundation for inter-agent
communication, it complements related works that address
LLM vulnerabilities. SAGA is an extensible framework that
provides the core components for secure agent registration,
communication, and agent lifecycle management. SAGA can
be used in conjunction with defenses such as Model Context
Protocol [47] for standardized tool-use, defenses against
prompt-injection attacks [48], and privacy-preserving data
minimization techniques [49]. SAGA can also be extended
to support multiple providers, but protocols for provider
inter-operability need to be designed.

In conclusion, SAGA creates an architecture for govern-
ing AI agentic systems that enables user control of their
agents lifecycle and provides cryptographic mechanisms for
secure inter-agent communication.

REFERENCES

[1] N. Mehandru, B. Y. Miao, E. R. Almaraz, M. Sushil,
A. J. Butte, and A. Alaa, “Evaluating large language
models as agents in the clinic,” NPJ digital medicine,
vol. 7, no. 1, p. 84, 2024.

[2] W. Wang, Z. Ma, Z. Wang, C. Wu, W. Chen,
X. Li, and Y. Yuan, “A survey of llm-based agents
in medicine: How far are we from baymax?” arXiv
preprint arXiv:2502.11211, 2025.

[3] S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze,
S. Gehrmann, P. Kambadur, D. Rosenberg, and
G. Mann, “BloombergGPT: A large language model
for finance,” arXiv preprint arXiv:2303.17564, 2023.

[4] Y. Nie, Y. Kong, X. Dong, J. M. Mulvey, H. V. Poor,
Q. Wen, and S. Zohren, “A survey of large language
models for financial applications: Progress, prospects
and challenges,” arXiv preprint arXiv:2406.11903,
2024.

[5] T. Zhou, P. Wang, Y. Wu, and H. Yang, “Finrobot:
Ai agent for equity research and valuation with large

language models,” arXiv preprint arXiv:2411.08804,
2024.

[6] J. Zhang, H. Bu, H. Wen, Y. Liu, H. Fei, R. Xi,
L. Li, Y. Yang, H. Zhu, and D. Meng, “When llms
meet cybersecurity: A systematic literature review,”
Cybersecurity, vol. 8, no. 1, pp. 1–41, 2025.

[7] M. Rigaki, C. Catania, and S. Garcia, “Hackphyr: A
local fine-tuned llm agent for network security envi-
ronments,” arXiv preprint arXiv:2409.11276, 2024.

[8] M. Kobayashi, M. Fuchi, A. Zanashir, T. Yoneda, and
T. Takagi, “Construction and evaluation of llm-based
agents for semi-autonomous penetration testing,” arXiv
preprint arXiv:2502.15506, 2025.

[9] Y. Shavit, S. Agarwal, M. Brundage, S. Adler,
C. O’Keefe, R. Campbell, T. Lee, P. Mishkin, T. Eloun-
dou, A. Hickey et al., “Practices for governing agentic
AI systems,” Research Paper, OpenAI, 2023.

[10] A. Chan, N. Kolt, P. Wills, U. Anwar, C. S. de Witt,
N. Rajkumar, L. Hammond, D. Krueger, L. Heim, and
M. Anderljung, “IDs for AI systems,” arXiv preprint
arXiv:2406.12137, 2024.

[11] A. Chan, K. Wei, S. Huang, N. Rajkumar, E. Per-
rier, S. Lazar, G. K. Hadfield, and M. An-
derljung, “Infrastructure for ai agents,” arXiv preprint
arXiv:2501.10114, 2025.

[12] T. South, S. Marro, T. Hardjono, R. Mahari, C. D.
Whitney, D. Greenwood, A. Chan, and A. Pentland,
“Authenticated delegation and authorized AI agents,”
arXiv preprint arXiv:2501.09674, 2025.

[13] R. Surapaneni, M. Jha, M. Vakoc, and T. Segal,
“Announcing the agent2agent protocol (A2A),” Google
Developers Blog, April 2025, accessed: 2025-04-
10. [Online]. Available: https://developers.googleblog.
com/en/a2a-a-new-era-of-agent-interoperability/

[14] X. Pan, J. Dai, Y. Fan, and M. Yang, “Frontier ai
systems have surpassed the self-replicating red line,”
arXiv preprint arXiv:2412.12140, 2024.

[15] P. Release, “Introducing apple intelligence for iphone,
ipad, and mac,” Introducing Apple Intelligence for
iPhone, iPad, and Mac, 2024, [Accessed 21-04-2025].

[16] M. McHugh-Johnson, “14 new things you can do with
pixel thanks to ai,” https://blog.google/products/pixel/
google-pixel-9-new-ai-features/, 2024, [Accessed 21-
04-2025].

[17] P. Note, “Qualcomm brings the best of on-device
AI to more smartphones with snapdragon 8s gen
3,” Qualcomm Brings the Best of On-Device AI to
More Smartphones with Snapdragon 8s Gen 3, 2024,
[Accessed 21-04-2025].

[18] N. Natarajan, J. Bradley, N. Sakimura, M. B.
Jones, and E. Jay, “Openid connect core 1.0 in-
corporating errata set 1,” https://openid.net/specs/
openid-connect-core-1 0.html, 2014, openID Founda-
tion.

[19] S. Cohen, R. Bitton, and B. Nassi, “Here comes
the AI worm: Unleashing zero-click worms that

https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://www.apple.com/newsroom/2024/06/introducing-apple-intelligence-for-iphone-ipad-and-mac/
https://www.apple.com/newsroom/2024/06/introducing-apple-intelligence-for-iphone-ipad-and-mac/
https://blog.google/products/pixel/google-pixel-9-new-ai-features/
https://blog.google/products/pixel/google-pixel-9-new-ai-features/
https://www.qualcomm.com/news/releases/2024/03/qualcomm-brings-the-best-of-on-device-ai-to-more-smartphones-wit
https://www.qualcomm.com/news/releases/2024/03/qualcomm-brings-the-best-of-on-device-ai-to-more-smartphones-wit
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html


target GenAI-powered applications,” arXiv preprint
arXiv:2403.02817, 2024.

[20] J. Katz and Y. Lindell, Introduction to Modern Cryp-
tography, Second Edition, 2nd ed. Chapman &
Hall/CRC, 2014.

[21] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic
curve digital signature algorithm (ecdsa),” Interna-
tional journal of information security, vol. 1, pp. 36–
63, 2001.

[22] B. Harris and L. Velvindron, “RFC 8709: Ed25519 and
ed448 public key algorithms for the secure shell (SSH)
protocol,” USA, 2020.

[23] M. J. Dworkin et al., “SHA-3 standard: Permutation-
based hash and extendable-output functions,” 2015.

[24] H. Krawczyk and P. Eronen, “HMAC-based Extract-
and-Expand Key Derivation Function (HKDF),” RFC
5869, May 2010, https://datatracker.ietf.org/doc/html/
rfc5869.

[25] E. Barker, “Recommendation for Key Management,
Part 1: General (Revision 5),” National Institute of
Standards and Technology, NIST Special Publication
800-57 Part 1 Rev. 5, May 2020, provides foundational
guidance on cryptographic key lifecycle management,
including cryptoperiod determination and key rotation
practices. [Online]. Available: https://doi.org/10.6028/
NIST.SP.800-57pt1r5

[26] D. J. Bernstein, “Curve25519: New diffie-hellman
speed records,” in Public Key Cryptography - PKC
2006, M. Yung, Y. Dodis, A. Kiayias, and T. Malkin,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 207–228.

[27] A. Langley, M. Hamburg, and S. Turner, “Elliptic
Curves for Security,” RFC 7748, Jan. 2016. [Online].
Available: https://www.rfc-editor.org/info/rfc7748

[28] S. Boeyen, S. Santesson, T. Polk, R. Housley,
S. Farrell, and D. Cooper, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” RFC 5280, May 2008. [Online].
Available: https://www.rfc-editor.org/info/rfc5280

[29] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu,
C. Li, D. Liu, F. Huang, H. Wei, H. Lin, J. Yang, J. Tu,
J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang,
K. Lu, K. Bao, K. Yang, L. Yu, M. Li, M. Xue,
P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Xia, X. Ren,
X. Ren, Y. Fan, Y. Su, Y. Zhang, Y. Wan, Y. Liu,
Z. Cui, Z. Zhang, and Z. Qiu, “Qwen2.5 technical
report,” arXiv preprint arXiv:2412.15115, 2024.

[30] CAIDA, “The CAIDA archipelago monitor statistics,”
https://www.caida.org/projects/ark/statistics/, accessed
April 2025.

[31] M. Adorjan, “cloudping.co: Aws inter-region latency
monitoring,” 2025, accessed: 2025-04-18. [Online].
Available: https://github.com/mda590/cloudping.co

[32] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran,
K. Narasimhan, and Y. Cao, “React: Synergizing rea-
soning and acting in language models,” in International

Conference on Learning Representations, 2023.
[33] T. Schick, J. Dwivedi-Yu, R. Dessı̀, R. Raileanu,

M. Lomeli, E. Hambro, L. Zettlemoyer, N. Cancedda,
and T. Scialom, “Toolformer: Language models can
teach themselves to use tools,” Advances in Neural
Information Processing Systems, 2023.

[34] K.-T. Tran, D. Dao, M.-D. Nguyen, Q.-V. Pham,
B. O’Sullivan, and H. D. Nguyen, “Multi-agent collab-
oration mechanisms: A survey of llms,” arXiv preprint
arXiv:2501.06322, 2025.

[35] B. Yan, X. Zhang, L. Zhang, L. Zhang, Z. Zhou,
D. Miao, and C. Li, “Beyond self-talk: A
communication-centric survey of LLM-based multi-
agent systems,” arXiv preprint arXiv:2502.14321,
2025.

[36] A. Sempf, J. Toth, and S. v. d. Moosdijk, “Creating
asynchronous AI agents with Amazon Bedrock
— Amazon Web Services — aws.amazon.com,”
https://aws.amazon.com/blogs/machine-learning/
creating-asynchronous-ai-agents-with-amazon-bedrock/,
2025, [Accessed 21-04-2025].

[37] Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu,
L. Jiang, X. Zhang, S. Zhang, J. Liu et al., “Autogen:
Enabling next-gen llm applications via multi-agent
conversations,” in Conference on Language Modeling
(COLM), 2024.

[38] K. Royce, “AI agent-to-agent communications
protocol,” kossisoroyce.com, 2025, accessed: 2025-04-
10. [Online]. Available: https://kossisoroyce.com/2025/
03/28/ai-agent-to-agent-communications-protocol/

[39] X. Gu, X. Zheng, T. Pang, C. Du, Q. Liu, Y. Wang,
J. Jiang, and M. Lin, “Agent smith: A single image
can jailbreak one million multimodal llm agents expo-
nentially fast,” in International Conference on Machine
Learning, 2024.

[40] D. Lee and M. Tiwari, “Prompt infection: Llm-to-llm
prompt injection within multi-agent systems,” arXiv
preprint arXiv:2410.07283, 2024.

[41] A. Amayuelas, X. Yang, A. Antoniades, W. Hua,
L. Pan, and W. Y. Wang, “Multiagent collaboration at-
tack: Investigating adversarial attacks in large language
model collaborations via debate,” in Findings of the
Association for Computational Linguistics: EMNLP
2024, 2024, pp. 6929–6948.

[42] P. He, Y. Lin, S. Dong, H. Xu, Y. Xing, and H. Liu,
“Red-teaming llm multi-agent systems via communica-
tion attacks,” arXiv preprint arXiv:2502.14847, 2025.

[43] W. Yu, K. Hu, T. Pang, C. Du, M. Lin, and M. Fredrik-
son, “Infecting llm agents via generalizable adversarial
attack,” in Red Teaming GenAI: What Can We Learn
from Adversaries?, 2024.

[44] T. Ju, Y. Wang, X. Ma, P. Cheng, H. Zhao, Y. Wang,
L. Liu, J. Xie, Z. Zhang, and G. Liu, “Flooding spread
of manipulated knowledge in llm-based multi-agent
communities,” arXiv preprint arXiv:2407.07791, 2024.

[45] H. Triedman, R. Jha, and V. Shmatikov, “Multi-

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc5280
https://www.caida.org/projects/ark/statistics/
https://github.com/mda590/cloudping.co
https://aws.amazon.com/blogs/machine-learning/creating-asynchronous-ai-agents-with-amazon-bedrock/
https://aws.amazon.com/blogs/machine-learning/creating-asynchronous-ai-agents-with-amazon-bedrock/
https://kossisoroyce.com/2025/03/28/ai-agent-to-agent-communications-protocol/
https://kossisoroyce.com/2025/03/28/ai-agent-to-agent-communications-protocol/


agent systems execute arbitrary malicious code,” arXiv
preprint arXiv:2503.12188, 2025.

[46] R. M. S. Khan, Z. Tan, S. Yun, C. Flemming, and
T. Chen, “Agents Under Siege: Breaking pragmatic
multi-agent llm systems with optimized prompt at-
tacks,” arXiv preprint arXiv:2504.00218, 2025.

[47] “Model context protocol,” https://
modelcontextprotocol.io/, 2025, [Accessed 26-03-
2025].

[48] E. Debenedetti, I. Shumailov, T. Fan, J. Hayes, N. Car-
lini, D. Fabian, C. Kern, C. Shi, A. Terzis, and
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APPENDIX

A. Agent-Interaction Task Details

We implement our LLM-agent using the smolagents li-
brary [50], specifically leveraging the CodeAgent class. This
class enables agents to write and execute Python code during
their reasoning process, significantly reducing the number
of interactions required with the user—which, in our setup,
is another agent. To support autonomous agent-to-agent
communication, we modify the system prompts provided
to each agent, tailoring the instructions slightly based on
whether the agent is in the initiating or receiving role.

To emulate realistic tool usage, we implement database-
backed services for email, calendar, and document read/write
operations. For the email and calendar tools, we implement
end-to-end functionality: sending an email or calendar invite
causes the content to actually appear in the recipient’s inbox
or calendar. This stands in contrast to recent agent-agent
interaction work, which typically simulates tool use via
another LLM rather than through explicit, stateful updates.
We initialize each user profile (and corresponding agent)
with synthetic data adapted from Abdelnabi et al. [51],
extending it as needed to suit the scope of our tasks.

Each task (such as one agent requesting another to find a
common meeting time) spawns a fresh instance of the agent
class. While the underlying LLM remains the same across
tasks, no prior context or conversation history is shared

between them. This ensures a clean isolation layer between
tasks, without introducing any additional overhead.
Calendar. In this task, one agent contacts another to sched-
ule a meeting on a specific date. Both agents inspect their
respective calendars to determine availability, negotiate a
mutually agreeable time, and then create a calendar event.
Task success is defined by the following criteria:

1) the calendar invite appears in both agents’ calendars
for the correct duration, listing both as attendees,

2) there are no scheduling conflicts with pre-existing
events, and

3) the meeting is scheduled for a future date and time.
We use GPT-4.1-mini as the LLM backbone for this task.
The full interaction trace is shown in Figure 7.
Email. In this task, one agent reaches out to another for help
compiling information to submit an expense report. Both
agents search their respective inboxes for expenses related to
a shared event. The receiving agent extracts relevant entries
and sends them to the initiator, who combines the results and
submits a final report using a tool-call. We evaluate success
based on:

1) whether the total amount submitted matches the ex-
pected value (as all data is synthetic and fully known),

2) whether both users are listed as participants in the
expense report, and

3) whether no extraneous users are included.
We use GPT-4.1 as the LLM backbone for this task. The
complete interaction is provided in Figure 8.
Writing. In this task, two agents collaborate on writing a
blog post about the privacy implications of AI. Each agent
represents a user with expertise in either law or machine
learning. They begin by reading existing blog posts associ-
ated with their respective users and then engage in a multi-
step writing process to produce a unified article. Agents are
encouraged to both internally reflect and externally revise
across multiple interaction rounds. Once the final blog post
is agreed upon, one of the agents uses a tool-call to save the
document under a specified filename. Success is measured
by whether the blog post is saved correctly with the expected
filename. We use Qwen2.5-72B-Instruct [29] as the LLM
backbone. Due to the length of messages involved (often
exceeding 2000 words), we omit the full example here.
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Agent B

Let’s find some time to discuss our NDSS submission. Are you available on Tuesday for a 30-
minute meeting? After we have found a common time (please check the time with me before
booking), schedule the meeting and send me an invite.

Agent A

I am available for a 30-minute meeting on Tuesday, April 22, 2025, from 9:00 AM to 9:30
AM. Does this time work for you? Please confirm before I schedule the meeting.

Agent B

I am not available at 9:00 AM to 9:30 AM on Tuesday, April 22, 2025. However, I am available
from 12:00 PM to 12:30 PM on the same day. Does this time work for you?

Agent A

I am not available at 12:00 PM to 12:30 PM on Tuesday, April 22, 2025. However, I am
available from 2:00 PM to 2:30 PM on the same day. Does this time work for you? Please
confirm before I schedule the meeting.

Agent B

I am available from 2:00 PM to 2:30 PM on Tuesday, April 22, 2025. Please confirm if this
time works for you and provide your email address so I can schedule the meeting.

Agent A

Yes, I am available for the meeting on Tuesday, April 22, 2025, from 2:00 PM to 2:30 PM.
Please go ahead and schedule the meeting and send the invite.

Agent B

Please provide your email address so I can add you as a participant and send the meeting invite
for the NDSS submission discussion on Tuesday, April 22, 2025, from 2:00 PM to 2:30 PM.

Agent A

My email address is <REDACTED>. Please use it to add me as a participant and send the
meeting invite for the NDSS submission discussion on Tuesday, April 22, 2025, from 2:00 PM
to 2:30 PM.

Agent B

The meeting for the NDSS submission discussion has been scheduled on Tuesday, April 22,
2025, from 2:00 PM to 2:30 PM. You have been added as a participant, and the invite has been
sent to <REDACTED>.

Agent A

<TASK_FINISHED>

Fig. 7: Example dialog between agents for the calendar-scheduling task, using GPT-4.1-mini
(gpt-4.1-mini-2025-04-14) as the backend LLM. Contact information mentioned during interactions is
redacted for visualization.



Agent B

Can you please check your emails for any expenses for our recent trip for NerurIPS to New
Orleans from 03-01 to 03-03 Tell me what your expenses were (including hotel, travel, food,
etc.) and your email ID. I’ll also scan my emails for any expenses related to the trip, and submit
the combined expense report.

Agent A

Here are my expenses for the NeurIPS trip to New Orleans (03-01 to 03-03):
- Hotel: $500 (Hilton, 2 nights: 03-01 to 03-03)
- Food: $20 (Breakfast at Dumbo Gumbo, 03-01)
- Food: $50 (Dinner at Dumbo Gumbo, 03-01)
- Conference Registration: $1000 (NeurIPS workshop)
My email ID is: <REDACTED>

Agent B

The expense report for the NeurIPS trip to New Orleans (03-01 to 03-03) has been submitted
successfully. The report includes your provided expenses as well as additional receipts found
in my inbox (flight, extra meals, and a WH Smith purchase). The total submitted amount is
$2,140, and you (<REDACTED>) are listed as involved. If you need a detailed breakdown or a
copy of the report, let me know.

Agent A

Thank you for letting me know! I appreciate the update. If I need a detailed breakdown or a
copy of the report, I’ll reach out.

Agent B

<TASK_FINISHED>

Fig. 8: Example dialog between agents for the expense-report task, using GPT-4.1 (gpt-4.1-2025-04-14) as the
backend LLM. Contact information mentioned during interactions is redacted for visualization.
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