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Abstract—Differential Privacy (DP) enables privacy-preserving
data analysis by adding calibrated noise. While recent works
extend DP to curved manifolds (e.g., diffusion-tensor MRI, social
networks) by adding geodesic noise, these assume uniform data
distribution. This assumption is not always practical, hence these
approaches may introduce biased noise and suboptimal privacy-
utility trade-offs for non-uniform data. To address this issue, we
propose Conformal-DP that utilizes conformal transformations on
Riemannian manifolds. This approach locally equalizes sample
density and redefines geodesic distances while preserving intrinsic
manifold geometry. Our theoretical analysis demonstrates that
the conformal factor, which is derived from local kernel density
estimates, is data density-aware. We show that under these
conformal metrics, Conformal-DP satisfies ε-differential privacy
on any complete Riemannian manifold and offers a closed-
form expected geodesic error bound dependent only on the
maximal density ratio, and not global curvature. We show
through experiments on synthetic and real-world datasets that
our mechanism achieves superior privacy-utility trade-offs, par-
ticularly for heterogeneous manifold data, and also is beneficial
for homogeneous datasets.

I. INTRODUCTION

With the exponential growth of data containing significant
privacy-sensitive information, we are increasingly facing the
critical challenge of data sharing for analytics or training AI
models in a privacy-preserving manner. These challenges are
further exacerbated when such data reside in non-Euclidean
spaces, such as manifolds or graph-structured domains, where
traditional linear algebraic methods fall short, e.g., medical
imaging data such as MRI or CT scans [1]–[3] often represent
anatomical structures that conform to curved surfaces or volu-

metric manifolds. Similarly, flat Euclidean metrics cannot fully
capture geographical data such as terrain elevation models or
climate patterns on a spherical Earth [4], [5]. In addition, such
data are challenging for model training and inference in the
computer vision area [6]–[8] which are prone to generate only
locally effective yet globally suboptimal results. Therefore,
these datasets call for more advanced modeling techniques,
such as geometric- or manifold-based methods. These data
may contain sensitive information; thus, enabling safe sharing
of such data with formal privacy guarantees is necessary.

Differential Privacy (DP), first introduced by Dwork et
al. in [9], has emerged as a gold standard for data privacy,
in particular, for sharing sensitive datasets for analysis, be-
cause of its rigorous mathematical foundations in guaranteeing
privacy by limiting the risk of re-identification of individu-
als/samples in a dataset. Several variations and enhancements
of DP mechanisms have been proposed in the literature, from
standard DP [9]–[11] to Rényi-DP [12], Concentrated-DP
[13] and Random-DP [14], that allow generating differentially
private datasets suitable for privacy-preserving data analytics
or AI model development. DP mechanisms involve adding
perturbations to transform the original data to protect privacy.
Most of these DP mechanisms mainly focus on linear or
Euclidean data and are not suitable for non-linear data [15]–
[17].

Existing works by Reimherr et al. in [18] and Utpala et
al. in [19] have extended Laplacian and Gaussian DP to
Riemannian manifolds, respectively. The former demonstrates
that it is possible to design DP mechanisms strictly relying on
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intrinsic geometric distances and volumes defined naturally on
the manifolds, while the latter shows a significant improve-
ment of Gaussian DP on manifolds compared to Laplacian
perturbations. However, these mechanisms rely on a uniform
privacy perturbation across the manifold M regardless of the
data density. We argue that this hampers utility of the DP
mechanism when there is a heterogeneous data distribution,
while not offering significant levels of privacy preservation.
Consider a dataset with heterogeneous data density acrossM,
where dense and sparse regions of the data would intrinsically
require different levels of perturbation to guarantee their
contribution to the dataset and privacy needs, as discussed in
existing works [20]–[23].

In this paper, we propose a novel data-density-aware dif-
ferential privacy mechanism to address the above research
questions by leveraging local data density to control the
addition of noise. An overview of the mechanism is in Figure
1. Our key contributions are as follows:

• We propose a Conformal DP mechanism that applies
different levels of perturbations to different data subsets
by accounting for their data density.

• We utilize Conformal Transformation [24], [25], [25],
[26], [26], [27], an intrinsic geometric tool in Riemannian
geometry, to encode data density in the underlying metric
to guide the privacy perturbation.

• We construct a novel smoothed conformal factor that
reshapes the local geometry of the manifold, ensuring
that high data density regions are compressed while low
data density regions are expanded.

• We present theoretical results to ensure soundness of the
mechanism by showing formally a bound on privacy loss
using bi-Lipschitz continuity between the original and
conformal geodesic distances.

• We demonstrate experimental results to show that our
data density-aware approach yields better privacy-utility
tradeoffs for manifold data, and simultaneously unifies
conventional DP methods with manifold-valued exten-
sions.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of foundational concepts and
background for differential privacy (DP), Riemannian geom-
etry, and conformal transformations, while introducing key
notations used throughout the work in Table I. Section III
presents the details for constructing of the conformal factor
on the Riemannian manifoldM via conformal transformation
and related conformal metrics. Building on the conformal
factor, Section IV introduces our proposed Conformal-DP
mechanism, a novel privacy-preserving method that leverages
geometric properties of the manifold. Section V demonstrates
the theoretical analysis of the privacy-utility trade-offs inherent
in our proposed mechanism, quantifying its optimality under
bounded curvature constraints. Section VI and VII develops
the algorithms and reports on experimental results that validate
the theoretical results using both synthetic and real-world
datasets, compare our approach with existing techniques, and

TABLE I: Key notations used in this paper.

Original Riemannian Manifolds Notations

M A compact Riemannian manifold.
d Dimension of manifold M.
g Original Riemannian metric on M.
⟨·, ·⟩m Riemannian metric at point m on M.
γ(t) A smooth path or geodesic connecting points on M.
∥γ̇(t)∥γ(t) Norm of the velocity vector of γ at point γ(t).
ρg(x, y) Geodesic distance between points x, y under original metric g.
TmM Tangent space at m under g.
inj(M) Injectivity radius of the manifold M.
µg , dµg Volume measure associated with / induced by metric g.
gij Components of the Riemannian metric tensor g in local coordinates.
Br(m) Geodesic ball with central point m with radius r under metric g.
∆g Laplace–Beltrami (LB) operator associated with metric g.
gµν Metric tensor in a d-dimensional space.
ηµν Flat metric (Euclidean or Minkowski) in conformal transformations.
εµ(x) Infinitesimal parameter representing a small conformal transformation.

Conformal Metric Notations

g∗ Conformal metric defined as g∗ = e2σg.
ρg∗(x, y) Geodesic distance between points x, y under conformal metric g∗.
µg∗ Volume measure associated with conformal metric g∗.
σ(x) Conformal scaling function, solved from PDEs.
ϕ(x) Conformal factor defined as ϕ(x) = e2σ(x).
ϕmin, ϕmax Lower and upper bounds of conformal factor ϕ(x).
λ∗ Rate parameter of the conformal Laplace mechanism.

Differential Privacy Mechanism Notations

∆ Global sensitivity under original metric g.
∆∗(D) Local sensitivity under conformal metric g∗ given dataset D.
fdata(x) Kernel density function on M.
ε Privacy budget parameter
A(·) A random mechanism.
LD,D′(z) Privacy loss random variable comparing datasets D and D′.
P∗
r(· | ·) Probability Density Function with respect to the measure µg∗

η(D) Output summary (Fréchet mean) of dataset D on M.
ηp(D) Privatized output summary (Fréchet mean) of dataset D on M.

show the mechanism’s practicality in balancing privacy guar-
antees with utility preservation. Finally, we conclude the paper
with a discussion of use cases, limitations, and future research
directions.

II. PRELIMINARIES AND BACKGROUND

In this section, we present basic notations and an overview
of key concepts related to Differential Privacy, Riemannian
manifolds, and conformal transformation. For more details,
we refer the readers to Dwork et al. [9], [11], [28] for
DP, and to Reimherr et al. and Jiang et al. [18], [29] for
extensions of DP over Riemannian manifolds. Further, for
more details on the Riemannian manifolds and the conformal
space transformation, there are several works such as [24],
[27], [30], [31] that provide theoretical background.

A. Differential Privacy

Differential privacy (DP) is a rigorous statistical framework
designed to protect individual data entries while allowing
meaningful analysis of sensitive datasets. Let X be the domain
of all possible user records, and let D ∈ Xn be a dataset
of n records. A dataset D′ ∈ Xn is called an adjacent (or
neighboring) dataset of D if D and D′ differ in at most one
record. A randomized mechanism M , which takes a dataset
D as input and outputs a result in some range R, is said to
be ε-differentially private (ε-DP) if, for every pair of adjacent
datasets (D,D′) that differ in only one element and every
measurable subset S ⊆ R, the following holds



Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S]. (1)

Here, the privacy loss is quantified by the privacy budget ε:
the smaller the value of ε, the better the privacy achieved. The
probabilities are taken over the randomness of the mechanism
M , which typically injects random noise or employs sampling
to limit the impact of any single record on the output. In
practice, analyses often involve multiple differentially private
computations.

In addition, geometrical optimization for DP mechanisms
has also been explored. We build on a line of work on
Differential Privacy over Riemannian manifolds [32]–[35].
Reimherr et al. in [18] first propose ε-DP on Riemannian
manifolds; these efforts highlight the promise of Riemannian
DP in contexts where the data naturally lie on curved spaces.
By leveraging the intrinsic geometry of the manifold, one can
inject noise while respecting local curvature and preserving
important geometric structures. We can generalize classical DP
mechanisms to curved domains, e.g., Laplace DP mechanisms
[18], [36] or Gaussian DP [29], [37] mechanisms.

B. Riemannian Geometry

Here, we provide an overview of relevant background on
Riemannian geometry [2], [32]–[35].
Riemannian Manifolds. Throughout the paper, we useM to
represent a d-dimensional complete Riemannian manifold. For
each point m ∈M, let TmM be the tangent space at m. The
manifoldM is equipped with a smoothly varying Riemannian
metric: {

⟨·, ·⟩m : m ∈M
}
, (2)

Which provides an inner product on TmM for every m ∈M.
Geodesics and Riemannian Distance. Given two points
m1,m2 ∈ M, consider a smooth path γ : [0, 1] → M with
endpoints γ(0) = m1 and γ(1) = m2. The velocity vector
γ̇(t) of this path lies in the tangent space Tγ(t)M. The length
of γ is defined by

L(γ) =

∫ 1

0

∥γ̇(t)∥γ(t) dt =
∫ 1

0

(
⟨γ̇(t), γ̇(t)⟩γ(t)

) 1
2
dt. (3)

The Riemannian distance ρ between m1 and m2 is then given
by

ρ
(
m1,m2

)
:= inf

γ:γ(0)=m1

γ(1)=m2

L(γ). (4)

Any path γ that realizes this infimum is called a geodesic.
A geodesic is the natural generalization of a straight line in
Euclidean space for a curved Riemannian manifold.
Exponential Map and Injectivity Radius. A key tool
for relating the manifold M to its tangent spaces is the
exponential map, expm : TmM → M. If a unique geodesic
γ from m1 to m2 exists, then expm1

(
γ̇(0)

)
= m2. Under

completeness property, expm is locally a diffeomorphism at
each m. Its local inverse, called the logarithm map exp−1

m ,

is well-defined in a suitable neighborhood of m. The largest
radius of such a neighborhood is called the injectivity radius
at m. The injectivity radius of M, denoted inj(M), is the
infimum of these radii over all points m ∈M.

Riemannian Volume Measure. The Riemannian metric on
M induces a natural volume measure µ. In local coordinates
given by a chart:

φ : U ⊂M → φ(U) ⊂ Rd, (5)

With components:

gij = ⟨∂i, ∂j⟩m, (6)

Where {∂i} are the coordinate basis vectors on TmM. In an
n-dimensional Riemannian manifold, one has the canonical
volume form dµg . In local coordinates x1, x2, . . . , xn, where:

g = gij dx
i ⊗ dxj , (7)

And the volume form is

dµg =
√

det(gij) dx
1 ∧ · · · ∧ dxn. (8)

where ∧ is the wedge product from exterior calculus. Globally,
this form is well defined (up to orientation) using a partition
of unity1, which defines the volume measure µ on M.

C. Conformal Transformation over Riemannian Manifolds

A conformal transformation (conformal diffeomorphism) is
a smooth map f : (M, g)→ (M∗, g∗) that preserves angles;
equivalently, it rescales the metric by a positive function. In
particular,

g∗ = e2σg, σ :M→ R,

where σ is the conformal factor [24], [27], [30]. WhenM∗ =
M, f is a conformal symmetry of (M, g) [38].

The angle–preserving condition implies that lengths are
stretched or contracted by e2σ(x), yet the inner product is
uniformly scaled, so all angles between tangent vectors (and
thus between smooth curves) remain unchanged [39]. If e2σ is
constant, f is homothetic, scaling all lengths uniformly [40].
Thus, conformal diffeomorphisms keep the qualitative shape of
infinitesimal figures intact while altering distances; they map
the geometry of M to that of M∗ up to a position-dependent
scale factor. Metrics linked by g∗ = e2σg lie in the same
conformal class [24].

We adopt g∗ = e2σg because (i) σ is obtained from the
elliptic PDE of Section III, guaranteeing existence, uniqueness,
and smoothness, and (ii) This multiplicative form gives explicit
bi-Lipschitz bounds on distances and volumes, crucial for the
privacy–utility analysis in Section IV.

1A partition of unity in M that is a collection of smooth non-negative
functions {φi} whose sum is identically 1 in M. Each function φi has
support contained in a coordinate chart, allowing local data to be smoothly
extended to the whole manifold. For details, see [35, Chapter 2].



III. CONSTRUCTING DATA DENSITY AWARE CONFORMAL
METRICS

In this section, we construct conformal factor ϕ and asso-
ciate metrics (conformal geodesic distance, conformal volume
metric) on the Riemannian manifold M. These constructs
serve as the foundational components for our subsequent DP
mechanism design. The remainder of this section is organized
as follows. In Section III-A, we establish the existence and
uniqueness of the conformal scaling function σ(x) by solving
the Poisson equation ∆gσ(x) = −fdata (x). Using σ(x), we
then define a bounded, density-aware conformal factor ϕ(x) =
e2σ(x) and the conformal metric g∗ = e2σg. Subsequently,
Sections III-B and III-C analyze the relationship between the
original and conformal metrics, proving that the conformal
transformation preserves bi-Lipschitz bounds and consistency
for probability measures.

A. Construction of the Conformal Factor

Let M be a d-dimensional complete Riemannian manifold
equipped with Riemannian metric g : {⟨·, ·⟩m : m ∈ M}
and Borel σ-algebra [41], [42]. To define σ(x) on M, we
adopt a generalized approach with the Laplace–Beltrami (LB)
operator ∆g . Specifically, we consider σ(x) as a solution to a
Poisson-type PDE:

∆g σ(x) = −fdata,

where fdata encodes the underlying data density via KDE
[43]; ∆g = divg∇ [44]. This PDE naturally ties σ(x) to the
geometric properties of M to achieve the desired curvature
under a conformal transformation. Assume M is compact
without boundary [45]. Under these conditions, standard ellip-
tic regularity theory ensures that if fdata(x) is smooth, then
σ(x) is also smooth [46], [47].

Define the conformal factor ϕ(x) = e2σ(x). It works as
follows: In denser regions, this factor is smaller, contracting
distances. In sparser regions, the factor is larger (up to a
maximum), stretching distances This conformal adjustment
provides varying utility based on data density, introducing
greater metric distortion in low-density, potentially more sen-
sitive areas. The following two lemmas give the prerequisites
for defining the conformal factor.

Lemma III.1 ( [48], [49]). Let (M, g) be a closed Rieman-
nian manifold. Denote a smooth function H ∈ C∞(M). If
∆gσ = H with σ ∈ C∞(M) and mean-zero H , then∫

M
H dµg =

∫
M

∆gσ dµg = 0.

Conversely, if
∫
M H dµg = 0, the Poisson equation ∆gσ =

H admits a smooth solution on compact manifolds [50].

Lemma III.2 ( [51]). Under the same setting, any two
solutions σ1, σ2 satisfy ∆g(σ1 − σ2) = 0; hence σ1 − σ2

is harmonic.

By the maximum principle on a compact manifold, a
harmonic function is constant, so solutions are unique up to

an additive constant. Fixing
∫
M σ dµg = 0 yields a canonical

solution.
H = −(fdata − c),

where c = 1
vol(M)

∫
M fdata dµg . Lemma III.1 guarantees a

smooth solution σ, and Lemma III.2 ensures uniqueness. Set

ϕ(x) = e2σ(x) > 0, g∗ = ϕ g.

Elliptic regularity implies σ, ϕ ∈ C∞, so g∗ is a smooth
Riemannian metric as well.

Mirshani et al. [52] observed that sensitivity depends on
the noise distribution; our conformal-DP mechanism rescales
M and applies geometry-consistent noise.2 The preceding
lemmas motivate the following theorem, which demonstrates
that a general second-order, strongly elliptic operator admits
a smooth solution for the conformal scaling function σ. This
solution produces a strictly positive conformal factor ϕ = e2σ ,
ensuring that the rescaled metric g∗ = ϕ · g is well defined
and smooth.

Theorem III.3. Let (M, g) be a smooth Riemannian man-
ifold and Ωg a second-order, strongly elliptic operator with
sufficiently smooth coefficients. Let H ∈ C∞(M × R) be
a prescribed smooth nonlinear function. Then the nonlinear
equation

Ωg[σ](x) = H
(
x, σ(x)

)
, ∀x ∈M,

has a smooth solution σ ∈ C∞(M) (the conformal scaling
function). Consequently, the conformal factor

ϕ(x) := e2σ(x) > 0

is smooth, and the conformal metric

g∗(x) := e2σ(x) g(x) = ϕ(x) g(x)

is also smooth and positive-definite on M.

Proof. We present a detailed proof in Appendix A.

Boundaries of the Conformal Factor: To prevent the
conformal factor function ϕ(x) from being infinite or prevent
it from degenerating on the manifold M, further to produce
extreme conformal metric g∗, we propose Theorem III.4 to
give the upper and lower bounds for the conformal factor ϕ(x).

Theorem III.4 (Upper and Lower Bounds). Let Theorem III.3,
Lemma III.1 and Lemma III.2 hold, denote λ1 > 0 be
the smallest nonzero eigenvalue of −∆g (i.e., its spectral
gap [53]). Define fmin = minx∈M fdata(x), fmax =
maxx∈M fdata(x). Then the following bounds hold:

1) Operator norm bound:

∥σ∥L∞(M) ≤
1

λ1
∥fdata∥L∞(M).

2) Extremal bounds:

− fmax

λ1
≤ σ(x) ≤ − fmin

λ1
for all x ∈M.

2There is rarely an explicit form for ∆g ; we discretize ∆g and H over
D ⊂ Mn to solve for σ (see and Table II).



Proof. We present a detailed proof in Appendix B.

Theorem III.4 guarantees the following bounds for the con-
formal factor ϕ(x): e2(−fmax/λ1) ≤ ϕ(x) ≤ e2(−fmin/λ1).

B. Conformal Geodesic Distance

After constructing the conformal factor, we start to obtain
other key components. Consider the local coordinates given
by {x1, . . . , xn}. By the Hopf-Rinow theorem [35, Theo-
rem 6.19], this means that for every pair of points, there exists
a geodesic that minimizes the distance between them [18].
For a differentiable curve γ : [a, b] → M, such that γ(t) =(
γ1(t), . . . , γn(t)

)
, the length of this curve under the confor-

mal metric g∗ is given by: Lg∗(γ) =
∫ b

a

√
g∗γ(t)(γ̇(t), γ̇(t))dt.

Note that g∗(x) = ϕ(x)g(x), it follows that g∗γ(t)(γ̇(t), γ̇(t)) =
ϕ(γ(t))gγ(t)(γ̇(t), γ̇(t)). Therefore, we have the following.

Lg∗(γ) =

∫ b

a

√
ϕ(γ(t))

√
gγ(t)(γ̇(t), γ̇(t))dt. (9)

Consider points x, y ∈ M, the geodesic distance under the
conformal metric g∗ is as follows:

ρg∗(x, y) = inf
γ:[a,b]→M

γ(a)=x,γ(b)=y

Lg∗(γ), (10)

This means among all differential curves γ from x to y, we
take the minimum value of Lg∗(γ). Combining Eq. (9) and
Eq. (10), we have:

ρg∗(x, y) = inf
γ(a)=x,γ(b)=y

∫ b

a

√
ϕ(γ(t))

√
gγ(t)(γ̇(t), γ̇(t))dt.

(11)

It is important to note that, in general, the geodesic distance
in the conformal metric cannot be expressed in a simple closed
form using ρg(x, y) because the geodesics in g∗ differ from
those in g unless the conformal factor ϕ is constant. Since ϕ is
continuous on the compact manifoldM, it attains a minimum
ϕmin > 0 and a maximum ϕmax (extreme-value theorem [54]).
Based on the Uniform Boundedness Principle provided by the
following lemma in existing work:

Lemma III.5 ( [55]). There exist constants ϕmin =
inf

x∈M
ϕ(x) > 0 and ϕmax = sup

x∈M
ϕ(x) > 0, such that for every

x ∈M, the inequality ϕmin ≤ ϕ(x) ≤ ϕmax holds uniformly.

We then can compare the lengths of arbitrary curves γ :
[0, 1]→M under original and conformal metrics: (M, g) and
(M, g∗). Based on Eq. (9), if t ∈ [0, 1],

√
ϕmin ≤

√
ϕ(γ(t)) ≤√

ϕmax, we present the Corollary III.6 based on Lemma III.5
and Eq. (11) and bi-Lipschitz comparison [56]:

Corollary III.6. For a complete Riemannian manifold (M, g)
and a conformal metric g∗ = ϕ(x)g(x), if ϕ(x) ∈
[ϕmin, ϕmax], for all (x, y) ∈M, there exists√

ϕminLg(γ) ≤ Lg∗(γ) ≤
√

ϕmaxLg(γ)

, where Lg(γ) =
∫ b

a

√
gγ(t)(γ̇(t), γ̇(t))dt. Thus, for every pair

of arbitrary points in (x, y) ∈M, the geodesic distance under
g∗ and the geodesic distance under g satisfy the following
bilateral estimates:√

ϕminρg(x, y) ≤ ρg∗(x, y) ≤
√

ϕmaxρg(x, y), for all x, y ∈M.
(12)

Proof. We present a detailed proof in Appendix C.

The above inequality relationships avoid explicitly solving
for the geodesic distance under the conformal metric (because
when the conformal factor σ is nonconstant, geodesics are
often difficult to find), but provide useful global distance
estimates. This will be used as key inequality equations related
to sensitivity or distance to analyze differential privacy.

C. Conformal Volume Transformation

Similar to geodesic distance, the Riemannian volume µ
changes under a conformal transformation [57]. Schoen et al.
[25] and Topping et al. [58] study how conformal changes
in the metric affect volume elements and curvature. In local
coordinates {x1, . . . , xn}, the Riemannian volume is

dµg(x) =
√
det

(
gij(x)

)
dx1 ∧ · · · ∧ dxn,

where [gij(x)]
n
i,j=1 is the metric matrix. Under the conformal

transformation of Section II-C, the new metric matrix is

[g∗ij(x)]
n
i,j=1 = ϕ(x) [gij(x)]

n
i,j=1,

so that

det
(
g∗ij(x)

)
= det

(
ϕ(x) gij(x)

)
= ϕ(x)n det

(
gij(x)

)
.

Hence the conformal volume is represent as:

dµg∗(x) =
√
det

(
g∗ij(x)

)
dx1 ∧ · · · ∧ dxn

=
√
ϕ(x)n det

(
gij(x)

)
dx1 ∧ · · · ∧ dxn

= ϕ(x)
n
2

√
det

(
gij(x)

)
dx1 ∧ · · · ∧ dxn

= ϕ(x)
n
2 dµg(x).

(13)

The next section presents our proposed Conformal-DP mecha-
nism based on conformal factor, conformal geodesic distance,
and conformal volumes.

IV. CONFORMAL-DP MECHANISM

Existing works have demonstrated that achieving ε-DP
is feasible in measure spaces equipped with the Borel σ-
algebra [41], [42]. Building on this theoretical foundation, we
construct a Laplacian-type DP mechanism by incorporating the
conformal factor ϕ into the geometry of the underlying space.
We use ϕ to induce the conformal transformation of the base
metric, dynamically modulating the spatial distribution of the
noise.

Because ϕ is smooth and varies continuously on the compact
manifold, the output of the perturbation mechanism remains
aligned with the manifold’s shape at every point. We give an
overview of our Conformal-DP mechanism in Fig.1.
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Fig. 1: An overview of our proposed Conformal-DP mechanism.

A. Topological Analysis

Let M be a compact and smooth Riemannian manifold of
dimension n and it is equipped with: 1) Riemannian metric
g; 2) Data-Density-Aware conformal metric g∗ = ϕ · g, where
the conformal factor ϕ : M → R > 0. The Riemannian
manifolds (M, g) and (M, g∗) share the same underlying
smooth topological structure. Specifically, the identity map
idM : (M, g) → (M, g∗) is a diffeomorphism [24]–[26],
ensuring that any point z in the topological manifold M is
identified with itself, independently of g or g∗ for all z ∈M,
so that the topology and smooth structure of M remain
unchanged. The metrics g and g∗ differ only in their geometric
measurements (e.g., geodesic distances and volumes) on M.
For example, consider a stochastic output m⃗ ∈ M calculated
under the metric g∗. Because m⃗ is fundamentally a point in the
topological manifold M, no additional ”mapping” is required
to interpret m⃗ in (M, g). The difference arises only in the way
the geometric properties of m⃗ are quantified under g versus
g∗.

B. Distribution Analysis

Building on the topological foundations of Section IV-A,
consider a dataset D = {x1, . . . , xn} defined on the compact
Riemannian manifold (M, g). Let f be a statistical summary
for the dataset on M, where D ⊆ Br(η) and

Br(η) =
{
x ∈M | ρg(η, x) < r

}
,

with ρg denoting geodesic distance under metric g. Thus, the
same logic happens under the conformal metric g∗ = ϕ · g,
the geodesic ball becomes

B∗
r (η) =

{
x ∈M | ρg∗(η, x) < r

}
,

where ρg∗ is the conformal geodesic distance; these balls
inherently have finite volume.

However, we do not calculate f(D) under the conformal
metric, since g∗ is used solely for noise distribution rather
than redefining the statistic itself. The non-privatized summary
remains f(D) on (M, g). We use ρg∗ and µg∗ to control the

spatial distribution of noise and obtain a randomly perturbed
fp. This simplifies control over normalization constants for
distributions supported in B∗

r (η). Specifically,∫
B∗

r (η)

exp
[
−λ∗ ρg∗(η, x)

]
dµg∗(x)

remains finite without additional curvature constraints. Conse-
quently, on compact manifolds, one can localize noise within
B∗

r (η) with exponential decay in ρg∗(η, x) while maintaining
proper normalization. To precisely articulate its impact on
bounding the sensitivity of the statistical summary under data
perturbations, we adopt Definition IV.1 from [18]:

Definition IV.1. (Reimherr et al. [18]) The data D ⊆ Br (m0)
for some m0, where r < r∗ := 1

2 min{injM, π
2κ

−1/2} and
κ > 0 is an upper bound on the sectional curvatures of M”,
consider two datasets D = {x1, . . . , xn−1, xn} and D′ =
{x1, . . . , xn−1, x

′
n} differing by only one element. If x̄ and

x̄′ are the two sample statistical summaries of D and D′

respectively, then

ρ
(
x̄, x̄′) ≤

2r(2− h(r, κ))

nh(r, κ)
, h(r, κ) =

{
2r

√
κ cot(

√
κ2r), κ > 0,

1, κ ≤ 0.

Therefore, ∆ := 2r(2−h(r,κ))
n,h(r,κ) is an upper bound on the

change in the statistical summary (Here we choose the most
suitable metric Fréchet mean η) when a single data point is
replaced. We now extend Definition IV.1 to the conformal
metric. To utilize conformal geometric properties, we build an
unnormalized Laplace-type kernel K̃∗

r based on heat kernel
theorem [59] that is strictly positive inside the ball B∗

r (η) of
radius r centered at Fréchet mean η under the distance ρg∗

and zero elsewhere:

K̃∗
r (z | η) = exp {−λ∗ρg∗(η, z)}1{ρg∗ (η,z)<r}, (14)

where z is a variable in B∗
r (η), and λ∗ > 0 is an adjustable

Laplace rate parameter under conformal metric g∗ (we will
define the noise scale parameter later). We refer to K̃∗

r (· | η)
as an unnormalized kernel because

∫
M K̃∗

r (z | η)dµg∗(z) is in
general finite, but not normalized to 1. In order to transform



K̃∗
r to a probability density for our proposed approach, we

compute the normalization constant:

Cr (η, λ
∗) =

∫
M

K̃∗
r (z | η)dµg∗(z)

=

∫
B∗

r (η)

exp {−λ∗ρg∗(η, z)} dµg∗(z), z ∈ B∗
r ,

(15)
where the integral is effectively restricted to the ball B∗

r (η) =
{z : ρg∗(η, z) < r}. Next, we define the noise distribution on
B∗

r (η) as follows:

P∗
r(z | η) =

1

Cr (η, λ∗)

{
exp {−λ∗ρg∗(η, z)} , z ∈ B∗

r (η),

0, z /∈ B∗
r (η).

(16)
Thus, P∗

r(z | η) is now a proper probability density function
(pdf) with respect to the measure µg∗ . Equivalently, it defines
a probability measure Pη on the original metric (M, g).

Pη(S) =

∫
S

P∗
r(z | η)dµg∗(z), for all S ⊆M,

where S denotes a measurable set onM. We refer to P∗
r(z | η)

as the localized Laplace-type distribution centered at η under
the conformal metric g∗. With this distribution, we present
the following theorem that builds a geodesic-Laplace kernel
with conformal metrics, and provides the foundation for the
Conformal-DP mechanism A:

Theorem IV.2. Let ρg∗(·, ·) be the geodesic distance induced
by g∗ on M, and µg∗ be the associated Riemannian volume
measure with respect to g∗. Consider a fixed point η ∈M and
radius r > 0, and B∗

r (η) = {x ∈M | ρg∗(η, x) < r} be the
open geodesic ball of radius r centered at η under the metric
g∗. For a given rate parameter λ∗ > 0,

K̃∗
r (z | η) := exp [−λ∗ρg∗(η, z)]1{ρg∗ (η,z)<r}, z ∈M

be the unnormalized Laplace-type kernel, combining with (15),
we obtain the probability density on M with respect to the
measure µg∗ .

P∗
r(z | η) :=

K̃∗
r (z | η)

Cr (η, λ∗)

=


exp[−λ∗ρg∗ (η,z)]∫

B∗
r (η)

exp[−λ∗ρg∗ (η,u)]dµg∗ (u)
, z ∈ B∗

r (η),

0, z /∈ B∗
r (η).

(17)

Proof. We present a detailed proof in Appendix D.

By defining an exponentially decaying kernel supported
only on a geodesic ball B∗

r (η) and showing that its integral is
finite, it establishes that normalizing this kernel yields a valid
probability density. Thus, we obtain a density-aware localized
noise distribution that decays with the conformal distance ρg∗

around the Fréchet mean η.

C. Data-Density-Aware Perturbations

In this section, we propose the density-aware perturbation
method under the conformal metric g∗. Recall from Section
III-B, because ϕ(x) is determined by the dataset D, the
conformal geodesic distance ρg∗ will change depending on
the local data density. In the traditional scenario [18], the
global sensitivity is commonly defined as follows: if the
output centroids of adjacent datasets D and D′ are η(D) and
η(D′), then ρg (η(D), η (D′)) ≤ ∆; here, we denote ∆ as the
global sensitivity ofM, (original metric in our statement). To
formalize this sensitivity perspective under both the original
and conformal metrics, we first recall the classical Laplace
mechanism guarantee stated in the following definition:

Definition IV.3. ( [18]) Consider two adjacent datasets D and
D′, and let f : Xn →M be a summary with global sensitivity
∆. If ρ (f(D), f (D′)) ≤ ∆, then the Laplace mechanism
with footpoint f(D) and rate σ = 2∆/ε satisfies ε-differential
privacy. If the normalizing constant, Cn,σ , does not depend on
the footpoint, η, then one can take σ = ∆/ε.

For conformal metrics g∗, we care about what the upper
bound is on the central distance ρg∗ (η(D), η(D′)) between
adjacent datasets under g∗. Through Corollary III.6, we have:

ρg∗ (η(D), η(D′)) ≤
√

ϕmaxρg (η(D), η(D′)) =
√
ϕmax ·∆

(18)
To this end, we extend the global sensitivity ∆ on the

original metric to the conformal global sensitivity ∆∗ based
on the density of data on M; that is, for each data set D, we
define the sensitivity in the conformal metrics as follows:

∆∗(D) = sup
D′∈N (D)

ρg∗ (η(D), η (D′)) (19)

where N (D) represents the set of neighboring data sets of
D. As a result of η(D) possibly being located in different
high or low density areas of the distribution, ∆∗(D) will
also vary depending on the geometric properties of the data
distribution. According to Eq.(26) for D and D′ respectively:
P∗(z ∣∣ η(D), λ∗) and P∗(z ∣∣ η(D′), λ∗), define the
privacy loss random variable on the logarithmic scale [60]:

LD,D′(z) = ln
P∗(z | η(D), λ∗)

P∗(z | η(D′), λ∗)
. (20)

Under the conditions of Theorem IV.2, we propose Theorem
IV.4 as follows:

Theorem IV.4. For the two neighboring datasets D and D′,
suppose that the random mechanism A produces a random
output z in (M, g∗). We conclude that the mechanism A is
ε-DP if:

LD,D′(z) ≤ ε and LD′,D(z) ≤ ε, for all z ∈M,



and we obtain the following explicit form for LD,D′(z) by
combining (17) and (20),

LD,D′(z) = −λ∗[ρg∗(η(D), z)−ρg∗(η(D′), z)
]

+ ln
P
(
η(D′), λ∗)

P
(
η(D), λ∗

)
≤ ε.

(21)

Proof. We present a detailed proof in Appendix E.

In order to guarantee Eq.(21), we give Corollary IV.5 based
on the privacy loss random variable:

Corollary IV.5. Given two adjacent datasets D and D′,
a randomized mechanism A, the neighboring inputs x =
η(D) ∼ x′ = η(D′) and every output z in M, define the
privacy loss function ℓA,x,x′(z) at outcome z as:

ℓA,x,x′(z) = ln
P∗ (z | x, λ∗)

P∗ (z | x′, λ∗)
. (22)

Assume that P∗ (· | x, λ∗) and P∗ (· | x′, λ∗) are absolutely
continuous with respect to the same reference measure µg∗ ,
with densities that are continuous and strictly positive ev-
erywhere. We claim that mechanism A satisfies ε-differential
privacy if and only if for every output z ∈M and every pair
of adjacent summaries x ∼ x′, the privacy loss is bounded by
ε in absolute value:

−ε ≤ ℓA,x,x′(z) = ln
P∗ (z | x, λ∗)

P∗ (z | x′, λ∗)
≤ ε (23)

With detailed proof in Appendix F, it establishes an ε-DP
guarantee for a random A whose outputs lie in the conformal
metric (M, g∗). The result makes it clear how to control ε-DP
via the λ∗, the geometry of the space (through the metric g∗

and the distance ρg∗ ). This allows users to see exactly how
changes in the dataset translate into changes in the distribution
over outcomes, and thus to control and certify privacy, the clear
experiment result is shown in Figure 5.

Sensitivity Analysis. In Corollary III.6, we have proved
that ρg∗ (η(D), η(D′)) ≤

√
ϕmax · ∆, therefore, we use the

upper bounds of the conformal factor to connect to the original
manifold. Assume x = f(D), y = f(D′); then from Section
III-C we have the pre-requisites: for all x, y ∈ M, Eq.(12)
holds. In the original metric (M, g), we define a statistical
summary f(D) ∈M, it takes dataset D and maps to a point
in the manifold, here we use Fréchet mean [61] to represent
f(D). In the conformal metric (M, g∗), we want to obtain
the conformal geodetic distance between their output points
of comparison. Thus, if ρg(x, y) ≤ ∆, where ∆ is the global
sensitivity of M, then we have the worst-case sensitivity:
∆∗ = ρg∗(x, y) ≤

√
ϕmax · ∆ under the conformal metrics.

Combining Eq. (18), Eq. (19), and Eq. (21), we have:

λ∗ =
ε

2∆∗ ≤
ε

2 ·
√
ϕmax ·∆

(24)

where λ∗ is the rate parameter with the upper bound of 2 ·√
ϕmax · ∆. The rate parameter λ∗ governs the exponential

decay of the Laplace-type noise distribution; it controls how
rapidly the probability mass concentrates near zero.

In summary, Theorem III.4 establishes the localized Laplace
distribution on the conformally transformed metric (M, g∗).
By specifying the radius r and the rate λ∗ within an open
geodesic ball B∗

r (m), we obtain the density K∗
r (z | m) that

assigns an exponential decay in the conformal distance ρg∗ .
Note that Theorem IV.2 shows that if we choose λ∗ ≤ ε

2∆∗
loc

,
where ∆∗ is the local sensitivity under ρg∗ , it ensures that
the mechanism M achieves ε-DP. Furthermore, Theorem III.3
ensures the existence of the conformal factor σ, therefore ϕ =
e2σ by solving data-dependent elliptic PDEs, guaranteeing that
g∗ = e2σg is both smooth and positive-definite. Combined
with Corollary III.6, which provides a global bi-Lipschitz
relationship between ρg and ρg∗ , we obtain explicit upper
and lower bounds on geodesic distances in the new metric.
Thus, our framework rigorously links the elliptic regularity of
the Laplace–Beltrami operator (used to solve for σ) with the
construction of ϕ, ensuring that ϕ is smooth and positive under
the stated compactness and curvature conditions. However,
extending these results to noncompact or higher-dimensional
manifolds will require careful analysis of radius dependencies,
curvature-driven volume growth, and normalization constants.
We leave these challenges to be addressed in future work.

V. THEORETICAL ANALYSIS

In this section, we provide the details to obtain the privatized
statistical summary under conformal metrics and the general
utility analysis for Conformal-DP.

A. Privatized Fréchet Mean under Conformal Metric

We use Fréchet mean (Karcher mean) for our analysis of
the Conformal-DP on Riemannian manifolds as it has been
well studied in the literature [63], [64]. Assume a smooth
and complete Riemannian manifold M as previously defined,
and dataset D : {x1, ..., xn} ⊂ M, then the Fréchet energy
function F (x) on M is F (x) = 1

2n

∑n
i=1 ρ

2
g (x, xi), which

reduces in the Euclidean setting (M, g) =
(
Rd, ⟨·, ·⟩

)
to the

classical least-squares energy

FRd(x) =
1

2n

n∑
i=1

∥∥x− xi

∥∥ 2

2
.

The Fréchet mean x̄ we are looking for is the minimum
point of the function: x̄ = argmin

x∈M
F (x). Karcher’s theorem

presented in [63] shows that x̄ exists and is unique when
certain curvature conditions are satisfied, and xi all fall within
the same geodesic convex sphere; and the Riemannian gradient
of F is 0 at x̄: ∇F (x̄) =

∑n
i=1 logx̄ (xi) = 0, where logx(·)

denotes the logarithmic map at x (the local inverse function of
expx ), i.e., logx (xi) ∈ Txi

M represents the tangent vector
at x corresponding to the geodesic from x to xi.

Fréchet means on (M, g∗). Now, the challenge is to
represent Fréchet mean on the conformal metrics. Here, we
have the natural generalization of the definition of the mean



TABLE II: A Walk-Through of our proposed Conformal Differential Privacy Algorithm.

Theoretical Basis Algorithm Design Notes

Section III-A, fdata fdata(x) = KDE(D;x). We use Kernel Density Estimation (KDE) as a
discrete H(x) for ∀xi ∈ D as fdata.

Section III-B, Theorem
III.3

hi = − (fdata (xi)− c),
in which c = 1

N

∑N
i=1 fdata (xi)

c is an approximation to c =
1

Vol(M)

∫
M

fdatadµg .

Section III-A, Lemma III.1
L ← D−W, in which:

Wi,j =

{
exp

(
−∥Yi − Yj∥2F /τ2

)
, xj ∈ KNN(k;xi),

0, otherwise;

D = diag
(∑

j∈KNN(i) Wi,j

)
.

L is an approximation of the Laplace-Beltrami
operator ∆g . D is the degree matrix and W is
the weighted matrix for harmonic matrix [62].
Yi = logXi. We only maintain the relations with
the k nearest neighbors for ∀xi, τ is the kernel
bandwidth.

∆gσ(x) = H(x) Solve Lσ = h
Solve the Poisson equation, σ is a vector of N
dimensions (conformal scaling vector).

Section III-A ϕi ← exp(2σi) Solve conformal factor ϕ.

Section IV-C ∆∗ ←
√
ϕmax ·∆ Calculate the worst-case (local) sensitivity under

conformal metric g∗.
Section IV-C, (24) λ∗ ← min

{
ε

2∆∗
loc(D)

, λmax

}
Calculate the noise rate parameter.

Section IV-B, Theorem
IV.2

ηp(D) ∼ P∗ (z | ηnp(D), λ∗)

∝ exp [−λ∗ρg∗(ηnp(D), z)]

Laplacian distribution under ρ∗. We sample
ηp(D) with Markov Chain Monte Carlo (MCMC)
sampling, similar to [18] and [19].

based on [65], we put the original data points {xi} in the
conformal metric space (M, g∗), g∗ = e2σ(x)g, considering:

F ∗(x) =
1

2n

n∑
i=1

ρ2g∗ (x, xi) , (25)

we define the new Fréchet means x̄∗ = argmin
m∈M

F ∗(x); then

we have the logarithmic map:

∇F ∗ (x̄∗) =

n∑
i=1

log
(g∗)
x̄∗ (xi) = 0. (26)

However, note that due to the different metrics, the geodesic
and exponential mappings are changed accordingly, refer to
(11).

B. Utility Analysis

In Section IV, we proposed our data-density-aware Confor-
mal-DP mechanism, which follows the strict ε-DP form with
variable local sensitivity ∆∗ based on data density and con-
formal factor ϕ(x). When λ∗ is chosen, the distribution of the
output of the mechanism A(D) depends only on the distance
ρg∗(η(D), z) to the true mean f(D). That is, the mechanism is
isotropic to the g∗ metric. To analyze the error, we focus on the
distance between the output points and the true Fréchet means.
Let us denote a random variable R∗ = ρg∗(η(D),A(D)) that
represents the conformal distance of the privatized output from
the true Fréchet mean fnp. Since the density of the distribution
is proportional to exp(−λ∗R∗) and isotropic under g∗, we can
deduce that the radial probability density function of R∗ is
similar to the Laplace distribution in Euclidean space. Based
on this, we propose Theorem V.1 that gives the explicit form
of the Mean Square Error (MSE) of the distance between

the output A(D) under the g∗ metric and the true η(D), as
follows:

Theorem V.1. Let the mechanism A be a Laplace-type per-
turbation with a linear distance penalty under the conformal
metric g∗ with rate parameter λ∗, where the output density
satisfies: P∗(z | η(D)) ∝ exp(−λ∗, ρg∗(η(D), z)). Br(z) is
the geodesic ball that contains the dataset D with the radius of
0 < r <∞, z ∈ Br(M) is the center of the ball, η(D) is the
Fréchet mean of D. Under the original metric g, the expected
squared distance error between the mechanism output and the
Fréchet mean admits the following upper bound:

E
[
ρ2g(η(D),A(D))

]
<

16d(d+ 1)r2

ε2n2

ϕmax

ϕmin
. (27)

where d is the dimension of Br(M), ε is the privacy loss
budget. The contribution of the extreme points of the integral
is infinitesimal, leading to expectations that are strictly less
than the upper bound of the theory.

Proof. We present a detailed proof in Appendix G.

Theorem V.1 provides an upper-bound for our proposed
Conformal-DP mechanism where the worst-case utility scales
with O(k4), which is consistent with existing results about
ε-DP on Riemannian manifolds. However, by incorporating
data density into the calculation for privacy requirements for
different subsets of the dataset (reflected by the conformal
factor ϕmin ≤ ϕ ≤ ϕmax), we can show an improvement
in utility over the Riemannian-Laplace DP [18] while still
satisfying ε-DP, and better privacy-utility trade-offs than the
Tangent-Gaussian DP [19]. We further show in Section VII
empirically that the utility of our Conformal-DP mechanism
is consistently below the upper bound.



VI. ALGORITHM DESIGN

As discussed in Section III-A (footnote 2), our design of the
Conformal-DP relies on solving ∆gσ(x) = H(x), where ∆g

and H(x) are continuous functions over the entire manifold
M. However, there does not always exist an explicit form for
the solution to the Laplace–Beltrami operator ∆g . Therefore,
we need to provide discrete approximations for ∆g and H(x)
over D ∈ Mn to solve σ(x) discretely when implementing
our proposed Conformal-DP mechanism. We derive a solvable
Poisson equation for σ as Lσ = h. We provide a detailed
description of our implementation in Table II.
Approximation for ∆g . We use a graph Laplacian approxi-
mation for ∆g following Giné and Koltchinskii [66], in which
we define the Laplacian matrix L as L = D−W. We define
a distance matrix over the original metric ρg(x, y), and define
the degree matrix D and the weighted matrix W on the k-
Nearest Neighbors of ∀xi ∈ D.
Approximation for H(x). Let hi = −(fdata(xi) − c), in
which fdata(x) is defined as the Kernel Density estimation
for x. We use the mean kernel density as an approximation
for c = 1

Vol(M)

∫
M fdatadµg .

VII. EXPERIMENTAL RESULTS

In this section, we demonstrate our experimental results,
including the comparison of three different DP mechanisms
with synthetic datasets and real-world datasets.

A. Results on Synthetic Datasets

Datasets. Let Msyn = B1(0d) be a d-dimensional unit
ball ((d − 1)-dimensional hyperplane), to illustrate how our
proposed mechanism adjusts privacy perturbation based on
data density, we experiment on an heterogeneously distributed
data points xi ∈Msyn. We randomly generate xi as follows:
the process starts with a background intensity of µ and
generates multiple samples. Existing samples (“parents”) then
each generates new samples (“children”) near itself following
a Gaussian distribution, the number of children follows a
Poisson distribution with an expectation of α. We draw new
parent samples on the hyperplane uniformly and generate its
children until we reach a total of N samples.
Mechanism. We compare our mechanism to two existing
works on privatizing data on the manifolds: Riemannian-
Laplace DP proposed by Reimherr et al. in [18] and Tangent-
Gaussian DP proposed by Utpala et al. in [19]. The implemen-
tation details and hyperparameters are shown in Appendix H.
Metrics. We measure the utility of different DP mechanisms,
calculated as:

Utility =
1

1 +
ρg(ηp(D),ηnp(D))

ρgmax

.

In which ρg(η(D), ηp(D)) denotes the distance between
the privatized (ηp) and non-privatized (ηnp) Fréchet mean,
ρgmax = max [ρg(η(D), ηp(D))]. A higher utility shows more
favorable privacy-utility trade-offs under the same privacy
budget ε.
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Fig. 2: Comparison of DP utility under different data dimen-
sions (Dim.), with density parameter (a) Density = 0.1 and
(b) Density = 0.9.
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Fig. 3: Comparison of DP utility under different number of
clusters with N = 1000 samples, with (a) Density = 0.1 and
(b) Density = 0.9.
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Fig. 4: Comparison of DP utility under different privacy
budgets (ε), with (a) Dimension = 3, Density = 0.1,
Number of Clusters = 1 and (b) Dimension = 3, Density =
0.1, Number of Clusters = 9.

Results. For the synthetic hyperplane, we compare our
Conformal-DP to Riemannian-Laplace DP [18] and Tangent-
Gaussian DP [19] under (a) different dimensions (3 ≤ d ≤ 9);
(b) different data density for each cluster, calculated with their
standard deviations 0 < std ≤ 1. Note that the small data
density parameter is the more dense datasets; and (c) privacy
budget 0.1 ≤ ε ≤ 0.9. The results are shown in Fig. 2 through
4.
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Fig. 5: Heatmap for privacy perturbation distribution
on a 3-dimensional hyperplane under Density = 0.1,
Number of Clusters = 9.

As demonstrated in our results, our Conformal-DP shows
superior utility across various scenarios. The dimensionality
of the data are crucial to the performance of DP mechanisms.
Higher-dimensional data are inherently more sparse and re-
quire more perturbations to ensure differential privacy, thus
reducing the utility. Conformal-DP shows slower and stable
utility decrease compared to both the ε-DP of [18] and (ε, δ)-
DP of [19] under different data densities on the hyperplane
(Fig. 2a and 2b).

The number of clusters present in N = 1000 samples under
different density and sizes for each clusters which demonstrate
the dynamic nature of the Conformal-DP mechanism: while
the utilities of Riemannian Laplacian-DP [18] and Tangent
Gaussian-DP [19] does not change with the distribution of
data samples due to their inherent mechanisms (where utility is
only related to the value of ε and δ), our proposed Conformal-
DP is able to balance the data densities of the samples and
maintain superior utilities under different number of clusters
(Fig. 3a and 3b). Formation of more clusters (which increases
local density) does not influence the utility of Conformal-DP,
which is indicative that our proposed mechanism is able to
utilize the heterogeneous distribution and achieve consistent
utility under different data densities.

We also demonstrate the utility variations under different
privacy loss budgets (Fig. 4a and 4b). As (ε) increases, less
perturbation is needed, yielding higher utility. Our proposed
Conformal-DP mechanism consistently achieves superior util-
ity compared to Riemannian Laplacian-DP [18] and Tangent
Gaussian-DP [19], which attain similar utility only at larger ε
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Fig. 6: Utilities of private Fréchet means under varying privacy
budgets (ε) for classwise CIFAR-10 samples with homoge-
neous distributions.
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Fig. 7: Utilities of private Fréchet means under varying pri-
vacy budgets (ε) for classwise Fashion-MNIST samples with
homogeneous distributions.

values. Meanwhile, to illustrate the functioning of Conformal-
DP, we also present heatmaps of privacy distribution at varying
privacy budgets (ε) in Figure 5. Each heatmap visualizes the
distance between privatized and non-privatized Fréchet means
at local cluster centers, mapped onto a three-dimensional
hyperplane. Results highlight that conformal distortions vary
heterogeneously according to local data density, with distor-
tions diminishing as the privacy loss budgets increase.

B. Results on Real-world Datasets

Datasets. To emphasize the practical use of the Conformal-
DP mechanism, we further evaluate the utility of our mech-
anism for two real-world image datasets with uniform data
distribution: CIFAR-10 [67] and Fashion-MNIST [68]. We
seek to privatize the Fréchet mean of the data as a descriptor
of the dataset η : Mn → M. We aim to show that our
proposed mechanism is also capable of privatizing image
data in Euclidean space for both balanced and imbalanced
sampling.

Processing. For image data, we first map them on a Rie-
mannian manifold following Utpala et al. [19], specifically,
for an image I ∈ Rh×w×c represented as h × w pixels with
c channels, we convert it to their covariance descriptor in the
form of a k×k Symmetric Positive Definite (SPD) matrix as:



Rι(I) =
1

|S|
∑
x∈S

(υ(I)(x)− ῡ)(υ(I)(x)− ῡ)
T
+ ιI. (28)

in which υ(I)(x) is a pixel-level feature extractor for each
pixel x = (x, y). ῡ is the mean of υ(I)(x) for ∀x ∈ S, ι is
a small constant. The same as Utpala et al. [19], we define
υ(I)(x) as:

υ(I)(x) =

[
x, y, I, |Ix|, |Iy|, |Ixx|, |Iyy|,√
|Ix|2 + |Iy|2, arctan

|I|x
|I|y

]
.

(29)

Results. We also compare the three DP algorithms – our
proposed Conformal-DP, Riemannian-Laplace DP [18], and
tangent Gaussian DP [19] – on CIFAR-10 and Fashion-
MNIST. We show the results for comparisons between utilities
of different DP mechanisms on both datasets in Fig. 6 and Fig.
7. In each experiment, we calculate the Fréchet mean η(D)
and privatized Fréchet mean ηp(D) for samples from each
class.

In Fig. 6, our proposed Conformal-DP mechanism provides
a surprising trade-off between privacy guarantee and function
utility. The utility between classes differs slightly due to
inherent properties of the data in each class (Fig. 6a-6b), but
the results over different classes show a consistent trend. Even
on homogeneous real-world datasets, where our density-aware
conformal mechanism was not primarily intended to shine, we
still observe a marked advantage over the Riemannian-Laplace
mechanism [18]. In particular, Theorem V.1 establishes a
tighter theoretical upper-bound on the excess risk, which
matches our empirical findings. More strikingly, our method
attains similar utilities as the tangent-Gaussian mechanism
[19], yet without relying on the (ε, δ) relaxation, we retain
a strict ε-DP guarantee. These results demonstrate that the
proposed Conformal-DP is broadly applicable: it adapts seam-
lessly to both heterogeneous and homogeneous datasets, con-
sistently delivering high utility under strict privacy guarantees.

VIII. RELATED WORK

Manifold DP. Manifold data has been widely studied in
statistical settings. Earlier works by Fletcher et al. [69],
Pennec et al. [65], and Dryden et al. [3] have introduced the
importance and techniques for statistical methods on manifold
data. Particularly, Fisher et al. [70] have emphasized the
benefit of a spherical manifold’s representation of data. Our
idea could potentially utilize the manifold intrinsic properties,
which provide better alignment with varying data distributions.

More recently, various works have extended Laplace, Gaus-
sian, and variants of classical DP mechanisms to general
manifolds [18], [29], [37], [71]. Reimherr et al. first extended
the Laplace / K-norm DP mechanism to general manifolds by
leveraging the intrinsic geometric properties of the manifold
in the privacy perturbation. Similarly, Soto et al. [36] showed

improved utility by utilizing the k-norm gradient mechanism
of Laplace DP on Riemannian manifolds. We compare our
proposed Conformal-DP mechanism as an extension of Lapla-
cian DP on Riemannian manifolds to show how DP can
incorporate data density in privacy perturbation on manifolds
while preserving the ϵ-DP guarantee.

IX. CONCLUSION

In this paper, we propose Conformal-DP, a novel data-
density-aware differential privacy mechanism on Riemannian
manifolds using conformal transformations. By introducing
conformal metrics, our method adaptively adjusts privacy
perturbations based on local data density. Theoretical and
empirical analyses demonstrate that Conformal-DP achieves
an improved privacy-utility trade-off for both homogeneous
and particularly heterogeneous data distributions when priva-
tizing Fréchet means on Riemannian manifolds. A concrete
application of Conformal-DP is in diffusion-tensor magnetic
resonance imaging (DT-MRI), where spatially varying tissue
microstructure densities yield highly heterogeneous data: by
adapting the noise scale to local kernel-density estimates,
Conformal-DP injects minimal perturbation in regions of
high sampling density—thereby preserving critical diagnostic
metrics such as fractional anisotropy or mean diffusivity,
while still guaranteeing ε-differential privacy for each voxel’s
diffusion measurement.

Future research includes extending this method to non-
compact manifolds (open spaces) or manifolds with bound-
aries, requiring careful management of volume alterations and
boundary conditions. Another significant direction involves
scaling the approach to higher-dimensional manifolds. Addi-
tionally, extending privacy protections to more complex sta-
tistical measures beyond basic statistics remains an important
open challenge.
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APPENDIX

A. Proof for Theorem III.3

Proof. Note, we consider a typical second-order strongly
elliptic operator Ωg in local coordinates {x1, ..., xn} on the

Riemannian manifold (M, g) which is in divergence form:

Ωg[σ](x) =
1√

det(g)

∂

∂xi

(√
det(g)Aij(x, σ(x))

∂σ

∂xj
(x)

)
+

Bi(x, σ(x))
∂σ

∂xi
(x) + C(x, σ(x))σ(x)

=
1√

det(g)

∂

∂xi

(√
det(g)gij

∂σ

∂xj

)
=∆gσ(x)

where Aij(x, µ) is the leading-order coefficient with the prop-
erty of positive-definite; in our case, Aij(x, µ) = gij ; Bi(x, µ)
and C(x, µ) are lower-order terms, which can also depend on
µ and its derivatives if the operator is nonlinear, in our case,
Bi = C = 0. Since Ωg is strongly elliptic and its coefficients
(as well as H) are smooth, using Schauder estimates [72]
guarantees that any weak solution is in C∞(M), thus σ is
in fact smooth. In our application, Ωg = ∆g (a special case
of such elliptic operators), so a solution σ to ∆gσ = H
exists and is C∞ by elliptic regularity [48]. Note that in
the theorem, we assume ϕ(x) = e2σ(x), which ensures
ϕ(x) > 0 for every x ∈ M. Since σ ∈ C∞(M), it follows
that ϕ ∈ C∞(M). Because ϕ is strictly positive, each tensor
g(x) remains positive-definite on the tangent space TxM, and
the smoothness of ϕ and g implies g(x) is itself in C∞(M).
This confirms that g∗ is a smooth, positive Riemannian metric,
thereby proving the theorem’s assertion that the conformal
metric remains smooth and positive-definite.

B. Proof for Theorem III.4

Proof. LetM is compact and the Laplacian ∆g is a classical,
self-adjoint second-order elliptic operator, the Poisson-type
equation

−∆g σ = fdata

The constraint
∫
M σ dµg = 0 admits a unique (up to additive

constants) solution. The additional condition
∫
M σ dµg = 0

fixes the constant part uniquely. Since ∆g has a discrete
spectrum 0 = λ0 < λ1 ≤ λ2 ≤ . . . on a compact manifold,
the eigenfunctions {φi}∞i=0 form an orthonormal basis in
L2(M). We write −∆g φi = λi φi,

∫
M φi φj dµg = δij .

Here, λ1 > 0 is the smallest positive eigenvalue, often called
the spectral gap [53].

Since fdata has zero mean, it is orthogonal to the con-
stant mode φ0. Hence, we can expand fdata(x) =∑∞

i=1 ai φi(x), where ai =
∫
M fdata(x)φi(x) dµg. The so-

lution σ then has the corresponding expansion σ(x) =
−
∑∞

i=1
ai

λi
φi(x), where we omit i = 0 because of the zero-

mean condition on σ.
To prove ∥σ∥L∞(M) ≤ 1

λ1
∥fdata∥L∞(M), we invoke the

fact that (−∆g)
−1 acts as a bounded linear operator on the

space of mean-zero C0(M) functions, with operator norm of
1/λ1. A direct argument [48], [73] shows that if −∆g u = g
and

∫
M u = 0, then ∥u∥L∞(M) ≤ 1

λ1
∥g∥L∞(M). Applying

this to u = σ and g = fdata immediately yields ∥σ∥L∞(M) ≤
1
λ1
∥fdata∥L∞(M).
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Then we define fmin = minx∈M fdata(x) and fmax =
maxx∈M fdata(x). Because

∫
M fdata dµg = 0, one generally

expects fmin ≤ 0 ≤ fmax unless fdata is identically zero.
Let p ∈ M be a point where σ(p) = maxx∈M σ(x).

By the strong maximum principle for elliptic equations [74,
Chapter 2], at p we must have −∆g σ(p) = fdata(p).
But p is a maximum of σ, so heuristically ∆gσ(p) ≤ 0
(since the Laplacian at a maximum is non-positive). Hence
fdata(p) ≤ 0, which implies fdata(p) ≥ fmin but also fmin ≤ 0,
w.r.t, ∆gσ(p) = −fdata(p) ≥ −fmin. Applying the
known relationship between λ1 and the Laplacian, we deduce
σmax = σ(p) ≤ − fmin

λ1
.

Similarly, let q ∈ M be the point where σ(q) =
minx∈M σ(x). Then a parallel argument via the minimum
principle indicates −∆g σ(q) = fdata(q), and at a minimum
of σ, ∆gσ(q) ≥ 0. Hence fdata(q) ≥ 0, which implies
fdata(q) ≤ fmax and fmax ≥ 0. Thus

σmin = σ(q) ≥ −fmax

λ1
.

Combining them we have:

− fmax

λ1
≤ σ(x) ≤ − fmin

λ1
∀x ∈M.

The two main results of Theorem III.4 thus follow:

∥σ∥L∞(M) ≤
1

λ1
∥fdata∥L∞(M),

− fmax

λ1
≤ σ(x) ≤ − fmin

λ1
∀x ∈M.

This completes the proof.

C. Proof for Corollary III.6

Proof. Since ϕ is smooth on compact M , it attains a finite
maximum and positive minimum ϕ, ϕmin and ϕmax from
Lemma III.5, then it is possible to transfer the inequalities
to geodesic distances. For lower bound transfer, Lg∗(γ) ≥√
ϕmin Lg(γ)⇒ inf

γ
Lg∗(γ) ≥

√
ϕmininf

γ
Lg(γ); thus we have:

ρg∗(x, y) ≥
√
ϕminρg(x, y).

For upper bound transfer, Lg∗(γ) ≤
√
ϕmax Lg(γ) ⇒

inf
γ
Lg∗(γ) ≤

√
ϕmax inf

γ
Lg(γ); thus we have:

ρg∗(x, y) ≤
√
ϕmaxρg(x, y).

In particular, distances cannot shrink or stretch by more
than factors

√
ϕmin and

√
ϕmax, respectively. Therefore,√

ϕminρg(x, y) ≤ ρg∗(x, y) ≤
√
ϕmaxρg(x, y); for any case,

these estimates hold for the entire manifold and for all
paths. This implies that the new distance ρg∗ is bi-Lipschitz
equivalent to the original distance ρg . This implies that no pair
of points gets closer by more than a factor

√
ϕmin nor farther

by more than
√
ϕmax under the conformal transformation.

D. Proof for Theorem IV.2

Proof. Let η ∈ M be the chosen center point (Fréchet
Mean), which is determined by the dataset D. We aim
to construct a localized Laplace-type distribution that
places exponential-decay noise around η, truncated to a
geodesic ball of radius r in in the conformal metric g∗.
We define an unnormalized Laplace-type kernel: K̃∗

r (z |
η) := exp [−λ∗ρg∗(η, z)]1{ρg∗ (η,z)<r}, z ∈ M where
1{ρg∗ (η,z)<r} is the indicator function that is 1 if z lies
inside the conformal geodesic ball B∗

r (η) and 0 otherwise;
ρg∗ denotes the geodesic distance induced by g∗; λ∗ > 0

is a rate parameter. By definition, K̃∗
r (z | η) is zero outside

B∗
r (η) and exponential inside B∗

r (η). It is not yet a probability
distribution, as its integral need not be 1. We next compute
the integral over the entire manifold M:∫

M
K̃∗

r (z | η)dµg∗(z) =

∫
B∗

r (η)

exp [−λ∗ρg∗(η, z)] dµg∗(z)

≡ Cr (η, λ
∗) ,

Since K̃∗
r (z | η) = 0 outside B∗

r (η), effectively

Cr (η, λ
∗) =

∫
B∗

r (η)

exp [−λ∗ρg∗(η, z)] dµg∗(z). (30)

Because ρg∗(η, z) is finite on the geodesic ball B∗
r (η) and the

exponential function is integrable on a complete Riemannian
manifold, this integral is finite and strictly positive:

0 < Cr (η, λ
∗) < +∞.

To make K̃∗
r into a proper probability distribution, we nor-

malize it by the positive constant Zr (η, λ
∗). We thus define:

P∗
r(z | η) :=

K̃∗
r (z | η)

Cr (η, λ∗)
=

exp [−λ∗ρg∗(η, z)]1{ρg∗ (η,z)<r}∫
B∗

r (η)
exp [−λ∗ρg∗(η, u)] dµg∗(u)

thus:

P∗
r(z | η) =


exp[−λ∗ρg∗ (η,z)]∫

B∗
r (η)

exp[−λ∗ρg∗ (η,u)]dµg∗ (u)
, ρg∗(η, z) < r,

0, ρg∗(η, z) ≥ r.
(31)

We check that its integral over all of M is 1 . Note that
P∗
r(z | η) is zero outside B∗

r (η), so:∫
M

P∗
r(z | η)dµg∗(z)

=

∫
B∗

r (η)

exp [−λ∗ρg∗(η, z)]∫
B∗

r (η)
exp [−λ∗ρg∗(η, u)] dµg∗(u)

dµg∗(z)

=

∫
B∗

r (η)
exp [−λ∗ρg∗(η, z)] dµg∗(z)∫

B∗
r (η)

exp [−λ∗ρg∗(η, u)] dµg∗(u)

=
C∗

r (η, λ
∗)

C∗
r (η, λ

∗)
= 1.

We define the localized conformal Laplace mechanism
Ar,λ∗(η) to be a random variable Z taking values in M
with probability density P∗

r(· | η). Concretely: P(Z ∈ A) =



∫
A K∗

r (z | η)dµg∗(z), ∀A ⊂ M measurable. This com-
pletes the construction of a localized (radius = r ) Laplace-
type noise mechanism under the conformal metric g∗.

E. Proof for Theorem IV.4

Proof. By definition of the random mechanism A, we have:

P∗ (z | η(D), λ∗) =
1

C (η(D), λ∗)
exp [−λ∗ρg∗(η(D), z)] ,

and likewise:

P∗ (z | η (D′) , λ∗) =
1

C (η (D′) , λ∗)
exp

[
−λ∗ρg∗

(
η
(
D′) , z)] .

Hence,

P∗ (z | η(D), λ∗)

P∗ (z | η (D′) , λ∗)
=

exp [−λ∗ρg∗(η(D), z)]

exp [−λ∗ρg∗ (η (D′) , z)]
× C (η (D′) , λ∗)

C (η(D), λ∗)
.

Taking the natural logarithm of both sides directly yields:

LD,D′(z) := log
P∗ (z | η(D), λ∗)

P∗ (z | η (D′) , λ∗)

= −λ∗ [ρg∗(η(D), z)− ρg∗ (η (D′) , z)]

+ log
C (η (D′) , λ∗)

C (η(D), λ∗)

This completes the derivation of LD,D′(z). For simplicity, we
denote x = η(D), y = η(D′), a = ρg∗(x, z), b = ρg∗(y, z),
and u as a dummy variable. For −λ∗ [ρg∗(x, z)− ρg∗(y, z)] ,
we then have −λ∗[a − b] = λ∗[b − a], based on Triangle
Inequality theorem: ρg∗(y, z) ≤ ρg∗(y, x) + ρg∗(x, z) ⇒
b ≤ ρg∗(x, y) + a; thus, we have b − a ≤ ρg∗(x, y), then
λ∗[b − a] ≤ λ∗ρg∗(x, y) ⇒ −λ∗ [ρg∗(x, z)− ρg∗(y, z)] ≤
λ∗ρg∗(x, y). We then calculate the upper bound of the nor-
malization constant ratio log

[
Z(y)
Z(x)

]
.

C(y) =

∫
M

exp [−λ∗ρg∗(y, u)] dµg∗(u).

C(x) =

∫
M

exp [−λ∗ρg∗(x, u)] dµg∗(u).

Based on Triangle Inequality, we have ρg∗(y, u) ≤ ρg∗(y, x)+
ρg∗(x, u), carrying this into the exponent gives

exp [−λ∗ρg∗(y, u)] ≤ exp [−λ∗ (ρg∗(x, u)− ρg∗(y, x))]

= exp [−λ∗ρg∗(x, u)]× exp [+λ∗ρg∗(y, x)] ,

Next, we have

exp [−λ∗ρg∗(y, u)] ≤ exp [−λ∗ρg∗(x, u)]×exp [λ∗ρg∗(y, x)] .

Bring to Z(y)’s integration, we have:

C(y) =

∫
M

exp [−λ∗ρg∗(y, u)] dµg∗(u)

≤
∫
M

exp [−λ∗ρg∗(x, u)] exp [λ∗ρg∗(y, x)] dµg∗(u).

=exp [λ∗ρg∗(y, x)]×
∫
M

exp [−λ∗ρg∗(x, u)] dµg∗(u).

=exp [λ∗ρg∗(y, x)]× C(x),

Thus, C(y)
C(x) ≤ exp [λ∗ρg∗(y, x)], which in turn implies

log
[
C(y)
C(x)

]
≤ λ∗ρg∗(y, x). So we have (24) ≤ λ∗ρg∗(x, y) +

λ∗ρg∗(y, x). Because ρg∗(x, y) = ρg∗(y, x), so we have:

LD,D′(z) ≤ 2λ∗ρg∗(x, y).

When ∆∗ = sup D∼D′

x=η(D),y=η(D′)
ρg∗(x, y), then LD,D′(z) ≤

2λ∗∆∗, ∆∗ is the worst-case distance between outputs of
adjacent datasets under g∗. Thus, as long as we choose

2λ∗∆∗ ≤ ε =⇒ λ∗ ≤ ε

2∆∗ (32)

we can prove that LD,D′(z) ≤ ε, ∀z ⊆M, thus we get:

Pr[A(D) ⊆M] =

∫
M

P∗(z | η(D))dµg∗(z)

≤eε
∫
M

P∗ (z | η (D′)) dµg∗(z)

=eε Pr [A (D′) ⊆M] .

(33)

which proves that the mechanism is locally ε-DP under the
conformal metric g∗.

F. Proof for Corollary IV.5

Proof. We prove both directions of the claim, using the
definition of ε-DP [9] and triangle inequality for ρg∗ and
integration with respect to the Riemannian volume µg∗ .

Sufficiency. Suppose that for all adjacent x ∼ x′ and all
z ∈ M, the privacy loss is bounded by ε, this means for
every outcome z, we have:

e−ε ≤ P∗ (z | x, λ∗)

P∗ (z | x′, λ∗)
≤ eε.

Because the probability densities are nonnegative, we can
multiply both sides of the inequality by P∗(z, |x′, λ∗) to get
the pointwise bound for all z:

e−εP∗ (z | x′, λ∗) ≤ P∗ (z | x, λ∗) ≤ eεP∗ (z | x′, λ∗)

Now integrate this inequality over an arbitrary measurable set
S ⊆ M with respect to the Riemannian volume measure
dµg∗(z) (under which P∗(·|x) is defined as a density). Using
the monotonicity of integrals, we obtain:

e−ε

∫
S

P∗ (z | x′, λ∗) dµg∗(z) ≤
∫
S

P∗ (z | x, λ∗) dµg∗(z)

≤ eε
∫
S

P∗ (z | x′, λ∗) dµg∗(z).

But
∫
S
P∗(z|x, λ∗)dµg∗(z) is exactly Pr[A(D) ∈ S], the

probability that mechanism A outputs an outcome in S given
input dataset D (with summary x). Similarly, the rightmost
integral is Pr[A(D′) ∈ S] for adjacent D′. Therefore, the
above inequality is represented as:

e−ε Pr [A (D′) ∈ S] ≤ Pr[A(D) ∈ S] ≤ eε Pr [A (D′) ∈ S] ,

for all measurable S and all adjacent D,D′. Thus, A satisfies
ε-DP.



Necessity. Now assume conversely that the mechanism A is
ε-DP. By definition, for any two adjacent datasets D,D′ with
summaries x = η(D) and x′ = η(D′), for any output z ∈M,
the privacy loss function satisfies: |ℓA,x,x′(z)| ≤ ε. Recall that
under (M, g∗), the density function is:

P∗ (z | x, λ∗) =
1

C (x, λ∗)
exp (−λ∗ρg∗(x, z)) ,

where C(x, λ∗) is the normalizing constant

C (x, λ∗) =

∫
M

exp (−λ∗ρg∗(x, u)) dµg∗(u).

Thus, the privacy loss ℓA,x,x′(z) can be expanded as:

ℓA,x,x′(z) = ln

(
C (x′, λ∗)

C (x, λ∗)

)
− λ∗ (ρg∗(x, z)− ρg∗ (x′, z)) .

Since ρg∗ is a geodesic distance, it satisfies the triangle
inequality:

ρg∗(x, z) ≤ ρg∗ (x, x′) + ρg∗ (x′, z) .

Rearranging gives:

ρg∗(x, z)− ρg∗ (x′, z) ≤ ρg∗ (x, x′) .

Similarly, swapping x and x′ yields:

ρg∗ (x′, z)− ρg∗(x, z) ≤ ρg∗ (x, x′) .

Thus, in absolute value, |ρg∗(x, z)− ρg∗ (x′, z)| ≤
ρg∗ (x, x′) . This is a key control for the second term
in ℓA,x,x′(z). Therefore, we obtain the bound:

|−λ∗ (ρg∗(x, z)− ρg∗ (x′, z))| ≤ λ∗ρg∗ (x, x′) .

We now analyze the normalizing constants C(x, λ∗) and
C(x′, λ∗), apply the triangle inequality again:

ρg∗ (x′, u) ≤ ρg∗(x, u) + ρg∗ (x, x′) .

Thus,

exp (−λ∗ρg∗ (x′, u)) ≥ exp (−λ∗ (ρg∗(x, u) + ρg∗ (x, x′)))

= exp (−λ∗ρg∗(x, u)) exp (−λ∗ρg∗ (x, x′))

Integrating both sides over u ∈M gives:

C (x′, λ∗) ≥ exp (−λ∗ρg∗ (x, x′))C (x, λ∗) .

Thus:

C (x′, λ∗)

C (x, λ∗)
≥ exp (−λ∗ρg∗ (x, x′))

ln

(
C (x′, λ∗)

C (x, λ∗)

)
≥ −λ∗ρg′ (x, x′)

Finally, we can deduce that the normalizing constant term
satisfies: ∣∣∣∣ln(C (x′, λ∗)

C (x, λ∗)

)∣∣∣∣ ≤ λ∗ρg∗ (x, x′) .

Combining the above steps, we conclude that the total privacy
loss ℓA,x,x′(z) satisfies:

|ℓA,x,x′(z)| ≤
∣∣∣∣ln(C (x′, λ∗)

C (x, λ∗)

)∣∣∣∣+ λ∗ |ρg∗(x, z)− ρg∗ (x′, z)|

≤ 2λ∗ρg∗ (x, x′)

Thus, if the mechanism A satisfies ε-DP, it is necessary that

2λ∗ρg∗ (x, x′) ≤ ε,

for all adjacent x ∼ x′. Since x and x′ are arbitrary adjacent
summaries, this shows that the privacy loss at every output
z must satisfy |ℓA,x,x′(z)| ≤ ε. This conclude the necessity
proof.

Combining the two directions, we have shown that A is ε-
DP if and only if |ℓA,x,x′(z)| ≤ ε for all adjacent x ∼ x′ and
all outcomes z ∈M.

G. Proof for Theorem V.1

Proof. Let Theorem IV.4 hold, D and D′ are neighboring
datasets. Since all data points fall within a geodesic ball
Br(M) of radius r, dimension d, replacing a single sample
shifts Fréchet’s mean by a distance of up to about 2r

n (under the
original metric g), which means the global sensitivity ∆ ≤ 2r

n .
Since the conformal factor ϕ is bounded (refer to Theorem
III.4), we have for any two points x, y ∈ Br(M), ρg∗(x, y) is
proportional to ρg(x, y), satisfying the inequality (12). Thus
η(D) also has an upper bound on the sensitivity ∆∗ under g∗:

ρg∗ (η(D), η (D′)) ≤
√
ϕmaxρg (η(D), η (D′)) ≤ 2r

√
ϕmax

n
.

Thus the rate parameter λ∗ = ε
2∆∗ ≥ εn

4r
√
ϕmax

. Since
the output density distribution P∗(z|η(D)) is only related to
ρg∗(z, η(D)), the mechanism is spherically symmetric about
η(D) under the g∗ metric. To calculate the error of the
expectation, we switch ρ2g to the conformal metric g∗. Since
ρg∗(z, η) ≥

√
ϕminρg(z, η), for an arbitrarily output z, we

have:
ρ2g(z, η(D)) ≤ 1

ϕmin
ρ2g∗(z, η(D)).

Thus, the upper bound of the expectation error is:

E
[
ρ2g(η(D),A(D))

]
=

∫
M

ρ2g(z, η(D)) · P∗(z | η(D))dz

<
1

ϕmin

∫
M

ρ2g∗(z, η(D)) · P∗(z | η(D))dz

=
1

ϕmin
E
[
ρ2g∗(η(D),A(D))

]
Now, we need to calculate the explicit form

of E
[
ρ2g∗(η(D),A(D))

]
. Let random variable

T = ρg∗(η(D),A(D)) represents the distance of the
mechanism’s output relative to η(D) under g∗. Due to the
spherical symmetry, the probability density function of T can
be expressed in polar coordinate form as:

PDFT (t) = Ctd−1e−λ∗t, t ≥ 0



where the normalization condition determines the constant C.
By utilizing Gamma function [75],∫ ∞

0

td−1e−λ∗tdt =
Γ(d)

(λ∗)d
=

(d− 1)!

(λ∗)d
.

Thus, C = (λ∗)d

(d−1)! , and PDFT (t) =
(λ∗)d

(d−1)! t
d−1e−λ∗t, t ≥ 0.

Based on the PDFT , we calculate the second-order variance:

E
[
T 2

]
=

∫ ∞

0

t2pT (t)dt =
(λ∗)

d

(d− 1)!

∫ ∞

0

td+1e−λ∗tdt.

Combining with Gamma function
∫∞
0

td+1e−λ∗tdt = (d+1)!
(λ∗)d+2 ,

we have:

E
[
T 2

]
=

(λ∗)
d

(d− 1)!
· (d+ 1)!

(λ∗)
d+2

=
(d+ 1)!

(d− 1)!
· 1

(λ∗)
2 =

d(d+ 1)

(λ∗)
2 .

Combining with λ∗ = ε
2∆∗ ≥ εn

4r
√
ϕmax

(worst-case), we have
the upper bound of expected square error under metric g as
follows:

E
[
ρ2g(η(D),A(D))

]
<

1

ϕmin

d(d+ 1)

(λ∗)2

=
d(d+ 1)

ϕmin

16r2ϕmax

ε2n2

=
16d(d+ 1)r2

ε2n2

ϕmax

ϕmin

This completes the proof of Theorem V.1.

H. Implementation Details for Section. VII-A

We provide further implementation details and hyperpa-
rameters of our proposed Conformal Differential Privacy and
Riemannian-Laplace DP by Reimherr er al. [18] and tangent
Gaussian DP by Utpala et al. [19] as follows:

Hyperparameters. We test for algorithm utility under privacy
budgets ε ∈ {0.1, 0.2, · · · , 0.9} and δ = 10−9. CIFAR-10 [67]
contains a total of 60,000 images in 10 classes, with 6,000
images for each class; Fashion-MNIST [68] has 70,000 images
in total, with 7,000 images for each class. Our selected δ =
10−9 satisfies δ ≪ 1

|D| for both datasets. The global sensitivity
∆ is calculated as ∆ = 2r

N , in which r is the radius of the
geodesic ball containing all images, N is the number of data
samples in the dataset. For more calculations in determining
r, we refer to the work of Utpala et al. [19].

Implementation. We implement both Riemannian-Laplace
DP [18] and tangent Gaussian DP [19] with the same parame-
ters described in Utpala et al. [19], specifically, for the global
sensitivity of ∆glb =

2r
N , in which r is the radius of the geodis-

tic ball that contains all data samples. We adopt the classical
Gaussian noise described by Utpala et al. [19], in which we
have σ =

∆glb

ε

√
2 ln( 1.25δ ). The algorithms and calculations

over the manifold are implemented with the geomstats
Python library by Miolane et al. [76]. The calculation of the
Frechét mean on the manifold through gradient descent can be
easily implemented with geomstats. We thank the authors
for the invaluable help in making the code publicly available.

The MCMC process utilized by both our proposed Conformal-
DP mechanism is shown in Algorithm 1.

Algorithm 1 Differentially Private Conformal Laplace Sam-
pling on Manifolds

1: Input:
2: Conformal Fréchet mean η(D),
3: Privacy budget ε > 0,
4: Local sensitivity bound ∆∗(D) (estimated or numeri-

cal),
5: Sampling radius r (r =∞ for global sampling),
6: Proposal distribution Q(·) (MCMC),
7: Maximum iterations Tmax
8: Output:
9: Differentially private sample Z from P∗

r(z | η(D), λ∗)
10: Step 1: Calculate Noise Intensity

λ∗ ← min

{
ε

2∆∗(D)
, λmax

}
(Default: λ∗ =

ε

2∆∗(D)
)

11: Step 2: Select Sampling Method
12: if MH [77] then
13: Initialize z(0) ∈ B∗

r (η(D)) ▷ Starting point
14: for t = 0 to Tmax − 1 do
15: Propose z′ ∼ Q(· | z(t)) ▷ Generate candidate
16: Compute acceptance ratio:

α← exp [−λ∗ρg′(η(D), z′)]Q(z(t) | z′)
exp

[
−λ∗ρg′(η(D), z(t))

]
Q(z′ | z(t))

17: Accept z(t+1) ← z′ with probability min(1, α)
18: end for
19: Set Z ← z(Tmax) ▷ Final sample
20: else ▷ Semi-analytic method for specific manifolds
21: Exploit manifold structure (e.g., sphere, hyperbolic

space)
22: Directly sample from P∗

r(z | η(D), λ∗)
23: end if
24: Return: Z ▷ ε-DP perturbed output
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