
Dual Explanations via Subgraph Matching for
Malware Detection

Hossein Shokouhinejad, Roozbeh Razavi-Far, Griffin Higgins, Ali A. Ghorbani
Canadian Institute for Cybersecurity (CIC), University of New Brunswick, Fredericton, NB, Canada

Email: {hossein.shokouhinejad, roozbeh.razavi-far, griffin.higgins, ghorbani}@unb.ca

Abstract—Interpretable malware detection is crucial for un-
derstanding harmful behaviors and building trust in automated
security systems. Traditional explainable methods for Graph
Neural Networks (GNNs) often highlight important regions
within a graph but fail to associate them with known benign
or malicious behavioral patterns. This limitation reduces their
utility in security contexts, where alignment with verified pro-
totypes is essential. In this work, we introduce a novel dual
prototype-driven explainable framework that interprets GNN-
based malware detection decisions. This dual explainable frame-
work integrates a base explainer (a state-of-the-art explainer)
with a novel second-level explainer which is designed by subgraph
matching technique, called SubMatch explainer. The proposed
explainer assigns interpretable scores to nodes based on their
association with matched subgraphs, offering a fine-grained
distinction between benign and malicious regions. This prototype-
guided scoring mechanism enables more interpretable, behavior-
aligned explanations. Experimental results demonstrate that our
method preserves high detection performance while significantly
improving interpretability in malware analysis.

Index Terms—Interpretable Malware Detection, Graph Neural
Networks (GNNs), Subgraph Matching, Explainable Artificial
Intelligence (XAI), Machine Learning, SubMatch Explainer, Dual
Explainability.

I. INTRODUCTION

Graph Neural Networks (GNNs) have emerged as powerful
tools for learning from structured data and have shown strong
performance across various domains including social net-
works, chemistry, and cybersecurity. In the context of malware
detection, GNNs are particularly well-suited due to their ability
to model complex program structures, such as control flow
graphs (CFGs), which capture the execution behavior of binary
programs. By leveraging the topological information and se-
mantic relationships within these graphs, GNN-based methods
can identify subtle malicious patterns that are often missed
by traditional techniques. Recent studies have demonstrated
the effectiveness of applying GNNs to malware classification,
graph-based anomaly detection, and behavioral analysis of
executable files [1]–[15]. Specifically, dynamically extracted
CFGs from PE files provide rich behavioral signals, allowing
GNNs to learn patterns that correspond to malicious intent or
benign operations [16].

Despite the impressive performance of GNNs in malware
detection and other graph-based tasks, their black-box nature
poses significant challenges in understanding and trusting
their decisions [17]. To address this, several GNN-specific
explainability techniques have been proposed. GNNExplainer

is one of the earliest and most widely used methods, which
identifies a compact subgraph and a subset of node features
that are most influential to the model’s prediction for a given
instance [18]. PGExplainer takes a probabilistic approach
by learning a parameterized distribution over possible ex-
planations across multiple samples, improving generalization
and scalability [19]. Frameworks like Captum, designed for
PyTorch models, also offer GNN support and provide model-
agnostic interpretability methods such as integrated gradients
and saliency maps [20]. More recently, SubgraphX has in-
troduced a Monte Carlo tree search-based strategy to explore
subgraphs and compute Shapley values, offering both accuracy
and theoretical guarantees for the importance of the extracted
subgraphs [21]. While these methods provide useful insights
into which parts of a graph contribute most to a GNN’s
prediction, they typically operate on a per-sample basis and
lack the ability to link explanations to known malicious or
benign behavior patterns. This limits their utility in malware
analysis, where interpretability must often go beyond local
graph regions to include behavioral context and prototype
associations.

Subgraph matching has gained attention as a means of
discovering repeated behavioral patterns in malware samples.
It enables structural comparisons between graphs, making it a
useful technique for identifying known malicious or benign be-
haviors embedded within complex software structures. While
subgraph matching has been used in various domains, its
potential for interpretable malware detection remains largely
underexplored. A few recent studies have incorporated sub-
graph analysis into malware classification tasks, though with
objectives and designs different from ours. For instance, Fan et
al. introduced FalDroid, a system that uses frequent subgraph
analysis to classify Android malware into families and select
representative samples for efficient investigation. Their focus
is on familial clustering rather than fine-grained interpretabil-
ity within individual samples [22]. Similarly, the SNDGCN
framework employs subgraph networks (SGNs) to improve
adversarial robustness in Android malware detection, but it
does not link subgraph structure to interpretable detection
outcomes [23]. Another approach, MARD, proposed by Alam
et al., applies a matching strategy based on Annotated Control
Flow Graphs (ACFGs) to detect metamorphic malware in real-
time, targeting fast and obfuscation-resilient detection rather
than explainability [24]. These efforts show the viability of
subgraph-based techniques for malware analysis, yet none of

ar
X

iv
:2

50
4.

20
90

4v
1

 [
cs

.C
R

]
 2

9
A

pr
 2

02
5

them attempt to distinguish malicious and benign behaviors
within the same graph or provide interpretable, node-level
insights into model decisions. This leaves a critical gap that
our method aims to fill.

While existing GNN explainers provide local explanations
by highlighting important nodes or edges, they do not offer
insight into how these components relate to known patterns
of malicious or benign behavior. This limitation reduces their
usefulness in malware detection tasks, where understanding
both the origin and nature of suspicious behaviors is essential.
To address this, we propose a dual interpretability framework
that integrates subgraph matching with GNN explainability
to provide behavior-aware, prototype-based interpretations.
The key contributions of this paper are as follows: The key
contributions of this paper are as follows:
• We propose a novel dual prototype-driven explainable

framework that integrates a base GNN explainer with a
second-level explainer based on subgraph matching, en-
abling behavior-aligned interpretation for GNN-based mal-
ware detection.

• We design the SubMatch explainer as the second-level
component of the framework, which performs subgraph
matching between the target malicious graph and verified
subgraphs to assign interpretable node scores based on their
structural associations.

• Our method enables fine-grained interpretation by distin-
guishing between malicious and benign regions within the
same graph, an ability that existing explainers lack.
The rest of this paper is organized as follows. Section II

provides the necessary preliminaries and background informa-
tion relevant to graph-based malware detection and subgraph
matching. Section III describes our proposed novel dual ex-
plainer methodology, including the design of the SubMatch
explainer. Section IV presents the experimental setup and
analyzes the obtained results to demonstrate the effectiveness
of the proposed framework. Finally, Section V concludes the
paper.

II. PRELIMINARIES

This section provides essential background information to
support the proposed framework. We begin by introducing the
foundational principles of GNNs. Next, we discuss various
GNN explainers that offer interpretability by highlighting
influential components within the graph structure. Finally,
we present subgraph matching techniques, which enable the
alignment of extracted graph patterns with known benign or
malicious prototypes.

A. Graph Neural Networks

GNNs are a class of deep learning models designed to
operate on graph-structured data. In contrast to conventional
neural networks that assume a fixed input structure, GNNs
can directly model the irregular and non-Euclidean structure
of graphs, making them highly effective for tasks involving
relational data such as social networks, knowledge graphs, and
program analysis.

A GNN learns a representation for each node by iteratively
aggregating and transforming information from its neighboring
nodes over multiple layers [25]. The goal is to capture both
local and global structural information of the graph. The
representation of node i at the l-th layer is typically computed
using the following general rule:

h
(l)
i = UPDATE

(
h
(l−1)
i ,AGG

(
{h(l−1)

j | j ∈ N (i)}
))

(1)

where h
(l)
i is the embedding of node i at layer l, h(0)

i is the
initial feature vector of node i, and N (i) denotes the set of its
neighbors. The function AGG(·) aggregates information from
the neighbors, and UPDATE(·) updates the node’s representa-
tion based on its previous state and the aggregated messages.

In the context of malware detection, GNNs are particularly
well-suited for analyzing CFGs extracted from executable
files. These graphs represent the execution logic of programs,
where nodes correspond to code blocks (e.g., basic blocks
or functions) and edges represent control flow transitions.
By learning node embeddings that encode both syntactic and
structural properties of the code, a GNN can capture high-level
behavioral patterns of benign and malicious software.

Through message passing across CFG, the GNN model can
generalize from known malicious patterns to detect obfuscated
or structurally altered variants. As a result, GNNs have become
a powerful backbone for graph-based malware detection sys-
tems, offering robustness against code-level transformations
that commonly evade traditional signature-based methods.

B. GNN Explainers

GNN Explainers are interpretability techniques designed to
uncover which components of an input graph contribute most
significantly to a GNN’s prediction. By assigning importance
scores to elements of the graph, these methods provide insight
into the decision-making process of the model and help to
identify the substructures that drive its output.

Most GNN explainers focus on assigning scores to edges,
as edge connectivity governs the message-passing mechanism
that underlies GNNs. These edge importance scores indicate
how much each connection influences the flow of information
and ultimately affects the model’s prediction. Some explainers,
such as GNNExplainer, also provide node-level scores to
highlight the relevance of specific nodes in the prediction
process.

Given an input graph G = (V,E), the explainer produces a
set of edge importance scores:

SE = {αe : e ∈ E} (2)

where αe reflects the contribution of edge e to the model’s
output. Higher values of αe indicate greater influence.

The explanation can be represented as the original graph
annotated with these scores:

G′ = (V,E,SE) (3)

where G′ maintains the original topology of G but includes
additional information in the form of edge importance weights.

Different explainer models use various strategies to generate
these scores. For example, optimization-based approaches like
GNNExplainer aim to find a compact subgraph that preserves
the model’s output. Probabilistic models such as PGExplainer
learn distributions over important edges, while search-based
methods like SubgraphX explore the space of possible sub-
graphs using techniques like Monte Carlo Tree Search. Despite
their differences, all these methods aim to enhance the trans-
parency and trustworthiness of GNN predictions by revealing
the most influential structural components.

C. Subgraph Matching

Subgraph matching is a fundamental operation in graph
analysis that involves identifying occurrences of a smaller
query graph within a larger target graph. It plays a central
role in numerous domains such as bioinformatics, computer
vision, social network analysis, and, notably, cybersecurity and
malware detection. In this context, CFGs representing pro-
gram behavior can be analyzed for known malicious patterns
through subgraph matching techniques.

There are two primary forms of subgraph matching: sub-
graph isomorphism and subgraph monomorphism.
• Subgraph Isomorphism requires an exact, structure-

preserving, and label-consistent mapping from the query
graph to a subgraph of the target graph. Formally, given
a query graph Q = (VQ, EQ) and a target graph T =
(VT , ET), a function f : VQ → VT is a subgraph isomor-
phism if:

1) f is injective.
2) For every (u, v) ∈ EQ, (f(u), f(v)) ∈ ET .
3) Vertex and edge labels are preserved under f .

• Subgraph Monomorphism relaxes the strict requirements
of isomorphism. While it still requires injectivity and struc-
tural preservation of query edges, it allows the presence
of additional edges in the target graph that are not part of
the query. This makes monomorphism suitable for scenarios
where additional context exists around a matching structure,
such as benign extensions around malicious code blocks.
One of the most widely used algorithms for subgraph match-

ing is VF2. It efficiently searches for valid node mappings
by exploring the state space through depth-first traversal and
applying pruning rules to eliminate infeasible candidates early.
At each state, VF2 incrementally builds a partial mapping M
between the query and target graphs. Candidate pairs (u, v),
with u ∈ VQ and v ∈ VT , are evaluated under structural and
semantic feasibility rules to ensure consistent mappings. No-
tably, VF2 supports both subgraph isomorphism and subgraph
monomorphism matching types, making it flexible for different
application needs. Additionally, the algorithm can incorporate
vertex and edge attributes into its feasibility checks, enabling
more fine-grained and context-aware matching.

III. PROPOSED METHODOLOGY

While several GNN explanation methods have been de-
veloped, most provide low-level attributions in the form of

node or edge importance scores. These scores, although useful
for general graph analysis, often lack the semantic clarity
needed for malware investigation. They do not explicitly relate
prediction outcomes to meaningful behavioral patterns in the
software, making the explanations difficult to interpret in
practice.

To address these limitations, we propose a novel dual ex-
plainer within malware detection framework that incorporates
subgraph-level reasoning into the interpretability process. In
the training phase, CFGs are dynamically extracted from PE
files, and node features are embedded using an autoencoder.
These embeddings are used to train a GNN model for classi-
fication. A GNN explainer is then applied to correctly labeled
samples to extract important subgraphs. These subgraphs (ex-
planations) are verified by re-evaluating them through the pre-
trained GNN model, and only those that retain their labels are
stored in a verified query box as trusted benign or malicious
prototypes.

In the test phase, each sample is first classified using the pre-
trained GNN model. Only the samples predicted as malicious,
referred to as target samples, proceed to the interpretation step.
These target samples are matched against the verified sub-
graphs using a subgraph matching algorithm. The SubMatch
Explainer then analyzes the associations between regions of
the target graph and the verified subgraphs, assigning inter-
pretable scores that reflect their similarity to known benign or
malicious patterns. This process results in behavior-grounded
and context-aware explanations that enhance the transparency
and reliability of GNN-based malware detection.

In the remainder of this section, we present the proposed
methodology in detail. The proposed framework is composed
of multiple stages, as illustrated in Figure 1.

A. Dynamic CFG Extraction

The process begins with dynamic extraction of CFGs from
program execution. Let F denote the set of programs un-
der analysis, and each program f ∈ F is executed in a
controlled environment to generate its corresponding CFG
Gf = (Vf , Ef), where:

• Vf is the set of nodes representing basic blocks or
instructions.

• Ef ⊆ Vf × Vf is the set of directed edges representing
control flow transitions.

The CFG captures the structural and behavioral properties of
the program, enabling the subsequent analysis.

B. Node Feature Embedding

Each node in a CFG may contain a variety of raw in-
formation, such as assembly instructions, system calls, or
code block metadata. However, not all of this information
is directly suitable for use in GNNs, which require fixed-
size, numerical input. The goal of this stage is to extract
meaningful attributes from each node and transform them into
low-dimensional vector representations that preserve semantic
information relevant for classification. The final output of this
stage is a set of node embeddings that capture the functional

CFG
Extraction

(Dynamically)
GNN Model GNN Explainer

Node
Embedding

Mapping

Subgraph
Extraction

SubMatch
Explainer

Verified Query Box

Malicious Queries

Bening Queries

Node
Embedding

Pre-trained
GNN Model

Malicious

Benign

First-level Explanation

Second-level Explanation

Fig. 1: The proposed malware detection framework for dual explanation of malicious samples.

characteristics of the CFG nodes in a format suitable for
downstream GNN-based analysis.

Once the embeddings are generated, the CFGs are divided
into training and test datasets. The training set is used for
training the GNN model, applying the GNN explainer, and
extracting subgraphs, while the test set is subjected to second-
level explanation (SubMatch Explainer).

C. GNN-Based Classification

In this stage, a GNN model is trained on the CFGs to
distinguish between benign and malicious samples. The GNN
learns to capture both local and global structural patterns
by aggregating node information across the graph, ultimately
producing a graph-level representation used for classification.
Once the model is trained, we evaluate its predictions on the
training set and select only those samples that are correctly
classified by the GNN. These correctly predicted samples are
then forwarded to the next stage, where they serve as inputs
to the explanation module for subgraph extraction.

D. GNN-based Explainer and Node Embedding Mapping

For samples correctly classified as benign or malicious, we
employ a graph explanation module designed to identify the
most critical nodes and edges that contribute to the predic-
tions made by the GNN. This module provides insights into
the model’s decision-making process by highlighting specific
substructures within the graph that are most influential in
determining the classification outcome. The output of the
explainer includes the original graph structure, augmented with
importance weights assigned to edges, nodes, or both. These
weights reflect the relative contribution of each component to
the final prediction.

The output graph from GNN explainers typically lacks the
original node feature embeddings. To support downstream
tasks like subgraph matching, we reattach the original embed-
dings to their corresponding nodes in a process called Node
Embedding Mapping. This step ensures that the semantic in-
formation captured during preprocessing is preserved, enabling
further analysis that depends on both structural and contextual
node attributes.

E. Subgraph Extraction

Our proposed framework proceeds with subgraph extraction
and verification. The process begins with the extraction of
subgraphs from the weighted graph output of the explainability
module. To extract the most informative and structurally
meaningful part of the graph, we propose Greedy Edge-wise
Composition (GEC) [26], an alternative subgraph extraction
technique. The primary objective of GEC is to construct a
strongly connected subgraph that maximizes the total edge
weight, thereby retaining the most critical structural informa-
tion identified by the explainability module.

The procedure begins by identifying the edge with the
greatest importance score from the weighted graph produced
by the GNN explanation module. Let this initial edge be
denoted as emax = argmax

e∈E
αe represents the weight of edge

e. The corresponding nodes of emax are added to the selected
node set, and the edge is added to the selected edge set.

Subsequently, GEC iteratively adds one edge at a time by
selecting the highest-weight edge that connects to the current
set of selected nodes:

enext = argmax
e∈E

αe, e connects to Vselected.

Score

⋯

Benign Queries

⋯

Malicious Queries

Verified Query Box

VF2 Algorithm Node Risk Scoring

SubMatch Explainer
Target

Fig. 2: Subgraph matching visualization using SubMatch explainer (second-level for dual explanation). Node color indicates
match type (red: malicious, blue: benign), and node size reflects the match frequency.

This greedy selection continues until a predefined number of
edges (or nodes) is reached, ensuring both high cumulative
edge weight and strong connectivity within the resulting
subgraph.

Let k be the desired number of edges to include. The final
extracted subgraph is:

Gextracted = (Vselected, Eselected), where |Eselected| = k.

By prioritizing both edge weight and graph connectivity,
GEC produces subgraphs that more faithfully reflect the un-
derlying structure of the original graph. This leads to more
reliable explanations and a better understanding of the model’s
decision-making behavior.

Once subgraphs are extracted, they undergo a verification
step to ensure consistency with the original classification labels
of their corresponding samples. This is achieved by feeding
each subgraph back into the pre-trained GNN model and
assessing whether it produces the same label as the original full
graph G. Subgraphs that satisfy this condition, i.e., ysubgraph =
yoriginal, are considered reliable representations of the original
samples. These validated subgraphs are subsequently stored
in the query box, which serves as a curated repository of
high-confidence subgraphs used in the downstream matching
process.

F. SubMatch Explainer

The SubMatch explainer operates as a second-level in-
terpretability mechanism, activated during the test phase to
provide behavior-aligned explanations for samples flagged as
malicious by the GNN classifier. Once a target graph T is

identified, SubMatch initiates a two-stage process designed to
connect structural patterns in the graph to known malicious or
benign behaviors.

Specifically, SubMatch consists of two core components.
The first component, Subgraph Matching, identifies regions
of structural or semantic similarity between the target graph
and a repository of verified subgraphs, including both benign
and malicious prototypes. The second component, node risk
scoring, quantifies the contribution of each node to potentially
harmful behavior by assigning interpretable scores based on
its association with these matched subgraphs.

1) Subgraph Matching: The Subgraph matching procedure
compares the target graph with the verified subgraphs stored
in the query box, defined as B = Bmal ∪ Bben. Here, Bmal =
{Qm1,Qm2, . . . ,Qmk

} represents the set of verified malicious
subgraphs, and Bben = {Qb1,Qb2, . . . ,Qbℓ} denotes the set
of verified benign subgraphs. The objective of this matching
step is to identify regions within the target graph that are
structurally and semantically similar to subgraphs correspond
to either known malicious or benign behavior.

To accomplish this, the VF2 algorithm is employed in
conjunction with two distinct matching strategies. The first
strategy, exact structural and attribute matching, enforces
strict alignment between both the graph topology and node
attributes. This ensures a high degree of precision by requiring
that the structural connections and node features in the target
graph exactly match those in the query subgraphs.

The second strategy, exact structural matching with approx-
imate attribute matching, relaxes the attribute-level constraint
while maintaining topological fidelity. In this approach, node

embeddings are compared using cosine similarity to allow for
semantic alignment despite minor variations in raw feature
values. Let ϕ : V → Rd denote the embedding function
that maps each node to a d-dimensional vector. For a node
v ∈ VQi

, a match is established with node f(v) ∈ VT if their
embeddings satisfy the condition:

cos (ϕQi
(v), ϕT (f(v))) ≥ δ,

where δ ∈ [0, 1] is a predefined similarity threshold. This
relaxed strategy enhances robustness by enabling the detection
of functionally similar subgraphs that may not share identical
attribute representations, thereby increasing tolerance to noise
and obfuscation in node-level features.

For each verified subgraph Qi ∈ B, the matching process
identifies substructures in the target graph T that satisfy the
corresponding matching criteria. The selection between the
two approaches depends on the desired balance between preci-
sion and generalization. Exact structural and attribute matching
enforces strict alignment of both the graph topology and node
attributes, leading to high-confidence matches. In contrast,
approximate attribute matching relaxes the constraints on node
features by allowing minor variations in the embedding space,
while preserving the exact structural layout, offering greater
flexibility in identifying semantically similar patterns.

2) Node Risk Scoring: In our proposed SubMatch ex-
plainer, we introduce a scoring mechanism to interpret mal-
ware explanation results by analyzing the associations of each
node in the target graph with subgraphs in a verified query
box. The SubMatch explainer leverages subgraph matching to
meticulously identify which graph components contribute to
malicious or benign behaviors, offering a level of granularity
that surpasses traditional GNN explainers. Its functionality
revolves around assigning scores to nodes based on their
matches with either malicious or benign subgraphs, empha-
sizing interpretability and precision.

Each node in the target graph is evaluated as follows:
• Nodes matching malicious subgraphs are scored +1 for

each match, and their score increases cumulatively with
additional matches, reflecting a stronger association with
malicious patterns.

• Nodes matching benign subgraphs are scored -1 for each
match, with their score decreasing cumulatively for multi-
ple matches, indicating a stronger association with benign
behaviors.

• Nodes that do not match any subgraph remain unscored,
resulting in a score of 0, signifying neutrality with no
relation to either malicious or benign patterns.
The score for each node v in the target graph is computed

as:

S(v) =

−

∑
Qb∈Bben

I(v ∈ VQb
)∑

Qm∈Bmal

I(v ∈ VQm
)

0, otherwise.

Here, for each subgraph Qm ∈ Bmal and Qb ∈ Bben, VQm

and VQb
denote their corresponding node sets. The indicator

Algorithm 1 Node Risk Scoring

1: Input: Target graph T , verified query box B = Bmal∪Bben
2: Initialize node scores: S(v)← 0 for all v ∈ VT
3: for each subgraph Qm ∈ Bmal do
4: M← matched nodes of Qm in T
5: for each node v ∈M do
6: S(v)← S(v) + 1
7: end for
8: end for
9: for each subgraph Qb ∈ Bben do

10: M← matched nodes of Qb in T
11: for each node v ∈M do
12: if S(v) ≤ 0 then
13: S(v)← S(v)− 1
14: end if
15: end for
16: end for
17: Output: Node score map S(v) for all v ∈ VT

function I(·) returns 1 if the condition holds and 0 otherwise.
This scoring strategy ensures that if a node matches both
benign and malicious subgraphs, its association with malicious
subgraphs takes precedence, thereby reinforcing the focus
on malicious pattern interpretation and reducing explanatory
noise.

In cases, where a node matches both malicious and be-
nign subgraphs (intersected nodes), the SubMatch explainer
prioritizes security by treating these nodes as malicious. Their
score is computed solely based on matches with malicious
subgraphs:

S(v) =
∑

Qm∈Bmal

I(v ∈ VQm).

The detailed procedure of the node risk scoring is outlined
in Algorithm 1. Figure 2 illustrates the SubMatch explainer
process. In this figure, the size of each node reflects the number
of matches it has with subgraphs in the query box, where
larger circles indicate higher match frequency. Red-colored
nodes represent matches with malicious subgraphs, while blue-
colored nodes correspond to matches with benign subgraphs.
This visualization highlights how the SubMatch explainer
provides fine-grained interpretability by linking nodes in the
target graph to known behavioral prototypes.

IV. EXPERIMENTAL RESULTS

This section presents the experimental evaluation of our
proposed framework for malware detection with dual explain-
ability. We conducted experiments to assess the effectiveness
of each stage of the framework, from generating CFGs to
training the GNN model, extracting and verifying subgraphs,
and performing subgraph matching for prediction and deeper
explainability. Our analysis focuses on the accuracy of mal-
ware detection and the quality of explanations provided by the
SubMatch explainer. The results demonstrate the framework’s
ability to achieve high prediction performance, while providing
interpretable insights into the detected malicious patterns.

The experiments in this study were conducted on a diverse
collection of datasets to evaluate the effectiveness of the
proposed framework. For malicious samples, we extracted 115
samples from the BODMAS [27] and PMML [28] datasets.
Both datasets are well-known repositories containing a variety
of malware samples, providing a comprehensive representation
of real-world malicious behaviors. For benign samples, we
utilized 320 samples extracted from the DikeDataset [29], a
reliable source of non-malicious programs.

The preprocessing stage is a critical component of the
framework, ensuring that raw data is converted into a format
suitable for analysis and training. For this study, the CFG of
each sample is dynamically extracted using the Python library
angr [30]–[32].

To represent node attributes within the CFG, we utilized
assembly-level instruction encoding [26]. Each instruction is
encoded as a fixed 438-bit vector, consisting of distinct fields
that capture the structural details of the instruction: Option
(5 bits), Prefix (9 bits), Opcode (256 bits), ModRM (20
bits), SIB (20 bits), Displacement (64 bits), and Immediate
(64 bits). These fixed-length vectors serve as the inputs to
an AE, which generates a compressed embedding for each
node. The AE architecture consists of an encoder with two
hidden layers containing 256 and 128 neurons, followed by a
bottleneck layer with 64 neurons. The decoder mirrors the
encoder with two hidden layers of 128 and 256 neurons,
reconstructing the original input. The model is trained for 700
epochs with a learning rate of 0.01, ensuring sufficient training
to optimize the embeddings. The embeddings extracted from
the bottleneck layer provide a 64-dimensional representation
for each node, capturing the most salient features of the
instructions. After preprocessing and embedding, the dataset
is split into training and testing subsets. 80% percent of the
data is used for training, and the remaining twenty percent is
set aside for testing.

For graph-based operations and deep learning, we employed
PyTorch Geometric, a state-of-the-art library tailored for
graph-structured data. Our experiments utilized three widely
adopted GNN architectures: Graph Convolutional Network
(GCN), GraphSAGE, and Graph Attention Network (GAT).
Each model consists of three layers with 64 hidden units
per layer and incorporates a dropout rate of 50% to reduce
overfitting. The models were trained for 250 epochs using the
Adam optimizer with a learning rate of 0.0001 and a weight
decay of 0.0005.

To interpret the GNN decisions, we integrated the Cap-
tum library through a custom CaptumExplainer module. This
module implements three attribution techniques (Integrated
Gradients, Guided Backpropagation, and Saliency), which
provide insights into the internal decision-making processes of
the GNN by identifying critical substructures that contribute
most to the prediction outcomes.

For subgraph-level explainability and pattern verification,
we adopted the VF2 algorithm, a well-established method for
subgraph matching. In our implementation, we support both
isomorphism and monomorphism matching to allow for both

strict and relaxed pattern detection. Furthermore, all matching
experiments were performed on both directed and undirected
versions of the CFGs to ensure a comprehensive analysis of
graph structure in relation to malicious behavior. The matching
and visualization processes were carried out using NetworkX,
a versatile Python library for graph analysis.

To ensure the robustness and generalizability of our find-
ings, we performed a comprehensive grid search across various
configurations. This included combinations of the three GNN
architectures (GCN, GraphSAGE, and GAT), the three attribu-
tion methods from Captum, the two subgraph matching types
(isomorphism and monomorphism), and both directed and
undirected graph representations. This extensive exploration
allowed us to systematically evaluate the interaction between
model structures, explainability techniques, and matching
strategies, ultimately identifying the most effective setup for
accurate and interpretable malware detection.

The training phase of the framework achieved high classi-
fication performance, with a training accuracy of 91.95% for
both the GCN and GAT models, and 93.10% for GraphSAGE.
Following model training, the correctly labeled samples from
the training set were passed through the three explainers
(Integrated Gradients, Guided Backpropagation, and Saliency).
Each explainer produces a weighted version of the input graph,
in which importance scores were assigned to edges based on
their contribution to the model’s predictions.

Subsequently, the GEC algorithm was applied to extract
the most informative subgraphs from the weighted graphs.
Subgraphs that passed the verification process (i.e., those for
which the GNN’s prediction remained consistent with the
original sample label) were stored in verified query repos-
itories corresponding to their specific configuration. Each
unique combination of explainer method (Integrated Gradi-
ents, Guided Backpropagation, or Saliency), GNN architec-
ture (GCN, GraphSAGE, or GAT), subgraph matching type
(isomorphism or monomorphism), and graph directionality
(directed or undirected) was assigned its own query box as
part of the broader grid search strategy.

A. Performance Evaluation of Exact Structural and Attribute
Matching Approach

In this set of experiments, we evaluate the performance of
the SubMatch explainer under the exact structural and attribute
matching setting.To facilitate interpretation, the abbreviations
used in the figures are as follows: IG (Integrated Gradients),
GBP (Guided Backpropagation), and SAL (Saliency).

We performed a comprehensive grid search across all pos-
sible combinations of three GNN architectures (GCN, GAT,
and GraphSAGE), three GNN explainers (Integrated Gradi-
ents, Guided Backpropagation, and Saliency), two matching
strategies (isomorphism and monomorphism), and two graph
types (directed and undirected). Among the 23 malicious test
samples, the maximum number of successful matches with
verified queries was 16. The comparative results are illustrated
in Figure 3, which presents boxplots of the average number
of matched query nodes across different factors. Specifically,

GAT GCN GraphSAGE
GNN Model

0

100

200

300

400

500

600

700

A
ve

ra
g

e
Q

u
er

y
N

o
d

e
C

o
u

n
t

(a)

GBP IG SAL
Explainer

0

100

200

300

400

500

600

700

A
ve

ra
g

e
Q

u
er

y
N

o
d

e
C

o
u

n
t

(b)

Directed Undirected
Graph Type

0

100

200

300

400

500

600

700

A
ve

ra
g

e
Q

u
er

y
N

o
d

e
C

o
u

n
t

(c)

Isomorphism Monomorphism
Match Type

0

100

200

300

400

500

600

700

A
ve

ra
g

e
Q

u
er

y
N

o
d

e
C

o
u

n
t

(d)

Fig. 3: Boxplots of the average number of matched query nodes across different experimental factors under the exact
structural and attribute matching setting: (a) GNN model comparison (GraphSAGE, GCN, GAT), (b) explainer comparison
(IG, GBP, SAL), (c) graph type comparison (directed vs. undirected), and (d) matching strategy comparison (monomorphism
vs. isomorphism).

Figure 3a compares the GNN models, Figure 3b compares the
explainers, Figure 3c compares directed and undirected graphs,
and Figure 3d compares monomorphism and isomorphism
matching strategies.

Observations reveal that, in terms of the average number of
matched query nodes, GraphSAGE consistently outperforms
the other GNN models. Regarding the matching strategy,
monomorphism achieves notably better performance compared
to isomorphism. In contrast, the choice of graph type (directed
vs. undirected) and the choice of explainer (IG, GBP, SAL)
exhibit no significant differences with respect to this metric.
Similarly, Figure 4 shows the corresponding boxplots for the
number of matched queries (i.e., the number of verified queries
in the query box that were successfully matched with target
samples). In this case, the results suggest that there is no
significant variation across different GNN models, explainers,
graph types, or matching methods.

To analyze the performance across GNN models in more
detail, we fixed the explainer to Integrated Gradients, the graph
type to undirected, and the matching strategy to monomor-
phism. Under this fixed setting, the SubMatch explainer’s
matching results are summarized in Figure 5. Among the 23
malicious test samples, 16 samples were successfully matched

with verified queries using the GCN model, 15 samples with
GraphSAGE, and 12 with GAT. A detailed breakdown is
provided in Figure 5a, which presents a bar chart indicating,
for each sample and GNN model, the number of successful
matches with verified subgraphs. Furthermore, Figure 5b re-
ports the average number of nodes from the matched queries.
In terms of node-level correspondence, GraphSAGE achieves
a higher average matching quality compared to GCN and
GAT, reflecting its superior representational capabilities in this
setting.

Importantly, we observed that none of the malicious target
samples were mistakenly matched with benign queries in this
exact setting; all matches involved only verified malicious
queries, preserving the semantic fidelity of the detection.
To demonstrate the interpretability of the method, Figure 6
visualizes the output of the SubMatch explainer applied to a
representative malicious sample. Red circles highlight regions
matched with malicious subgraphs from the verified query box,
while black circles denote unmatched regions. The size of each
circle is proportional to the frequency of matches, with larger
circles indicating nodes that matched more frequently with
verified queries.

GAT GCN GraphSAGE
GNN Model

0

5

10

15

20

25

30
M

at
ch

 Q
u

er
y

C
o

u
n

t

(a)

GBP IG SAL
Explainer

0

5

10

15

20

25

30

M
at

ch
 Q

u
er

y
C

o
u

n
t

(b)

Directed Undirected
Graph Type

0

5

10

15

20

25

30

M
at

ch
 Q

u
er

y
C

o
u

n
t

(c)

Isomorphism Monomorphism
Match Type

0

5

10

15

20

25

30

M
at

ch
 Q

u
er

y
C

o
u

n
t

(d)

Fig. 4: Boxplots of the number of matched queries across different experimental factors under the exact structural and attribute
matching setting: (a) GNN model comparison (GraphSAGE, GCN, GAT), (b) explainer comparison (IG, GBP, SAL), (c) graph
type comparison (directed vs. undirected), and (d) matching strategy comparison (monomorphism vs. isomorphism).

B. Performance Evaluation of Exact Structural Matching with
Approximate Attribute Matching Approach

In this evaluation, we analyze the effectiveness of the
SubMatch explainer under the exact structural matching with
approximate attribute matching setting. Consistent with earlier
findings, the choice of GNN architecture and matching strategy
exerts a more substantial influence on matching performance
compared to other configuration factors, such as graph direc-
tionality (directed vs. undirected) or the choice of first-level
GNN explainer. To maintain consistency, we present the results
based on a representative configuration that employs Graph-
SAGE, treats graphs as undirected, utilizes monomorphism-
based matching through the VF2 algorithm, and applies In-
tegrated Gradients for computing node importance scores.
To enable approximate attribute matching, we use a cosine
similarity threshold of 0.9, allowing nodes with semantically
similar embeddings to be considered equivalent even when
exact attribute values differ.

Figure 7 displays the output of the SubMatch explainer
under this relaxed matching strategy. In the visualization, red
nodes indicate matches with verified malicious queries, while
blue nodes correspond to matches with benign queries. Due
to the approximate nature of attribute matching, some nodes
are matched with both query types, highlighting the nuanced

interpretability offered by the SubMatch explainer in capturing
overlapping semantic patterns.

V. CONCLUSION

This work presents a novel explainable malware detection
framework by integrating CFG extraction, a node feature
embedding module, a GNN model, a GNN explainer, and
subgraph-level reasoning to provide both high classification
accuracy and interpretable insights. The core contribution lies
in the design and implementation of the SubMatch explainer,
an innovative GNN explainer that enhances model trans-
parency by leveraging verified subgraphs and subgraph match-
ing techniques. Our methodology integrates dynamic CFG ex-
traction, node-level embedding via autoencoders, GNN-based
classification, and dual explainability. By applying both exact
and approximate subgraph matching strategies, we introduced
a mechanism for attributing model predictions to known and
verified subgraph patterns, enabling robust explanations. The
SubMatch explainer not only identifies important nodes but
also scores them based on their correspondence with known
patterns, offering a granular and intuitive view of a model’s
decision-making process. Experimental results across various
GNN architectures and explainer configurations demonstrate
that GraphSAGE consistently outperforms GCN and GAT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Target

0

5

10

15

20

25

30
M

at
ch

 Q
u

er
y

C
o

u
n

t
GCN GraphSAGE GAT

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Target

0

50

100

150

200

250

A
ve

ra
g

e
Q

u
er

y
N

o
d

e
C

o
u

n
t

GCN GraphSAGE GAT

(b)

Fig. 5: Evaluation of SubMatch explainer performance across GNN models under the exact structural and attribute matching
setting.

Fig. 6: Dual explanation provided by the SubMatch explainer
for a representative malicious target under the exact structural
and attribute matching approach.

in terms of both matching quality and interpretability. In
particular, the exact structural and attribute matching setting
shows the highest precision, while the approximate attribute
matching configuration offered greater flexibility and semantic
richness. In summary, the proposed framework and SubMatch
explainer advance the state of explainable malware detection
by bridging the gap between model accuracy and interpretabil-
ity. This framework is particularly valuable for security ana-
lysts who require not only accurate predictions but also an
understanding of the underlying rationale. Future work may
extend this framework by incorporating temporal dynamics
from execution traces, exploring contrastive subgraph learning,

Fig. 7: Dual interpretation of a malicious targett sample
through SubMatch explainer under the configuration of exact
structural matching and relaxed attribute similarity.

or integrating online learning to adapt to evolving malware
behaviors.

REFERENCES

[1] R. Sun, S. Guo, J. Guo, W. Li, X. Zhang, X. Guo, and Z. Pan,
“GraphMoCo: A graph momentum contrast model for large-scale binary
function representation learning,” Neurocomputing, p. 127273, 2024.

[2] H. Peng, J. Yang, D. Zhao, X. Xu, Y. Pu, J. Han, X. Yang, M. Zhong, and
S. Ji, “MalGNE: Enhancing the performance and efficiency of cfg-based
malware detector by graph node embedding in low dimension space,”
IEEE Transactions on Information Forensics and Security, 2024.

[3] M. T. Nguyen, V. H. Nguyen, and N. Shone, “Using deep graph learning
to improve dynamic analysis-based malware detection in PE files,”
Journal of Computer Virology and Hacking Techniques, vol. 20, no. 1,
pp. 153–172, 2024.

[4] T. Li, Y. Luo, X. Wan, Q. Li, Q. Liu, R. Wang, C. Jia, and Y. Xiao,
“A malware detection model based on imbalanced heterogeneous graph
embeddings,” Expert Systems with Applications, vol. 246, p. 123109,
2024.

[5] C. Liu, B. Li, J. Zhao, W. Feng, X. Liu, and C. Li, “A2-CLM: Few-shot
malware detection based on adversarial heterogeneous graph augmenta-
tion,” IEEE Transactions on Information Forensics and Security, vol. 19,
pp. 2023–2038, 2024.

[6] S. Chen, B. Lang, H. Liu, Y. Chen, and Y. Song, “Android malware
detection method based on graph attention networks and deep fusion
of multimodal features,” Expert Systems with Applications, vol. 237, p.
121617, 2024.

[7] P. Feng, L. Gai, L. Yang, Q. Wang, T. Li, N. Xi, and J. Ma, “DawnGNN:
Documentation augmented Windows malware detection using graph
neural network,” Computers & Security, vol. 140, p. 103788, 2024.

[8] Y. Hei, R. Yang, H. Peng, L. Wang, X. Xu, J. Liu, H. Liu, J. Xu, and
L. Sun, “HAWK: Rapid Android malware detection through heteroge-
neous graph attention networks,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 35, no. 4, pp. 4703–4717, 2024.

[9] L. Deng, H. Wen, M. Xin, H. Li, Z. Pan, and L. Sun, “Enimanal:
Augmented cross-architecture IoT malware analysis using graph neural
networks,” Computers & Security, vol. 132, p. 103323, 2023.

[10] Z. Wang, K. Zeng, J. Wang, and D. Li, “FAGnet: Family-aware-based
Android malware analysis using graph neural network,” Knowledge-
Based Systems, vol. 289, p. 111531, 2024.

[11] J. Gu, H. Zhu, Z. Han, X. Li, and J. Zhao, “GSEDroid: GNN-
based Android malware detection framework using lightweight semantic
embedding,” Computers & Security, vol. 140, p. 103807, 2024.

[12] R. Yumlembam, B. Issac, S. M. Jacob, and L. Yang, “IoT-based Android
malware detection using graph neural network with adversarial defense,”
IEEE Internet of Things Journal, vol. 10, no. 10, pp. 8432–8444, 2023.

[13] X. Ling, L. Wu, S. Wang, T. Ma, F. Xu, A. X. Liu, C. Wu, and S. Ji,
“Multilevel graph matching networks for deep graph similarity learning,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 34,
no. 2, pp. 799–813, 2023.

[14] F. Ou and J. Xu, “S3Feature: A static sensitive subgraph-based feature
for Android malware detection,” Computers & Security, vol. 112, p.
102513, 2022.

[15] Y. Zhen, D. Tian, X. Fu, and C. Hu, “A novel malware detection method
based on audit logs and graph neural network,” Engineering Applications
of Artificial Intelligence, vol. 152, p. 110524, 2025.

[16] H. Shokouhinejad, R. Razavi-Far, H. Mohammadian, M. Rabbani,
S. Ansong, G. Higgins, and A. A. Ghorbani, “Recent advances in
malware detection: Graph learning and explainability,” arXiv preprint
arXiv:2502.10556, 2025.

[17] H. Mohammadian, G. Higgins, S. Ansong, R. Razavi-Far, and A. A.
Ghorbani, “Explainable malware detection through integrated graph
reduction and learning techniques,” arXiv preprint arXiv:2412.03634,
2024.

[18] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, GNNEx-
plainer: generating explanations for graph neural networks, 2019.

[19] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang,
“Parameterized explainer for graph neural network,” ser. NIPS ’20, 2020.

[20] N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh,
J. Reynolds, A. Melnikov, N. Kliushkina, C. Araya, S. Yan, and
O. Reblitz-Richardson, “Captum: A unified and generic model inter-
pretability library for pytorch,” arXiv preprint arXiv:2009.07896, 2020.

[21] H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji, “On explainability of graph
neural networks via subgraph explorations,” in Proceedings of the 38th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139,
18–24 Jul 2021, pp. 12 241–12 252.

[22] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and T. Liu, “Android
malware familial classification and representative sample selection via
frequent subgraph analysis,” IEEE Transactions on Information Foren-
sics and Security, vol. 13, no. 8, pp. 1890–1905, 2018.

[23] X. Lu, J. Zhao, S. Zhu, and P. Lio, “Sndgcn: Robust android malware
detection based on subgraph network and denoising gcn network,”
Expert Systems with Applications, vol. 250, p. 123922, 2024.

[24] S. Alam, R. Horspool, I. Traore, and I. Sogukpinar, “A framework for
metamorphic malware analysis and real-time detection,” Computers &
Security, vol. 48, pp. 212–233, 2015.

[25] H. Shokouhinejad, R. Razavi-Far, G. Higgins, and A. A. Ghorbani,
“Node-Centric Pruning: A novel graph reduction approach,” Machine
Learning and Knowledge Extraction, vol. 6, no. 4, pp. 2722–2737, 2024.

[26] H. Shokouhinejad, G. Higgins, R. Razavi-Far, H. Mohammadian, and
A. A. Ghorbani, “On the consistency of gnn explanations for malware
detection,” arXiv preprint arXiv:2504.16316, 2025.

[27] L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh, and G. Wang, “Bodmas:
An open dataset for learning based temporal analysis of pe malware,”
in 2021 IEEE Security and Privacy Workshops (SPW). IEEE, 2021,
pp. 78–84.

[28] Practical Security Analytics LLC, “Pe malware machine learning
dataset,” https://practicalsecurityanalytics.com/pe-malware-machine-
learning-dataset/, 2024, accessed: 2024-08-06.

[29] G.-A. Iosif, “Dikedataset,” https://github.com/iosifache/DikeDataset,
2021, accessed on February 27, 2024.

[30] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary analysis,”
2016.

[31] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” 2016.

[32] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware,” 2015.

https://practicalsecurityanalytics.com/pe-malware-machine-learning-dataset/
https://practicalsecurityanalytics.com/pe-malware-machine-learning-dataset/
https://github.com/iosifache/DikeDataset

	Introduction
	Preliminaries
	Graph Neural Networks
	GNN Explainers
	Subgraph Matching

	Proposed Methodology
	Dynamic CFG Extraction
	Node Feature Embedding
	GNN-Based Classification
	GNN-based Explainer and Node Embedding Mapping
	Subgraph Extraction
	SubMatch Explainer
	Subgraph Matching
	Node Risk Scoring

	Experimental Results
	Performance Evaluation of Exact Structural and Attribute Matching Approach
	Performance Evaluation of Exact Structural Matching with Approximate Attribute Matching Approach

	Conclusion
	References

