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Graph neural networks have been widely utilized to solve graph-related tasks because of their strong learning
power in utilizing the local information of neighbors. However, recent studies on graph adversarial attacks have
proven that current graph neural networks are not robust against malicious attacks. Yet much of the existing work
has focused on the optimization objective based on attack performance to obtain (near) optimal perturbations,
but paid less attention to the strength quantification of each perturbation such as the injection of a particular
node/link, which makes the choice of perturbations a black-box model that lacks interpretability. In this work,
we propose the concept of noise to quantify the attack strength of each adversarial link. Furthermore, we propose
three attack strategies based on the defined noise and classification margins in terms of single and multiple
steps optimization. Extensive experiments conducted on benchmark datasets against three representative graph
neural networks demonstrate the effectiveness of the proposed attack strategies. Particularly, we also investigate
the preferred patterns of effective adversarial perturbations by analyzing the corresponding properties of the
selected perturbation nodes.
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1 Introduction
Graphs, where nodes indicate the entities and links represent the corresponding relationships between
entities, have been widely employed to characterize the interaction of various social systems. In
recent years, due to the strong learning power of the neighborhood aggregation mechanism, graph
neural networks (GNNs) have obtained great success on various graph-related downstream tasks,
such as node classification, link prediction, and community detection [7, 11, 25, 26, 28].

Although GNNs perform well in these graph-based tasks, recent studies [5, 18] pointed out that
current GNNs are not robust to carefully designed attacks (i.e., adversarial attacks). In other words,
GNNs may be easily deceived after being injected with some small perturbations into the data, such
as modifying the node features, adding or removing the links, injecting fake nodes, etc. Therefore,
a series of works focusing on graph adversarial attacks has been proposed to further evaluate the
robustness of current GNNs from different perspectives [4, 6, 19, 20, 24, 32].

Most existing adversarial attack methods focus on the optimization objective based on final attack
performance by utilizing gradient information [4, 15], classification margins [6], reinforcement
learning (RL) algorithm [6, 19], etc., to obtain (near) optimal perturbations. Yet these methods pay
less attention to the strength quantification of each perturbation, such as the injection of a particular
node/link into the clean graph, which makes the choice of perturbations a black-box model that
lacks interpretability. Therefore, we want to identify the contributions of adversarial links and further
uncover the selection preference of the optimal perturbation of graph adversarial attacks.

In this work, we first propose the concept of noise to quantify the attack strength of each adversarial
link, and then propose three simple yet effective attack methods based on this noise concept to further
evaluate the robustness of current GNNs. Specifically, following the classic work [6] in the graph
adversarial attacks, we focus on the scenario of targeted attacks on the node classification task, which
means the attack goal is to make GNNs predict the targeted node to the wrong classes. Based on
neighborhood aggregations of GNNs, we theoretically propose and discuss the noise of different
adversarial links. In addition, we formulate a reasonable noise function to quantify the noise of
each adversarial link on the structural attacks. We then refine the adversarial links based on their
rankings of noise value. According to the defined noise function and the traditional classification
margins, we then propose three different attack strategies from the perspectives of both single step
and multiple steps optimization, namely noise-based greedy attacks (NGA), noise and margin-
based attacks (NMA), and noise and margin-based attacks-boost (NMAB). Finally, we verify the
attack performance of the proposed methods on the benchmark datasets against three representative
GNNs. Moreover, we also measure the properties of the adversarial links from several perspectives,
including their class, degree, homophily ratio [8, 16, 30], etc. The major contributions of this work
are summarized as follows.

(1) New Concept. We theoretically analyze the perturbation of adversarial links from the perspec-
tive of noise propagation based on the neighborhood aggregation mechanism of GNNs, and
then present the concept of noise to quantify the perturbation strength of each adversarial link
on neighborhood aggregations.

(2) New Methods. Based on the defined noise function and classification margins of adversarial
links, we then propose three simple yet effective attack strategies by considering both the
single step and multiple steps optimizations.

(3) Comprehensive Experiments. We conducted extensive experiments on three benchmark
datasets against representative GNNs to verify the superiority of the proposed methods. More-
over, we further analyze the properties and patterns of the chosen adversarial links from several
perspectives.
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2 Related Work
2.1 Graph Neural Network Models
Graph neural networks (GNNs) have obtained great success on different graph-related tasks by
utilizing the message passing mechanism. Through the neighborhood aggregations of GNNs, each
node in the graph can utilize the information of its neighbors to further characterize itself. A series of
well-known GNNs have been proposed in the past few years. For example, the graph convolution
network (GCN) [13] achieved the feature propagation via a first-order approximation of localized
spectral filters on graphs. GraphSAGE [10] utilized neighborhood sampling mechanism and proposed
more advanced aggregators to improve the scalability of GNNs. Graph attention network (GAT)
[21] assigned different weights to different neighbors adaptively via a self-attention mechanism.
Simplified graph convolution network (SGC) [23] further reduced the complexity of the original
GCN by removing the non-linear activation functions in the middle aggregation layers.

2.2 Categories of Graph Adversarial Attacks
Despite the strong potential shown on various downstream tasks, recent GNNs tend to be vulnerable
to the particularly designed perturbations, which are called graph adversarial attacks. Based on the
claim from previous studies [5, 18], graph adversarial attacks can be divided into graph modification
attacks and node injection attacks from the perspective of attack operations. The former assumes that
the attackers can directly modify the original graphs by changing features or flipping links, while the
latter considers that the attackers prefer to inject some fake nodes into the original graph. Moreover,
from the perspective of attack goals, graph adversarial attacks can be divided into targeted attacks
and global attacks, indicating that the attackers will focus on attacking a single node and the overall
performance of all nodes each time, respectively. In addition, based on different attack stages, graph
adversarial attacks can also be divided into evasion attacks (i.e., test time) which evaluate the attack
performance on the pre-trained GNNs, and poisoning attacks (i.e., training time) which evaluate the
attack performance on the retrained GNNs.

As the main objective of this work is to investigate the specific difference of the adversarial links
in influencing the neighborhood aggregation mechanism of GNNs, we will focus on the graph
modification attacks and targeted evasion attacks on the node classification task. In other words, our
goal is to make GNNs to predict the targeted node to the wrong class via structural perturbations in
the testing phase.

2.3 Existing Methods of Graph Adversarial Attacks
Z¥ugner et al. [6] first pointed out that traditional GNNs can be easily deceived through small
unnoticeable perturbations by proposing NETTACK method by selecting the adversarial links
causing the largest classification margins. After that, a bunch of works have been proposed to
investigate the robustness of GNNs. For instance, Dai et al. [6] proposed GradArgmax via flipping
the corresponding link with the largest magnitude of gradients. Chen et al. [4] presented another
gradient-based attack method, FGA, by adding/removing the corresponding valid link with the
largest absolute gradient value. Zhang et al. [27] utilized the cross entropy to denote the similarity of
different nodes, then heuristically connect/disconnect the corresponding node pairs. Li et al. [15]
proposed SGA to achieve the gradient-based attacks by leveraging subgraph to reduce the time
and space of gradient calculation. Geisler et al. [9] developed an attack strategy by adopting the
sparsity-aware first-order optimization attacks and a novel surrogate loss to improve the scalability of
attacks. Zhu et al. [29] introduced the partial graph attack strategy by adopting a hierarchical selection
policy to select the vulnerable nodes as the attack targets and a cost-effective anchor-picking policy
to pick the most promising anchor nodes for modifying edges. Recently, Alom et al. [1] proposed a
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Table 1. Main notations in this paper.

Notation Definition

𝐺 Graph
𝑉 Node set
𝐸 Link set
𝑋 , 𝑥𝑢 Node feature matrix, feature vector of node 𝑢
𝑌 Label set
N(𝑢) Neighbor set of node 𝑢 including itself
𝑓𝜃 GNN model
ℎ
(𝑘 )
𝑢 Representation of node 𝑢 in the 𝑘-th layer
Δ Attack budget, i.e., number of links to be added
Ltrain Training loss of GNN models
Latk Attack loss of the adversaries
𝐿𝑁 (𝑢, 𝑣) Link noise for link (𝑢, 𝑣)
DIS(𝑢, 𝑣) Dissimilarity between nodes 𝑢 and 𝑣

L̃N(𝑢, 𝑣) Appropriate link noise for link (𝑢, 𝑣)

subtle and effective attack method, GOttack, by manipulating the graph orbit vector of each node.
Besides, there are also a series of strong attack methods from other optimization perspectives, such
as the reinforcement learning algorithms [19], meta-gradients [33], evolutionary algorithms [3], etc.
However, few of them have analyzed the specific difference between different adversarial links,
especially for targeted attacks. Therefore, we want to bridge this gap and quantitatively evaluate the
difference of structural perturbations, then propose powerful attack strategies from the perspective of
noise propagation on neighborhood aggregations.

3 Preliminaries
3.1 Graph Neural Networks
A graph can be denoted as 𝐺 = (𝑉 , 𝐸, 𝑋 ) where 𝑉 = {𝑣1, 𝑣2, · · · , 𝑣𝑛} represents the node set with 𝑛

nodes and 𝐸 = {𝑒1, 𝑒2, · · · , 𝑒𝑚} indicates the link set with 𝑚 links. 𝑋 ∈ R𝑛×𝑑 represents the feature
matrix where each node has a 𝑑-dimension feature vector. We summarize the main notations used in
this paper in Table 1.

The details of a general semi-supervised node classification task [13] are as follows. Assuming
the 𝑛 nodes belong to the label set 𝑌 = {0, 1, · · · ,𝐶 − 1} with 𝐶 different classes, we will first train a
GNN model 𝑓𝜃 based on the labeled/training nodes 𝑉train ⊂ 𝑉 by minimizing a training loss Ltrain,
and then utilize 𝑓𝜃 ∗ to predict the possible class 𝑦𝑖 of remaining/test nodes 𝑉 = {𝑣𝑖 |𝑣𝑖 ∈ 𝑉 \𝑉train}.
Specifically, a 𝑘-layer GCN can be formally defined as follows.

ℎ
(𝑘 )
𝑢 = 𝜎 (𝑊 (𝑘 ) · 𝐴𝑔𝑔(ℎ (𝑘−1)𝑣 |𝑣 ∈ N (𝑢)), (1)

where ℎ (𝑘 )𝑢 indicates the representation of node 𝑢 in the 𝑘-th layer, N(𝑢) is the neighbors of node 𝑢
including self-loop (i.e., 𝑢 ∈ N (𝑢)). 𝜎 is the activation function such as ReLU in the middle layers
or softmax in the last layer, and𝑊 (𝑘 ) is the learning parameter in the 𝑘-th layer. Moreover, 𝐴𝑔𝑔(·) is
the aggregation function that combines the representation of neighboring nodes in the prior layer,
which is as follows.
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𝐴𝑔𝑔(ℎ (𝑘−1)𝑣 |𝑣 ∈ N (𝑢)) =
∑︁

𝑣∈N(𝑢 )

1√︁
|N𝑢 | · |N𝑣 |

· ℎ (𝑘−1)𝑣 , (2)

where |N𝑢 | and |N𝑣 | represent the number of neighbors of nodes 𝑢 and 𝑣 , respectively. Therefore,
term 1√

|N𝑢 | · |N𝑣 |
can be considered as the weight or contribution of each neighbor 𝑣 to the future

representations of the central node 𝑢.
The learning objective of the node classification task is to minimize the training loss (e.g., entropy

loss), which is as follows.

min
𝜃
Ltrain = −

∑︁
𝑣∈𝑉train

ln𝑍𝑣,𝑐 , 𝑍 = 𝑓𝜃 (𝐺), (3)

where 𝑍 ∈ R𝑛×𝐶 is the output of the last layer of GNN model 𝑓𝜃 , 𝑍𝑣,𝑐 indicates the probability that
node 𝑣 belongs to the true class 𝑐.

3.2 Graph Adversarial Attacks
As we mentioned before, the goal of node classification is to obtain the optimal model 𝑓𝜃 ∗ by
minimizing Ltrain. Graph adversarial attacks, on the contrary, aim to fool a GNN model 𝑓𝜃 by
generating a new adversarial graph 𝐺 ′ via injecting some small perturbations into the original graph
𝐺 under a given budget Δ, where the budget Δ represents the number of links can be flipped in
structural attacks. More specifically, the goal of graph adversarial attacks can be formulated as
follows.

minLatk (𝑓𝜃 ′ (𝐺 ′))
𝑠 .𝑡 .|𝐺 ′ −𝐺 | ≤ Δ,

(4)

where 𝑓𝜃 ′ represents the GNN model being attacked, which will be either trained on the clean graph
𝐺 in the evasion attacks (i.e., this work) or trained on the perturbed graph 𝐺 ′ in the poisoning
attacks. Latk represents the attack loss of the adversaries. As we focus on the targeted evasion attacks,
we define the loss of the target node 𝑢 as the classification margin (CM) between the predicted
probabilities after and before the attacks, which can be given as follows.

Latk (𝑢) = 𝑓𝜃 ′ (𝐺 ′)𝑢,𝑐 − 𝑓𝜃 ′ (𝐺)𝑢,𝑐 . (5)

We try to minimize the CM between the probabilities that node 𝑢 be predicted to the ground truth
label 𝑐 after and before the adversarial attacks under the same GNN model 𝑓𝜃 ′ . Obviously that
CM ∈ [−1, 1], and a smaller CM indicates a better attack performance.

4 Proposed Methods
In this section, we first introduce the definition of the noise of adversarial links, and then give the
details of the proposed three attack methods based on noise propagation.

4.1 Noise Propagation
In the graph adversarial attacks, the key point to mislead the target node to a wrong class is to
influence the neighborhood aggregations of GNNs. For example, the attackers can add some fake
links between the target node and the nodes that may be harmful to the future representation of the
target node. In addition to adding links, the attackers also can remove some original links between
the target node and their neighbors. As previous studies [2, 12] have shown that adding link attacks
would be more powerful than removing link attacks, we only consider adding link attacks in this
work for simplicity.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Typically, we assume that our neighbors will help obtain a better representation via neighborhood
aggregations. However, what will happen if the information from our neighbors is harmful to the
target node? Recall to (2), we can simply consider that the term 1√

|N𝑢 | · |N𝑣 |
(𝑊𝑒𝑖𝑔ℎ𝑡 for short) as

the aggregated weight of neighbor node 𝑣 to the central node 𝑢. Particularly, in the following, we
define the potential node 𝑣 that chose to connect with the target node 𝑢 as the adversarial node,
and the corresponding link (𝑢, 𝑣) as the adversarial link. As we only consider adding link attacks,
the corresponding adversarial link (𝑢, 𝑣) should not exist in the clean graph. Moreover, we focus on
the noise propagation on homophilic networks where most of the original neighbors of each node
belong to the same class because traditional GNNs, such as GCN, usually cannot perform well on
heterophilic networks, and corresponding heterophilic GNNs usually employ some new aggregation
designs. Thus, the findings in this work maybe cannot be directly extended to the heterophilic
networks, and we leave it for future work.

In the targeted attacks, for a specific target node 𝑢, if the aggregation between the target node 𝑢 and
each possible adversarial node 𝑣 only contains noise and the specific noise value of each adversarial
link is the same, we can have the following proposition based on (2).

PROPOSITION 4.1. Let 𝐺 = (𝐴,𝑋, 𝐸) be a simple graph, and 𝑌 = {0, 1, · · · ,𝐶 − 1} be the
possible label. We simplify the feature of each node to be a one-hot vector corresponding to its
label, denoted as 𝜇 (𝑌 ). Namely, the feature vector of node 𝑢 is 𝑥𝑢 = 𝜇 (𝑌𝑢). Assuming that most
of the original neighbors of each node belong to the same class, and the specific noise value
of each adversarial link is the same. Consider a one-layer GCN where the output of node 𝑢 is
ℎ𝑢 = 𝜎 (𝑊 ·∑𝑣∈N(𝑢 )

1√
|N𝑢 | · |N𝑣 |

· 𝑥𝑣), 𝜎 is the softmax activation function, we have the following.

(1) From the perspective of target nodes, nodes with a lower degree will be easier to be attacked
than those with a higher degree.

(2) From the perspective of adversarial nodes, nodes with a lower degree will influence the
representation of the target node more than those with a higher degree.

PROOF. See Appendix A.1 for the detailed proof. □

we can further explain Proposition 4.1 as follows. Intuitively, a target node with a higher degree
will have a larger value of |N𝑢 |, thus leading to the fact that each neighbor will only contribute a
small part in the neighborhood aggregation procedure as each of them has a small value of𝑊𝑒𝑖𝑔ℎ𝑡 .
Therefore, if we only inject a small budget of adversarial links, it is unlikely to attack the node (i.e.,
influence the node representations) having a high degree successfully.

From another perspective, for attacking a specific target node 𝑢, |N𝑢 | is the same for all adversarial
links, and thus a lower |N𝑣 | indicates a much larger𝑊𝑒𝑖𝑔ℎ𝑡 . Therefore, these kinds of neighbors will
contribute more to the target node in the aggregation procedure, indicating that nodes with a lower
degree will be more aggressive than the nodes with a higher degree under this assumption (i.e., each
adversarial link has the same noise value).

However, the above observations are obtained based on the assumption that each adversarial link
has the same noise value, but obviously the information from neighbors is more complicated, each
link will have a different noise value on the propagation. Therefore, we have the further proposition
as follows.

PROPOSITION 4.2. Except for the specific noise value of adversarial links varying from each
other, we let all of the other assumptions be the same as Proposition 4.1. Then, we have the following.
For a specific target node 𝑢, if the adversarial nodes have the same degree, the adversarial nodes
which are dissimilar to node 𝑢 influence the aggregation of node 𝑢 more than those similar to node 𝑢.

PROOF. See Appendix A.2 for the detailed proof. □

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Quantifying the Noise of Structural Perturbations on Graph Adversarial Attacks 111:7

Based on proposition 4.2, to better quantify the specific noise value of each adversarial link on
the neighborhood aggregation process of target node 𝑢, we then propose a metric link noise (LN)
considering both degree and similarity, which is defined as follows.

LN(𝑢, 𝑣) = 1√︁
( |N𝑢 | + 1) · ( |N𝑣 | + 1)

· DIS(𝑢, 𝑣), (𝑢, 𝑣) ∉ 𝐸, (6)

where the first term represents the latest 𝑊𝑒𝑖𝑔ℎ𝑡 of the adversarial node 𝑣 or the adversarial link
(𝑢, 𝑣). As we only focus on adding link attacks, the degree of both 𝑢 and 𝑣 will increase by one.
The second term DIS(𝑢, 𝑣) indicates the dissimilarity between the target node 𝑢 and corresponding
adversarial node 𝑣 , or in other words, the total noise between nodes 𝑢 and 𝑣 on aggregations. Based
on (2), we know only 1√

( |N𝑢 |+1) · ( |N𝑣 |+1)
of the total noise will be aggregated and further influence

the future representation of node 𝑢. Referring to previous work [14, 27], we utilize the entropy of
corresponding representations of nodes obtained from GNNs to characterize the noise or dissimilarity
between the target node and the adversarial nodes, which is as follows.

DIS(𝑢, 𝑣) = −
𝐶−1∑︁
𝑖=0
(ℎ (𝑘 )𝑢 )𝑖 log(ℎ (𝑘 )𝑣 )𝑖 , (𝑢, 𝑣) ∉ 𝐸, (7)

where (ℎ (𝑘 )𝑢 )𝑖 is the 𝑖-th hidden representation of GNN model of node 𝑢 in the 𝑘-th layer. Actually,
(ℎ (𝑘 )𝑢 )𝑖 is the probability that node 𝑢 belongs to class 𝑖 ∈ 𝑌 as if the total layer of the corresponding
GNN is 𝑘 . Particularly, since the attackers cannot exactly know the specific GNN model that is being
attacked, we utilize the representation of classic GCN [13] as the surrogate model in this work. From
(7), we can find that a higher similarity between the target node 𝑢 and adversarial node 𝑣 indicates a
lower dissimilarity DIS(𝑢, 𝑣).

Combining (6) and (7), for a specific target node 𝑢, we can simplify the calculation by removing
the same term as the target node 𝑢 is the same for all adversarial links. Therefore, we further define
appropriate link noise (L̃N) as follows.

L̃N(𝑢, 𝑣) =
−∑𝐶−1

𝑖=0 (ℎ
(𝑘 )
𝑢 )𝑖 log(ℎ (𝑘 )𝑣 )𝑖√︁
|N𝑣 | + 1

. (8)

Based on the above analysis, we can intuitively consider that a specific adversarial link (𝑢, 𝑣)
with a higher L̃N will influence the neighborhood aggregations of target node 𝑢 more than those
with smaller L̃N. Therefore, it can be regarded as an importance measure of adversarial links. In the
following, we further propose three attack strategies considering the proposed appropriate link noise
metric.

4.2 Noise-Based Greedy Attacks
As analyzed above, L̃N(𝑢, 𝑣) indicates the noise value of potential adversarial links connecting 𝑢 and
𝑣 . Therefore, we first propose a simple noise-based greedy attack method (NGA) by directly utilizing
the noise value of each valid adversarial link. Specifically, we greedily add Δ valid adversarial links
with the highest noise to the target node 𝑢. As the intuitive idea is that adversarial links with higher
noise will negatively influence the neighborhood aggregation of the target node on a larger scale, we
believe this greedy attack method will also achieve considerable performance.

4.3 Noise and Margin-Based Attacks
Although the noise value of adversarial links can reflect the potential harmfulness of future aggrega-
tions to some extent, greedily adding the corresponding adversarial links based on the noise value
may not yield the best attack performance. As NGA only utilizes the original noise value from the
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Algorithm 1 Noise and Margin-based Attack (NMA)
Input: Original graph 𝐺 = (𝑉 , 𝐸, 𝑋 ), target node 𝑢, attack budget Δ, size of candidates 𝛿1.
Output: Generated adversarial graph 𝐺 ′ = (𝑉 , 𝐸′, 𝑋 ).

1: Train a surrogate GCN model 𝑓 𝑠
𝜃

based on original 𝐺 .
2: 𝑍 ← Record the output of the last layer of model 𝑓 𝑠

𝜃
for all nodes.

3: L̃N← Calculate L̃N(𝑢, 𝑣) via 𝑍 for all valid adversarial links (𝑢, 𝑣) based on (8).
4: L̂N← Sort the obtained L̃N in descending order.
5: 𝐸 ← Transform the sorted L̂N to the corresponding link list.
6: 𝐸cand ← Construct the candidates by only retaining the top valid 𝛿1 links with the highest noise,

i.e., 𝐸 [0 : 𝛿1 − 1].
7: 𝐸′ ← 𝐸.
8: for each 𝑖 ∈ {0, · · · ,Δ − 1} do
9: Calculate Latk for all valid links in 𝐸cand based on (5), respectively.

10: 𝑒 ← Select the valid link with the minimal Latk.
11: 𝐸′ = 𝐸′ ∪ 𝑒.
12: end for
13: return 𝐺 ′ = (𝑉 , 𝐸′, 𝑋 ).

Table 2. The top 10 attack sequences ordered by CM of a target node (i.e. id = 422) on Cora dataset
where the attack budgets are from 1 to 3. We simplify the adversarial links as the combination of
the adversarial nodes as they all have the same target node. The boldfaced results indicate that the
corresponding sequence exists in the top 10 sequences on the prior budget.

Index Δ = 1 Δ = 2 Δ = 3
Sequence CM Sequence CM Sequence CM

1 1669 -0.3245 1669, 2167 -0.4459 1669, 2167, 2259 -0.4742
2 2167 -0.3202 1669, 2259 -0.4452 1669, 2168, 2259 -0.4739
3 2259 -0.3181 1669, 2168 -0.4443 1281, 1669, 2167 -0.4733
4 2168 -0.3135 2167, 2259 -0.4439 1281, 1669, 2259 -0.4733
5 1281 -0.3057 2168, 2259 -0.4424 1281, 1669, 2168 -0.4731
6 234 -0.2908 1281, 1669 -0.4417 1669, 2167, 2168 -0.4730
7 697 -0.2899 1281, 2167 -0.4401 1281, 2167, 2259 -0.4728
8 535 -0.2563 1281, 2259 -0.4397 1281, 2168, 2259 -0.4725
9 342 -0.2548 1281, 2168 -0.4388 1669, 2167, 234 -0.4725
10 2404 -0.2527 2167, 2168 -0.4383 2167, 2168, 2259 -0.4724

clean graph, it ignores the change of the latest noise value after the injection of some links. Therefore,
combining the targeted attack loss in (5), we propose a noise and classification margin-based attack
(NMA) strategy, in which the major steps are similar to NETTACK [32]. However, NETTACK needs
to take all possible adversarial links into consideration, while the proposed NMA only retains a small
ratio of links with the strong attack effect (i.e., higher noise value) to be the final candidates.

Specifically, we first utilize the ranking of L̃N to control the size of final candidates, as the links
with higher noise tend to mislead the target node more in the neighborhood aggregations. The detailed
procedure of NMA is given in Algorithm 1. We only reserve the top 𝛿1 valid links with higher noise
to be the final candidates before we move into the margin calculation step (i.e., line 6). By employing
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Algorithm 2 Noise and Margin-based Attack-Boost (NMAB)
Input: Original graph 𝐺 = (𝑉 , 𝐸, 𝑋 ), target node 𝑢, attack budget Δ, size of candidates 𝛿2, size of
single optimal list 𝑙𝑒𝑛sin, size of retain list 𝑙𝑒𝑛re.
Output: Generated adversarial graph 𝐺 ′ = (𝑉 , 𝐸′, 𝑋 ).

1: Train a surrogate GCN model 𝑓 𝑠
𝜃

based on original 𝐺 .
2: 𝑍 ← Record the output of the last layer of model 𝑓 𝑠

𝜃
for all nodes.

3: L̃N← Calculate L̃N(𝑢, 𝑣) via 𝑍 for all valid adversarial links (𝑢, 𝑣) based on (8).
4: L̂N← Sort the obtained L̃N in descending order.
5: 𝐸 ← Transform the sorted L̂N to the corresponding link list.
6: 𝐸cand ← Construct the candidates by only retaining the top 𝛿2 valid links with the highest noise,

i.e., 𝐸 [0 : 𝛿2 − 1].
7: Calculate Latk for all links in 𝐸cand based on (5), respectively.
8: 𝐸sin ← Record the top 𝑙𝑒𝑛sin links which have the highest Latk among all 𝛿2 candidate links.
9: 𝐸optimal ←Record the top 𝑙𝑒𝑛re links which have the highest Latk among all 𝛿2 candidate links.

10: for each 𝑖 ∈ {1, · · · ,Δ − 1} do
11: 𝐸current ← Construct the valid (𝑖 + 1)-length attack list by combining the optimal (1)-length

attack list 𝐸sin and the optimal (𝑖)-length attack list 𝐸optimal.
12: Calculate Latk for all link sequences in 𝐸current based on (5), respectively.
13: 𝐸optimal ← Select the top 𝑙𝑒𝑛re attack sequence with the minimal Latk.
14: end for
15: 𝐸∗ ← Select the sequence with the minimal Latk in 𝐸optimal as the optimal attack sequence.
16: 𝐸′ = 𝐸 ∪ 𝐸∗.
17: return 𝐺 ′ = (𝑉 , 𝐸′, 𝑋 ).

the above candidate refining mechanism, the searching space is greatly reduced as we only need to
evaluate a small part of link perturbations.

4.4 Noise and Margin-Based Attacks-Boost
In the above, we propose NMA by taking the noise value of links as a candidate selection metric,
and further utilising the classification margin as the final indicator. But similar to NETTACK, our
NMA also focuses on single step optimization as we will select the current optimal adversarial link
decreasing the classification margin the most during each attack budget. As a result, we may ignore
other adversarial link combinations which have more powerful attack performance in a multiple
steps optimization perspective. Based on the traditional robustness evaluation study of complex
networked systems [31], an interesting finding is that the powerful (𝑖 + 1)-length attack sequences
usually contain the strong (𝑖)-length attack sequences. It is also straightforward that the combination
of strong sequences will lead to a better attack performance.

To investigate whether this phenomenon exists in our problem, we conduct a similar empirical
study on a specific target node (i.e., id = 422) of the Cora dataset, whose statistics will be given in
Section 5.1. Particularly, to reduce the full searching space, we only consider the adversarial links in
NMA that are controlled by the size of candidates 𝛿1 as the valid links for simplicity. By utilizing
the classification margin as the evaluation metric, we observe that this phenomenon also exists in
our task, as shown in Table 2. For example, the optimal (2)-link attack sequence (i.e., {1669, 2167})
contains the optimal (1)-link attack sequence (i.e., {1669}), the optimal (3)-link attack sequence (i.e.,
{1669, 2167, 2259}) contains the optimal (2)-link attack attack sequence (i.e., {1669, 2167}), etc.
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Fig. 1. A systematic framework of targeted attacks based on the proposed three strategies.

Therefore, we know that the strong attack sequences in prior steps can help search for more powerful
attack sequences in the next step, which can be considered a multiple steps optimization process.

Therefore, following the above findings, we propose an improved strategy, NMAB, to boost the
attack performance of NMA. The major steps of NMAB are similar to NMA, as shown in Algorithm
2. The only difference is, NMAB will not greedily select the adversarial link with the lowest CM
during each step, but maintain two optimal lists with pre-defined sizes including the optimal (1)-link
attack sequence and optimal (𝑖)-link attack sequence (i.e., lines 8-14). Specifically, 𝐸sin represents
the optimal (1)-link attack sequence with the size of 𝑙𝑒𝑛sin, and 𝐸optimal indicates the optimal (𝑖)-link
attack sequence with the size of 𝑙𝑒𝑛re. For each attack budget, we will construct the current attack
candidates (i.e., sequence length = 𝑖 + 1) by combining all the valid combinations of list 𝐸optimal
(i.e., sequence length = 𝑖) and list 𝐸sin (i.e., sequence length = 1). Finally, we will return the optimal
attack sequence in the (Δ)-length attack list (i.e., 𝐸∗) to generate the optimal adversarial links. It is
worth noting that, compared to NMA which focuses on selecting the current optimal link during
each attack budget from a local perspective, NMAB can select the optimal link(s) in multiple attack
budgets from a more global perspective.

4.5 Overall Framework
To sum up, based on the proposed noise of nodes, we propose three attack strategies including NGA,
NMA, and NMAB from different perspectives. The overall framework of the attack procedure based
on the proposed three strategies is given in Fig. 1. In the targeted attack scenario, we will first select
a node among all possible nodes as the target node, and then employ the specific strategies (i.e.,
NGA, NMA, or NMAB) to generate the optimal adversarial links. Finally, we will evaluate the attack
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Table 3. Attack success rate of the baselines against GNNs on three datasets. The last column
indicates the average rank of each baseline among different models and datasets. The top 3 results in
each column and the best rank are boldfaced.

Methods Cora Citeseer Pubmed RanksGCN SGC GAT GCN SGC GAT GCN SGC GAT
NETTACK 0.9044 0.9278 0.7388 0.8344 0.8614 0.6496 0.9684 0.9874 0.9114 2.22

FGA 0.9030 0.8184 0.5472 0.8842 0.8526 0.5156 0.9772 0.9630 0.9014 3.56
SGA 0.8540 0.8242 0.5866 0.6686 0.6722 0.4708 0.9604 0.9546 0.8510 4.89

NGA (Ours) 0.7468 0.6746 0.4626 0.6222 0.6854 0.6022 0.9072 0.8746 0.7426 5.67
NMA (Ours) 0.9360 0.8738 0.6082 0.9342 0.8782 0.6368 0.9802 0.9536 0.8872 3.00

NMAB (Ours) 0.9676 0.9166 0.6580 0.9532 0.9074 0.6702 0.9842 0.9598 0.8954 1.67

performance via the GNN model trained on the clean graph by checking whether the target node will
be predicted to a wrong class.

5 Experiments
In this section, we conduct various experiments to verify the effect of the proposed three attack
strategies. To be specific, we first introduce the statistical details of the datasets. Then, we demonstrate
the baselines for comparisons and the GNNs being attacked. Following that, we introduce the
specific parameter settings of models and methods. Finally, we present the experimental results
together with the corresponding analysis. The code for reproduction will be publicly available at
https://github.com/alexfanjn/Noise-propagation-attack, depending on the acceptance.

5.1 Datasets
We evaluated the proposed strategies on three representative benchmark datasets including Cora,
Citeseer, and Pubmed [17]. Following the settings in the previous study [6], we extracted the largest
connected component of them, and the statistical information is given in Table 4.

5.2 Baselines
We chose three recent methods as baselines to compare with the proposed NGA, NMA, and NMAB.
The details are as follows.

(1) NETTACK [32]: NETTACK is a strong baseline that attacks the structures and features based
on classification margin. Since we focus on structure attacks, NETTACK is only allowed to
attack the topological connections for fair comparison.

(2) FGA [4]: FGA is a gradient-based targeted attack method. Based on the assumption that the
adversarial links with the maximum absolute gradient will influence the loss function the most,
FGA greedily chooses the corresponding links.

(3) SGA [15]: SGA is another gradient-based targeted attack method by only considering the
𝑘-hop subgraph rather than the entire graph. Specifically, SGA largely reduces the size of the
candidate set because the adding link operations will only occur when the nodes belong to the
second possible class of the target node.

Among them, NETTACK and SGA used SGC as the surrogate model, while FGA and our methods
adopted GCN as the surrogate model. Particularly, we do not compared our methods with other
attack strategies such as GradArgmax [6], DICE [22], etc., as FGA and SGA already achieved a
better attack performance than them.
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Table 4. The statistics of datasets.

Datasets #Nodes #Links #Features #Classes Avg. Degree
Cora 2,485 5,069 1,433 7 4.08

Citeseer 2,100 3,668 3,703 6 3.48
Pubmed 19,717 44,324 500 3 4.50

Table 5. Attack success rate of the proposed methods against GCN under different dissimilarity
metrics on three datasets, where EUC, COS, and ENT refer to Euclidean distance, Cosine distance,
and entropy distance, respectively. The best results in each method under the same dataset are
boldfaced.

Methods Cora Citeseer Pubmed
EUC COS ENT EUC COS ENT EUC COS ENT

NGA 0.679 0.778 0.781 0.451 0.666 0.647 0.721 0.749 0.879
NMA 0.865 0.869 0.948 0.807 0.821 0.914 0.894 0.901 0.976

NMAB 0.946 0.906 0.975 0.917 0.868 0.936 0.931 0.913 0.978

5.3 Targeted Models
For the GNN models to be attacked, we selected three traditional GNNs including GCN, SGC, and
GAT as representatives. The details of these methods are as follows.

(1) GCN [13]: GCN is a traditional GNN that obtains the low dimensional representation of nodes
via aggregating the local structural and feature information of neighbors.

(2) SGC [23]: SGC is the simplified version of GCN by removing the activation functions in the
middle layers of GCN, which achieves comparable performance as GCN but requires smaller
training complexity.

(3) GAT [21]: GAT further improves the performance of the original GCN by proposing a masked
self-attention mechanism. In this way, GAT gives different weights to different neighbors,
rather than directly assigning the weight of each neighbor based on its degree information.

Particularly, as the proposed attack strategies were trained based on the surrogate GCN model in this
work, the attack performance on other GNNs can show the generalization ability of our methods.

5.4 Parameter Settings
Each datasets is randomly split into the training set (10%), validation set (10%), and test set (80%).
All of the experimental results are the average performance among 5 different splits. Moreover, all of
the baselines and attacked GNNs are implemented by utilizing the opensource platform DeepRobust
[12].

For the specific attacks, we randomly selected 1000 nodes in the test set as the target nodes for
each dataset. To ensure the unnoticeable perturbations, we followed the common configuration of
several studies [15, 32] by setting the attack budget Δ as the degree of target node for all attack
methods. For NMA, we set the size of candidate 𝛿1 as 5Δ. For NMAB, we set the size of candidate
𝛿2, the size of single optimal list 𝑙𝑒𝑛sin, and size of retain list 𝑙𝑒𝑛re as 10Δ, 3Δ, and 10, respectively.
Except for the above settings, all other parameter settings of the baselines and attacked models are
adopted to the default settings.
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Fig. 2. Classification margin comparisons between different methods on three datasets.

5.5 Experimental Results and Analysis
5.5.1 Attack Success Rate. We first investigate the attack success rate of different methods under
different datasets and models. Attack success rate refers to the ratio between the number of target
nodes that are attacked successfully and the total number of target nodes. From Table 3, we can find
that NGA obtains a good attack performance in some cases even though its idea is simple. For the
proposed three strategies, NMAB performs the best, NMA is better than NETTACK in most cases,
and both NMA and NMAB are better than NGA to a large extent. We think the slight gaps between
NMA and NETTACK in some cases are acceptable as NMA has a much smaller size of candidates
than NETTACK, so NETTACK will reasonably have more chances to obtain better solutions. For
the comparisons with other baselines based on the overall ranks (i.e., the last column of Table 3),
NMAB obtains the overall best attack success rate over all other methods, indicating the superiority
of its multiple steps optimization. Following NMAB, NMA obtains a comparable performance as
NETTACK, since they rank third and second place, respectively. The above results suggest that,
even though NETTACK has a larger candidate set than NMAB, NETTACK may drop into local
optimums due to its single step optimization. Moreover, although we utilize GCN as the surrogate
model, the generated adversarial links also achieve remarkable attack performance on both SGC and
GAT models, showing the generalizability of the proposed methods.

5.5.2 Classification Margin. We also analyze the classification margin (CM) obtained by each
baseline. Fig. 2 is the box plot of the corresponding classification margins of the GCN model on
three datasets. We can find that NMA and NMAB are the best two strategies that obtain the optimal
CM than all of the other baselines, and NMAB is slightly better than NMA. More importantly, the
worst cases (i.e., highest CM) of NMA and NMAB are also better than other strategies mostly. The
above findings demonstrate that the proposed strategies can obtain a comparable or even better attack
performance than current methods even though the size of candidate adversarial links has been
largely reduced via the rankings of noise values, especially for NMA and NMAB.

5.5.3 Impact of Different Dissimilarity Metrics. In the default settings, we adopt entropy to
measure the dissimilarity of different node pairs. To further investigate the impact of different
dissimilarity metrics, we employ two other classic distance metrics including Euclidean distance and
Cosine distance, to characterize the difference of the representation vectors of nodes. Specifically,
we replace the calculation of entropy in (7) to the specific calculation of Euclidean distance and
Cosine distance during the candidate selection process in the proposed methods. Then we analyze
the corresponding attack success rate under different dissimilarity measurements. As shown in Table
5, entropy distance obtains the overall best attack performance in the proposed three methods among
all datasets. The above results indicate that, compared with traditional Euclidean distance and Cosine
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Table 6. Class distributions of selected adversarial nodes on three datasets. ‘Sec. Poss.’ refers to the
second possible class.

Datasets Methods Same Sec. Poss. Others

Cora NMA 0 0.3054 0.6946
NMAB 0 0.3130 0.6870

Citeseer NMA 0.0100 0.3370 0.6619
NMAB 0.0016 0.3548 0.6436

Pubmed NMA 0 0.8936 0.1064
NMAB 0 0.8891 0.1109
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Fig. 3. Average homophily ratios of target nodes before and after NMA/NMAB attacks on three
datasets.
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Fig. 4. Attack success rate of the proposed NMA and NMAB methods on three datasets under
different parameter combinations.

distance, entropy distance may be a better metric to characterize the dissimilarity of different nodes
during the neighborhood aggregations of GNNs.

5.5.4 Preference of Adversarial Node Selections. In this subsection, we analyze the preference
of adversarial node selections of the proposed methods. As NMA and NMAB perform better than
NGA, we utilize the prior two as representative strategies. Specifically, the investigated properties
include class distribution, degree, and predicted confidence of the selected nodes.

Class. To explore the class of the selected adversarial nodes, we first analyze the change of
homophily of target nodes before and after the attacks. Homophily [16, 30] is widely adopted to
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characterize the similarity of the target node and its neighbors. Specifically, the homophily of a
specific node 𝑖 is given by the ratio of the number of neighbors with the same label to the number of
all neighbors, which is as follows.

homophily𝑖 =
# 𝑖′𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑤𝑖𝑡ℎ 𝑠𝑎𝑚𝑒 𝑙𝑎𝑏𝑒𝑙

# 𝑖′𝑠 𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
. (9)

Fig. 3 illustrates the average homophily of target nodes before and after the attacks on three
datasets, we can easily find that both NMA and NMAB tend to decrease the homophily of target
nodes. In other words, both of them will likely connect the target node with those nodes whose
classes are different from the target node.

To investigate the class distributions of the new neighbors, we divide different classes into three
groups, namely the same class, the second possible class, and others. The first group refers to the
case where the new neighbor belongs to the same class as the target node. The second group refers to
the case where the new neighbors belong to the second possible class of the target node, which is
consistent with the node selection idea of SGA, while the last group indicates other classes that do
not meet the prior two groups.

As shown in Table 6, almost none of the new neighbors are selected from the same class as the
targeted node, and most of them belong to different classes (i.e., either the second possible class or
others). The above finding is consistent with the intuitive fact that neighbors with the same class
usually will help central nodes obtain a better representation, while the nodes with different classes
usually will be harmful to the feature aggregation of central nodes. As for the other two groups,
our methods do not always select nodes from the second possible class but give other classes large
weights, except for the Pubmed dataset since it is only a three-class dataset. This phenomenon
indicates the idea that SGA follows where the second possible class is the easiest way to achieve
the wrong prediction may not always hold. Connecting the target node with the new neighbors
belonging to other classes may lead to a better attack performance than connecting them with the
nodes belonging to the second possible class.

Degree. The first part of Table 7 shows the degree properties of the selected adversarial nodes.
As we can observe, the adversarial nodes usually have a low degree, which is even lower than the
average degree of nodes in the clean datasets. The above finding supports our analysis in Section
4.1 that low degree nodes usually will have a larger influence on the neighborhood aggregation
mechanism than high degree nodes.

Predicted Confidence. Besides the above properties, we further analyze the average predicted
confidence of the adversarial nodes. As shown in the second part of Table 7, Both NMA and NMAB
tend to choose the nodes with relatively high confidence in the predicted class, which also refers to
the fact that these kinds of low degree nodes usually have a higher value of noise than other nodes as
they belong to classes different from the target node.

To sum up, we can conclude that successful attacks usually select those adversarial nodes with
different classes from the target nodes, low degree, and high predicted confidence. Connecting the
specific target node with these nodes usually will lead to a more powerful attack performance than
connecting with other nodes.

5.5.5 Comparison of Searching Space and Time Cost. Next, we compare the searching space
of the proposed attack strategies with baselines. As we try to select the optimal perturbations to
mislead the prediction of target nodes, our issue can be considered as a node/link selection problem.
Assuming there are 𝑛 nodes in the clean graph and the attack budget for the target node is Δ, the
theoretical maximal searching space will be close to the combination number 𝐶 (𝑛,Δ), which will
be a huge number with the increase of 𝑛. For NETTACK and FGA, as they will greedily select the

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:16 Fang et al.

Table 7. Average degree and confidence (%) of selected adversarial nodes on three datasets.

Datasets NMA NMAB
Degree Confidence Degree Confidence

Cora 1.66 99.88 1.94 99.91
Citeseer 1.60 74.64 1.75 76.75
Pubmed 1.15 99.64 1.22 99.47

Table 8. Average time (s) to generate adversarial samples of different methods.

Datasets NETTACK FGA SGA NGA NMA NMAB
Cora 0.880 0.103 0.022 0.004 0.237 1.226

Citeseer 0.676 0.093 0.042 0.003 0.188 0.904
Pubmed 30.852 18.016 0.287 0.010 1.431 7.294

optimal perturbation among all possible perturbations during each budget, their searching space
is close to Δ · 𝑛. Particularly, the searching space of NETTACK will be slightly smaller than Δ · 𝑛
as it further requires the unnoticeable perturbations. Compared to them, SGA further reduces the
searching space by only considering the nodes belonging to the second possible class. If we assume
the number of nodes in the second possible class is |𝐶𝑠 |, then the searching space of SGA would be
close to Δ · |𝐶𝑠 |.

In terms of the proposed three methods, NGA directly selects the top Δ links with the highest
noise, and thus the searching space of NGA is Δ. For NMA, as we only consider the top 𝛿1 links
with the highest noise value during each budget, the searching space of NMA will be Δ · 𝛿1. Finally,
for NMAB, we need to evaluate the multiple optimal links under two recorded lists 𝐸sin and 𝐸optimal
whose length are 𝑙𝑒𝑛sin and 𝑙𝑒𝑛re, respectively. Therefore, the total searching space of NMAB should
be 𝛿2 + 𝑙𝑒𝑛sin · 𝑙𝑒𝑛re · (Δ − 1), where the first term means the searching of top 𝑙𝑒𝑛sin links among all
𝛿2 candidates (i.e., line 8 in Algorithm 2), and the second term indicates the possible searching space
by combining the (1)-link optimal attack list 𝐸sin and (i)-link optimal attack list 𝐸optimal (i.e., line 12
in Algorithm 2). Particularly, the searching space of NMAB will equal to NMA once the condition
𝛿1 = 𝛿2 = 𝑙𝑒𝑛sin · 𝑙𝑒𝑛re is satisfied. Based on the above discussions, as 𝑛 ≫ |𝐶𝑠 | > 𝛿 or 𝑙𝑒𝑛sin or
𝑙𝑒𝑛re, the proposed methods will largely reduce searching space while promising a remarkable attack
performance.

To better demonstrate the efficiency of the proposed method, we further compare the average time
cost for generating the adversarial samples of different attack strategies. As shown in Table 8, NGA
obtains the global optimal results because of its heuristic selections. As expected, NMA performs
more efficient than NETTACK as NMA avoids unnecessary searching on the nodes with lower noise.
Although NMAB requires relatively larger time cost to generate adversarial samples on Cora and
Citeseer, it shows good scalability on Pubmed than NETTACK and FGA. Furthermore, SGA obtains
the smallest time cost among all methods, but there are trade-offs between its attack performance
and time cost. Combining with previous experiments on attack performance, we can observe that the
proposed methods not only yield a strong attack effect but also show remarkable efficiency.

5.5.6 Parameters Analysis. Finally, we study the attack performance of NMA and NMAB under
different parameter combinations. For NMA, we analyze the influence of the size of candidates 𝛿1.
For NMAB, we analyze the size of candidates 𝛿2, the size of single optimal list 𝑙𝑒𝑛sin, and the size of
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retaining list 𝑙𝑒𝑛re. Generally speaking, a larger value of these parameters indicates a larger searching
space, which refers to a larger possibility of obtaining the global optimal performance.

Specifically, we set 𝛿1 of NMA as 3Δ, 5Δ, and 10Δ. We then set the combination of {𝛿2, 𝑙𝑒𝑛sin, 𝑙𝑒𝑛re}
of NMAB as {10Δ, 3Δ, 10}, {10Δ, 3Δ, 2Δ} and {10Δ, 10Δ, 3Δ}. We labeled the above 6 groups as G1
to G6. Fig. 4 shows the corresponding results of different settings of the above parameters of NMA
and NMAB. For NMA (i.e., G1-G3), a larger value of 𝛿1 will truly lead to better performance in most
cases, and NMA can achieve an excellent performance even when 𝛿1 is a small value. In other words,
we can achieve a good attack performance by only considering the candidate nodes with higher noise.
The possible reason for the unstable performance of G3 on Citeseer is that NMA may drop into
the local optimal in the early steps. As for NMAB (i.e., G4-G6), a similar trend can be obtained.
NMAB also achieves a strong attack performance by limiting the searching space to a relatively
small value via the noise value. The above observations support that the proposed noise can help fast
localize the powerful adversarial nodes that negatively influence the aggregations of target nodes the
most. Therefore, our candidate selection mechanism based on noise can be considered as a plugin to
integrate into further attack methods in the pre-processing step, which can omit some unnecessary
searching on those poorly-performed candidates.

6 Conclusion
In this work, we theoretically discuss the attack strength of different adversarial structural perturba-
tions of graph neural networks, and then put forward the concept of noise to characterize them. By
quantifying the noise value of adversarial links via entropy, we further propose three simple yet ef-
fective targeted attack strategies, namely the noise-based method (NGA), the noise and margin-based
method (NMA), and the boost version of the noise and margin-based method considering multiple
budgets at the same time (NMAB). The latter two methods can greatly reduce the searching space of
traditional margin-based methods while yielding a strong attack effect. Comprehensive experimental
results against various graph neural network models on the benchmark datasets demonstrate the
superiority of the proposed methods. Particularly, the analysis of the properties of selected adversarial
nodes also supports the effectiveness of the proposed noise concept. Theoretical proof on the toy
model, together with extensive empirical experiments, also shows the rationality of the proposed
noise concept. Future attack methods can integrate the proposed candidate refining framework to
avoid unnecessary searching for perturbations with small noise. In addition, there are some interest-
ing directions that need further investigation in the future. Firstly, we will investigate whether the
proposed attack strategies can be applied to large-scale graphs to improve the generality. Secondly,
we will explore how to ensure the effectiveness of our attack strategies against defense methods.
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A Proof of Propositions
A.1 Proof of Proposition 4.1

PROPOSITION A.1. Let 𝐺 = (𝐴,𝑋, 𝐸) be a simple graph, and 𝑌 = {0, 1, · · · ,𝐶 − 1} be the
possible label. We simplify the feature of each node to be a one-hot vector corresponding to the
label of itself, denoted as 𝜇 (𝑌 ). Namely, the feature vector of node 𝑢 is 𝑥𝑢 = 𝜇 (𝑌𝑢). Assuming that
most of the original neighbors of each node belong to the same class, and the specific noise value
of each adversarial link is the same. Consider a one-layer GCN where the output of node 𝑢 is
ℎ𝑢 = 𝜎 (𝑊 ·∑𝑣∈N(𝑢 )

1√
|N𝑢 | · |N𝑣 |

· 𝑥𝑣), 𝜎 is the softmax activation function, we have the following.

(1) From the perspective of target nodes, nodes with a lower degree will be easier to be attacked
than those with a higher degree.

(2) From the perspective of adversarial nodes, nodes with a lower degree will influence the
representation of the target node more than those with a higher degree.

PROOF. As we can know,𝑊 ∈ R𝐶×𝐶 is the learning parameter that needs to be optimized in our
assumption. Since we only utilize a single layer GCN, the aggregated features from the aggregator are
the weighted sum of original features (i.e., one-hot vectors corresponding to their labels). Moreover,
we can easily obtain that, a well-performed GCN can be trained with the optimal𝑊 ∗ which is similar
to follows.𝑊 ∗ would be a diagonal-like matrix where the diagonal elements are non-zero while all
other elements are mostly close to zero. Only under this condition, the final output vector ℎ𝑢 will
have a large value on 𝑢’s corresponding label index, indicating that the corresponding GCN can
classify the nodes to the ground truth label with a large probability.

For a specific node 𝑢 with 𝑘 neighbors, the original output ℎ𝑢 is given as follows.

ℎ𝑢 = 𝜎 (𝑊 ∗ ·
∑︁

𝑣∈N(𝑢 )

1√︁
|N𝑢 | · |N𝑣 |

· 𝑥𝑣)

= 𝜎 [ 𝑊 ∗√︁
|N𝑢 |

· ( 𝑥𝑖√︁
|N𝑖 |
+

𝑥 𝑗√︁
|N𝑗 |
+ · · ·

+ 𝑥𝑘√︁
|N𝑘 |
)]

(10)

Therefore, for the first claim of Proposition 4.1, assuming we have another targeted node 𝑎 having
neighbors 𝑙,𝑚, ..., 𝑛. The label of node 𝑎 is the same as 𝑢 (i.e., 𝑌𝑎 = 𝑌𝑢) and the degree of node 𝑎 is
higher than the degree of node 𝑢 (i.e., |N𝑎 | > |N𝑢 |), which can be given as follows.

ℎ𝑎 = 𝜎 [ 𝑊 ∗√︁
|N𝑎 |

· ( 𝑥𝑙√︁
|N𝑙 |
+ 𝑥𝑚√︁
|N𝑚 |

+ · · · + 𝑥𝑛√︁
|N𝑛 |
)] (11)

Then, after we connect the same adversarial node 𝑒 to the target nodes, respectively, the latest
output of GCN under𝑊 ∗ will be as follows.
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ℎ𝑢 = 𝜎 [ 𝑊 ∗√︁
|N𝑢 | + 1

· ( 𝑥𝑖√︁
|N𝑖 |
+

𝑥 𝑗√︁
|N𝑗 |
+ · · ·

+ 𝑥𝑘√︁
|N𝑘 |

+ 𝑥𝑒√︁
|N𝑒 | + 1

)]

ℎ𝑎 = 𝜎 [ 𝑊 ∗√︁
|N𝑎 | + 1

· ( 𝑥𝑙√︁
|N𝑙 |
+ 𝑥𝑚√︁
|N𝑚 |

+ · · ·

+ 𝑥𝑛√︁
|N𝑛 |

+ 𝑥𝑒√︁
|N𝑒 | + 1

)],

(12)

where |N𝑒 | is the original degree of node 𝑒.
Since we assume the label of original neighbors (i.e., 𝑥𝑖 , 𝑥 𝑗 , · · · , 𝑥𝑘 ) of node 𝑢 are the same as

center node, we can utilize one-hot feature 𝜇 (𝑌𝑢) to simplify (12). Moreover, if we further assume
the degree of all neighbors equal to the average degree of the original graph, denoted as<𝑑 >, we can
further have follows.

ℎ𝑢 = 𝜎 [ 𝑊 ∗√︁
|N𝑢 | + 1

· ( 𝜇 (𝑌𝑢)√
<𝑑 >

+ 𝜇 (𝑌𝑢)√
<𝑑 >

+ · · · + 𝜇 (𝑌𝑢)√
<𝑑 >︸                                  ︷︷                                  ︸

|N𝑢 |

+ 𝜇 (𝑌𝑒 )√︁
|N𝑒 | + 1

)]

= 𝜎 [ 𝑊 ∗√︁
|N𝑢 | + 1

· ( |N𝑢 | · 𝜇 (𝑌𝑢)√
<𝑑 >

+ 𝜇 (𝑌𝑒 )√︁
|N𝑒 | + 1

)]

= 𝜎 [ |N𝑢 | ·𝑊 ∗ · 𝜇 (𝑌𝑢)√︁
( |N𝑢 | + 1)·<𝑑 >

+ 𝑊 ∗ · 𝜇 (𝑌𝑒 )√︁
( |N𝑢 | + 1) · ( |N𝑒 | + 1)

]

ℎ𝑎 = 𝜎 [ 𝑊 ∗√︁
|N𝑎 | + 1

· ( 𝜇 (𝑌𝑎)√
<𝑑 >

+ 𝜇 (𝑌𝑎)√
<𝑑 >

+ · · · + 𝜇 (𝑌𝑎)√
<𝑑 >︸                                  ︷︷                                  ︸

|N𝑎 |

+ 𝜇 (𝑌𝑒 )√︁
|N𝑒 | + 1

)]

= 𝜎 [ 𝑊 ∗√︁
|N𝑎 | + 1

· ( |N𝑎 | · 𝜇 (𝑌𝑎)√
<𝑑 >

+ 𝜇 (𝑌𝑒 )√︁
|N𝑒 | + 1

)]

= 𝜎 [ |N𝑎 | ·𝑊 ∗ · 𝜇 (𝑌𝑎)√︁
( |N𝑎 | + 1)·<𝑑 >

+ 𝑊 ∗ · 𝜇 (𝑌𝑒 )√︁
( |N𝑎 | + 1) · ( |N𝑒 | + 1)

]

(13)

As |N𝑎 | > |N𝑢 |, we can easily obtain the following from (13).
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|N𝑢 |√︁
( |N𝑢 | + 1)·<𝑑 >

− |N𝑎 |√︁
( |N𝑎 | + 1)·<𝑑 >

< 0

1√︁
( |N𝑢 | + 1) · ( |N𝑒 | + 1)

− 1√︁
( |N𝑎 | + 1) · ( |N𝑒 | + 1)

> 0

(14)

Therefore, after multiplying with the diagonal-like optimal weight matrix𝑊 ∗, and the final adjustment
of the monotonic softmax activation function, the coefficient in each term represents the specific
weight of the corresponding label. For the first term of nodes 𝑢 and 𝑎 in (13), we can easily obtain
that for the original features denoted by 𝜇 (𝑌𝑢) or 𝜇 (𝑌𝑎), node 𝑎 will assign a larger weight than
node 𝑢. On the contrary, for the second term of nodes 𝑢 and 𝑎 in (13), we can obtain that for the
adversarial features 𝜇 (𝑌𝑒 ) induced by the adversarial link, node 𝑎 will assign a smaller weight than
node 𝑢. Therefore, we have ℎ𝑎 [𝑌𝑢] > ℎ𝑢 [𝑌𝑢]. That is to say, in the 𝑌𝑢-th/𝑌𝑎-th index of ℎ𝑎/ℎ𝑢 , the
value of node 𝑎 will larger than node 𝑢. Therefore, for the target nodes, nodes with a lower degree
are easier to be influenced than those with a higher degree.

For the second claim of Proposition 4.1, we can proof following the similar procedures as before.
To attack the target node 𝑢, assuming we have two different adversarial nodes 𝑝 and 𝑞 where
|N𝑝 | > |N𝑞 |. Then, for the latest output of node 𝑢 after attacking by nodes 𝑝 and 𝑞, respectively, we
can have follows.

ℎ𝑢𝑝 = 𝜎 [ 𝑊 ∗√︁
|N𝑢 | + 1

· ( 𝑥𝑖√︁
|N𝑖 |
+

𝑥 𝑗√︁
|N𝑗 |
+ · · · + 𝑥𝑘√︁

|N𝑘 |

+
𝑥𝑝√︁
|N𝑝 | + 1

)]

ℎ𝑢𝑞 = 𝜎 [ 𝑊 ∗√︁
|N𝑢 | + 1

· ( 𝑥𝑖√︁
|N𝑖 |
+

𝑥 𝑗√︁
|N𝑗 |
+ · · · + 𝑥𝑘√︁

|N𝑘 |

+
𝑥𝑞√︁
|N𝑞 | + 1

)]

(15)

Similar to (13), we can simplify (15) under the same assumptions, which is as follows.

ℎ𝑢𝑝 = 𝜎 [ |N𝑢 | ·𝑊 ∗ · 𝜇 (𝑌𝑢)√︁
( |N𝑢 | + 1)·<𝑑 >

+
𝑊 ∗ · 𝜇 (𝑌𝑝 )√︁

( |N𝑢 | + 1) · ( |N𝑝 | + 1)
]

ℎ𝑢𝑞 = 𝜎 [ |N𝑢 | ·𝑊 ∗ · 𝜇 (𝑌𝑢)√︁
( |N𝑢 | + 1)·<𝑑 >

+
𝑊 ∗ · 𝜇 (𝑌𝑞)√︁

( |N𝑢 | + 1) · ( |N𝑞 | + 1)
]

(16)

Similarly, after multiplying with the diagonal-like optimal weight matrix 𝑊 ∗ and the adjustment
of the monotonic softmax function, the coefficient of each term represents the specific weight of
the corresponding possible label. From (16), we know that the first term of ℎ𝑢𝑝 and ℎ𝑢𝑞 is the same.
While for the second term, the latter situation (i.e., connects with node 𝑞) will assign a larger weight
to the adversarial nodes/features than the first situation (i.e., connects with node 𝑝) since |N𝑝 | > |N𝑞 |,
so we have ℎ𝑢𝑝 [𝑌𝑢] > ℎ𝑢𝑞 [𝑌𝑢]. That is to say, in the 𝑌𝑢-th index of final outputs, the value of 𝑢𝑝
will larger than 𝑢𝑞 . Therefore, for the adversarial nodes, nodes with a lower degree can influence the
aggregation of the target node more than those with a higher degree. □
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A.2 Proof of Proposition 4.2
PROPOSITION A.2. Except for the specific noise value of adversarial links varying from each

other, we let all of the other assumptions be the same as Proposition 4.1. Then, we have the following.
For a specific target node 𝑢, if the adversarial nodes have the same degree, the adversarial nodes
which are dissimilar to node 𝑢 influence the aggregation of node 𝑢 more than those similar to node 𝑢.

PROOF. Assuming we have two different adversarial nodes 𝑝, 𝑞, and |N𝑝 | = |N𝑞 |, but their
similarities with the target node 𝑢 are different. Specifically, SIM(𝑢, 𝑝) > SIM(𝑢, 𝑞) where SIM(·, ·)
means the similarity function.

ℎ𝑢𝑝 = 𝜎 [ 𝑊 ∗√︁
|N𝑢 | + 1

· ( 𝑥𝑖√︁
|N𝑖 |
+

𝑥 𝑗√︁
|N𝑗 |
+ · · · + 𝑥𝑘√︁

|N𝑘 |

+
𝑥𝑝√︁
|N𝑝 | + 1

)]

= 𝜎 [ |N𝑢 | ·𝑊 ∗ · 𝜇 (𝑌𝑢)√︁
( |N𝑢 | + 1)·<𝑑 >

+
𝑊 ∗ · 𝜇 (𝑌𝑝 )√︁

( |N𝑢 | + 1) · ( |N𝑝 | + 1)
]

ℎ𝑢𝑞 = 𝜎 [ 𝑊 ∗√︁
|N𝑢 | + 1

· ( 𝑥𝑖√︁
|N𝑖 |
+

𝑥 𝑗√︁
|N𝑗 |
+ · · · + 𝑥𝑘√︁

|N𝑘 |

+
𝑥𝑞√︁
|N𝑞 | + 1

)]

= 𝜎 [ |N𝑢 | ·𝑊 ∗ · 𝜇 (𝑌𝑢)√︁
( |N𝑢 | + 1)·<𝑑 >

+
𝑊 ∗ · 𝜇 (𝑌𝑞)√︁

( |N𝑢 | + 1) · ( |N𝑞 | + 1)
]

(17)

Since SIM(𝑢, 𝑝) > SIM(𝑢, 𝑞), if we further utilize their features to characterize the similarities, we
can transform it to SIM(𝜇 (𝑌𝑢), 𝜇 (𝑌𝑝 )) > SIM(𝜇 (𝑌𝑢), 𝜇 (𝑌𝑞)). As a result, in (17), we can consider
that, a large part of the second term of ℎ𝑢𝑝 can be combined with the first term, while only a smaller
part of the second term ℎ𝑢𝑞 can be combined with the first term. Similarly, after multiplying with the
diagonal-like optimal weight matrix𝑊 ∗ and the adjustment of monotonic softmax function, in the
𝑌𝑢-th index of the latest outputs, the value of 𝑢𝑝 will larger than 𝑢𝑞 , that is ℎ𝑢𝑝 [𝑌𝑢] > ℎ𝑢𝑞 [𝑌𝑢]. From
the above, we can obtain that the adversarial nodes which are dissimilar with node 𝑢 will influence
the aggregation of node 𝑢 more than those that are similar with node 𝑢, as the latter has a smaller
probability in the 𝑌𝑢-th class than the former.

□

Received May 1, 2025
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