
1

SA2FE: A Secure, Anonymous, Auditable, and Fair
Edge Computing Service Offloading Framework

Xiaojian Wang, Graduate Student Member, IEEE, Huayue Gu, Graduate Student Member, IEEE,
Zhouyu Li, Graduate Student Member, IEEE, Fangtong Zhou, Graduate Student Member, IEEE,

Ruozhou Yu, Senior Member, IEEE, Dejun Yang, Senior Member, IEEE, and Guoliang Xue, Fellow, IEEE

Abstract—The inclusion of pervasive computing devices in a
democratized edge computing ecosystem can significantly expand
the capability and coverage of near-end computing for large-scale
applications. However, offloading user tasks to heterogeneous and
decentralized edge devices comes with the dual risk of both
endangered user data security and privacy due to the curious
base station or malicious edge servers, and unfair offloading
and malicious attacks targeting edge servers from other edge
servers and/or users. Existing solutions to edge access control
and offloading either rely on “always-on” cloud servers with
reduced edge benefits or fail to protect sensitive user service
information. To address these challenges, this paper presents
SA2FE, a novel framework for edge access control, offloading
and accounting. We design a rerandomizable puzzle primitive and
a corresponding scheme to protect sensitive service information
from eavesdroppers and ensure fair offloading decisions, while
a blind token-based scheme safeguards user privacy, prevents
double spending, and ensures usage accountability. The security
of SA2FE is proved under the Universal Composability frame-
work, and its performance and scalability are demonstrated with
implementation on commodity mobile devices and edge servers.

Index Terms—Edge computing, service offloading, security,
anonymity, auditability, fairness

I. INTRODUCTION

As real-time computation-intensive applications such as meta-
verse [1], cloud gaming [2], and autonomous driving [3]
continue to grow, service providers are increasingly deploy-
ing services closer to the users [4]. Edge computing can
greatly improve user experience and reduce the cost of ser-
vice providers, by achieving low latency, high reliability and
backhaul communication efficiency. An increasing number of
companies are entering the arena [5].

Meanwhile, the rise of the Pervasive Edge Computing (PEC)
paradigm [6], which utilizes the computing capabilities of
varied and decentralized devices as edge servers, accelerates
the expansion of the edge server provider landscape, by
democratizing the edge computing ecosystem and leveraging
power of the crowd. A PEC ecosystem may involve many

Wang, Gu, Li, Zhou, Yu ({xwang244, ryu5, hgu5, zli85, fzhou}@ncsu.edu)
are with North Carolina State University, Raleigh, NC 27606, USA. Yang
(djyang@mines.edu) is with Colorado School of Mines, Golden, CO 80401,
USA. Xue (xue@asu.edu) is with Arizona State University, Tempe, AZ
85287, USA. The research of Wang, Yu, Gu, Li, Zhou was supported in part
by NSF grants 2045539, 2414523 and 2433966. The research of Xue was
sponsored in part by the Army Research Laboratory and was accomplished
under Cooperative Agreement Number W911NF-23-2-0225. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

large and small edge providers, including but not limited to
telecom companies, road-side unit operators, private infras-
tructure owners, and even ad hoc providers such as individuals
with spare computing devices [7]. In most cases, a telecom
company provides a connection access point for edge providers
and users, and usually an accompanied edge service discovery
procedure for users to access the available services [8].

However, with the expansion of the edge computing ecosys-
tem, and especially PEC with decentralized providers, both
edge server owners and users encounter challenges in provid-
ing and utilizing trustworthy edge computing services. To fos-
ter the sustainable development of the edge computing market,
it is imperative to design and develop technical approaches
that can safeguard user rights, protect stakeholder interests,
and maintain healthy competition.

In the PEC environment, a very important and indispensable
part is service discovery, which is used to find available
services nearby. In traditional service discovery within Named
Data Networking or Information-Centric Networking, the re-
questing service identities are generally exposed to surround-
ing devices to efficiently allocate available services to the
requesting users [9]. Service identities, such as names or types,
if descriptive or inferable, could reveal information about the
nature of the data or services, potentially exposing sensitive
or proprietary information to anyone who can intercept this
information [10]. For instance, the type of service requested
by a user (such as service name or identifier) could be misused
in various ways, such as profiling and identifying a user [11]
or inferring sensitive user attributes (e.g., inferring that a user
requesting video-based visual assistance has a visual impair-
ment [12]). If intercepted or accessed by malicious entities,
sensitive service names could be used to perform targeted
attacks, including data breaches and service disruptions. Pro-
tecting these service types/names from unauthorized disclosure
is critical to maintaining the integrity and reliability of the net-
work. Some privacy-preserving service discovery approaches
have been proposed to protect service request privacy [13],
but only within traditional discovery environments. However,
in a PEC environment, users also have this need but lack
available solutions to protect service information. Additionally,
users may not want to leak their identity, preferring to remain
anonymous to protect their privacy.

In addition, given the diverse stakeholders involved in
service offloading, fairness in the service offloading process
is paramount. Fairness here refers to the equitable treatment
of service requests among edge devices with comparable
capabilities and minimal latency differences from the user’s
perspective, made possible by service provider profiling and

ar
X

iv
:2

50
4.

20
26

0v
1

 [
cs

.C
R

]
 2

8
A

pr
 2

02
5

djyang@mines.edu

2

testing to ensure that multiple edge servers with similar abil-
ities compete for task assignments. The assurance of fairness
should not be determined by any single entity, be it the
end-user, the base station overseeing offloading, or specific
edge servers. Furthermore, ensuring financial accountability of
the users, and appropriate compensation of the providers, is
critical to ensuring longevity of the market. Unfortunately, the
above security and privacy guarantees are lacking in existing
works [8], [14], and offloading fairness and auditability have
not been addressed in an ecosystem with untrusted parties.

In this paper, we design SA2FE, an innovative framework
for anonymous, auditable, and fair service offloading in a PEC
environment, addressing key challenges in service offloading
posed by the presence of multiple competing edge server
infrastructure providers. At the core of our approach is a
rerandomizable puzzle primitive, which we define and design
as the foundation of our framework to enable fairness in the
offloading process. Building on this primitive, we propose a
comprehensive framework that specifies detailed interaction
protocols among all participating parties, ensuring offloading
fairness while protecting service type privacy. To safeguard
user identity while maintaining authorized access and account-
ability, we propose an anonymous token-based service request
scheme. We design a rerandomizable puzzle-based scheme
that allows offloading a service request to an eligible edge
server without revealing any service-specific details to the
offloading broker, or edge server-specific details to the user.
We rigorously prove SA2FE’s security and demonstrate its
practicality on commodity devices.

Our contributions are summarized as follows:
• We propose SA2FE, a secure and efficient offloading

framework that preserves the privacy of user identity and
requested service type, ensures fairness in edge server
selection, and incorporates auditing for accountability.

• We present a novel puzzle-based offloading protocol to
protect service type confidentiality while ensuring fair
and randomized edge server selection. Two implementa-
tions based on bilinear map and universal re-encryption
respectively are proposed to realize the puzzle scheme.

• We propose a token-based service access scheme that
maintains user and service type confidentiality while
enabling accountable token verification and claiming.

• We formally prove the security of SA2FE under the
Universal Composability (UC) framework.

• We implement and evaluate a prototype of SA2FE on
commodity mobile and edge devices. The experimental
results show that SA2FE has low computation and com-
munication overhead and is efficient and scalable.

Organization. Section II reviews related work. Section III
introduces the system models. Section IV gives an overview
of SA2FE. Section V presents the detailed design of SA2FE.
Section VI presents security analysis of SA2FE. Section VII
shows its performance. Section VIII concludes this paper.

II. RELATED WORK

One related aspect of cloud and edge computing security is
the access control problem. In cloud computing, access control
mainly focuses on protecting security and confidentiality of

user data hosted on third-party cloud storage [15] Some have
studied secure and privacy-preserving data sharing through
a centralized cloud [16], [17]. The cloud provider plays a
central role in facilitating access control as the single party
involved. APECS [8] is the first distributed, multi-authority
access control scheme in a dynamic pervasive edge computing
ecosystem. However, APECS mainly focuses on user data
access control, neglecting anonymity and privacy preserva-
tion during service offloading, and fairness considerations.
AADEC [14] focuses on access control, prioritizing data
exchange over offloading at the base station, with auditing
confined to user data rather than service offloading.

User data privacy has been studied in either cloud or edge
offloading. Li et al. [18] proposed a system for solving overde-
termined linear equations, ensuring privacy via permutation
and validity through a detection algorithm. Mao et al. [19]
proposed combining differential privacy and secure model
weight aggregation to ensure privacy-preserving offloading
of DNN training tasks. Chen et al. [20] proposed a secure
outsourcing algorithm for modular exponentiations in the one-
malicious version of the two untrusted program model.

Many have studied edge offloading focusing on improving
offloading performance subject to limited resources, such
as resource provisioning [21], task partitioning [22], task
selection [23], load balancing [24], etc. Some recent works
focus on task offloading in various edge computing scenarios
using different methods, such as at intersections with game
theory [25], in satellite networks using queuing theory [26]
or game theory [27], in online offloading scenarios employing
Deep Reinforcement Learning [28], in Aerial Mobile Edge
Computing Networks through joint optimization [29], and
using pairing theory to match services [30]. These methods
assume trust among all parties and overlook privacy concerns.

To summarize, while existing work has addressed certain
individual security concerns such as authentication, access
control, user data privacy and location privacy, there lacks a
comprehensive framework for service offloading in a democra-
tized edge computing ecosystem that ensures offloading secu-
rity, user identity and service anonymity, token accountability,
and offloading fairness all at once. Our proposed framework
SA2FE not only fills this gap and ensures secure offloading,
but is also highly efficient, scalable, and compatible with
commodity mobile devices and edge servers.

III. MODELS AND PROBLEM STATEMENT

A. System Model

Fig. 1 shows the involved parties and their interactions. SA2FE
involves five parties: financial authority (FA), service provider
(SP), base station (BS), edge server (ES) and user:

1) FA: The FA receives payment from users, and distributes
tokens for service access. It also handles reward claims
from BS and ES with valid tokens as proof of service.

2) SP: An SP owns a service and delegates it to ESs from
various registered edge server infrastructure providers,
delivering edge-based services to authorized users.

3) BS: The base station is the broker between users and ESs.
It assists users within its range by discovering available

3

Service
Request

Service
Response

Users

Edge server

Edge server

Edge server

Service
provider

Audit

Service
Request

Service
Response

Users

Edge server

Edge server

Edge server

Service
provider

Audit

Base
Station

Control IControl II

Service
Request

Service
Response

Users

Edge server

Edge server

Service
Provider

Auditing

Base
Station

Control I

Edge server

Control II

Control III

Control IV

Service
Request

Service
Response

Users

Edge server

Edge server

Service
Provider

Base
Station Edge server

Service Registration

Service
Request

Service
Response

Users

Edge server

Edge server

Service
Provider

Base
Station

Edge server

Service Registration

Service
Request

Service
Response

Edge server

Edge server

Service
Provider

Base
Station

Edge server

Service Registration

Financial
Authority

Token Registration

Service
Request

Service
Response

Edge server

Edge server

Service
Provider

Base
Station

Edge server

Service Registration
Financial
Authority

Token Registration

Billing

Service
Request

Service
Response

Edge Server

Edge Server

Service
Provider

Base
Station

Edge
Server

② ES Registration Financial
Authority

③ User
Registration

Auditing

User

Registration

Auditing

Offloading

①②③④⑤⑥⑦⑧⑨
⑩

④

⑤

⑥

⑦

Service
Request

Service
Response

Edge Server

Edge Server

Service
Provider

Base
Station

Edge
Server

② ES Registration Financial
Authority

③ User
Registration

Payment
Claim

User

Registration

Payment Claim

Offloading

④

⑤

⑥

⑦

Service
Request

Service
Response

Edge Server

Edge Server

Service
Provider

Base
Station

Edge
Server

② ES Registration
Financial
Authority

③ User
Registration

Payment
Claim

User

Registration

Payment Claim

Offloading

④

⑤

⑥

⑦

Service
Request

Service
Response

Edge Server

Edge Server

Service
Provider

Base
Station

Edge
Server

② ES Registration
Financial
Authority

③ User
Registration

Payment
Claim

User

Registration

Payment Claim

Offloading

④

⑥

⑦

Fig. 1. SA2FE workflow. (1) SP registers to FA; (2) ES registers to SP and
BS; (3) User gets tokens from FA; (4) User starts service request; (5) Request
is forwarded to an ES; (6) User gets response; (7) BS and ES claim tokens.
The workflow consists of three main phases: registration (steps (1)−(3)),
offloading (steps (4)−(6)), and payment claim (step (7)).

ESs and offloading tasks of supported services. All com-
munication between users and ESs will go through the BS.

4) ES: An ES provides services to users on behalf of SPs and
may offer multiple services owned by different SPs.

5) User: A user requests task offloading for a service that she
is subscribed to, and needs to provide payment (or proof
of it) to utilize an edge-offloaded service.

We focus on a single BS but can be extended to multiple
BSs managing different regions with shared information.
Interactions. Fig. 1 shows the interactions among these parties
during an offloading process, with numbered steps as follows:
1) An SP registers service-related information with the FA.
2) An ES registers with an SP to obtain the service program

(e.g. a virtual machine, container image or microservice),
and service credentials to authenticate itself to users.

3) A user registers with the FA to deposit service pre-
payments and obtain service access credentials (tokens).

4) When the user is within a BS which has connected ESs,
the user requests offloading of her tasks from the BS.

5) A connected ES which is eligible to serve the request will
be selected, and the BS forwards the service request to it.

6) The ES responds to the request, and starts the actual
offloading process with the user.

7) The BS and ES claim pre-negotiated rewards from the FA
with valid proof of service.

Existing work typically assumes full trust among the user,
BS, and all ESs. For instance, the BS would neither intercept
nor infer the user’s service data or type and would ensure
fair offloading to all ESs. ESs would provide services without
intercepting user identity or unregistered service data. Users
would not interfere the offloading process or engage in double
spending for services. In practice, these assumptions would not
always hold, especially in a democratized ecosystem where
neither the user nor surrounding parties can be fully trusted.

B. Threat Model

We assume global parties (FA and SPs) will diligently adhere
to the offloading protocol. This is because each global party
may serve many users and stakeholders, and is commonly
bound by reputation to perform honestly. In the mean time, lo-
cal parties may deviate from the designated protocols to launch

active attacks, such as a BS of a small regional Internet Service
Provider (ISP), or an ES from a local provider. Similarly, a
user is not trusted to execute the protocol diligently.

A user may exhibit malicious behavior, such as expressing
a preference for specific ESs, to disturb the fairness of service
offloading. Furthermore, a user may target a specific ES
to either perform reconnaissance attack in order to identify
potential vulnerabilities of the ES and launch further attacks,
or conduct targeted denial-of-service attacks to overwhelm
target ES’s resources. A user may also try to deceive both
the BS and ES by engaging in double spending, utilizing the
same payment to acquire multiple offloading services, possibly
from different ESs. She may also use fraudulent authorization
to acquire services without making valid payments.

Meanwhile, for a user, all other parties may possess a
curiosity regarding the user’s real identity and data for pur-
poses such as data mining, targeted advertising, extracting
personal information, and user tracking. Additionally, the
user may want to hide her requested type of service from
parties other than those required in purchasing and fulfilling
the service, such as the BS and any ES that is not eligible
to provide the service. Leaking the service type to untrusted
parties compromises user privacy and poses security risks. For
example, a medical offloading task exposes sensitive health
information, while disclosure of the service type in financial
transactions, location-based services, and personal preferences
also poses privacy risks. The BS and ES may also exaggerate
rewards, compromising FA integrity and user payments.

To summarize, We consider the following attack scenarios:
(a) A malicious user may attempt to acquire services from
ESs by double spending or forging payment proofs. (b) A
malicious user may try to identify and request service from
a specific ES, for instance, to disturb offloading fairness,
perform reconnaissance of the ES’s system, or launch denial-
of-service attacks against the ES. (c) The BS and non-eligible
ESs may be curious about users’ real identity, data and the
service type of the request. (d) The BS and ESs may be curious
about a users’ real identity, and the FA and SPs may want
to link a user’s identity with the time and location that she
accesses a paid service. (e) The BS/ES may exaggerate the
service it provided to get extra rewards from FA.

We assume a requested service is non-identifiable except by
its service type, as many services, like video analytics, share
similar traffic patterns despite differing tasks. There are also
some studies on hiding traffic patterns from eavesdroppers,
such as task partitioning or traffic padding [31].

C. Problem Statement

Let U, S, E, B be the set of users, set of services, set
of ESs and the BS respectively. We consider an offloading
scenario where a user u ∈ U offloads a task of service
s ∈ S to an ES e ∈ E through the BS B. The user tries
to conceal her identity from all other parties, and keep the
service type hidden from the BS and non-eligible ESs. We
require that neither the user nor the BS can “assign” an ES
to serve a specific request; instead an eligible ES must be
randomly selected for a specific request. This both deters
user reconnaissance and other malicious behaviors against a

4

specific ES, and ensures fairness in offloading to promote
community-wide sustainability and equal opportunities for all
eligible ESs. The offloading service should only be provided
when the user shows proof of payment, and the reward can
only be claimed when the BS/ES shows proof of service,
without double spending or exaggerated claiming.
Security goals. Our main security goals are as follows:
1) Authenticated and authorized access: Access to an ES-

provided service is only limited to paid users of the service.
2) Identity privacy: A user’s identity is kept confidential

from other parties during and after the offloading process.
3) Service data confidentiality: The service data of a user is

only accessible to an eligible ES providing the service.
4) Service type confidentiality: The BS and non-eligible ESs

have no knowledge about the requested service type.
5) Financial accountability: A user cannot get more than the

paid service using invalid or double-spent payment proof.
BS or an ES cannot claim reward without fulfilling a re-
quest, or claim multiple rewards for one service fulfillment.

6) Offloading fairness: ESs eligible for selection by the user
are assigned an equal probability of serving user requests,
ensuring fairness in service allocation.

We focus on scenarios where the SP has performed profiling
or testing of ESs to ensure that the capabilities and latency of
ESs within the pool available to the user are similar. From
the user’s perspective, the quality of service or quality of
experience provided by these ESs in the pool is equivalent
or nearly identical. An out-of-band profiling phase enables
the SP to assess the servicing capabilities of ESs [32]. This
ensures fairness by simplifying the selection process while
reducing user burden, avoiding biases caused by performance
differences, and protecting ESs from being targeted by mali-
cious users. Even in such scenarios, achieving fairness under
our security goals is challenging, as it requires preserving
service type confidentiality, ensuring efficient task allocation,
and avoiding security risks or excessive overhead.

IV. SA2FE OVERVIEW

SA2FE operates in four phases: system initialization, registra-
tion, offloading, and payment claim. In system initialization,
system parameters are independently initialized by all parties.
In registration, an ES obtains permission to host a service
from an SP, and then registers service information, encrypted
as cryptographic puzzles, with a BS to serve offloading re-
quests from local users. A user also registers with an SP
and makes payment through an FA to obtain blind tokens
for requesting the service. In offloading, a user requests an
offloading service through the BS, solves the service-specific
puzzles and randomly picks an ES capable of providing the
service. The BS then forwards the (encrypted) request to
the user-selected ES without knowing the service type. The
request contains tokens specific to the requested service, such
that the BS can check for any potential double spending (again
without knowing the service type), and both BS and ES can
later claim service payments from the FA with the tokens. In
payment claim, the FA verifies the tokens submitted by the
BS or ESs, and makes payment accordingly.

Service
Request

Service
Response

Users

Edge server

Edge server

Service
Provider

Audit

Base
Station

Control I

Edge server

Control II

Control III

Control IV

Service
Request

Service
Response

Users

Edge server

Edge server

Service
Provider

Audit

Base
Station

Control I

Edge server

Control II

Control III

Control IV

Offloading
Base Station Internet Provider

Base Station

Users

Edge server

Edge server

Edge server

Edge server

Edge server

Edge server

Cloud
Provider

Service
Provider

Base Station

Users

Edge Server

Edge Server

Edge Server

Edge Server

Edge Server

Service
Providers

Service typeService Provider

S1, S2, S3SP1

S4, S5SP2

Weight
Support
Service

5S3

2S4

Weight
Support
Service

2S1

2S2

6S4

Weight
Support
Service

7S2Weight
Support
Service

3S1

Weight
Support
Service

1S1

10S4

Base Station

Users

Edge Server 2

Edge Server 3

Edge Server 1

Edge Server 5

Edge Server 4

Service
Providers

Service typeService Provider

S1, S2, S3SP1

S4, S5SP2

Weight
Support
Service

5S3

2S4

Weight
Support
Service

2S1

2S2

6S4

Weight
Support
Service

7S2Weight
Support
Service

3S1

Weight
Support
Service

1S1

10S4

Base Station

Users

Edge Server 1

Edge Server 5

Edge Server 4

Service
Providers

Service typeService Provider

S1, S2, S3SP1

S4, S5SP2

Weight
Support
Service

5S3

2S4

Weight
Support
Service

2S1

2S2

6S4

Weight
Support
Service

3S1

Edge Server 2

Weight
Support
Service

1S1

10S4

S1

S1

S1

S4

S3 S4

S4

S2

S1

S1

S1

S4

S3 S4

S4

S2

S1

S1

S1

S4

S3
S4

S4

S2

S1

S1

S1

S4

S3
S4

S4

S2

S1

S1

S1

S4

S3
S4

S4

S2

S1

S1

S1

S4

S3
S4

S4

S2

Base Station

Users

Edge Server 1

Edge Server 5

Edge Server 4

Service
Providers

Service typeService Provider

S1, S2, S3SP1

S4, S5SP2

Weight
Support
Service

5S3

2S4

Weight
Support
Service

2S1

2S2

6S4

Weight
Support
Service

3S1

Edge Server 2

Weight
Support
Service

1S1

10S4

S1

S1

S1

S4

S3
S4

S4

S2

S1

S1

S1

S4

S3
S4

S4

S2

S1 Request

Base Station

Users

Edge Server 1

Edge Server 5

Edge Server 4

Service
Providers

Service typeService Provider

S1, S2, S3SP1

S4, S5SP2

Weight
Support
Service

5S3

2S4

Weight
Support
Service

2S1

2S2

6S4

Weight
Support
Service

3S1

Edge Server 2

Weight
Support
Service

1S1

10S4

S1

S1

S1

S4

S3
S4

S4

S2

S1

S1

S1

S4

S3
S4

S4

S2

S1 Request

Base Station

Users

Edge Server 1

Edge Server 4

Edge Server 3

Service
Providers

Service typeService Provider

S1, S2, S3SP1

S4, S5SP2

Weight
Support
Service

5S3

2S4

Weight
Support
Service

2S1

2S2

6S4

Weight
Support
Service

3S1

Edge Server 2

Weight
Support
Service

1S1

10S4

S1

S1

S1

S4

S3
S4

S4

S2

S1

S1

S1

S4

S3
S4

S4

S2

S1 Request

Base Station

Users

Edge Server 1

Edge Server 4

Edge Server 3

Service
Providers

Weight
Support
Service

5S3

2S4

Weight
Support
Service

2S1

2S2

6S4

Weight
Support
Service

3S1

Edge Server 2

Weight
Support
Service

1S1

10S4

S1

S1

S1

S4

S3
S4

S4

S2

S1

S1

S1

S4

S3
S4

S4

S2

S1 Request

SP5SP4SP3SP2SP1Service Provider

S5S4S3S2S1Service type

Base Station

Users

Edge Server 1

Edge Server 3

Service
Providers

Edge Server 2

S1 Request ZE2,S2

SP2SP1Service Provider

S2S1Service type

Puzzle List
ZE3,S1

Puzzles

ZE2,S2ZE1,S1

ZE3,S1ZE1,S1

ZE2,S2ZE1,S1
Puzzles

ZE3,S1ZE1,S1

Base Station

Users

Edge Server 1

Edge Server 3

Service
Providers

Edge Server 2

S1 Request ZE2,S2

Puzzle List
ZE3,S1

Service
Type

Service
Provider

S1SP1

S2SP2

ZE2,S2ZE1,S1Puzzle
List ZE3,S1ZE1,S2

Base Station

Users

Edge Server 1

Edge Server 3

Service
Providers

Edge Server 2

② S1 Request

③ Puzzle List

④

Service
Type

Service
Provider

S1SP1

S2SP2

①②③④⑤⑥⑦⑧

①

①

①

Puzzle
List

1 1E ,SZ

1 2E ,SZ
3 1E ,SZ
2 2E ,SZ

3 1E ,SZ
3
1

E
,S

Z

2 2E ,SZ

1
1

1
2

E
,S

E
,S

Z
,Z

⑤

Base Station

Users

Edge Server 1

Edge Server 3

Service
Providers

Edge Server 2

② S1 Request

③ Puzzle List

④

Service
Type

Service
Provider

S1SP1

S2SP2

①

①

①

Puzzle
List

1 1E ,SZ

1 2E ,SZ
3 1E ,SZ
2 2E ,SZ

3 1E ,SZ 3
1

E
,S

Z

2 2E ,SZ

⑤

⑥⑦ Response

1
1

1
2

E
,S

E
,S

Z
,Z

Base Station

Users

Edge Server 1

Edge Server 3

Service
Providers

Edge Server 2

② S1 Request

③ Puzzle List

④

①

①

①

3 1e , sz 3
1

e , s

z

2 2e , sz

⑤

⑥⑦ Response

1
1

1
2

e ,
s

e ,
s

z
,z

Puzzle
List

1 1e ,sz

1 2e ,sz
3 1e ,sz
2 2e ,sz

Service
Type

Service
Provider

SP1

SP2

1s

2s

Base Station

Users

Edge Server 1

Edge Server 3

Service
Providers

Edge Server 2

② s1 Request

③ Puzzle List

④

①

①

①
⑤

⑥⑦ Response

Puzzle
List

1 1e ,sz

1 2e ,sz
3 1e ,sz
2 2e ,sz

Service
Type

Service
Provider

SP1

SP2

1s

2s

3 1e ,sz

2 2e ,sz

3
1

e
,s

z

1
1

1
2

e ,
s

e ,
s

z
,z

Base Station
User

Edge Server 1

Edge Server 3

Service
Providers

Edge Server 2

② Init. Request

③ Puzzle List

④

①

①

①
⑤

⑥⑦ Response

Puzzle
List

1 1e ,sz

1 2e ,sz
3 1e ,sz
2 2e ,sz

Service
Type

Service
Provider

SP1

SP2

1s

2s

3 1e ,sz

2 2e ,sz

3
1

e
,s

z

1
1

1
2

e ,
s

e ,
s

z
,z

Base Station
User

Edge Server 1

Edge Server 3

Service
Providers

Edge Server 2

② Init. Request

③ Puzzle List

④

①

①

①
⑤

⑥⑦ Response

Service
Type

Service
Provider

SP1

SP2

1s

2s

Puzzle List

1 1 1 2 2 2 3 1e ,s e ,s e ,s e ,sz ,z ,z ,z

1
1

1
2

e ,
s

e ,
s

z
,z

2 2e ,sz

3
1

e
,s

z

3 1e ,sz

Base Station
User

Edge Server 1

Edge Server 3

Service
Providers

Edge Server 2

② Init. Request

③ Puzzle List

④

①

①

①
⑤

⑥⑦ Response

Service
Type

Service
Provider

SP1

SP2

1s

2s

Puzzle List

1 1 1 2 2 2 3 1e ,s e ,s e ,s e ,sz ,z ,z ,z

1
1

2
2

e ,
s

e
,s

z
,z

2 2e ,sz

3
1

e
,s

z

3 1e ,sz

Base Station
User

Edge Server 1

Edge Server 3

Service
Providers

Edge Server 2

② Init. Request

③ Puzzle List

④

①

①

①
⑤

⑥⑦ Response

Service
Type

Service
Provider

SP1

SP2

1s

2s
Puzzle List

1 1 1 2 2 2 3 1e ,s e ,s e ,s e ,sz ,z ,z ,z

3
1

e ,s
z

2 2e ,sz

1
1

e ,
sz

1
2

e ,
sz 1
2

e ,
sz

3 1e ,sz

1 1e ,sz
1 2e ,sz

2 2e ,sz
3 1e ,sz, ,,

Puzzle List

Base Station

Edge Server 1

Edge Server 3

Service
Providers

Edge Server 2

② Init. Request

③ Puzzle List

④

①

①

①
⑤

⑥⑦ Response

Service
Type

Service
Provider

SP1

SP2

1s

2s

3
1

e ,s
z

2 2e ,sz

1
1

e ,
sz

1
2

e ,
sz 1
2

e ,
sz

3 1e ,sz

1 1e ,sz
1 2e ,sz

2 2e ,sz
3 1e ,sz, ,,

Puzzle List

Base Station

Edge Server 1

Edge Server 3

Service
Providers

Edge Server 2

② Init. Request

③ Puzzle List

④

①

①

①
⑤

⑥⑦ Response

Service
Type

Service
Provider

SP1

SP2

1s

2s

3
1

e ,s
z

2 2e ,sz

1
1

e ,
sz

1
2

e ,
sz 1
2

e ,
sz

3 1e ,sz

1 1e ,sz
1 2e ,sz

2 2e ,sz
3 1e ,sz, ,,

Puzzle List

Fig. 2. Rerandomizable puzzle-based offloading example. Suppose there are
two SPs offering two types of services, s1 and s2, and three ESs e1, e2 and
e3 attempting to assist the SPs in delivering services. e1 provides both s1
and s2, e2 provides s2, and e3 provides s1. Denote the puzzle of service sj
from edge server ei as zei,sj . Suppose a user intends to use service s1. (1)
ESs register service-related puzzles with the BS. (2) User initiates a request
for an (unspecified) offloading service. (3) BS responds to user with a puzzle
list. (4) User selects a puzzle ze3,s1 and returns it to the BS. (5) BS forwards
the user’s request to selected ES e3. (6) e3 returns service response to the
BS. (7) BS forwards the response to the user.

In SA2FE, the two key building blocks are: blind tokens for
service access, and cryptographic puzzles for offloading.
Token-based service access. We develop a token-based ser-
vice access scheme that ensures user anonymity. Our scheme
maintains secrecy of the service type from the BS while
allowing service type verification by the ESs. The token,
specifically designed for authenticated and anonymous access
to edge services, is blindly signed during user registration
based on the blind signature scheme to preserve user privacy.
A token contains a service-agnostic part for the BS, and a
service-specific part for the ES signed by a service-related
key. This allows the BS to check the token for potential double
spending without knowing the service type, and the ES and
FA to check the service type for potential token misuse during
offloading and reward claiming respectively.
Puzzle-based offloading. To prevent the BS from learning a
user’s requested service type while still allowing forwarding
the request to an eligible ES, we design a puzzle-based
offloading process as shown in Fig. 2. The puzzle mechanism
is essential for secure and efficient offloading in PEC envi-
ronments. By preventing the BS from learning service type
information and ensuring that users cannot target specific ESs,
puzzles address threats like service type inference, malicious
targeting, and fairness violations. Additionally, they enable
a practical offloading process by eliminating the need for
inefficient methods, such as random assignments or broad-
casts by BS, which would otherwise increase complexity and
resource consumption. Instead of registering plaintext service
information at the BS, each ES will generate service-specific
random puzzles that are indistinguishable from puzzles of
other services. The puzzles can only be solved by users with
each specific service’s key obtained during user registration
and payment. To ensure fair offloading, the BS sends all
puzzles to the requesting user, who then solves the puzzles
of its requested service, and then randomly picks one puzzle
representing a random ES who can serve the service. The
puzzle contains no identifiable information about the ES,
ensuring that the user cannot identify or target a specific ES

5

during the selection (thus ensuring both fairness and protection
of the ES). Further, after every service request, the BS re-
randomizes all puzzles and permutes the puzzle list to ensure
that puzzles from two requests are unlinkable.

A. Preliminary: Blind Signature

SA2FE makes use of a blind signature scheme as a building
block, which we shall describe here for completeness.

Blind signature [33] is an unlinkable digital signature
scheme that allows a signer to sign a message without knowing
the message content. The algorithms are specified as follows:
1) BlindSetup(1λ) → (PK,SK): Given security parameter

λ, it outputs the public key PK and secret key SK.
2) BlindMsg(PK,m, r) → m′: Takes PK, message m, and

random number r as input, outputs blinded message m′.
3) BlindSign(PK,SK,m′) → s′: Takes PK, SK, and

blinded message m′ as input, outputs signature s′.
4) UnblindSign(PK, s′, r) → s: Takes PK, s′, and random

number r as input, outputs signature s for message m.
5) BlindVerify(PK,m, s) → {0, 1}: Takes PK, m, and s as

input, outputs 1 if s is valid for m, otherwise 0.
A secure blind signature scheme realizes two security

properties: unforgeability and blindness [34]. Unforgeability
ensures that only the signer can generate valid blind signatures.
Blindness ensures that the signer cannot know the message
content corresponding to the blind signature she has signed.

V. SA2FE DESIGN

In this section, we first design the puzzle primitive and present
its two implementations. Table I lists SA2FE notations.
A. Puzzle Design

A rerandomizable puzzle is constructed for a specific so-
lution. Anyone with the puzzle and the solution can verify
that the solution is correct. It allows anyone with neither the
solution nor any secret used when constructing the puzzle to
rerandomize the puzzle without changing the solution.
Definition 1. A rerandomizable puzzle scheme consists of the
following four algorithms:
1) PuzzleSetup(1λ)→params: Initialize puzzle parameters.
2) PuzzleGen(m) → puzzle: Generate a puzzle given a

solution message m.
3) PuzzleMatch(m, puzzle) → {0, 1}: Check if m is the

solution to puzzle.
4) PuzzleRerandomize(puzzle) → new puzzle: Rerandom-

ize puzzle without changing the solution m, such that
new puzzle is unlinkable to puzzle.

The following properties must be fulfilled: (a) Correctness:
PuzzleMatch(m,PuzzleGen(m)=1 for any m; (b) Soundness:
Pr[PuzzleMatch(m̂,PuzzleGen(m)) = 1] ≈ 0 for m̂ ̸=m; (c)
Indistinguishability: it is computationally hard to distinguish
PuzzleGen(m) from PuzzleGen(m̂) for any m ̸= m̂; (d)
Unlinkability: given a puzzle, a new puzzle can be generated
such that PuzzleMatch(m,new puzzle)=1 and new puzzle
is unlinkable to puzzle for any m.

In the following, we propose two puzzle implementations
based on bilinear map and universal re-encryption respectively
to realize the rerandomizable puzzle primitive.

TABLE I
NOTATION TABLE

Symbol Definition Symbol Definition
λ Security parameter ks Service key

pkp, skp FA public & secret key s type Service type
pks, sks SP public & secret key s alg Service program
m1,m2 Random messages ZIDu User puzzle list
p map Puzzle mapping table

Puzzle based on bilinear map. Let G1, G2 and GT denote
three cyclic groups of a prime order p, and g1 and g2 be the
generators of group G1 and G2 respectively. A bilinear map
e : G1×G2 → GT satisfying bilinearity, computability, and
non-degeneracy can be used to construct the bilinear-based
rerandomizable puzzle as follows.
1) PuzzleSetup(1λ)→params: Let parmas = (g1, g2).
2) PuzzleGen(m)→puzzle: Generate random factor r ∈ Z∗

p

where r mod m = 0. Then output puzzle = (z[1], z[2]),
where z[1] = g

r/m
2 and z[2] = gr2 .

3) PuzzleMatch(m, puzzle)→{0, 1}: Check if e(gm1 , z[1])=
e(g1, z[2]).

4) PuzzleRerandomize(puzzle) → new puzzle: Output
new puzzle=((z[1])

r′ , (z[2])
r′) with random r′∈Z∗

p.
Puzzle based on universal re-encryption. ElGamal encryp-
tion [35] is an asymmetric key encryption scheme for public-
key cryptography. With the public key, any ciphertext can be
re-encrypted into an unrelated ciphertext. The universal re-
encryption scheme [36] hides the public key by appending a
second ElGamal ciphertext encrypting the integer 1. Leverag-
ing ElGamal’s algebraic homomorphism, the second ciphertext
can re-encrypt the first without exposing the public key. The
universal re-encryption-based puzzle is constructed as follows.
1) PuzzleSetup(1λ)→ (x, y): Output (x, y = gx), where x ∈

Zq , g is a generator for a group G with order q.
2) PuzzleGen(m) → puzzle: Generate random factor r =

(r0, r1)∈Z2
q . Then output puzzle = [(α0, β0); (α1, β1)] =

[(myr0 , gr0); (yr1 , gr1)].
3) PuzzleMatch(m, puzzle)→{0, 1}: Verify α0, β0, α1, β1 ∈

G, return 0 if invalid. Compute m0 = α0/β
x
0 and m1 =

α1/β
x
1 . If m1=1, return 1 if m0 = m.

4) PuzzleRerandomize(puzzle) → new puzzle: Output
[(α′

0, β
′
0); (α

′
1, β

′
1)] = [(α0α

r′0
1 , β0β

r′0
1); (α

r′1
1 , β

r′1
1)] with

random factor r′ = (r′0, r
′
1) ∈ Z2

q .
These two designs are based on different assumptions and

have different overheads. The bilinear map puzzle and the
universal re-encryption puzzle are based on Decisional Bilin-
ear Diffie-Hellman assumption (DBDH) [37] and Decisional
Diffie-Hellman assumption (DDH) [38], respectively. We eval-
uate the overhead of these two designs in the Section VII.
Theorem 1. The bilinear map-based puzzle and the uni-
versal re-encryption-based puzzle satisfy the properties of
correctness, soundness, indistinguishability, and unlinkability
as defined for a randomizable puzzle scheme.
Proof. We provide proofs for each property for both the
bilinear map-based and universal re-encryption-based puzzles.

Correctness: The correctness of the bilinear map-based
puzzle follows from e(gm1 , g

r/m
2) = e(g1, g

r
2). For the uni-

versal re-encryption-based puzzle, correctness follows from
α1/β

x
1 = yr1/gr1x = 1 and α0/β

x
0 = myr0/gr0x = m.

6

Algorithm 1: System Initialization
At Service Provider

1 BlindSetup(1λ)→(pks, sks);
2 SymKeySetup(1λ)→ ks;

At User
3 Get blind signature public key pks

out-of-band from the SP;
At Financial Authority

4 BlindSetup(1λ)→ (pkp, skp);
5 PuzzleSetup(1λ)→ params.

Soundness: The soundness of the bilinear map-based puzzle
holds because, for any m̂ ̸=m, e(gm̂1 , g

r/m
2) ̸= e(g1, g

r
2). For

the universal re-encryption-based puzzle, soundness is ensured
since m̂yr0/gr0x ̸=m for any m̂ ̸=m.

Indistinguishability: The bilinear map-based puzzle’s in-
distinguishability relies on the DBDH assumption, ensur-
ing (g

r/m
2 , gr2) and (g

r̂/m̂
2 , gr̂2) with e(gm1 , g

r/m
2) = e(g1, g

r
2)

and e(gm̂1 , g
r̂/m̂
2) = e(g1, g

r̂
2) are indistinguishable. For the

universal re-encryption-based puzzle, it derives from the
DDH assumption, ensuring [(m(gx)r0 , gr0); ((gx)r1 , gr1)] and
[(m̂(gx)r̂0 , gr̂0); ((gx)r̂1 , gr̂1)] are indistinguishable.

Unlinkability: The bilinear map-based puzzle’s unlinka-
bility also relies on the DBDH assumption, ensuring that
(g

r/m
2 , gr2) and (g

rr′/m
2 , grr

′

2) with e(gm1 , g
r/m
2) = e(g1, g

r
2)

and e(gm1 , g
rr′/m
2) = e(g1, g

rr′

2) remain indistinguishable,
ensuring unlinkability. For the universal re-encryption-based
puzzle, unlinkability similarly derives from the DDH as-
sumption, ensuring that [(m(gx)r0 , gr0); ((gx)r1 , gr1)] and
[(m(gx)r0(gx)r1r

′
0 , gr0gr1r

′
0); ((gx)r1r

′
1 , gr1r

′
1)] are indistin-

guishable, ensuring unlinkability between the original puzzle
and the rerandomized puzzle.

We will integrate this puzzle primitive into the offloading
scheme, enabling the ES to register at the BS and allowing
users to randomly select an indistinguishable puzzle from the
BS’s puzzle list to ensure fairness in offloading.

B. System Initialization

The system initialization phase initializes all parameters and
components required for the system, as shown in Algorithm 1.
Service setup (line 2). The SP sets up the service key
ks that will be used for symmetric encryption of service
data. A symmetric encryption scheme has three algorithms,
SymKeySetup, SymEnc and SymDec. We employ symmetric
encryption for the serviced data to reduce the overhead of
encrypting and decrypting. Alternative encryption schemes can
be used if they are compatible with the service data. Due to the
lightweight nature of our framework, the service key can be
efficiently updated periodically based on security requirements
or manually rotated upon detecting anomalies.
Blind signature setup (lines 1, 3−4). Blind signature [33] is
employed to preserve user anonymity during token usage and
maintain confidentiality of the service type from the BS, while
still enabling service type verification by the ES and FA.

Each token includes a service-agnostic part for the BS
and a service-specific part for the ES and FA, supported by
blind signature setups from the SP (line 1) and FA (line 4).
Regarding the service-specific part, the service blind signature
secret key sks is securely kept confidential by the FA after
the SP registers with it, as will be shown in Algorithm 2. And
the service blind signature public key pks is only accessible
to authorized users and ESs who can access the service s
(line 3). Regarding the service-agnostic part, the FA invokes

Algorithm 2: Registration
/* SP registration */

At Service Provider
1 Register with FA by sending ks and

(pks, sks) to the FA.
/* Token registration */

At User
2 Select two random messages m1

and m2, and a random number r;
3 BlindMsg(pkp,m1, r)→ m′

1;
4 BlindMsg(pks,m2, r)→ m′

2;
5 Send request (s type,m′

1,m
′
2,

payment) to the FA;
At Financial Authority

6 if registration request is valid then
7 BlindSign(skp,m′

1)→ sig′1;
8 BlindSign(sks,m′

2)→ sig′2;
9 Send (sig′1, sig

′
2, ks) to user;

At User
10 UnblindSign(pkp, sig′1, r)→sig1;

11 UnblindSign(pks, sig′2, r)→sig2;
12 token = (m1, sig1;m2, sig2);

/* ES reg. to SP */
At Edge Server

13 Send (reg info, s type) to SP;
At Service Provider

14 if ES eligibility is verified then
15 Send (ks, pks, s alg) to ES;

/* ES reg. to BS */
At Edge Server

16 for registered service s do
17 PuzzleGen(h(ks))→puzzle;
18 Send (puzzle, IDBS) to BS;

At Base Station
19 while puzzle from IDES do
20 Store puzzle in puzzle list Z;
21 Insert (puzzle, IDES) into a

mapping table p map.

BlindSetup and the public key pkp is made publicly available,
allowing the BS to verify the service-agnostic part of tokens.
Rerandomizable puzzle setup (line 5). The FA sets up the
parameters of rerandomizable puzzle. For puzzle based on the
bilinear map, both g1 and g2 can be published. For puzzle
based on universal re-encryption, only y can be made public,
while the corresponding x is obtained by authorized users.C. Registration
Registration phase (steps (1)−(3) in Fig. 1) is in Algorithm 2.
SP registration (line 1). An SP registers the service symmetric
key ks, the service blind signature public key pks and secret
key sks with the FA. Then the FA can issue and verify the
validity of service tokens for service s by using these keys.
Token registration (lines 2−12). To access a service s, a
user first needs to acquire tokens for s from the FA, which
needs to include both a service-agnostic part for the BS, and
a service-specific part for the ES and FA. To request a token
for service s, the user selects random messages m1, m2, and
a random factor r, then blinds m1 and m2 using BlindMsg
to generate blind messages (lines 2−4). Then the user sends
blinded messages m′

1 and m′
2 along with payment information

to the FA (line 5). After verifying the payment, the FA signs
m′

1 and m′
2 by invoking BlindSign. Then the FA sends the

blinded signatures and the service key ks back to the user
(lines 6−9). After invoking UnblindSign, the user gets a valid
token in the format of (m1, sig1;m2, sig2) (lines 10–12).
ES registration to SP (lines 13−15). The ES first generates
a registration request and sends it to the SP. The SP checks
service type and verifies if the ES with reg info can provide
the service s. If the ES is eligible, the SP sends back service
key ks, blind signature key pks, and service program s alg.
ES registration to BS (lines 16−21). After receiving the
service information, each ES registers with the BS as a can-
didate to provide service. This process enables ES discovery
and equips users with information for fair ES selection. For
registered service s, the ES generates a puzzle by invoking
PuzzleGen(h(ks)), where h(·) is a one-way hash function to
protect the service key. Upon receiving the puzzles from ESs,
the BS stores puzzles in list Z and creates a mapping table
p map associating each puzzle with ES identity IDES .

To adapt to varying ES capabilities, fairness can be extended
by allowing higher-capability ESs to register multiple puzzles,

7

Algorithm 3: Offloading
At User

1 Generate offloading request (token,
IDBS) and send it to BS;

At Base Station
2 Form puzzle list ZIDu with the

latest versions for user IDu;
3 for z ∈ ZIDu do
4 PuzzleRerandomize(z)→ z′;
5 Replace z with z′;
6 Record (z′, IDES) in p map;

7 Permute ZIDu to a new puzzle list
Z′
IDu

and send it to user;
At User

8 Candidate puzzle list Zc = ∅;
9 for z ∈ Z′

IDu
and

PuzzleMatch(h(ks), z) = 1 do
10 Zc = Zc ∪ {z};
11 Randomly pick a puzzle zu ∈ Zc;
12 Send (zu, ct = SymEnc(ks,

(s type, data))) to BS;

At Base Station
13 if BlindVerify(pkp,m1, sig1) = 1

and token is unseen then
14 if zu ∈ Z′

IDu
and none of puzzles

in Z′
IDu

have been used then
15 Send (token, ct) to ES

according to p map;

At Edge Server
16 for ∀pks held by the ES do
17 if BlindVerify(pks,m2, sig2)

= 1 then
18 SymDec(ks, ct)→ data;
19 Send resp = SymEnc(ks,

s alg(data)) to BS;
20 break;

At Base Station
21 Forward the resp to user;

At User
22 SymDec(ks, resp)→ resp data.

increasing their selection likelihood proportionally to their
capacity while maintaining efficiency and security.
D. Offloading

Algorithm 3 shows the detailed offloading phase, which cor-
responds to steps (4)−(6) in Fig. 1.

The user initiates offloading by sending a request to the
BS (line 1). Upon receiving the init request from the user
with IDU , the BS performs the following actions (lines 2−7):
the BS first constructs a puzzle list ZIDu

that contains all
the latest version puzzles. Then the BS re-randomizes the
puzzles z∈ZIDu

by invoking PuzzleRerandomize(z)→z′ and
replaces z with z′. Also, the BS records (z′, IDES) in p map.
The BS sends the permuted puzzle list Z ′

IDu
to the user. The

BS re-randomizes and permutes puzzles to ensure fairness,
preventing users from targeting specific ESs. While acting as a
man-in-the-middle, it cannot infer service types, with protocol
adherence incentivized by its reliance on reputation.

The user, upon receiving Z ′
IDU

, proceeds with the following
steps (lines 8−12): for each puzzle received from the BS, the
user matches it with the service key for the desired service,
constructing a sub-list Zc of matching puzzles. The user then
randomly selects one puzzle zu from Zc. The user encrypts
request data with service key ks to get the ciphertext ct, and
constructs a message (zu, ct) which is then sent to the BS.

Upon receiving the user’s offloading request, the BS per-
forms the following steps (lines 13−15): the BS checks the
validity of the service-agnostic part of the token (m1, sig1)
by invoking BlindVerify and ensuring full token has not been
used before. The BS validates zu by confirming its presence in
the unique puzzle list Z ′

IDU
provided to user IDU and ensuring

that none of the puzzles in Z ′
IDU

have been used before. The
BS then finds the ES corresponding to zu in its mapping table
p map, and forwards (token, ct) to the ES.

Then the ES verifies the service-specific part of the token
by invoking BlindVerify(pks,m2, sig2). For ESs offering mul-
tiple services, they need to check the service blind signature
public key, pks, associated with each service type to find the
corresponding service key, ks (lines 16−17). If the token check
passes, the ES decrypts ct (line 18) and continues generating
response data for the user using service algorithm s alg on

Algorithm 4: Payment Claim
1 while (s type, token) from ES do
2 if BlindVerify(pks,m2, sig2) =

1 and token valid for s type
then FA pays to ES and SP;

3 while (token) from BS do
4 if BlindVerify(pkp,m1, sig1) =

1 and token not double spent
then FA pays to BS.

data. The ES encrypts the response data with ks and sends it
to the BS (line 19). The BS forwards the encrypted resp to the
user (line 21), allowing the user to decrypt it with ks (line 22).
The user and the ES then engage in actual service offloading
through the BS until the offloading request is fulfilled.

E. Payment Claim

The payment claim process in Fig. 1 step (7) is shown in
Algorithm 4. The process is the same for a BS or an ES,
except that the public key used to verify the blind signature
is different, and for ES the checking needs to additionally
verify s type. Upon receiving a token claim request, the FA
first checks whether the token has been double spent. It then
proceeds to verify the token’s validity by invoking the function
BlindVerify. Upon successful token verification, the FA pays
the corresponding tokens to the SP, BS, and ES as per the
established contract, ensuring accountability for token claims.

In practice, beyond presenting a valid token as payment
proof, the BS and ES can incorporate other types of proof of
service to claim rewards. For instance, they can utilize existing
edge service verification schemes that leverage cryptography
to generate tamper-proof service proofs [39].

VI. SECURITY ANALYSIS

A. Informal Security Analysis

Malicious user. Upon receiving the user’s offloading request,
the BS validates the token’s service-agnostic part for FA
signature and checks both token parts for prior use. Only
when the check on (m1, sig1) returns valid and the full token
has not been seen before, will the BS proceed to construct
a puzzle list and share it with the user. Full token checking
ensures that the user cannot reuse a forged token, for instance,
by combining a low-priced BS service-agnostic part with a
high-priced service-specific part to double spend the token.
The BS’s re-randomization and permutation of the puzzle list
ensure the unlinkability within one round and different rounds
of the offloading, so that the user cannot identify a specific ES
to disturb the fairness of the offloading process. Stale puzzle
submissions are discarded, thwarting puzzle replay attacks.
Curious BS on user service request. SA2FE prevents a
curious BS from inferring a user’s service type by limiting
access to sensitive information. The BS can only verify the
service-agnostic part of the token, which reveals no service
details. User data is encrypted with the service symmetric key,
preventing access to the service type or request data. Addi-
tionally, puzzles from ESs are indistinguishable and disclose
no service-related information. Since the user performs puzzle
matching and selection, the BS cannot infer the service type
from the list of eligible ESs or from specific ES involvement.
Curious FA, SP, BS, and ES on user identity. Due to the
blind signature’s blindness properties, no one can link the
token in a service request to the user’s real identity.

8

Malicious BS and ES on payment claim. If the BS or an
ES exaggerates the provided service for extra rewards, the FA
will detect invalid or double-spent tokens and reject the claim.

For a puzzle list of n puzzles, the probability of a malicious
user identifying a specific ES is 1

n . The attack success prob-
ability of other attacks within our threat model are negligible
unless they violate fundamental cryptographic assumptions.

B. Formal Security Analysis

We next formally analyze SA2FE’s security based on the UC
framework. The UC is a widely used simulation-based cryp-
tographic framework for modular security analysis in diverse
scenarios, including blockchain [40], federated learning [41],
and quantum key distribution [42]. It guarantees security even
when a secure protocol is composed with an arbitrary set of
protocols [43]. The definition of UC-security is as follows:
Definition 2. UC-security [43]. Given a security parameter λ,
an ideal functionality F and a real world protocol π, we say
that π securely realizes F if for any probabilistic polynomial
time (PPT) adversary A, there exists a PPT simulator S such
that for any PPT environment Z , we have

IDEALF,S,Z
c≡ REALπ,A,Z .

The
c≡ denotes computational indistinguishable.

We denote the ideal functionality of SA2FE as FSA2FE =
⟨Fregister,Foffload,Fclaim,Fsig,Fsmt⟩. Fregister is the ideal func-
tionality of registration phase. Foffload models the offloading
phase. Fclaim models the token claim process. Two helper
ideal functionalities Fsig and Fsmt [43] are used to model
the digital signature and the secure message transmission
channel. Following UC framework, we assume that each party
interacting with the ideal functionalities has a unique identifier,
and consider a static corruption model where the adversary can
corrupt parties at the beginning of the protocol.

The ideal functionality FSA2FE maintains the internal states
in three tables, Ts, Tp and Tt, to ensure consistency of the
real world and the ideal world. Ts consists of entries in the
format of (spid, sname, sdata, esid, bsid) about the service.
The spid denotes the SP identity, sname represents the service
name, sdata contains the content or data associated with the
service, and esid and bsid uniquely identify an ES and a BS
respectively. Tp contains puzzle information in the format of
(puzzleideal, spid, sname, ver, fp, esid, bsid). The puzzleideal
is a puzzle in the ideal world. ver is a number that indicates the
puzzle’s version that identifies the set of puzzles corresponding
to a user’s request. The puzzles generated in the same batch
have the same version number. fp ∈ {unused,used} is a
flag indicating whether the puzzle has been received by the
BS from a user, esid is the ES identity that the puzzle
corresponds to, and bsid is the BS identity that the esid is
registered with. Tt contains the token information in the for-
mat of (tokenideal, spid, sname, (esid, fes), (bsid, fbs)). The
tokenideal is a string that indicates the token in the ideal world.
esid is the ES identity that received the token and fes is the
flag that indicates the status of the token. fes has three options:
fresh for a newly initialized, unused token, unclaimed for
token received but not yet claimed, and claimed for token
already claimed. (bsid, fbs) is similarly defined for a BS.

Functionality Fregister

Service provider registration
1) Upon receiving (register, spid, sname, sdata) from the SP, Fregister

adds ts = (spid, sname, sdata,⊥,⊥) to Ts. If the ts is already in
Ts, then Fregister returns ts to the SP.

Edge server registration
1) Upon receiving (register, spid, sname, esid) from ES, Fregister

checks if Ts has an entry ts = (spid, sname, ·, esid, ·). If
yes, Fregister returns ts to esid, and forwards (exist, ts) to
S. Otherwise, Fregister sends a message (register, spid, esid)
to the SP with spid. If the SP responds with “allow”,
then Fregister creates an entry (spid, sname, ·, esid, ·) in Ts

and forwards (successReg, (spid, sname, esid)) to esid and
S. Otherwise, Fregister returns “fail” to esid and forwards
(failReg, (spid, sname, esid)) to S.

2) Upon receiving (register, tp = (·, spid, sname, 0, unused, esid,
bsid), bsid) from ES, Fregister forwards (register, esid, bsid)
to BS with bsid. If BS responds with “allow”, then Fregister

updates the entry (spid, sname, ·, esid, bsid) in Ts and
forwards (successReg, (spid, sname, bsid, esid)) to esid and
S. Otherwise, Fregister returns “fail” to esid and forwards
(failReg, (spid, sname, bsid, esid)) to S.

3) Fregister adds tp = (puzzleideal, spid, sname, 0, unused, esid, bsid)
to Tp, and forwards (newReg, tp) to S.

User registration
1) Upon receiving (register, spid, sname, payment) from user,
Fregister sends a message (register, spid, sname, payment) to FA.

2) If FA returns “allow”, Fregister adds tt = (tokenideal, spid, sname,
(⊥, fresh), (⊥, fresh)) in Tt. Then Fregister sends the tt to the user
and forwards (newReg, tt) to S.

3) Otherwise, Fregister sends “fail” to user and sends (failReg, tt) to S.

Fig. 3. Ideal functionality for registration.

Registration. The ideal functionality Fregister, shown in Fig. 3,
handles registration for the SP, BS, and ES by creating
entries for services, puzzles, and tokens, ensuring validity and
freshness while coordinating with other parties.
Offloading. The ideal functionality shown in Fig. 4 models
the offloading process between the user, BS and ES. The
functionality validates tokens and checks if selected puzzles
are valid entries in Tp. Invalid tokens or puzzles result in a
failure message to the user and a notification to S. For valid
requests, it updates the status of tokens and puzzles, marks
puzzles as used, changes the status of tokens, and manages
mappings in Tt and Tp. Finally, Foffload forwards the service
response Mresp to the user, BS, and S .
Payment Claim. Fig. 5 shows the payment claim ideal func-
tionality, where Fclaim verifies token validity, prevents double
spending by checking fbs or fes status, rewards bsid or esid,
and updates fbs or fes to mark the token as claimed.
Theorem 2. Let A and S be a PPT adversary and a simulator
in the real world and the ideal world, respectively. SA2FE
securely realizes FSA2FE for any PPT environment Z .
Proof. We design a series of games, where each game differs
slightly from the previous one but remains indistinguishable
from the view of the PPT environment Z .
Game 0: This is the real world protocol SA2FE that interacts
directly with the environment Z and adversary A.
Game 1: This game is identical to Game 0 except that the
real-world communication channel is replaced by Fsmt.
Lemma 1. For any A and Z , there exists an S such that
the view of Z in Game 1 is indistinguishable from its view in
Game 0, i.e., ExecGame0,Z ≈ ExecGame1,Z .
Proof. S can run Ssmt for Fsmt to achieve the indistinguisha-
bility between the real world and ideal world.

9

Functionality Foffload

1) Upon receiving a request (offRequest, tokenideal, bsid) from the
user, Foffload constructs a p list which includes all the puzzle filed
of the puzzles with (·, ·, ·, vernewest, ·, ·, bsid) in the Tp.

2) Foffload re-randomizes each puzzle in p list by generating a
new puzzle string puzzlenew, and creates a new entry tp =
(puzzlenew, spid, sname, vernewest+1, unused, esid, bsid) in Tp.
Foffload sends (randomizedPuzzle, puzzleideal, puzzlenew) to S.

3) Foffload constructs a p list′ for user by collecting all puzzles with
vernewest + 1 in a random order. If the user is malicious, Foffload

sends p list′ to bsid and forwards (offStart, token, p list′) to S.
If the user is honest, Foffload associates each puzzle in the p list′

with its corresponding (spid, sname) and sends the list to the user.
Foffload stores the mapping between uid and the corresponding ver∗.

4) Upon receiving response from the user with (puzzle′ideal,Mdata),
Foffload sends (newRequest, puzzle′ideal,Mdata) to S. Foffload sends
(userAbort, uid) to S when there is no response.

5) Foffload checks if there is an entry tt = (tokenideal, spid, sname,
(⊥, fresh), (⊥, fresh)) in Tt. If no such tt exist, Foffload returns
“fail” to user and forwards (invalidToken, tokenideal, bsid) to S.

6) If there is such an entry tt, then Foffload sends (newRequest,
puzzle′ideal,Mdata) to bsid and S. Foffload verifies the validity of
puzzle′ideal within p list′. If not, Foffload returns “fail” to user and
forwards (invalidPuzzle, puzzle′ideal,Mdata) to S.

7) If puzzle′ideal is valid and fp is unused, Foffload retrieves the esid
corresponding to puzzle′ideal and updates the entries with ver∗ to
(·, ·, ·, ver∗, used, esid, bsid). Then Foffload updates the Tt with
(tokenideal, spid, sname, (esid, fresh), (bsid, unclaimed)). Oth-
erwise, Foffload returns “fail” to user. And Foffload forwards
(invalidPuzzle, puzzle′ideal,Mdata) to S.

8) Foffload sends (tokenideal,Mdata) to esid and sends (offToES,
tokenideal, esid,Mdata) to S. Foffload updates the Tt with
(tokenideal, spid, sname, (esid, unclaimed), (bsid, unclaimed)).

9) On receiving (tokenideal,Mdata) from Foffload, esid retrieves sdata
from Foffload and sends Mresp←sdata(Mdata) to Foffload.

10) Foffload forwards the response Mresp to the user, bsid and S.

Fig. 4. Ideal functionality for offloading.

Functionality Fclaim

1) Upon receiving (claimRequest, bsid, tokenideal) from bsid, Fclaim

checks if there is an entry tt = (tokenideal, ·, ·, (·, ·), (bsid,
unclaimed)) in Tt. If no such tt exist, then Fclaim returns “fail” to
bsid and forwards (invalidToken, tokenideal, bsid) to S. Otherwise,
Fclaim sets the fbs of tt to claimed and returns “success” to bsid.
Also, Fclaim forwards (successClaimed, tokenideal, bsid) to S.

2) Upon receiving (claimRequest, esid, spid, sname, tokenideal) from
esid, Fclaim checks if there is an entry tt = (tokenideal, spid,
sname, (esid, unclaimed), (·, ·)) in Tt. If not, Fclaim returns “fail”
to esid and forwards (invalidToken, tokenideal, esid) to S. Other-
wise, Fclaim sets the fes of tt to claimed and returns “success” to
esid. Also, Fclaim forwards (successClaimed, tokenideal, esid) to S.

Fig. 5. Ideal functionality for payment claim.

Game 2: Let S have access to the output of both honest parties
and the adversary A. Then S tries to simulate the protocol
with the help of FSA2FE. In the real world, A can corrupt the
entities. Subsequently, all incoming and outgoing messages of
the corrupted party go through A. In the ideal world, S has
the ability to corrupt entities and inform FSA2FE accordingly.
In the subsequent process, FSA2FE will discard all messages
from the corrupted party and treat S as the corrupted party.
Lemma 2. ExecGame1,Z ≈ ExecGame2,Z .

Proof. Simulator S obtains setup information from SP and FA.
Upon receiving registration requests from SP, ES, and user, S
has sufficient information to generate messages acceptable to
Fregister. This allows Fregister to update the internal tables Ts,
Tp, Tt accordingly. Specifically, at ES registers to BS stage, S
records the map between the puzzle from real world and the
puzzleideal in the ideal world. At token registration stage, S
maintains a local map R that associates token with tokenideal.

For offloading and payment claim, considering the threat
model in Section III-B, the following cases need to be tackled.

1) Wrong token from user side: Consider a user who tries to
double spend a token or use a forged token to get the service
from multiple ESs. If the user generates a fake token that
deceives the BS, the unforgeability of the blind signature is
violated. In the real world, the BS validates user’s token and
rejects the request for invalid or double-spent tokens. In the
ideal world, S checks and updates R to reject tokens where
fbs is not fresh. S creates a nonexistent tokenideal in Tt for an
invalid token, causing Foffload to return “invalidToken” back.

2) User exploits a specific ES: A user linking two re-
randomized puzzles will lead to a violation of the DBDH/DDH
assumptions. The user can only exploit a specific ES by
reusing the same zu as before. If BS detects that zu has been
used before, it rejects the offloading request. In the ideal world,
S retrieves puzzle′ideal of zu and sends it to Foffload. If Foffload

finds that puzzle′ideal for uid is not with ver∗ or puzzle′ideal in
Tp has fp=used, Foffload returns an “invalidPuzzle” message
to S. S then responds to the user with “fail”.

3) BS/ES exaggerates service for rewards: If the BS/ES
uses an invalid token or double spends it to claim extra
rewards, the FA will detect it and reject the request. In the
ideal world, if S generates a tokenideal not existing in Tt for
an invalid token or the fbs/fes of tokenideal is claimed, Fclaim

will return an “invalidToken” message to S.
4) Curious BS on user service request: For puzzle registra-

tion from an ES, upon receiving (puzzle, IDBS), S forwards
it to the BS. The rerandomized puzzle generated by the
BS requires no translation by S. For the offloading request,
selected puzzle and (zu, ct) from the user, S directly forwards
the user’s output to the BS. As S only performs forwarding,
the real and ideal worlds are indistinguishable.

5) Curious FA, SP, BS, ES on user identity: The blind
signature proof process resembles the ticket request process
in [34], which has been proved to be UC-secure.

Game 3: In this game, the simulator S cannot directly
communicate with honest parties. Instead, S needs to generate
the outputs of the honest parties to the adversary A.
Lemma 3. ExecGame2,Z ≈ ExecGame3,Z .
Proof. S generates the system parameters and keys on behalf
of the honest parties. In the ideal world, upon receiving a
registration request from the corrupted/honest ES or user, S
constructs a corresponding message and sends it to Fregister.
S generates real-world puzzle, token, and other information
using these parameters and keys, and then sends them to A.

For offloading requests from corrupted users, S rerandom-
izes the puzzle and records its mapping to puzzlenew. This
enables S to construct real-world puzzle lists indistinguishable
within and across batches by using universal re-encryption
or bilinear mapping to generate real-world puzzles matching
ideal-world random strings, which it then sends to A.

For the payment claim protocol, when a corrupted BS/ES
claims the reward, S validates the token and generates cor-
responding tokenideal, and sends it to Fclaim. After receiving
feedback, S generates corresponding messages for A.

Combining Lemmas 1–3 proves Theorem 2.

10

TABLE II
COMMUNICATION COST AND EXECUTION TIME OF SA2FE

Communication Cost* Execution Time
Description Message Size (bytes) Step Time (ms)

Setup - - SP setup 371.30
FA setup 392.42

SP registration SP to FA registration request 2012 SP registration 59.74

ES registration
ES to SP registration response 748 ES registered to SP 2.62

ES to BS registration request 275 ES puzzle generation time 3.12
ES registered to BS 1.57

User registration
User to FA registration request 1317

User blinded token 1.71

User to FA registration response 1626

FA signed token 18.65
User got token 58.89
User unblinded token 0.84
User verified token 1.73

Offloading

User initial offloading request 1310 BS rerandomized puzzles 55.92
User received puzzle list 8163 User got response of initial offloading request 62.19

User generated service request 309 User selected puzzle 237.67
User got service response 6.88

Payment claim BS token claim request 1310 BS claimed token 2.24
ES token claim request 1312 ES claimed token 2.67

* Sizes of trivial text messages such as “success” or “fail” are omitted. The message size excludes the service content data ciphertext.

TABLE III
EVALUATION PLATFORMS

Platform CPU OS Memory
HWI-AL00

Phone
Hisilicon Kirin 960
2.36GHz, 8 cores

Android 8.0.0
(ARM) 6GB

Raspberry Pi
4 Model B

Broadcom BCM2835
700MHz, 4 cores

Ubuntu 22.10
(ARM) 3.7GB

Laptop Intel Core i7-7700HQ
2.80GHz, 8 cores

64-bit Windows
(x86) 24GB

Desktop AMD Ryzen 3945WX
4.0GHz, 12 cores

64-bit Ubuntu
(x86) 256GB

Phone Raspberry Pi Laptop Desktop
Platform

0.0
0.5
1.0
1.5
2.0

Ti
m

e
(m

s) Blind
Unblind
Verify

Fig. 6. Token registration (blind signature) delay.

VII. PERFORMANCE EVALUATION

A. Implementation and Experiment Settings

We used the gRPC framework (v.1.51.3) [44] to implement
the communication between different parties. All protocols
were implemented in Python. We used RSA blind signature
for blindly signing the tokens, and used AES in CBC mode
for symmetric key encryption, both implemented in the Crypto
library (v.3.17) [45]. For the puzzle based on bilinear map, we
used the pairing library from Charm Crypto (v.0.50) [46] and
used the SS512 curve on x86 platform, and the PBC library
(v0.5.14) (in C language) on ARM CPU platform. The puzzle
based on universal re-encryption was implemented based on
the ElGamal encryption scheme [47]. SHA-256 was used as
the hash function in the protocol.

We evaluated the performance of SA2FE on four platforms
as shown in Table III. By default, the user client was run on the
Raspberry Pi, while the other parties were run on the desktop.

B. Evaluation Results

We evaluated the performance of SA2FE by analyzing both
the communication overhead and execution time. Table II
presents the evaluation results, showing the added overhead of
our solution compared to ordinary offloading, where service
requests are directly offloaded from the user to a edge server
without any security guarantees. We conducted a statistical

Phone Raspberry Pi Laptop Desktop
Platform

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
(s

)

10 Puzzles
20 Puzzles
30 Puzzles
40 Puzzles
50 Puzzles

Fig. 7. Bilinear map puzzle matching delay.

Phone Raspberry Pi Laptop Desktop
Platform

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Ti
m

e
(s

)

10 Puzzles
20 Puzzles
30 Puzzles
40 Puzzles
50 Puzzles

Fig. 8. Universal re-encryption puzzle matching delay.

analysis on 1,000 runs of SA2FE on different platforms to
calculate the average time taken for each step. The default
number of puzzles was set to 30.

As shown in the communication cost part of Table II, all
message sizes were below 9KB. The practical execution time
part of Table II provides an overview of the delay associated
with each step. SP setup and FA setup phases had the longest
delays, which should only be executed once when the system
initializes. The puzzle generation overhead for ES was rela-
tively small, with merely a 3.12ms overhead. At the user end,
the most significant delay during the offloading phase occurred
when selecting a puzzle. It took approximately 237.67ms to
match and randomly choose one from 30 available puzzles.
This selection process occurs only once at offloading initiation,
while the duration of a single service session can last for a
considerable time, such as minutes to hours [48], [49].

To evaluate the overhead on the user side of SA2FE, we col-
lected the computation delays on user registration and puzzle
matching processes on four different platforms. The results are
presented in Figs. 6−8, with error bars representing the 95%
confidence interval obtained from running each experiment
1000 times. Fig. 6 shows the delay experienced by the user
during the registration. It can be observed that the user-side

11

computation overhead during the user registration process was
small. Even on the lowest-performing platform, the average
delay for each step was at most 2.07ms. Figs. 7 and 8 focus on
two different puzzle implementation approaches: bilinear map
and universal re-encryption. These figures illustrate the match
delay for various numbers of puzzles on different platforms.
It can be observed that with better computation capability, the
match delay decreased. Additionally, as the number of puzzles
increased, the delay in selecting all the suitable puzzles from
the puzzle list and randomly choosing one puzzle as the final
puzzle also increased. Overall, while DBDH is a stronger as-
sumption compared to DDH, the bilinear map puzzle exhibited
slightly lower computation overhead compared to the universal
re-encryption puzzle with the current implementation.

VIII. CONCLUSION

In this paper, we proposed SA2FE, an anonymous, auditable
and fair service offloading framework for democratized edge
computing ecosystem. A novel rerandomizable puzzle prim-
itive was introduced to enhance the design of the service
offloading by preserving service type privacy and enabling fair
and randomized edge server selection. Additionally, a token-
based scheme was proposed to enable access control, maintain
user anonymity, protect service type confidentiality, and enable
accountable token verification and claiming. We proved the
security of SA2FE based on the UC framework. The experi-
mental results demonstrated the efficiency of SA2FE in terms
of communication and computation overhead.

REFERENCES

[1] H. Duan, J. Li, S. Fan, Z. Lin, X. Wu, and W. Cai, “Metaverse for social
good: A university campus prototype,” in ACM MM, 2021, pp. 153–161.

[2] Z. Meng, T. Wang, Y. Shen, B. Wang, M. Xu, R. Han, H. Liu, V. Arun,
H. Hu, and X. Wei, “Enabling high quality real-time communications
with adaptive frame-rate,” in USENIX NSDI, 2023, pp. 1429–1450.

[3] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu, N. Kar-
ianakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya: Continuous learning
of video analytics models on edge compute servers,” in USENIX NSDI,
2022, pp. 119–135.

[4] “NVIDIA unveils GPU-accelerated AI-on-5G system for edge AI, 5G
and omniverse digital twins,” accessed 2024-01-19. [Online]. Available:
https://blogs.nvidia.com/blog/2023/02/27/mwc-ai-on-5g-system/

[5] “100 edge computing companies to watch in 2023,” accessed 2024-01-
19. [Online]. Available: https://stlpartners.com/articles/edge-computing/
edge-computing-companies-2023/

[6] Z. Ning, P. Dong, X. Wang, S. Wang, X. Hu, S. Guo, T. Qiu,
B. Hu, and R. Y. Kwok, “Distributed and dynamic service placement
in pervasive edge computing networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 6, pp. 1277–1292, 2020.

[7] R. Tourani, S. Srikanteswara, S. Misra, R. Chow, L. Yang, X. Liu,
and Y. Zhang, “Democratizing the edge: A pervasive edge computing
framework,” arXiv preprint arXiv:2007.00641, 2020.

[8] S. Dougherty, R. Tourani, G. Panwar, R. Vishwanathan, S. Misra, and
S. Srikanteswara, “Apecs: A distributed access control framework for
pervasive edge computing services,” in ACM CCS, 2021, pp. 1405–1420.

[9] D. Kaiser and M. Waldvogel, “Efficient privacy preserving multicast dns
service discovery,” in 2014 IEEE Intl Conf on High Performance Com-
puting and Communications, 2014 IEEE 6th Intl Symp on Cyberspace
Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software
and Syst (HPCC, CSS, ICESS). IEEE, 2014, pp. 1229–1236.

[10] D. J. Wu, A. Taly, A. Shankar, and D. Boneh, “Privacy, discovery,
and authentication for the internet of things,” in Computer Security–
ESORICS 2016: 21st European Symposium on Research in Computer
Security, Heraklion, Greece, September 26-30, 2016, Proceedings, Part
II 21. Springer, 2016, pp. 301–319.

[11] P. Welke, I. Andone, K. Blaszkiewicz, and A. Markowetz, “Differen-
tiating smartphone users by app usage,” in ACM UbiComp, 2016, pp.
519–523.

[12] M. Weiss, M. Luck, R. Girgis, C. Pal, and J. P. Cohen, “A sur-
vey of mobile computing for the visually impaired,” arXiv preprint
arXiv:1811.10120, 2018.

[13] F. Zhu, M. Mutka, and L. Ni, “Prudentexposure: A private and user-
centric service discovery protocol,” in Second IEEE Annual Conference
on Pervasive Computing and Communications, 2004. Proceedings of
the. IEEE, 2004, pp. 329–338.

[14] X. Zhou, D. He, J. Ning, M. Luo, and X. Huang, “Aadec: Anonymous
and auditable distributed access control for edge computing services,”
IEEE Transactions on Information Forensics and Security, vol. 18, pp.
290–303, 2022.

[15] K. Xue, W. Chen, W. Li, J. Hong, and P. Hong, “Combining data owner-
side and cloud-side access control for encrypted cloud storage,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 8, pp.
2062–2074, 2018.

[16] T. Zheng, Y. Luo, T. Zhou, and Z. Cai, “Towards differential access
control and privacy-preserving for secure media data sharing in the
cloud,” Computers & Security, vol. 113, p. 102553, 2022.

[17] Y. Hu, S. Kumar, and R. A. Popa, “Ghostor: Toward a secure data-
sharing system from decentralized trust.” in USENIX NSDI, 2020, pp.
851–877.

[18] H. Li, J. Yu, J. Fan, and Y. Pi, “Dsos: A distributed secure outsourcing
system for edge computing service in iot,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 53, no. 1, pp. 238–250,
2022.

[19] Y. Mao, W. Hong, H. Wang, Q. Li, and S. Zhong, “Privacy-preserving
computation offloading for parallel deep neural networks training,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 7, pp.
1777–1788, 2020.

[20] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New algorithms for secure
outsourcing of modular exponentiations,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 9, pp. 2386–2396, 2013.

[21] X. Chen, Y. Cai, Q. Shi, M. Zhao, B. Champagne, and L. Hanzo,
“Efficient resource allocation for relay-assisted computation offloading
in mobile-edge computing,” IEEE Internet of Things Journal, vol. 7,
no. 3, pp. 2452–2468, 2019.

[22] M. Gao, R. Shen, L. Shi, W. Qi, J. Li, and Y. Li, “Task partitioning and
offloading in dnn-task enabled mobile edge computing networks,” IEEE
Transactions on Mobile Computing, 2021.

[23] Y. Gao, W. Tang, M. Wu, P. Yang, and L. Dan, “Dynamic social-aware
computation offloading for low-latency communications in iot,” IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 7864–7877, 2019.

[24] G. S. Park and H. Song, “Cooperative base station caching and x2
link traffic offloading system for video streaming over sdn-enabled 5g
networks,” IEEE Transactions on Mobile Computing, vol. 18, no. 9, pp.
2005–2019, 2018.

[25] L. Zhang, M. Wang, L. Wang, Z. Chen, and H. Zhang, “Optimizing
vehicle edge computing task offloading at intersections: a fuzzy decision-
making approach,” The Journal of Supercomputing, vol. 81, no. 1, p. 29,
2025.

[26] M. Jia, L. Zhang, J. Wu, Q. Guo, G. Zhang, and X. Gu, “Deep multi-
agent reinforcement learning for task offloading and resource allocation
in satellite edge computing,” IEEE Internet of Things Journal, 2024.

[27] Y. Chen, J. Zhao, Y. Wu, J. Huang, and X. Shen, “Multi-user task
offloading in uav-assisted leo satellite edge computing: A game-theoretic
approach,” IEEE Transactions on Mobile Computing, 2024.

[28] S. Wang, Z. Lu, H. Gui, X. He, S. Zhao, Z. Fan, Y. Zhang, and S. Pang,
“Ddqn-based online computation offloading and application caching for
dynamic edge computing service management,” Ad Hoc Networks, p.
103681, 2024.

[29] H. Sun, Y. Zhou, H. Zhang, L. Ale, H. Dai, and N. Zhang, “Joint
optimization of caching, computing and trajectory planning in aerial
mobile edge computing networks: A maddpg approach,” IEEE Internet
of Things Journal, 2024.

[30] C. Li, X. Deng, R. Huang, L. Zheng, and C. Yang, “Edge computing
offload and resource allocation strategy with pairing theory,” in Interna-
tional Conference on Mobile Multimedia Communications. Springer,
2025, pp. 283–295.

[31] R. Aloufi, H. Haddadi, and D. Boyle, “Edgy: On-device paralinguistic
privacy protection,” in ACM MobiCom Workshop, 2021, pp. 3–5.

[32] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Y. Zomaya, and B. B. Zhou,
“Profiling applications for virtual machine placement in clouds,” in IEEE
CLOUD, 2011, pp. 660–667.

[33] G. Fuchsbauer, A. Plouviez, and Y. Seurin, “Blind schnorr signatures
and signed elgamal encryption in the algebraic group model,” in IACR
EUROCRYPT, 2020, pp. 63–95.

https://blogs.nvidia.com/blog/2023/02/27/mwc-ai-on-5g-system/
https://stlpartners.com/articles/edge-computing/edge-computing-companies-2023/
https://stlpartners.com/articles/edge-computing/edge-computing-companies-2023/

12

[34] M. S. Turan, “Tmps: Ticket-mediated password strengthening,” in CT-
RSA, vol. 12006, 2020, p. 225.

[35] T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Transactions on Information Theory,
vol. 31, no. 4, pp. 469–472, 1985.

[36] P. Golle, M. Jakobsson, A. Juels, and P. Syverson, “Universal re-
encryption for mixnets,” in CT-RSA, 2004, pp. 163–178.

[37] M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in
ACNS, 2007, pp. 288–306.

[38] Y. Tsiounis and M. Yung, “On the security of elgamal based encryption,”
in IACR PKC, 1998, pp. 117–134.

[39] X. Wang, R. Yu, D. Yang, H. Gu, and Z. Li, “Veriedge: Verifying and
enforcing service level agreements for pervasive edge computing,” in
IEEE INFOCOM, 2024, pp. 2149–2158.

[40] A. Kate, E. V. Mangipudi, S. Maradana, and P. Mukherjee, “Flexirand:
Output private (distributed) vrfs and application to blockchains,” in ACM
CCS, 2023, pp. 1776–1790.

[41] X. Hao, C. Lin, W. Dong, X. Huang, and H. Xiong, “Robust and secure
federated learning against hybrid attacks: A generic architecture,” IEEE
Transactions on Information Forensics and Security, 2023.

[42] M. Ben-Or, M. Horodecki, D. W. Leung, D. Mayers, and J. Oppenheim,
“The universal composable security of quantum key distribution,” in
IACR TCC, 2005, pp. 386–406.

[43] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in IEEE FOCS, 2001, pp. 136–145.

[44] “gRPC: A high performance, open-source universal RPC framework,”
accessed 2024-01-19. [Online]. Available: https://grpc.io/

[45] “PyCrypto: The Python cryptography toolkit,” accessed 2024-01-19.
[Online]. Available: https://github.com/pycrypto/pycrypto

[46] “Charm: A framework for rapidly prototyping cryptosystems,” accessed
2024-01-19. [Online]. Available: https://github.com/JHUISI/charm

[47] “Python implementation of the elgamal crypto system,” accessed 2024-
01-19. [Online]. Available: https://github.com/RyanRiddle/elgamal

[48] V. Farhadi, F. Mehmeti, T. He, T. F. La Porta, H. Khamfroush,
S. Wang, K. S. Chan, and K. Poularakis, “Service placement and request
scheduling for data-intensive applications in edge clouds,” IEEE/ACM
Transactions on Networking, vol. 29, no. 2, pp. 779–792, 2021.

[49] A. Aral and I. Brandic, “Dependency mining for service resilience at
the edge,” in IEEE/ACM SEC, 2018, pp. 228–242.

Xiaojian Wang (Student Member 2021) received
her B.E. degree from Taiyuan University of Technol-
ogy, China, in 2017 and received her M.S. degree in
Computer Science from University of West Florida,
FL, USA and Taiyuan University of Technology,
China, in 2020. She is now a Ph.D. student in
the department of Computer Science, College of
Engineering at North Carolina State University. Her
research interests include satellite network, security,
blockchain, edge computing and so on.

Huayue Gu (Student Member 2021) received her
B.E. degree (2019) in Computer Science from Nan-
jing University of Posts and Telecommunications,
Jiangsu, China, and M.S. degree (2021) in Computer
Science from University of California, Riverside,
CA, USA. Currently, she is a Ph.D. student in
the Computer Science department at North Carolina
State University. Her research interests are quantum
networking, quantum communication, data analytics,
etc.

Zhouyu Li (Student Member 2021) received his
B.S. degree from Central South University, Chang-
sha, China, in 2019 and his M.S. degree from
Georgia Institute of Technology, Atlanta, U.S., in
2020. Currently, he is a Ph.D. student of Com-
puter Science at North Carolina State University.
His research interests include privacy, cloud/edge
computing, network routing, etc.

Fangtong Zhou (Student Member 2021) received
her B.E. degree (2018) in Electrical Engineering and
Automation from Harbin Institute of Technology,
Harbin, China and M.S. degree (2020) in Electrical
Engineering from Texas A&M University, College
Station, Texas, USA. Currently she is a Ph.D candi-
date in the School of Computer Science at North
Carolina State University. Her research interests
include machine learning in computer networking,
like federated learning, reinforcement learning for
resource provisioning, etc.

Ruozhou Yu (Student Member 2013, Member 2019,
Senior Member 2021) is an Assistant Professor of
Computer Science at North Carolina State Uni-
versity, USA. He received his PhD degree (2019)
in Computer Science from Arizona State Univer-
sity, USA. His research interests include internet-
of-things, cloud/edge computing, smart networking,
algorithms and optimization, distributed machine
learning, security and privacy, blockchain, and quan-
tum networking. He has served or is serving on the
organizing committees of IEEE INFOCOM 2022-

2023 and IEEE IPCCC 2020-2023, as a TPC Track Chair for IEEE ICCCN
2023, and as members of the technical committee of IEEE INFOCOM 2020-
2024 and ACM Mobihoc 2023. He is a recipient of the NSF CAREER Award
in 2021.

Dejun Yang (Senior Member, IEEE) received the
B.S. degree in computer science from Peking Uni-
versity, Beijing, China, and the Ph.D. degree in
computer science from Arizona State University,
Tempe, AZ, USA.
He is currently an Associate Professor of Computer
Science with the Colorado School of Mines, Golden,
CO, USA. His research interests include the Inter-
net of Things, networking, and mobile sensing and
computing with a focus on the application of game
theory, optimization, algorithm design, and machine

learning to resource allocation, security, and privacy problems.
Prof. Yang has received the IEEE Communications Society William R.
Bennett Prize in 2019. He has served as the TPC Vice-Chair for Information
Systems for IEEE International Conference on Computer Communications
(INFOCOM). He currently serves an Associate Editor for the IEEE Trans-
actions on Mobile Computing, IEEE Transactions on Network Science and
Engineering, and IEEE Internet of Things Journal.

Guoliang Xue (Member 1996, Senior Member
1999, Fellow 2011) is a Professor of Computer
Science in the School of Computing and Aug-
mented Intelligence at Arizona State University.
His research interests span the areas of Internet-
of-things, cloud/edge/quantum computing and net-
working, crowdsourcing and truth discovery, QoS
provisioning and network optimization, security and
privacy, optimization and machine learning. He re-
ceived the IEEE Communications Society William
R. Bennett Prize in 2019. He is an Associate Editor

of IEEE Transactions on Mobile Computing, as well as a member of the
Steering Committee of this journal. He served on the editorial boards of
IEEE/ACM Transactions on Networking and IEEE Network Magazine, as
well as the Area Editor of IEEE Transactions on Wireless Communications,
overseeing 13 editors in the Wireless Networking area. He has served as
VP-Conferences of the IEEE Communications Society. He is the Steering
Committee Chair of IEEE INFOCOM.

https://grpc.io/
https://github.com/pycrypto/pycrypto
https://github.com/JHUISI/charm
https://github.com/RyanRiddle/elgamal

