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Abstract—Cyberspace is an ever-evolving battleground in-
volving adversaries seeking to circumvent existing safeguards
and defenders aiming to stay one step ahead by predicting
and mitigating the next threat. Existing mitigation strategies
have focused primarily on solutions that consider software
or hardware aspects, often ignoring the human factor. This
paper takes a first step towards psychology-informed, active
defense strategies, where we target biases that human beings
are susceptible to under conditions of uncertainty.

Using capture-the-flag events, we create realistic chal-
lenges that tap into a particular cognitive bias: represen-
tativeness. This study finds that this bias can be triggered
to thwart hacking attempts and divert hackers into non-
vulnerable attack paths. Participants were exposed to two
different challenges designed to exploit representativeness
biases. One of the representativeness challenges significantly
thwarted attackers away from vulnerable attack vectors and
onto non-vulnerable paths, signifying an effective bias-based
defense mechanism. This work paves the way towards cyber
defense strategies that leverage additional human biases to
thwart future, sophisticated adversarial attacks.

Index Terms—psychology-informed cyber defenses, cognitive
biases, attacker decision-making, experimental study, repre-
sentativeness bias, active defense

1. Introduction

Traditionally, cyberattack responses have been heavily
based on the presence and use of antivirus software,
intrusion detection systems (IDS), endpoint detection and
response (EDR), and similar technologies. Although un-
doubtedly beneficial, these mechanisms are designed to
facilitate post-attack responses, drastically hindering the
defenders’ ability to react. This has led to a paradigm
shift from reactive defense strategies to proactive ones.

To appear in the Proceedings of the 4th Workshop on Active Defense
and Deception (AD&D), co-located with the 10th IEEE European
Symposium on Security and Privacy (EuroS&P 2025)

Moving target defense approaches (also known as active
defense) [1]–[3] in conjunction with deception techniques
(e.g., honeypots, honeynets) [4]–[7] have helped to shift
the scales significantly in favor of the defenders. However,
such mechanisms are often insufficient. Once an adversary
is aware of their presence, they can rapidly change their
strategies to account for each defense technique.

In recent years, a growing body of work has sought
to complement active defense (and deception) strategies.
Particularly prominent has been research that seeks to
account for behavioral patterns in adversary decision-
making, paving the way toward stronger, more effective,
and alluring honeypots [8]–[20]. Under this broad frame-
work, this paper seeks to expand the defenders’ arsenal
by focusing on a specific domain of cognitive psychology:
biases and heuristics. In theory, cognitive biases can lead
attackers to make predictable errors, creating opportunities
for tailored defense strategies. Our work investigates the
impact and influence of cognitive biases in an adversary’s
decision-making process, ultimately driving the research
and development of novel cyber defenses tailored to an
adversary’s inherent cognitive biases. We pick a small
subset of cognitive biases as proof-of-concept, all linked
to representativeness bias. More specifically, for this work,
we ask the following research questions:

• What is the impact (and influence) of representative-
ness bias (and its underlying facets) in the decision-
making process of an adversary?

• What measurable effect on attackers’ cyber behavior
occurs when a defense mechanism targets attackers’
propensity to representativeness bias?

Representativeness bias is a mental “shortcut” (i.e.,
heuristic) that people use when estimating probabilities.
It is the tendency to judge the probability or frequency of
a hypothesis by considering how much the hypothesis re-
sembles available data (such as the stereotype or prototype
they already have in mind) [21]–[26]. Representativeness
bias can be seen as a high-level bias that is realized by
various lower-order facets. A pertinent example of this
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bias can be seen in users who rely on visual representation
of security cues, such as padlock icons or HTTPS URLs,
to assess the trustworthiness of a website [27]. This heuris-
tic can lead to a false sense of security, as attackers can
easily replicate these visual indicators to create legitimate
phishing sites. While this example illustrates how attack-
ers can exploit representativeness bias in users to gain
access to sensitive information, the research presented
here investigates how representativeness bias in attackers
can be used to create more effective cyber defenses. One
facet of representativeness bias, sample size insensitivity
(SSI), accrues when people overlook the importance of
the sample size on which their mental model is built.
To this end, people will frequently give undue weight to
conclusions based on small sample sizes when drawing
conclusions about large, representative populations [24],
[26], [28]. Results concerning SSI in our experiments are
explained in Section 3.

We bring to the attention of the reader that while
cyber data are commonly available during a cyberattack,
direct indices of biases underlying an attacker’s behavior
are not. We organized a series of capture-the-flag (CTF)
events to simulate and capture real-world adversarial be-
havior. In the CTFs, participants of different levels of
expertise were invited to test their skills against a series
of challenges carefully designed to manipulate cognitive
biases, particularly representativeness. We ran these CTF
exercises at two well-known international cyber-security
conferences, namely the Hack In The Box1 (HITB) and
the European Cybersecurity Challenge2 (ECSC) confer-
ences, respectively.

Our experiments hypothesized that cyber defense
strategies would affect an attacker’s propensity to select
certain (biased) action pathways. This approach assumes
that psychology-informed defenses will negatively impact
the attacker’s behavior. Thus, the goal of this research
was to show how an attacker’s success could be impeded
by carefully designed defenses that lead to a waste of
resources, including increased expenditure of time and
effort on the task at hand (i.e., capture-the-flag activities).

Our results demonstrate a significant affinity for path-
ways triggering representativeness bias, with participants
in treatment groups (i.e., exposed to the cyber defense tai-
lored to representativeness bias, the so-called bias trigger)
spending 30.96 seconds on non-vulnerable sites compared
to 9.54 seconds in control groups (i.e., not exposed to
the bias trigger) (p = 0.016). This work underscores
the potential of psychology-informed defenses to enhance
cyber resilience.

Our contributions can be summarized as follows:
• We identify and emphasize the impact and poten-

tial of psychology-informed defense mechanisms in
thwarting adversarial threats.

• We provide the results of a first-of-its-kind study that
relies on CTF events to simulate and capture not only
the real-world implications of an adversarial attack
but also the cognitive biases of the participants while
addressing the CTF challenges.

• We present our preliminary results discussing the
impact and influence of representativeness bias in the

1. https://conference.hitb.org/hitbsecconf2024bkk/saikoctf/
2. https://ecsc2024.it/saikoctf

attacker’s decision-making processes.
• We discuss the impact and implications of our work

for future research in the field, showing how this
could radically change how cyber threats are ad-
dressed.

The rest of this paper is organized as follows: Sec-
tion 2 discusses the current state of the art in this field
and its limitations. The methodology that we used is
discussed in Section 3, followed by a brief description of
the CTF instrumentation and data collection mechanisms
employed, Section 4. Section 5 analyzes our experiments
manipulating representativeness bias, where we consider
paths selected during the CTF challenges and the amount
of time spent on specific challenges and tasks as key
outcome variables. Details about the ethical considerations
related to this work and respective IRB protocols are pro-
vided in Section 6. We provide concluding observations
and suggestions for future work in Section 7.

2. Related Work

Cyber attackers exhibit a variety of standard decision-
making biases, which have recently been captured in the
social science literature [17], [29]. Additional Cognitive
Vulnerabilities (CogVulns) include the attacker’s culture,
personality traits, emotional states, and cyberpsychology
attributes. These factors shape a hacker’s behavior over
time based on their state and dispositional factors. For
example, a hacktivist trying to find damaging information
about a company might become more loss-averse (a cogni-
tive bias) after discovering the “smoking gun” that shows
corporate indiscretion. This same hacktivist may have this
bias dampened or elevated depending on where they stand
on personality attributes such as Emotional Stability and
Agreeableness.

Cyber defenses based on deception (that is, honey-x
strategies and decoys) have been developed for more than
20-years by researchers [4], [30], [31], and these research
concepts are coming to market [32], [33]. However, such
products often require pre-defined configurations with
static deployments that help attackers identify and avoid
such defenses. Deception-based defenses can use System
2 thinking (i.e., slow effortful decision-making not linked
to biases) and have been commercially available for years
(e.g., Proofpoint, formerly Illusive), but these tools do not
track and exploit the attacker’s cognitive and/or emotional
state.

Understanding adversarial cognitive state may provide
richer attack and defense surfaces, particularly against
Advanced Persistent Threats (APTs), whose campaigns
are methodical, adaptive, and deeply embedded in strate-
gic behavior. To investigate these complex psychological
dynamics, both studies that test participants in longer
experiments and competitive, time-limited simulations like
CTF exercises are essential. Experiments, such as the Tu-
larosa Study, offer controlled environments, in which the
impact of deception on attacker cognition, behavior, and
physiology can be rigorously measured (e.g., galvanic skin
response, cognitive battery performance) using profes-
sional red teamers as proxies for real adversaries who are
exposed to the tasks for extended time periods [34]. These
studies validate that the presence of cyber deception,
especially when paired with psychological manipulation
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(i.e., merely informing adversaries that deception may be
present), can affect the attacker performance and forward
progress (e.g., delayed exploitation, increased interaction
with decoys), often exploiting cognitive biases like the
sunk cost fallacy or confirmation bias [35].

CTF exercises can add a variation of ecological valid-
ity by introducing competitive pressure, variable adversary
goals and, in certain scenarios, the emergent behaviors of
team dynamics. In addition, each SaikoCTF3 challenge
is carefully designed to control dependent and independent
variables to test bias-specific hypotheses. These settings
foster more naturalistic decision-making under uncertainty
and, when appropriately instrumented, can complement
controlled studies by revealing real-time cognitive and
emotional responses in unstructured, goal-driven envi-
ronments [34]. Ideally, both approaches can assist cyber
defenders to better model, predict, and manipulate adver-
sarial mental models.

Researchers have begun to focus on Moving Target
Defenses (MTD) as a disruptive cyber defense solution
[3], [36]. MTDs create more complex, unpredictable at-
tack surfaces, significantly bolstering system resilience.
Some researchers have already begun to integrate MTD
and honey-x techniques [1], [37]. The research presented
here uses a cyber psychology-informed approach to take
these techniques to a new level. It exploits learned at-
tacker cognitive biases to strategically manage deception
campaigns that are designed for maximum attacker impact
while using MTD concepts to dodge and skirt around
attacks. This is done by intelligently adapting and orches-
trating defenses that control network and host resources.

This begs the question: Why might such an approach
be especially effective? Cognitive biases are known to af-
fect human decision-making and performance. Kahneman
and Tversky’s seminal work in this domain [38] led not
only to their sharing a Nobel Prize in economics, but
also to a whole new approach to understanding human
decision-making under conditions of uncertainty. Much
of the work in psychology and economics has focused
on bias mitigation (reducing the influence of problems in
decision-making); the current approach turns this idea on
its head: Enhancing biases will lead to deleterious perfor-
mance in cyber adversaries. That is, given the continuum
underlying these models – biases to heuristics – we can
leverage social science research to construct sophisticated
defense strategies.

3. Experiment Methodology

Our research investigates how CogVulns can be ex-
ploited to enhance cyber defenses. Specifically, we focus
on representativeness bias, a common cognitive shortcut
affecting probability estimates. We conducted experiments
using capture-the-flag (CTF) events to simulate real-world
adversarial behavior. Participants were exposed to scenar-
ios designed to trigger representativeness bias, allowing
us to measure its impact on decision-making. The cyber
defense designed to elicit a biased reaction from the
participants is referred to as a bias trigger throughout the
remainder of this paper.

3. https://saikoctf.org/

3.1. Experiment Setup

Our SaikoCTF experiments were held at several
hacker conferences to attract individuals with cyber hack-
ing interests and skills. Similar CTF events are common
during hacking events so participants are well versed in
what to expect from them. Different biases were investi-
gated at various conferences. Representativeness bias was
tested at two international conferences: The Hack In The
Box (HITB) Security Conference in Bangkok, Thailand,
and the European Cybersecurity Challenge (ECSC) in
Turin, Italy. Participants signed up for an in-person CTF
event at HITB and ECSC that lasted about two hours for
each participant.

Human Subject Research (HSR) is subject to federal
laws, and interested individuals were informed of their
rights and given information about the research objectives,
approach, and methodology as part of the consenting
process. Only consented participants were allowed to par-
ticipate in SaikoCTF. To protect participants’ privacy, no
personally identifiable information, such as name, email,
or hacker handles, was collected. Interested hackers reg-
istered via a URL, where they were assigned randomly
generated hacker handles and passwords. Those creden-
tials authorized access to the cyber range that hosted the
CTF challenges. The handles were also used to tag the
data collected and publish results on the leaderboard.

Participants were given six CTF challenges. They
were timed remote service exploitation, web applications,
and password cracking challenges. Before participating
in these challenges, they completed a socio-demographic
questionnaire (i.e., items asking of their gender, age, and
country of origin). Interleaved within each challenge were
other assessments measuring affective state, cognitive bi-
ases, cognitive aptitude, and personality. The fullness of
analysis of all these assessments in relation to the cyber
behavior collected during SaikoCTF is subject to further
exploration. This paper focuses on the analysis of the
effectiveness of bias triggers.

The participants worked on a Kali Linux virtual ma-
chine (VM) without Internet access. Pen-testing tools,
documentation, and man pages were provided as part of
the Kali Linux VM so all participants could access the
same tools and information. Participants hunted for and
captured specified flags as fast as possible in the time
available to win challenge prizes. The Kali Linux VM was
instrumented to collect data to analyze the effectiveness of
our bias triggers. See Section 4 for details on the collected
data and Section 5 for the experimental analysis approach
and results.

Among the six challenges that each participant per-
formed, two challenges contained cyber defenses manipu-
lating the sample size insensitivity (SSI) facet of represen-
tativeness bias. For the remainder of this paper, we refer
to those CTF challenges as Rep1a and Rep1b. The details
of the bias trigger (that is, cyber defense technique used to
elicit a measurable effect on the participants’ cyber attack
behavior) that were tested in Rep1a and Rep1b are given
in Section 3.2.

The experiment used a within-subjects design, mean-
ing each participant was exposed to the experiment’s
control and treatment conditions. In the control condi-
tion, participants were not exposed to the bias trigger
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TABLE 1: Counter-balanced, within-subjects experiment design using
two pairs of CTF challenges, where a pair constitutes a control and
treatment version of a challenge.

Group A Group B
Rep1a-Control Rep1a-Treatment

Rep1b-Treatment Rep1b-Control

(the experiment’s independent variable). However, in the
treatment condition, participants were exposed to the bias
trigger. In a within-subject experiment that uses CTF
challenges, a hacker has to play a CTF challenge in both
ways, with and without a bias trigger.

This constitutes a problem because if a hacker sees
the same challenge twice and has solved it on the first
pass, it will influence their approach the second time
due to the learning effect. For this reason, we designed
two challenges, Rep1a and Rep1b, that were different in
appearance but required the same techniques for solv-
ing them. The bias trigger in the treatment versions
of Rep1a and Rep1b uses the same underlying defense
mechanism. Thus, we designed and implemented a total
of four CTF challenges, namely Rep1a-Control, Rep1a-
Treatment, Rep1b-Control, and Rep1b-Treatment.

Furthermore, the design is counter-balanced to control
for potential order effects where the sequence of the treat-
ment could influence the results, not the treatment itself. In
practice, this means that participants are separated into two
groups, A and B, and the order in which they are exposed
to control and treatment versions of the challenges is
alternating (see Table 1). Table 2 provides the number of
participants in each event corresponding to each challenge
and group (control / treatment).

TABLE 2: Number of participants present in each event, separated by
challenge as well as control and treatment groups, respectively. Note
that the participants could opt out at any time, thus the discrepancies
between control and treatment participant numbers.

Event
Challenges

Rep1a Rep1b
Control Treatment Control Treatment

ECSC 28 30 26 29
HITB 9 7 9 7

3.2. Challenge Design

The bias triggers for Rep1a and Rep1b were designed
as follows. Both challenges were website exploitation
challenges with the same hypothesis grounded in the SSI
of representativeness bias: a hacker who sees mentions of
a service without any other supporting evidence is more
likely to target that service.

Participating hackers were instructed that they had
infiltrated the SaikoCTF, LLC enterprise network
and needed to find a flag in the webserver at
intranet.SaikoCTF .org in the root, but the flag
was not directly accessible from the root.

Rep1a Design: In the Rep1a CTF scenario, the bias
trigger is implemented as follows:

• Participants in the treatment group are presented with
numerous log file entries that reference the non-
vulnerable endpoint (the /admin endpoint).

• Participants in the control group do not have any log
files.

Log Aggregation Server: LogHub

Version: 2.1.0

Hostname: loghub-server-01

Environment: Production

Aggregation Method: Real-time streaming

Data Source: System and Web Server Logs

Aggregation Period: Last 24 hours

Purpose: Monitoring and analysis of system performance

and security incidents↪→

[error] [127.0.0.1] unknown: /upload.php

[error] [127.0.0.1] unknown: /admin.php

[info] [127.0.0.1] status installed mysql-client-5.0

5.0.32-7etch5↪→

[info] [127.0.0.1] status half-configured zlib1g-dev

1:1.2.3-13↪→

[error] [127.0.0.1] unknown: /admin.php

[error] [127.0.0.1] unknown: /admin.php

[error] [127.0.0.1] unknown: /upload.php

[info] [127.0.0.1] status installed sysklogd 1.4.1-18

[info] [127.0.0.1] status config-files nmap 4.11-1

[error] [127.0.0.1] unknown: /admin.php

[error] [127.0.0.1] unknown: /admin.php

[error] [127.0.0.1] unknown: /admin.php

[error] [127.0.0.1] unknown: /admin.php

[info] [127.0.0.1] status not-installed sysklogd

<none>↪→

[error] [127.0.0.1] unknown: /admin.php

[error] [127.0.0.1] unknown: /admin.php

[error] [127.0.0.1] unknown: /admin.php

[error] [127.0.0.1] unknown: /admin.php

[error] [127.0.0.1]

Figure 1: Content of logs shown in the treatment version of Rep1a. In
this challenge, the control group did not have any logs.

The treatment version had log entries from a sim-
ulated log aggregator that showed errors and miscella-
neous information messages. Error messages only showed
“unknown” with no specifics. Miscellaneous information
messages included messages designed to throw people off
course. For example, we hypothesized that mentioning
backups could cause participants to try to probe for a
backup service. Log content was static, such that all
participants received the same content. The log message
distribution was:

• 50% alerts for the non-vulnerable /admin.php
endpoint

• 10% alerts for the vulnerable /upload.php end-
point

• 40% miscellaneous info messages.
A snippet of the content shown during the treatment
version is depicted in Figure 1.

Figure 2 shows Rep1a’s top-level web page. We hy-
pothesized that hackers would engage with the admin sub-
page in the treatment version because 50% of the log
entries mention admin.php. However, the solution was
to navigate to the file upload endpoint from the index page
and upload a PHP web shell with a file extension other
than lowercase “.php” to bypass the simple input filter.
Hackers could then visit the web shell URL and print the
flag.

Rep1a was designed to have a very simple test of
representativeness by examining how a participant’s be-
havior will be impacted from being given prior informa-
tion on endpoints in the environment relative to no prior
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Figure 2: SaikoCTF index page for Rep1a challenge

knowledge of the environment. With the treatment group
having logs of the endpoints and over-representation of
the non-vulnerable /admin.php relative to vulnerable
/upload.php, we anticipated a clean comparison com-
pared to the control group having no prior knowledge on
endpoint logs. Thus, the user will have an equal likelihood
of initial examination of either endpoint absent positional
effects, discussed further in Section 7.1. The choice of the
endpoints /admin.php and /upload.php was made
to be reflective of common endpoint labels seen in real
deployed systems.

Rep1b Design: Rep1b is similar to Rep1a in that two
endpoints were provided to the participants. In Rep1b,
the logs also showed errors and miscellaneous information
messages from a simulated log aggregator. Error messages
only showed “unknown” with no specifics. Miscellaneous
information messages included some messages designed
to throw people off course.

In contrast to Rep1a, Rep1b the endpoints were la-
beled /dog and /cat. In the Rep1b CTF scenario, the
trigger is implemented as follows:

• Participants in the treatment group are presented with
a high amount of logs on the non-vulnerable endpoint
(which is the /cat endpoint) and fewer mentions of
the vulnerable endpoint (which corresponds to the
/dog endpoint.)

• Participants in the control group have logs filled
100% with irrelevant miscellaneous information. We
hypothesized that attackers would initially target the
two endpoints with equal probability.

The treatment version of Rep1b showed logs that had
the following distribution of

• 60% alerts for the non-vulnerable /cat endpoint
• 30% alerts for the vulnerable /dog endpoint
• 10% miscellaneous info messages.
Our design choice in Rep1b sought to examine rep-

resentativeness by examining how a participant behavior
will be impacted from being given over-represented data
of non-vulnerable to vulnerable (treatment) relative to no
informative knowledge of logs (control). For the treatment
condition, we hypothesized that hackers would initially
target the non-vulnerable endpoint with greater frequency.
Snippets of the content shown during the control and
treatment version of Rep1b are depicted in Figure 3.

4. Instrumentation for Data Collection

We instrumented a Kali Linux VM to be used by
CTF participants for their attack activities. Instrumenta-
tion includes a keylogger, a terminal logger, and a web
browsing logger. The keylogger captures and time-stamps
all key presses, regardless of which window the participant
is typing in. The terminal logger captures all characters
typed and received in the terminal shell, along with timing
data. This enables us to capture not only the commands
entered but also the information displayed in response.
In addition to the URLs requested, the weblogger cap-
tures and time-stamps all browser interactions using the
keyboard and mouse. Instrumentation also captured all
processes started, all content copied to the clipboard, and
all commands started via the menu. Finally, we captured
video screen recordings of the Kali VM for human-centric
quality analysis and to provide ground truth for measuring
automated data collection.

We instrumented nginx/access.log and
php.log on the target to capture web activities. All
web traffic was forced to use HTTP, and packet capture
was used to collect the unencrypted network packets.
Moreover, we incorporated additional instrumentation
explicitly designed for login attempts. This data was used
to measure other CTF challenges. Data is purposefully
captured in redundant ways to provide backup and
multiple perspectives to support bias signal analysis.

A post-processing data analysis pipeline integrates the
different artifacts from the attacker’s activity to create
a holistic picture of the attacker’s behavior. Together,
this information helps to illuminate the hacker’s cogni-
tive decision-making processes and how they respond to
different bias triggers. We analyzed the collected cyber
data to provide metrics about trigger effects and user er-
rors, extract typical workflows, and determine flag capture
results.

5. Analysis Approach and Results

5.1. Path Selected

Cyber data was analyzed for Rep1a and Rep1b to de-
termine the significance and magnitude of the effect of the
cognitive bias trigger. In both challenges, we developed
analyses of the participant activity and choice during CTF
execution with analyses built on the chi-square testing
model.

To this end, our chi-square analysis tested for a dif-
ference in whether or not the participant selected a choice
coded as ‘biased’ at the position of a cognitive vulner-
ability trigger, e.g., the choice of endpoint to interact
with/exploit during CTF. The determination of a ‘biased’
action was whether or not the participant chose the ‘bi-
ased’ coded endpoint—graded identically on control and
treatment to establish if there was a significant difference
from the base rate choice.

Our results for both Rep1a and Rep1b scenarios across
ECSC and HITB conferences are shown in Figures 4-5.
For Rep1a, we saw no significance in participants’ first
choices when comparing control and treatment selections
across individuals at either ECSC or HITB. Similarly,
in Rep1b, we saw no significance in participants’ first
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Log Aggregation Server: LogHub

Version: 2.1.0

Hostname: loghub-server-01

Environment: Production

Aggregation Method: Real-time streaming

Data Source: System and Web Server Logs

Aggregation Period: Last 24 hours

Purpose: Monitoring and analysis of system performance and

security incidents↪→

[info] [127.0.0.1] status half-configured mysql-common

5.0.32-7etch5↪→

[info] [127.0.0.1] Lab14 kernel: usb 3-1.2: not running at top

speed; connect to a high speed hub↪→

[info] [127.0.0.1] status unpacked libplrpc-perl 0.2017-1.1

[info] [127.0.0.1] status half-configured sysklogd 1.4.1-18

[info] [127.0.0.1] status not-installed nmap <none>

[info] [127.0.0.1] status unpacked libplrpc-perl 0.2017-1.1

[info] [127.0.0.1]

Log Aggregation Server: LogHub

Version: 2.1.0

Hostname: loghub-server-01

Environment: Production

Aggregation Method: Real-time streaming

Data Source: System and Web Server Logs

Aggregation Period: Last 24 hours

Purpose: Monitoring and analysis of system

performance and security incidents↪→

[error] [127.0.0.1] unknown: /cat.php

[error] [127.0.0.1] unknown: /cat.php

[error] [127.0.0.1] unknown: /cat.php

[info] [127.0.0.1] status installed

libdbd-mysql-perl 3.0008-1↪→

[error] [127.0.0.1] unknown: /cat.php

[error] [127.0.0.1] unknown: /dog.php

[error] [127.0.0.1] unknown: /cat.php

[error] [127.0.0.1]

Figure 3: Content of logs shown in CTF challenge Rep1b in the control (left) and the treatment version (right).

Control Treatment

13

18

15

12

Biased False
Biased True

(a) E = 0.139; P = 0.440

Control Treatment

8

3

1

4

Biased False
Biased True

(b) E = 0.638; P = 0.154

Figure 4: Rep1a results for ECSC (left) and HITB (right) events. Effect
size (E) and respective P-values (P ) are shown for each plot.

choices when comparing control and treatment selections
across individuals at either ECSC or HITB.

This first pass at analysis was unsuccessful in deter-
mining strong effects from the condition (Treatment vs.
Control) within the challenges as a binary measure. In-
stead, our subsequent modeling efforts focused on contin-
uous measures of the activity exhibited by the participants
in the challenges.

Control Treatment

18 19

11

7

Biased False
Biased True

(a) E = 0.095; P = 0.561

Control Treatment

9

5

0

2

Biased False
Biased True

(b) E = 0.673; P = 0.341

Figure 5: Rep1b results for ECSC (left) and HITB (right) events. Effect
size (E) and respective P-values (P ) are shown for each plot.

5.2. Average Time Spent on Challenges

Beyond initial path choice analyses, we took an addi-
tional perspective on the analysis of the representativeness
trigger bias in Rep1a and Rep1b scenarios based on time
spent in a challenge. More specifically, we examined
whether there were any notable differences in the average
time spent on vulnerable vs non-vulnerable paths for both
control and treatment groups. As part of our analysis, we
found two settings with potentially statistically significant
differences between the control and treatment groups, both
cases related to the Rep1b event in both HITB and ECSC
events.

Control Treatment

58.35
62.60

22.88
28.72

Vulnerable
Non Vulnerable

(a) ECSC

Control Treatment

77.66
84.91

12.42
17.55

Vulnerable
Non Vulnerable

(b) HITB

Figure 6: Rep1a results for ECSC (left) and HITB (right) events.

Control Treatment

17.15

5.67

17.00

14.00

Vulnerable
Non Vulnerable

(a) ECSC

Control Treatment

13.89
17.11

9.54

30.97

Vulnerable
Non Vulnerable

(b) HITB

Figure 7: Rep1b results for ECSC (left) and HITB (right) events.
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To answer the above question, we focused on collected
web log data, namely records of browser activity logs for
each participant. This data was further complemented with
metadata information collected during the CTF events,
such as whether a participant was part of the control or
treatment group in each challenge. The weblogger data
was sorted by time. Then, the data was filtered by event,
challenge, and treatment group. For each participant in a
given group (treatment/control), we calculated the time (in
seconds) spent on a particular site, where the initial time
(i.e., start time) corresponds to the first instance the
participant is on a given site, and the end time corresponds
to the moment in time when the site URL changes, i.e.,
the participant switches to another site. This procedure
resulted in a data frame containing records of the time
spent (i.e., duration) on a site, recording the duration
as separate records for different visits to the same site. We
then calculated the average time spent on vulnerable and
non-vulnerable sites, the results of which are depicted in
Figures 6-7. It can be noted immediately from the plots
in Figures 6-7 that there are some differences between
control and treatment group actions in Rep1b challenges
taking place in both HITB and ECSC events. We then
defined different hypotheses and calculated t and p-values
in each case.

During our analysis of HITB results, we found a po-
tentially significant difference between control and treat-
ment groups on the average time spent on non-vulnerable
sites for the Rep1b challenge, Figure 7 reported as mean
± standard deviation. More specifically, treatment group
spent (30.97 ± 45.71) seconds compared to the control
group (9.54±14.95 seconds), with t = −2.49, p = 0.016.
Whereas our analysis of the ECSC cyber data showed
that the treatment group spent significantly less time on
vulnerable sites (5.67 ± 8.33 seconds) compared to the
control group (17.15±26.54 seconds), with t = 2.69, and
p = 0.008 this again when evaluating the Rep1b data,
Figure 7. While these results are promising, given the high
fluctuations in the standard deviation values (indicating
non-normal distributions) found during the web logger
data analysis, as part of the next steps, we will seek to
verify and complement the analysis with cues and signals
originating from other forms of data collected during the
respective events.

We also modeled the average time spent within a
linear mixed-effects model to control the variance in
point estimation in the above analysis. Treating the event
(HITB, ECSC), challenge (Rep1a, Rep1b), and condition
(treatment, control) as fixed effects and the by-group (par-
ticipant) slopes as random effects. We chose this method
to directly control for the hierarchical structure of the
data (e.g., participants within conferences) and control for
correlated observations within participants (e.g., a given
participant will see Rep1a and Rep1b sequentially within
a conference but be switched within the condition between
challenges).

From our modeling, shown in Table 3, we found sig-
nificance within intercepts, event, challenge, and condition
p < 0.000 with absolute values of the z-scores for fixed
effects being 15.987, 32.119, and 4.738 in event, chal-
lenge, and condition, respectively. These results indicate
significant differences in time on vulnerable paths as a
function of the event, challenge, and condition. However,

TABLE 3: Results of linear mixed effects modeling of time spent on
a vulnerable path for treatment and control groups in HITB and ECSC
events for Rep1a and Rep1b.

Effect |z| p
Intercept 56.490 < 0.000

Event 15.987 < 0.000
Challenge 32.119 < 0.000
Condition 4.738 < 0.000

as evidenced by the earlier analyses of the means, the
effects are not as expected from our initial experimental
design.

Considering the results discussed herein, we have
an interesting, if slightly contradictory, story from ini-
tial analyses. For example, there are significant results
for the time spent on the vulnerable path by condition,
challenge, and conference, see Figure 7 and Table 3.
However, we find perplexing results when considering the
representativeness bias triggering in Rep1a and Rep1b-
the triggering of performers in Rep1b caused them to
pursue the non-vulnerable path significantly more in the
treatment group, which was the opposite of expectations
from the design. Additionally, when examining the linear
mixed effects model in Table 3, we see unanticipated
results. We expected to see strong effect sizes related to
the condition, but not the challenge, yet both are evident.
This suggests that the populations being sampled differed
more drastically than anticipated from our initial experi-
mental design and recruitment plans. After reviewing the
scenario designs, we believe that the Rep1a challenge had
significant differences in the control and treatment for
the lack of depth in information compared to the Rep1b
challenge with the depth of information in logs being
held similarly between conditions. This would support our
observation of challenge being a strong observed effect in
the linear mixed effect modeling. Further modeling efforts
will include examining for positional bias and incorporat-
ing richer data on the performers as collected in surveys
and physiological measures. We anticipate with additional
data and modeling a more complete understanding of the
participant behavior during CTF exercises will emerge.

6. Ethical Considerations

All researchers who conduct studies using human par-
ticipants are bound by professional ethical standards for
the conduct of such research. These standards are mirrored
in the rights that are guaranteed to research participants
by federal law (NIH regulation 45-CFR-46) (see also
the Menlo Report [39]). Before conducting the research
study at conferences, our team submitted all the necessary
documentation related to the HSR experiments taking
place in both the conferences mentioned in this paper,
namely ECSC and HITB. The Institutional Review Board
(IRB) of Florida Institute for Human Machine Cognition
(IHMC)4, through an IRB Authorization Agreement with
SRI International, reviewed and approved the procedures
corresponding to the protocol number: IRB-2024-0076,
in particular, IRB-2024-0076:001988 (ECSC) and IRB-
2024-0076:001985 (HITB).

4. While not involved with the data evaluation and analysis procedures
resulting in this work, we bring to the attention of the reader that IHMC
is a member of the larger team behind this effort.
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As noted also in Section 3.1, our team took all the
necessary steps to provide the participants with details
about the experiments. Participants were provided with
an informed consent form. The consent gave an overview
of the project, explaining the purpose of the research
and the general approach and methodology, including a
detailed schedule of the activities during participation. The
consent form also provided detailed information on poten-
tial risks and risk mitigations. Participants were provided
with information about how the collected data was kept
confidential. Furthermore, the participants could decline
consent or withdraw from the study at any time. They
could also exercise their rights after the study, such as
requesting that all the data they provided be deleted. These
procedures ensured that they never lost their ability to
make an autonomous decision.

Participants received a SaikoCTF electronic badge
(that included some digital puzzles) for participating.
Moreover, it is common practice for hacker conferences to
provide electronic badges or prize money. Individuals who
achieved the top three SaikoCTF scores received digital
gift cards (1st place = USD 400; 2nd place = USD 300;
and 3rd place = USD 100). Participants who completed the
personality assessment before the end of the conference
also received a gift card for USD 25.

We believe that the research presented here will help
spearhead novel research on psychology-informed active
defense strategies, giving the defenders an edge against
ever-evolving adversary threats.

7. Conclusions

7.1. Considerations on Current Study

This study is an initial step toward investigating
psychology-informed, dynamic cyber defenses. We stud-
ied the effectiveness of bias triggers exploiting the repre-
sentativeness bias. Other bias triggers are currently under
investigation. However, bias triggers are only one side of
the coin towards novel, adaptive cyber defenses. The other
side corresponds to the development of the so-called bias
sensors.

Bias sensors dynamically correlate robust patterns of
cyber data as surrogates for CogVulns. For instance, would
it be possible to identify which attack strategies explain an
attacker’s propensity to other biases such as loss aversion?
Let’s assume an attacker has gained partial access through
password-cracking strategies and has stopped progressing
but continues down the same attack vector while risking
their activities being more likely to be detected. Such
attacker behavior might indicate their tendency for loss
aversion. Once a bias sensor attributes a CogVuln to
an attacker, a corresponding bias trigger targeting that
CogVuln can be dynamically deployed.

After analysis of the data we found additional items
that would have been optimal to control in a larger study
(e.g., positional bias in Rep1a). Additionally, due to the
short nature of these CTF exercises, the longer persis-
tent behavior studied in experiments like the Tularosa
study [34] was not observed. This brings into question
the direct applicability of some of these results for longer
APT-like campaigns due to the forced time nature in CTFs
including the ones developed herein.

Additionally, the counterintuitive results in Section 5
show that more study is needed for clarity of the effect
of our bias triggers in CTFs. The unexpected results of
Rep1b treatment group pursuing non-vulnerable paths in
the face of over-represented prior knowledge in the form
of log data suggests latent factors may be at play that
are not being controlled in the experimental design or
currently modeled.

Regardless of the limitations for the current study, we
recognize our work in validating the capability of bias
triggers in potentially directing adversarial behavior even
within a confined CTF as seen in Figure 7 and Table 3.

7.2. Future Work

Previous research has shown a significant survey of bi-
ases relevant to decision-making in cyber operations [19].
In subsequent research, we will continue developing ma-
nipulations of several of these (i.e., confirmation bias, an-
choring bias, loss aversion, overconfidence, and country-
of-origin biases). Within the current work, we did not
find significant differences in the initial path chosen upon
exposure to the cognitive bias trigger, but we did identify
potential significance in the time spent within the paths
as a function of the trigger. This effect is practically
meaningful: It can be used, for example, to purposely
thwart an actor by elongating their time within a honeypot.

This work will continue exploring additional biases
in CTF environments like the one described above, as
well as longer instantiations (e.g., online games) that
better represent the conditions typically experienced by
an attacker, improving so-called ecological validity. The
bias manipulations per se require gold standards by which
these can be compared and contrasted, so these studies
will also include classic operationalizations of the various
biases (e.g., assessment paradigms from the social sci-
ences). Given a sufficient sample size, these assessments
can lead to robust mediator and moderator analyses. These
additional studies will also include a range of individual
differences measures, such as personality, indicators of
psychopathology, cognitive ability, and affective states.
To understand hacker behavior more fully, we are also
currently conducting studies where individual hacker dif-
ferences are compared to those obtained from the general
population.

It is our belief that validated bias triggers and sen-
sors open the door to novel cyber defenses by augment-
ing traditional adaptive cyber defenses with psychology-
informed defense mechanisms that take advantage of a
new dimension: human attackers’ behavioral vulnerabili-
ties.
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