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Abstract. This paper introduces DeeCLIP, a novel framework for
detecting AI-generated images using CLIP-ViT and fusion learning. De-
spite significant advancements in generative models capable of creating
highly photorealistic images, existing detection methods often struggle
to generalize across different models and are highly sensitive to minor
perturbations. To address these challenges, DeeCLIP incorporates Dee-
Fuser, a fusion module that combines high-level and low-level features,
improving robustness against degradations such as compression and blur-
ring. Additionally, we apply triplet loss to refine the embedding space,
enhancing the model’s ability to distinguish between real and synthetic
content. To further enable lightweight adaptation while preserving pre-
trained knowledge, we adopt parameter-efficient fine-tuning using low-
rank adaptation (LoRA) within the CLIP-ViT backbone. This approach
supports effective zero-shot learning without sacrificing generalization.
Trained exclusively on 4-class ProGAN data, DeeCLIP achieves an aver-
age accuracy of 89.00% on 19 test subsets composed of generative adver-
sarial network (GAN) and diffusion models. Despite having fewer train-
able parameters, DeeCLIP outperforms existing methods, demonstrating
superior robustness against various generative models and real-world dis-
tortions. The code is publicly available at GitHub for research purposes.

Keywords: Deepfake · image forensics · generative models · VLMs.

1 Introduction

The emergence of advanced image generation models, driven by deep learn-
ing, has fundamentally transformed computer vision. In particular, GAN [6] and
diffusion-based architectures [17] have achieved remarkable success in generating
photorealistic images that closely resemble real-world visuals. While this progress
has enabled new applications in entertainment, art, and content creation, it raises
significant concerns regarding trust, security, and authenticity. AI-generated im-
ages can be weaponized for malicious purposes, including disinformation, identity
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Fig. 1: Fine-tuning approaches for AI-generated image detection. Compared to
(a) full fine-tuning and (b) linear probing, our approach allows more effective
and efficient adaption of CLIP-ViT for AI-generated image detection tasks.

forgery, and privacy violations. The rapid evolution of image-generation tech-
niques further exacerbates these risks, making robust detection methods an ur-
gent necessity. Despite ongoing research, AI-generated images continue to evade
detection, particularly when images are synthesized by unseen models during
training or when subjected to post-processing manipulations. Existing detec-
tors often fail to generalize effectively, leading to performance degradation on
new generative models. Recent efforts have explored pre-trained vision-language
model (VLM) for this task, fine-tuning them with a detection head (see Figue 1).
A notable example is the work by Cozzolino et al. [3], which employs CLIP fea-
tures with a linear support vector machine (SVM) classifier. However, these
methods struggle to maintain robustness against unseen generative models and
real-world distortions such as compression, and blurring. To address these lim-
itations, we introduce DeeCLIP, a robust and generalizable transformer-based
model for detecting AI-generated images. DeeCLIP builds upon the contrastively
pre-trained CLIP-ViT model, leveraging its open-world visual knowledge and
extensive exposure to diverse image-text pairs. Current CLIP-based detection
approaches [14,3] primarily rely on deep features extracted from the final or
penultimate layer of the visual encoder. However, this approach overlooks cru-
cial shallow-level details, such as pixel-level inconsistencies and texture artifacts,
which are often present in AI-generated images. While multi-layer feature fusion
has proven effective in other vision tasks [12], its application in AI-generated im-
age detection remains underexplored [1]. To bridge this gap, DeeCLIP introduces
the DeeFuser module, a modified version of MMFuser [1], which dynamically in-
tegrates deep and shallow features. This multi-scale fusion enhances fine-grained
representations, improving robustness against compression artifacts, adversarial
perturbations, and novel generative models. Additionally, DeeCLIP is trained
end-to-end with triplet loss, refining the learned embedding space for better
separation between authentic and AI-generated images. To maintain the gener-
alization strength of the pre-trained CLIP model, we adopt parameter-efficient
fine-tuning via LoRA. This allows DeeCLIP to adapt effectively with minimal
adjustment, without overwriting CLIP’s pre-trained knowledge. Our extensive
experiments demonstrate that DeeCLIP achieves state-of-the-art (SOTA) per-
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formance in cross-generator generalization and robustness to image perturba-
tions. Notably, trained solely on a subset (4-class) of ProGAN data, DeeCLIP
attains an average accuracy of 89.00% on 19 test subsets composed of GAN and
diffusion models. Furthermore, DeeCLIP exhibits strong robustness to image
degradation, achieving a higher overall average accuracy of 71.91% across all
degradation types compared to 61.55% for the SOTA model C2P-CLIP, a gain
of 10.36%. This robustness is particularly evident under challenging conditions
such as Gaussian blur and JPEG compression, validating its effectiveness in real-
world scenarios. Further, we evaluate 4-class ProGAN-trained DeeCLIP on an
entirely different dataset to assess its generalization capability. It still achieves
a solid average accuracy of 78.99%, highlighting its adaptability to previously
unseen data distributions. Our key contributions are summarized as follows:

• Robust Multi-Scale Feature Fusion: DeeCLIP incorporates the Dee-
Fuser module, which dynamically integrates shallow and deep features, en-
suring the detection of subtle pixel-level artifacts and high-level inconsisten-
cies in AI-generated images.

• Improved Generalization via Triplet Loss: Triplet loss refines the em-
bedding space, enhancing the separation of real and AI-generated images.
This structured separation improves robustness against unknown generative
models and real-world perturbations.

• Prompt-Free Generalization: While some previous methods, such as
DIRE [23], also explore prompt-free generalization, DeeCLIP achieves this
naturally without relying on text-based prompts while integrating feature
fusion for stronger robustness.

• State-of-the-Art Robustness and Generalization: DeeCLIP achieves
89.00% average accuracy on diverse GAN and diffusion subsets and outper-
forms prior methods under distortions, with a 10.36% gain over C2P-CLIP.
It also generalizes well, achieving 78.99% accuracy on a different dataset
with real and synthetic data.

2 Proposed Approach: DeeCLIP
The overall framework of our approach is shown in Figure 2. It comprises three
core blocks: the CLIP-ViT model as the backbone, a deep and shallow feature
fusion module called DeeFuser, and a linear classifier for AI-generated image
detection. We refer to this framework as DeeCLIP.

CLIP-ViT Encoder: To leverage the substantial visual-world knowledge and
efficient feature extraction capabilities of CLIP-ViT, we adapt its image encoder
as the backbone feature extractor for our approach. While one might consider
fine-tuning all or part of the parameters, this method may result in performance
degradation for two primary reasons: first, fine-tuning large pre-trained CLIP
parameters on a limited dataset risks overfitting; second, fine-tuning could dis-
tort CLIP’s pre-existing visual-world knowledge, leading to reduced performance
under significant distribution shifts. Inspired by recent advances in parameter-
efficient transfer learning, we propose training task-specific adapter modules



4 M. Keita et al.

Fig. 2: DeeCLIP’s architecture. Given an image, deep and shallow features are ex-
tracted using CLIP-ViT (ViT-L/14) fine-tuned with LoRA. Then, the DeeFuser
module fuses these features, capturing both semantic meaning and fine-grained
textures. The fused representation is processed through a projection layer, where
the output is fed into the classifier to distinguish real from fake images.

while keeping the pre-trained CLIP parameters frozen to preserve its valuable
knowledge. To achieve this, we adopt LoRA [7], a widely used method in natural
language processing (NLP) and computer vision tasks. LoRA enhances trans-
fer learning without imposing substantial computational overhead by modifying
the model’s transformer blocks. Instead of directly altering the weight matrix
W , LoRA decomposes the weight update ∆W into two low-rank matrices A and
B, thus reducing computational cost and preserving the original weight matrix
W . The adapted weight is then expressed as W ′ = W + BA, ensuring minimal
disruption to the pre-trained parameters.

Given an input image x ∈ R3×h×w, where h and w represent the height
and width of the image, the patch embedding layer divides the image into
patches. These patches are subsequently transformed into a sequence of em-
beddings Eimg ∈ R(N+1)×D, where N = h·w

P 2 is the number of patches, P is
the patch size, and D is the dimensionality of the embeddings. The sequence in-
cludes a CLS token (indicated by the 1st term) that represents the entire image.
This sequence of embedded patches is then processed through multiple Vision
Transformer (ViT) blocks, and the output token of each patch is used to form
the image encoding vector fi ∈ RN×D, where fi represents the output at the
i-th stage of the CLIP-ViT network.

DeeFuser Module: After extracting features using CLIP-ViT, we intend to
leverage low-level and high-level features to explore its potential fully. Build on
the assumption that the shallow and deep features of CLIP-ViT can comple-
ment each other. We leverage a multi-layer feature fusion module, MMFuser [1],
that we slightly modify. DeeFuser serves as a bridge between the CLIP-ViT vi-
sion encoder and the linear classifier. The DeeFuser architecture is illustrated
in Figure 3a. Concretely, we extract L feature maps from the CLIP-ViT image
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encoder, denoted as F = [F1, F2, . . . , FL]. Then, we use the deep feature FL as a
query to dynamically capture missing details from the shallow-level feature maps
X = Concat(F1, F2, . . . , FL−1) through a cross-attention operation. This results
in a refined visual feature representation Fca ∈ RN×D with enriched fine-grained
details, which can be expressed as:

Fca = Attention(norm(FL), norm(X)),

where Attention(·) denotes the attention mechanism, norm(·) represents layer
normalization, and Concat(·) is the concatenation operation. Following this, we
apply a multi-layer perceptron (MLP) to Fca to enhance its expressive power
by adding non-linearity and further refining feature relationships. The output of
the MLP, denoted as Fmlp, is formulated as:

Fmlp = MLP(norm(Fca)),

where the MLP consists of two fully connected layers with Gelu activation func-
tions, which project Fca into a transformed space. This layer captures more com-
plex interactions within the feature map and enhances discriminative properties.
To further emphasize relevant features, we introduce a self-attention mechanism
into Fmlp as follows:

F ′
sa = Attention(norm(Fmlp), norm(Fmlp)),

Fsa = Fmlp + α2F
′
sa,

where α2 ∈ RD is a learnable parameter adjusting the influence of Fmlp rela-
tive to F ′

sa. Finally, we combine the refined feature map Fsa with the original
deep feature FL using another learnable vector α1 ∈ RD, resulting in the final
enhanced visual feature Fvisual:

Fvisual = FL + α1Fsa.

This enhanced visual feature Fvisual integrates finer, multi-scale information and
serves as a superior input for the linear classifier, facilitating more accurate de-
tection.

Loss functions: For the loss calculation, we utilize the triplet loss [24], as
depicted in Figure 3b. The triplet loss aids the model in learning more discrim-
inative features by encouraging it to place similar images closer together in the
embedding space, while pushing dissimilar images further apart. Specifically, we
randomly select a triplet of images: an anchor image, which can be either a real
or a fake sample. Depending on whether the anchor is real or fake, we then
choose a positive image (from the same category as the anchor) and a negative
image (from the opposite category). The objective is to minimize the distance
between the anchor and the positive image while maximizing the distance be-
tween the anchor and the negative image. This process helps the model learn
robust features that can effectively distinguish real samples from fake ones.
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(a) DeeFuser Module (b) Triplet Loss

Fig. 3: (a) DeeFuser module to fuse both deep and shallow features from CLIP-
ViT encoder. (b) Illustration of triplet loss: the anchor sample (blue) is randomly
selected from either the positive (green) or negative (red) samples. If the anchor
is from the positive class, it is optimized to be closer to other positive samples,
further away from negative samples, and vice versa.

The triplet loss is computed as follows:

Ltriplet =

N∑
i=1

∥f(xa
i )− f(xp

i )∥
2
2 − ∥f(xa

i )− f(xn
i )∥22 + α

where N is the number of triplets in the batch, xa
i , xp

i , and xn
i represent

the anchor, positive, and negative samples in the i-th triplet, respectively. f(x)
denotes the embedding output from the DeeFuser module for a given image x,
and ∥ · ∥2 represents the Euclidean distance between two embeddings. The term
α is the margin, a constant that specifies the minimum distance between the
anchor-positive and anchor-negative pairs.

For the detection loss, we adopt binary cross-entropy with logits loss, which
is computed as follows:

LBCE = − 1

2N

2N∑
i=1

yi · log(σ(zi)) + (1− yi) · log(1− σ(zi))

where yi represents the ground truth label for the i-th sample, with yi = 0
for real samples and yi = 1 for fake samples. zi denotes the raw, unnormalized
logits output from the model for the i-th sample, and σ(z) refers to the sigmoid
function applied to the logits z, converting them into probabilities.

Finally, the total model loss is defined as the sum of the triplet loss and the
detection loss, weighted by a scaling factor λ:

Lfinal = Ltriplet + λ · LBCE

where λ is a hyperparameter used to balance the contributions of the two
loss components.
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Table 1: Accuracy (ACC) scores of state-of-art detectors and DeeCLIP across
19 test datasets. Best performance is denoted with bold.
Method Ref GAN Deep

Fakes
Low level Perceptual loss Guided LDM Glide Dalle mAcc

Pro-
GAN

Cycle-
GAN

Big-
GAN

Style-
GAN

Gau-
GAN

Star-
GAN SITD SAN CRN IMLE 200

steps
200

w/cfg
100

steps
100
27

50
27

100
10

Freq-spec WIFS 2019 49.90 99.90 50.50 49.90 50.30 99.70 50.10 50.00 48.00 50.60 50.10 50.90 50.40 50.40 50.30 51.70 51.40 50.40 50.00 55.45
Co-occurence Elect. Imag. 97.70 97.70 53.75 92.50 51.10 54.70 57.10 63.06 55.85 65.65 65.80 60.50 70.70 70.55 71.00 70.25 69.60 69.90 67.55 66.86
CNN-Spot CVPR 2020 99.99 85.20 70.20 85.70 78.95 91.70 53.47 66.67 48.69 86.31 86.26 60.07 54.03 54.96 54.14 60.78 63.80 65.66 55.58 69.58
Patchfor ECCV 2020 75.03 68.97 68.47 79.16 64.23 63.94 75.54 75.14 75.28 72.33 55.30 67.41 76.50 76.10 75.77 74.81 73.28 68.52 67.91 71.24
F3Net ECCV 2020 99.38 76.38 65.33 92.56 58.10 100.00 63.48 54.17 47.26 51.47 51.47 69.20 68.15 75.35 68.80 81.65 83.25 83.05 66.30 71.33
Bi-LORA ICASSP 2023 98.71 96.74 81.18 78.30 96.30 86.32 57.78 68.89 52.28 73.00 82.60 65.10 85.15 59.20 85.00 83.50 85.65 84.90 72.70 78.59
LGrad CVPR 2023 99.84 85.39 82.88 94.83 72.45 99.62 58.00 62.50 50.00 50.74 50.78 77.50 94.20 95.85 94.80 87.40 90.70 89.55 88.35 80.28
UniFD CVPR 2023 100.00 98.50 94.50 82.00 99.50 97.00 66.60 63.00 57.50 59.50 72.00 70.03 94.19 73.76 94.36 79.07 79.85 78.14 86.78 81.38
AntiFakePrompt CVPR 2023 99.26 96.82 87.88 80.00 98.13 83.57 60.20 70.56 53.70 79.21 79.01 73.75 89.55 64.10 89.80 93.55 93.90 92.95 80.10 82.42
FreqNet AAAI 2024 97.90 95.84 90.45 97.55 90.24 93.41 97.40 88.92 59.04 71.92 67.35 86.70 84.55 99.58 65.56 85.69 97.40 88.15 59.06 85.09
NPR CVPR 2024 99.84 95.00 87.55 96.23 86.57 99.75 76.89 66.94 98.63 50.00 50.00 84.55 97.65 98.00 98.20 96.25 97.15 97.35 87.15 87.56
FatFormer CVPR 2024 99.89 99.32 99.50 97.15 99.41 99.75 93.23 81.11 68.04 69.45 69.45 76.00 98.60 94.90 98.65 94.35 94.65 94.20 98.75 90.86
RINE ECCV 2024 100.00 99.30 99.60 88.90 99.80 99.50 80.60 90.60 68.30 89.20 90.60 76.10 98.30 88.20 98.60 88.90 92.60 90.70 95.00 91.31
C2P-CLIP⋆ Arxiv 2024 99.71 90.69 95.28 99.38 95.26 96.60 89.86 98.33 64.61 90.69 90.69 77.80 99.05 98.05 98.95 94.65 94.20 94.40 98.80 93.00
C2P-CLIP‡ Arxiv 2024 99.98 97.31 99.12 96.44 99.17 99.60 93.77 95.56 64.38 93.29 93.29 69.10 99.25 97.25 99.30 95.25 95.25 96.10 98.55 93.79
DeeCLIP (ours) - 100.00 97.69 98.32 97.81 94.87 99.97 62.31 84.72 57.53 90.18 90.18 77.20 98.90 98.50 98.80 80.50 82.85 82.40 98.35 89.00

(⋆) Trump,Biden. (‡) Deepfake,Camera.

3 Experimental Results and Analysis
Dataset. To ensure a fair comparison, we utilize the widely recognized Univer-
salFakeDetect dataset [14], which has been extensively used in prior benchmarks.
This allows for a direct evaluation of DeeCLIP against SOTA methods, ensuring
consistency and robustness in performance assessment. Following the experimen-
tal setup introduced by Wang et al. [22], the dataset employs ProGAN as the
training set, comprising 20 subsets of generated images. For training, we adopt
only 4-class setting (horse, chair, cat, car) as outlined by Tan et al. [18]. The
test set consists of 19 subsets generated by a diverse range of models, such as
ProGAN, StyleGAN, BigGAN, CycleGAN, StarGAN, and GauGAN [8], Deep-
fake [16], CRN, IMLE, SAN, and SITD [11,4], as well as Guided Diffusion, LDM,
GLIDE, and DALLE [5,15].

To further evaluate DeeCLIP’s generalization capability, we compare it against
the best-performing models trained on the ProGAN 4-class setup using a differ-
ent testing dataset. This dataset includes 12 subsets: 2 real data subsets (MS
COCO and Flickr) and 10 synthetic subsets (ControlNet, DALL·E 3, Diffu-
sionDB, IF, LaMA, LTE, SD2Inpaint, SDXL, SGXL, and SD3).

Evaluation Metrics. Following the convention of previous detection meth-
ods [9,18], we report the accuracy (ACC). We also calculate the mean accuracy
across all data subsets to provide a more comprehensive evaluation of overall
model performance.

Baselines. In our study, we fine-tuned AntiFakePrompt [2] and Bi-LORA [9].
Moreover, we have chosen the latest and most competitive methods in the
field, including, frequency-based methods: Co-occurence, Freq-spec, FreqNet,
F3Net [19], CNN-based methods: CNN-Spot, FatchFor, NPR [22,20], transformer-
based methods: UniFD, C2P-CLIP, Fatformer [13], and LGrad [21]. For all those
models, we report the results presented in the original C2P-CLIP [18] paper. Fi-
nally, for RINE, we report results from its paper [10].
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Table 2: Generalization performance of methods trained on 4-class ProGAN.
Results show accuracy (%) on real and synthetic data subsets, each containing
3,000 image samples.
Methods #params MS COCO Flickr ControlNet Dalle3 DiffusionDB IF LaMA LTE SD2Inpaint SDXL SGXL SD3 mAcc

FatFormer 493M 33.97 34.04 28.27 32.07 28.10 27.95 28.67 12.37 22.63 31.97 22.23 35.91 28.18
RINE 434M 99.80 99.90 91.60 75.00 73.00 77.40 30.90 98.20 71.90 22.20 98.50 08.30 70.56
C2P-CLIP 304M 99.67 99.73 15.10 75.57 27.87 89.56 65.43 00.20 27.90 82.90 07.17 70.46 55.13
DeeCLIP (ours) 306M 97.83 98.50 86.03 69.33 71.10 61.37 63.07 99.97 80.57 62.60 98.90 58.61 78.99

Implementation Details. We fine-tune all layers of the CLIP-ViT (ViT-L/14)
image encoder using LoRA, setting the rank to 16, the alpha to 32, and apply-
ing a dropout rate of 0.05. The training utilizes the AdamW optimizer with a
learning rate of 5 · 10−5. A batch size of 8 is used, and the model is trained
for 5 epochs. The fusion process selects features from 12 specific layers of the
ViT model: 1, 3, 5, 8, 10, 13, 15, 17, 19, 21, 22, and 23. Among these, the first
11 layers (1 to 22) are low-level features, while the last layer (23) represents
high-level features. The loss scaling factor (λ) is set to 2.0. For both training
and testing, we follow the pre-processing pipeline specified in the original CLIP
model implementation. All experiments were conducted on a system equipped
with an NVIDIA RTX A4500 GPU (16 GB) and an Intel(R) i9-12950HX CPU
running Ubuntu 22.04.5 LTS.

Comparison with SOTA. Table 1 provides a comprehensive comparison of
the cross-model detection performance of our approach and various baselines
on the UniversalFakeDetect dataset, demonstrating its effectiveness in detecting
images from multiple types of generative models. UniversalFakeDetect testing set
includes images from 19 different generative models, covering GAN, deepfakes,
low-level vision models, perceptual loss models, and diffusion models. DeeCLIP
achieves a competitive mean accuracy (mAcc) of 89.00%, showing good cross-
model detection ability and making it one of the best-performing methods in
this comprehensive evaluation.

On GAN-based generative models, DeeCLIP achieves outstanding perfor-
mance, with a mean accuracy of 98.11%. These results highlight the model’s
strong capability to distinguish between various GAN architectures, surpass-
ing most baseline methods within this category. For diffusion-based models,
DeeCLIP demonstrates excellent generalization, achieving high accuracy across
different configurations: 98.35% for Glide, 99.8% for LDM_100_steps, 98.9%
for LDM_200_steps, and an average accuracy of 90% across all diffusion-based
generative models. While models like FatFormer, RINE, and C2P-CLIP show
marginally better performance in certain cases, DeeCLIP consistently maintains
a high level of accuracy. In challenging scenarios, such as deepfakes, low-level,
and perceptual loss models, DeeCLIP remains competitive, outperforming base-
lines like UniFD and LGrad. This balanced performance across diverse image
generation methods underscores DeeCLIP’s robustness and practical applicabil-
ity.
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Fig. 4: t-SNE visualization of feature distributions for different generative mod-
els. The scatter plots illustrate the t-SNE embeddings of features extracted from
real (green) and generated (red) images across various generative models, show-
ing how well the features separate real from fake images.

Furthermore, unlike prompt-based approaches (i.e., AntiFakePrompt [2]),
DeeCLIP achieves these results without relying on task-specific text prompts,
enhancing its versatility in detecting images from a wide range of generative mod-
els. Our findings suggest that the combination of LoRA-based adaptation and a
deep-shallow feature fusion strategy significantly enhances CLIP-ViT’s ability to
generalize to unseen generative models. These results affirm that DeeCLIP not
only competes with SOTA AI-generated image detectors but also offers a scal-
able and efficient solution for detecting images from various generative models.
Figure 4 illustrates that DeeCLIP effectively differentiates features from distinct
classes, with authentic images represented in green and fake images in red. The
visualizations demonstrate DeeCLIP’s capability to capture generalizable fea-
tures, enabling it to adapt to unseen data distributions.

DeeCLIP’s Generalization Capability. We evaluated the generalization ca-
pabilities of the four best-performing methods from Table 1, FatFormer, RINE,
C2P-CLIP, and DeeCLIP, when trained on the ProGAN 4-class setup and tested
on diverse real-world generative models. The testing subsets include real data
(MS COCO and Flickr) and synthetic data (ControlNet, DALL·E 3, Diffu-
sionDB, and others). This setup assesses how well each method generalizes to
unseen data distributions, particularly those differing from the training domain.

Table 2 presents a comparative evaluation of the generalization performance
of these methods on real and synthetic data. DeeCLIP consistently emerges as
the most robust model, demonstrating strong generalization capabilities across
both categories. It achieves near-perfect accuracy on real datasets (e.g., 98.50%
on Flickr) and excels on synthetic subsets, such as LTE (99.97%) and SGXL
(98.90%). RINE also performs well but exhibits variability in synthetic data
detection, with a notable drop in SD3 (8.30%). C2P-CLIP shows mixed perfor-
mance, excelling on some synthetic subsets (e.g., 89.56% on IF) while struggling
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Table 3: Accuracy Performance Under Common Image Degradations: JPEG
Compression and Gaussian Blur. Best average performance is denoted with bold.
Method Degradation GANs Deep

fake
Low level Perceptual loss Guided LDM Glide Dalle mAcc

Pro-
GAN

Cycle-
GAN

Big-
GAN

Style-
GAN

Gau-
GAN

Star-
GAN SITD SAN CRN IMLE 200

steps
200

w/cfg
100

steps
100
27

50
27

100
10

C2P-CLIP Jpeq q = 80 95.80 94.93 92.92 75.60 96.85 95.02 85.57 94.72 55.94 92.53 92.42 64.80 14.30 53.10 16.80 58.40 63.40 56.80 17.10 69.32
C2P-CLIP Jpeq q = 70 94.49 94.44 87.10 65.30 95.18 92.72 84.90 93.89 54.79 86.45 88.09 70.30 24.10 67.70 27.90 61.70 64.10 56.70 30.50 70.54
C2P-CLIP Jpeq q = 60 94.59 94.40 81.80 62.30 95.57 89.62 82.76 90.56 53.65 80.00 80.05 65.90 23.20 69.70 26.10 58.00 60.50 54.50 42.10 68.70
DeeCLIP (ours) Jpeq q = 80 90.34 92.01 81.88 55.82 90.99 90.67 50.77 81.94 51.14 55.81 60.25 53.40 70.70 57.55 71.25 55.35 54.30 54.60 79.50 68.33
DeeCLIP (ours) Jpeq q = 70 85.90 85.39 73.22 52.54 87.97 79.31 50.66 84.44 50.23 52.08 55.86 54.05 69.30 56.05 70.05 55.95 54.55 55.00 75.40 65.68
DeeCLIP (ours) Jpeq q = 60 79.79 76.87 63.75 50.98 81.22 65.53 50.31 76.67 50.00 50.97 52.13 53.35 65.95 54.20 67.20 54.40 53.35 53.85 68.45 61.52

C2P-CLIP Blur σ = 1 96.10 90.31 97.02 97.00 95.75 96.80 93.43 95.56 57.08 68.84 68.84 47.90 01.20 06.60 01.60 12.50 13.30 10.60 01.60 55.37
C2P-CLIP Blur σ = 2 72.20 85.24 87.35 79.45 90.08 86.47 80.33 95.56 51.60 60.90 61.17 45.40 01.20 06.60 01.60 12.50 13.30 10.60 03.50 49.74
C2P-CLIP Blur σ = 3 77.20 84.18 77.03 62.87 87.19 88.64 75.52 95.00 49.54 56.39 56.39 47.80 13.50 35.30 12.20 42.00 40.40 42.20 13.70 55.63
DeeCLIP (ours) Blur σ = 1 99.85 91.33 95.50 95.18 90.13 100.00 59.46 83.33 54.11 83.59 83.73 77.30 98.35 96.50 98.00 78.05 80.15 78.50 98.20 86.38
DeeCLIP (ours) Blur σ = 2 98.00 76.27 85.80 82.32 82.21 99.45 57.72 85.00 49.09 76.58 85.91 70.75 88.90 83.75 88.20 72.05 71.40 72.00 89.60 79.74
DeeCLIP (ours) Blur σ = 3 90.20 75.44 76.08 68.73 83.75 93.05 56.30 83.33 47.72 60.61 73.26 54.20 73.35 66.25 72.25 59.15 58.25 59.10 75.60 69.82

C2P-CLIP Average 88.40 90.58 87.20 73.75 93.44 91.54 83.75 94.21 53.77 74.18 74.49 57.02 12.92 39.83 14.37 40.85 42.50 38.57 18.08 61.55
DeeCLIP (ours) Average 90.68 82.88 79.37 67.60 86.04 88.00 54.20 82.45 50.38 63.27 68.52 60.51 77.76 69.05 77.82 62.49 62.00 62.18 81.12 71.91

significantly on others (e.g., 0.20% on LTE). FatFormer, however, consistently
underperforms, highlighting its limitations in adapting to new data distributions.

Robustness to Image Degradation. We evaluate the robustness of DeeCLIP
and C2P-CLIP under two common image degradations: Gaussian blur and JPEG
compression. These distortions simulate real-world challenges where image qual-
ity loss affects AI-generated content detection. Table 3 presents the quantitative
results, and performance trends are illustrated in Figure 5. Under Gaussian blur,
performance decreases as severity increases, but DeeCLIP consistently outper-
forms C2P-CLIP. At mild blur (σ = 1), DeeCLIP achieves 86.38%, far exceeding
C2P-CLIP’s 55.37%. Even at severe blur (σ = 3), DeeCLIP retains 69.82% accu-
racy, while C2P-CLIP drops to 55.63% (Figure 5). Moreover, under JPEG com-
pression, both methods degrade with lower quality, but DeeCLIP remains com-
petitive. At q=80, DeeCLIP scores 68.33%, close to C2P-CLIP’s 69.32%. Even
at q=60, DeeCLIP maintains 61.52%, slightly lower than C2P-CLIP (68.70%),
showing its robustness to compression artifacts (Table 3).

C2P-CLIP exhibits resilience to degradations in images generated by GAN-
based models but struggles significantly when applied to images generated by
diffusion models (DMs) under the same conditions. This discrepancy is partic-
ularly evident in categories such as LDM (200 steps) and DALL·E, where it
achieves low average accuracies of 12.92% and 18.08% across all degradation
types. In contrast, DeeCLIP performs more consistently under GAN-based and
diffusion models (DMs), achieving a higher overall average accuracy of 71.91%,
compared to 61.55% for C2P-CLIP, a gain of 10.36% that underlines its robust-
ness to real-world challenges. In summary, DeeCLIP consistently demonstrates
higher resilience, particularly against spatial distortions, due to its feature fusion
strategy, which preserves essential details. These results validate its effectiveness
in real-world scenarios where image quality is often compromised.

Ablation study. We conducted an ablation study to assess the impact of tun-
ing the CLIP-ViT image encoder using the LoRA technique, following the same
training strategy with the 4-class ProGAN dataset. The experiment focused
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Fig. 5: DeeCLIP’s robustness under gaussian blur and JPEG compression, two
common real-world degradations affecting AI-generated images.

on evaluating average accuracy across both GAN and diffusion model datasets.
Specifically, we compared the performance of using CLIP-ViT as a fixed back-
bone versus incorporating task-specific adaptation. Our results indicate that
fine-tuning the CLIP-ViT image encoder with LoRA significantly boosts detec-
tion accuracy, improving from 84.53% with a fixed backbone to 89.00%. This im-
provement highlights that while CLIP-ViT’s pre-trained features provide general
image representations, task-specific fine-tuning enhances its ability to identify
subtle, model-specific artifacts in AI-generated images.

4 Conclusion
We proposed DeeCLIP, a novel and highly generalizable transformer-based frame-
work for detecting AI-generated images. DeeCLIP builts on the strengths of the
CLIP-ViT model by introducing three key innovations: (1) fine-tuning the CLIP-
ViT image encoder using LoRA, a parameter-efficient adaptation technique, (2)
integrating deep and shallow features through our DeeFuser module to enhance
semantic alignment while preserving fine-grained details, and (3) incorporating
triplet loss into the training process to refine the learned feature space, im-
proving the separation between real and synthetic images. Our experimental
evaluation on both GAN-based and diffusion-based datasets demonstrated that
DeeCLIP achieved SOTA generalization while maintaining significantly lower
computational costs compared to conventional fine-tuning methods. Unlike prior
approaches that relied on full fine-tuning or prompt-based tuning, DeeCLIP ef-
fectively balanced efficiency, adaptability, and robustness in detecting synthetic
images.
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