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Abstract
The rapid development of generative image models has brought
tremendous opportunities to AI-generated content (AIGC) creation,
while also introducing critical challenges in ensuring content au-
thenticity and copyright ownership. Existing image watermarking
methods, though partially effective, often rely on post-processing
or reference images, and struggle to balance fidelity, robustness,
and tamper localization. To address these limitations, we propose
GenPTW, an In-Generation imagewatermarking framework for la-
tent diffusion models (LDMs), which integrates Provenance Tracing
and Tamper Localization into a unifiedWatermark-based design. It
embeds structured watermark signals during the image generation
phase, enabling unified provenance tracing and tamper localization.
For extraction, we construct a frequency-coordinated decoder to
improve robustness and localization precision in complex editing
scenarios. Additionally, a distortion layer that simulates AIGC edit-
ing is introduced to enhance robustness. Extensive experiments
demonstrate that GenPTW outperforms existing methods in image
fidelity, watermark extraction accuracy, and tamper localization
performance, offering an efficient and practical solution for trust-
worthy AIGC image generation.

CCS Concepts
• Security and privacy→ Database and storage security.

Keywords
Latent diffusion model, image generation, responsible ai, image
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1 Introduction
Generative models are evolving at an unprecedented pace, particu-
larly text-to-image (T2I) diffusion models such as Stable Diffusion,
DALL·E 3, and Imagen. These models are capable of synthesizing
highly realistic and visually compelling images, while also sup-
porting flexible editing, thereby reshaping the landscape of visual
content creation. However, this impressive generative capability is a
double-edged sword, introducing a range of security risks including
content misuse, ambiguous copyright ownership, and difficulties in
tamper detection. In recent years, incidents involving AI-generated
images being stolen, maliciously edited, or even forged as fabri-
cated evidence have become increasingly common, threatening
both public discourse and the credibility of legal systems. These
issues fundamentally highlight two critical challenges: verifying
content authenticity and tracing generative responsibility.

Image watermarking is a widely adopted technique for copy-
right protection and provenance tracing. However, most existing
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Figure 1: The process of embedding and extracting “GenPTW”
for dual forensic objectives.

methods focus primarily on authenticity verification and ownership
identification, falling short in terms of accurately localizing tam-
pered regions. Tamper localization plays a crucial role in delineating
the boundary between generated and modified content, clarifying
the responsibility of generative models. Moreover, it enables the
assessment of tampering severity and reveals potential malicious
intent, making it a key component for achieving comprehensive
traceability in AIGC-generated images.

Several recent studies have begun to explore the integration of
copyright identification and tamper detection. For instance, Sep-
Mark [50] introduces a separable watermarking structure to im-
prove robustness against attacks, while EditGuard [59] leverages
local vulnerabilities in image steganography to enable tamper re-
gion localization. However, these methods follow a post-generation
paradigm, where watermarks are embedded after the image has
been generated. This leads to a disconnect from the generation
process, increased deployment complexity, and reduced overall
efficiency.

Therefore, recent studies have shifted towards embedding wa-
termarks directly within the diffusion-based generation process,
known as In-Generation watermarking. For example, Stable Sig-
nature [14] injects watermarks during generation by fine-tuning
the VAE decoder, but requires training a separate model for each
watermark, making it unsuitable for large-scale deployment. More-
over, existing In-Generation watermarking methods are vulnerable
to AIGC edits and aggressive degradations (e.g., composite attacks,
JPEG compression), often resulting in complete watermark loss.
Most of these methods also lack the capability to localize tampered
regions, restricting their forensic effectiveness.

To mitigate these risks, it is imperative to develop a verifiable
and traceable watermarking mechanism for AIGC-generated im-
ages, along with enhanced capabilities for tamper localization and
responsibility attribution in the presence of malicious modifica-
tions. To clarify the task boundaries, we redefine the dual forensic
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objectives as illustrated in Fig. 1: (1) Provenance tracing, which
is used to track source information, including the model, user, time,
and event details. ; and (2) Tamper localization, which accurately
identifies and highlights pixel-level manipulated regions for visual
evidence.

To this end, we propose GenPTW, a watermarking framework
tailored to latent-space diffusion models, which unifies watermark
embedding, extraction, and tamper localization within a single
architecture. In the embedding stage, watermark information is
injected into multi-scale latent features during the image gener-
ation process, without disrupting the structure of the diffusion
pipeline. In the extraction stage, we design a frequency-coordinated
decoder, which extracts the embedded copyright watermark from
the low-frequency components of the generated image, and lo-
calizes tampered regions from the high-frequency components.
Additionally, the watermark feature map obtained from the low-
frequency branch is used as an auxiliary cue to enhance tamper
localization accuracy. To improve robustness, we design a distortion
layer that simulates AIGC editing operations, including inpainting
operations and VAE reconstructions, enabling the model to better
withstand various types of manipulations and degradations. Fur-
thermore, a gradient-guided encoder is employed to embed the
watermark under Just Noticeable Difference (JND) constraints, us-
ing a modification cost map, and is regularized across multiple
latent-space scales to ensure both invisibility and fidelity. Our con-
tributions are summarized as follows:

(1) We propose GenPTW, a unified proactive defense framework
that integrates provenance tracing and tamper localization tasks,
achieving tight coupling between the encoding and decoding pro-
cesses.

(2) We construct a frequency-coordinated decoder for watermark
extraction and tamper localization, which significantly improves ex-
traction accuracy and localization robustness under various degra-
dation attacks.

(3) We introduce a distortion layer that simulates AIGC edits to
enhance robustness, and use multi-scale loss in spatial and latent
domains to improve visual quality.

(4) Extensive experiments show that GenPTW achieves superior
performance over existing watermarking and forensic baselines in
terms of visual fidelity, flexibility, and robustness.

2 Related Work
2.1 Image Tamper Detection and Localization
Passive Methods.

Passive image analysis methods examine intrinsic attributes such
as statistical features, lighting conditions, color distribution, noise
discrepancies, and DCT correlations [7, 10, 18, 26, 34] to identify
tampering without external information. Traditional hand-crafted
methods were limited by poor generalization and insufficient ro-
bustness, leading to the adoption of deep learning-based approaches
[5, 42, 51, 52, 65].

For instance, Zhuang et al. [66] developed an encoder-decoder
framework incorporating dense connections and dilated convo-
lutions, while DOA-GAN [22] introduced a dual-order attention
GAN to improve localization accuracy. Wu et al. [49] utilized noise
modules to enhanced robustness against social media distortions.

HiFi-Net [17] proposes hierarchical feature analysis and refinement
strategies. TruFor [16] enhances sensitivity to tampering traces by
combining RGB images with noise fingerprints. Additionally, Diff-
Forensics [55] employs diffusion models as feature extractors for
tamper localization. Despite these advancements, passive methods
still require domain-specific training data for optimal performance.
Proactive Methods.

Proactive methods involve embedding imperceptible markers or
watermarks into images, which are easily destoryed or altered when
tampering occurs. Traditional fragile watermarking method, such
as block-wise hash verification or pixel-level grayscale analysis [6,
21, 27, 28, 30, 38], have limited localization accuracy and flexibility.
To address these limitations, deep learning-based approaches have
been developed. For instance, FakeTagger [46] leverages recoverable
one-hot encoding messages for tamper verification by embedding
messages and recovering them after manipulation. Similarly, MaLP
[2] adds a learned template to encrypted real images to enhance
tamper detection and localization.

More recently, methods like EditGuard [59], V2AMark [61], and
OmniGuard [60] have employed two-stage embedding for pixel-
level localization and copyright protection, through combining
steganography and watermarking technology. However, they still
require a preset steganographic template to ensure precise pixel-
level tamper localization.

2.2 Image Watermarking
Post-hoc Watermarking.

Digital watermarking plays a crucial role in traceability, content
authentication, and copyright protection. Traditional watermark-
ing methods, such as DwtDct [37] and DwtDctSvd [37], manually
design embedding mechanisms to insert watermark into imper-
ceptible spatial or frequency domains. DNN methods optimize the
trade-offs between invisibility and robustness more effectively than
manual designs. For example, Hidden [64] was a pioneering end-
to-end (END) framework for watermark embedding and extraction.
Building on this, De-END [13] enhances information interaction
between the encoder and decoder, while CIN [35] uses a flow-based
reversible network to ensure coupling of embedding and extrac-
tion processes. To improve robustness, differentiable noise layers
are used to simulate real-world distortions such as JPEG compres-
sion, screenshot capture, or photographic degradation [MBRS [23],
StegaStamp [44], Pimog [12], LFM [48], and DeNol [11]] during
training. Despite these advancements, they remain vulnerable to
new attacks such as AIGC-inpainting.

Recent work, such as Robust-Wide [19] designed denoise sam-
pling guidance module and OmniGuard [60] proposed a lightweight
AIGC editing simulation layer to enhance robustness against AIGC
in-painting. However, post-hoc watermarking techniques are rela-
tively easy to remove, and users can evade the watermark.
In-Generation Watermarking.

In-generation watermarking involves embedding watermark
during the image creation process itself, focusing on three main
strategies: Firstly, Initial Noise Modulation. Methods like Tree-Ring
[47] embed watermark features by altering the Fourier spectrum of
initial Gaussian noise vectors, while Gaussian Shading [54] encodes
watermarks as encrypted Gaussian-distributed patterns injected
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into initial noise. These approaches avoid the need for model fine-
tuning but may compromise the quality and diversity of generated
images due to random noise distributions change. condly, Dataset
Attribution. Techniques such as WatermarkDM [63], ProMark [1],
and Diffusion-Shield [8] embed copyright info by retraining diffu-
sion models on watermarked datasets. While these methods allow
for watermark extraction from generated images, they require ex-
tensive computational resources and risk degrading model perfor-
mance after the retraining process. Thirdly, Latent Space Adapta-
tion. Stable Signature [14] fine-tunes the VAE decoder to imprint
watermarks but requires separate copies of the decoder for each
watermark, which hinders scalability. RoSteALS [4] exploits latent
space redundancy to embed watermarks without modifying the
decoder. Similarly, WOUAF [24] maps fingerprints into the latent
space and embeds watermark information by fine-tuning the de-
coder parameters through weight modulation, thereby achieving
high attribution accuracy while maintaining output quality. In con-
trast, LaWa [40] integrates watermark features into latent variables
via auxiliary networks while keeping decoder parameters frozen,
thus ensuring scalability and efficiency.

3 Method
3.1 Overall Framework of GenPTW
As illustrated in Fig. 2, we present GenPTW, a unified watermarking
framework tailored for latent diffusion models. It supports joint
forensic objectives of provenance attribution and tamper localiza-
tion within a single architecture. Unlike prior methods that separate
watermark extraction and tamper detection into two independent
modules, which often require redundant embedding of both own-
ership and localization watermarks, GenPTW integrates the two
tasks within a unified design.

In the embedding phase, a latent representation is first generated
by the diffusion process. Given a watermark message (e.g., user ID),
GenPTW enables the pre-trained latent decoder to simultaneously
embed the watermark into the latent space and decode it into a
watermarked image. In the extraction phase, we design a frequency-
coordinated decoder that leverages the robustness of low-frequency
components to extract the watermark, while exploiting the tamper
sensitivity of high-frequency details to detect manipulated regions.
Moreover, watermark features from the low-frequency branch serve
as auxiliary cues to guide the high-frequency localization stream,
thereby improving accuracy. To improve resilience under real-world
AIGCmanipulations, we introduce a distortion simulation layer that
simulates AIGC edits. Additionally, a JND-constrained perceptual
loss is applied in the embedding phase, using a pixel-wise cost map
to control perturbation strength and location, ensuring watermark
imperceptibility while preserving image quality.

This unified design allows GenPTW to achieve robust water-
mark extraction and accurate tamper localization under diverse
AIGC distortion scenarios. The following sections elaborate on each
component of the framework.

3.2 Multi-scale Latent Space Embedding
We follow the latent diffusion model (LDM) paradigm [41], where
the image 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 is encoded into a compact latent representation

𝑧 = E(𝐼𝑠𝑜𝑢𝑟𝑐𝑒 ) by a factor of 𝑓 and decoded by D(𝑧) in a multi-
stage manner. During generation, the diffusion process synthesizes
𝑧, which is progressively upsampled to reconstruct the final image.

To embed watermark information, we adopt a coarse-to-fine
strategy that injects the message into latent features at multiple de-
coder stages. Given a 𝑘-bit binary watermark message𝑚 ∈ {0, 1}𝑘 ,
a message processor𝑊𝑃𝑟𝑜 generates the initial watermark embed-
ding𝑤0, which is added to 𝑧 before decoding. At each subsequent
decoder stage 𝑖 ∈

{
1, . . . , 𝑓2

}
, a watermark feature encoder𝑊𝐸𝑚𝑏𝑖

takes the previous watermark feature 𝑤𝑖−1 as input and outputs
a spatial watermark feature𝑤𝑖 that matches the shape of the cor-
responding latent feature 𝑧𝑖 . The watermarked latent 𝑧𝑚𝑖

is then
computed and passed to the next decoding stage:

𝑤𝑖 =𝑊𝐸𝑚𝑏𝑖 (𝑤𝑖−1), 𝑧𝑚𝑖
= 𝑧𝑖 +𝑤𝑖 (1)

The modified decoder D𝑤 replaces D to reconstruct the water-
marked image 𝐼𝑤 = D𝑤 (𝑧).

3.3 Frequency-Coordinated Decoder
We design a frequency-coordinated decoder that performs tam-
per localization using high-frequency features and watermark ex-
traction using low-frequency features. Prior studies have shown
that high-frequency components are more sensitive to local ma-
nipulations [33, 45, 53], while low-frequency information remains
stable under various distortions [39, 56]. As illustrated in Fig. 3,
tampered regions often exhibit more noticeable artifacts in the
high-frequency domain, whereas low-frequency representations
demonstrate stronger robustness. To improve reliability under se-
vere degradations, we incorporate the low-frequency watermark
feature map as an auxiliary cue to enhance the robustness and
accuracy of tamper localization.

As shown in Fig. 2, the generated watermarked image 𝐼𝑤 is first
passed through a distortion simulation layer to obtain the degraded
image 𝐼𝑑 . We apply the Discrete Cosine Transform (DCT) [15] to
extract its high- and low-frequency components. The low-frequency
component 𝐼𝑙 is fed into the watermark decoder𝑊𝐷𝑒𝑐 to produce a
spatial watermark feature map𝑊𝑚𝑎𝑝 , which is further processed
by an MLP and a Sigmoid activation to yield the final predicted
message �̂�.

W𝑚𝑎𝑝 = W𝐷𝑒𝑐 (I𝑙 ), m̂ = Sigmoid(MLP(W𝑚𝑎𝑝 )) (2)

Thewatermark featuremapW𝑚𝑎𝑝 is concatenatedwith the high-
frequency feature Iℎ and fed into a ConvNeXt [32]-based global
feature encoder CN𝐸𝑛𝑐 to extract multi-scale features:

I𝑎𝑙𝑙 = {Iℎ,W𝑚𝑎𝑝 } (3)

{𝐹𝑠1 , 𝐹𝑠2 , 𝐹𝑠3 , 𝐹𝑠4 } = CN𝐸𝑛𝑐 (I𝑎𝑙𝑙 ),

𝐹𝑠𝑖 ∈ R
𝐻

2(𝑖+1)
× 𝑊

2(𝑖+1)
×𝐶𝑖

(4)

Here,𝐶𝑖 denote the total number of output channels at each scale 𝑖 .
Each featuremap𝐺𝑠𝑖 is then processed by themulti-scale decoder

to generate the corresponding tamper prediction mask:

𝑃𝑓𝑖 = Multi-Scale Decoder(𝐹𝑠𝑖 ) (5)

To enhancemulti-scale fusion, we introduce aweighting network
𝐺𝑎𝑡𝑒𝑑 that takes I𝑎𝑙𝑙 as input and outputs a normalized weight
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tensor𝑊 , where each channel corresponds to a specific scale:

𝑊 = Gated(I𝑎𝑙𝑙 ), 𝑊 ∈ R
𝐻
4 ×𝑊

4 ×4 (6)

The final tamper prediction is obtained by performing aweighted
fusion of all scale-specificmasks and resizing it to the original image
size:

�̂� = Resize

( 4∑︁
𝑖=1

𝑊𝑖 · 𝑃𝑔𝑖 , 𝐻,𝑊

)
(7)

The performance of watermark extraction is measured using
binary cross-entropy loss between the predicted watermark m̂ and
the ground-truth message m:

ℓext = 𝜆kℓbce (m̂,m) (8)

For tamper localization, we compute a combination of pixel-
wise loss using mean squared error (MSE) and edge-aware loss [3]
between the predicted mask M̂ and the ground-truth maskMgt:

ℓmask = 𝜆m · ℓmse (M̂,Mgt) + 𝛾 · ℓedge (M̂,Mgt) (9)

where 𝛾 is set to 20.

3.4 Distortion Layer
To improve robustness against real-world distortions, we introduce
a distortion simulation layer between watermark embedding and
extraction. This layer processes the watermarked image 𝐼𝑤 and pro-
duces a degraded version 𝐼𝑑 to simulate realistic editing conditions.
It is only used during training and removed during inference.

The distortion layer includes two categories: AIGC editing and
common degradations. AIGC editing covers inpainting, VAE re-
construction, and content removal, while common degradation
involves typical image perturbations such as JPEG compression
and brightness adjustment. During training, each image is randomly
passed through one AIGC editing and one degradation operation
to simulate practical distortion pipelines. Further implementation
details are provided in the appendix.

AIGC-Editing Simulation. We categorize AIGC editing opera-
tions into three types, each designed to improve either tamper
localization or watermark robustness under different scenarios:

1) Real inpainting editing: We adopt inpainting operations
based on real diffusion models to simulate localized AIGC-style
content regeneration. The editing strength is randomly sampled
between 0.3 and 1.0. For samples from the UltraEdit dataset, we use
the provided masks and prompts; otherwise, masks are randomly
generated and prompts are set to None. This operation enables the
model to learn tamper localization under realistic partial editing.

2) VAE reconstruction editing: This operation encodes and
decodes the image using a frozen VAE from Stable Diffusion to
simulate global semantic rewriting. Recent findings [60] show that
watermark corruption after editing is primarily caused by VAE
compression. We therefore use this strategy to enhance the model’s
ability to retain watermarks under global modifications.

3) Watermark-region removal: We simulate aggressive local
tampering by replacing the masked watermark region with the
corresponding area from the original image. This operation mimics
targeted watermark removal attacks and improves the model’s
robustness against intentional deletion.

In summary, the inpainting and removal operations represent
realistic and simulated local edits, respectively, and are used to train
the model for watermark-guided tamper localization. In contrast,
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the VAE reconstruction serves as a global editing surrogate, ensur-
ing that the watermark remains extractable even under significant
content shifts.

3.5 Ensuring Visual Quality
Compared to single-task watermarking methods focused solely
on copyright protection, our approach inevitably embeds more
information, which may introduce noticeable visual artifacts. To
mitigate this quality degradation, we apply constraints both during
and after image generation.

First, during the decoding process, we impose multi-scale con-
straints on latent features to preserve spatial consistency between
the clean and watermarked representations. Then, after image syn-
thesis, we incorporate a Just-Noticeable-Difference (JND)–guided
loss to control the visibility of watermark perturbations. The JND
map is a hand-crafted model that estimates the minimum distortion
perceivable by the human visual system at each pixel, allowing us
to selectively constrain residuals where artifacts are more likely to
be noticed.

Specifically, during the latent decoding process, the original
decoder D and the modified decoder D𝑤 perform simultaneous
decoding at each stage 𝑖 ∈

{
1, . . . , 𝑓2

}
, producing the intermediate

latent features 𝑧𝑖 and 𝑧𝑚𝑖
respectively. To ensure that the injected

watermark does not significantly distort the latent representations,
we apply a multi-scale MSE constraint over all decoder stages:

𝑙𝑧 =

𝑓 /2∑︁
𝑖=1

∥𝑧𝑖 − 𝑧𝑚𝑖
∥22 (10)

This loss encourages the preservation of spatial structure in the
latent space during watermark embedding, thus mitigating visual
degradation in the final output.

After image generation, we obtain two outputs: the clean im-
age 𝐼𝑜 and the watermarked image 𝐼𝑤 . To minimize the perceptual
visibility of watermark residuals, we introduce a JND-guided mod-
ulation strategy.

For the clean image 𝐼𝑜 , we compute its JND map JND(𝐼𝑜 ) ∈
R3×𝐻×𝑊 . This map is used to estimate the perceptual tolerance for
pixel-level changes. We then construct a cost matrix as:

Cost Map = 1 − 𝛼JND · JND(𝐼𝑜 ) (11)

and define the JND-weighted residual loss as:

𝑙ct = Cost Map ⊙ 𝐼𝑤 (12)

To ensure the perceptual similarity between the watermarked
image 𝐼𝑤 and the original image 𝐼𝑜 , we employ a combination of
pixel-wise distortion and perceptual loss functions. The pixel-wise
distortion is measured by MSE, defined as 𝑙I = ∥𝐼𝑤 − 𝐼𝑜 ∥22. For
perceptual similarity, we adopt the LPIPS loss [58], which aligns
better with human perception.

𝑙rec = 𝜆I𝑙I + 𝜆LPIPS𝑙LPIPS (𝐼𝑤 , 𝐼𝑜 ) (13)

Finally, the overall visual quality loss is defined as:

𝑙quality = 𝑙rec + 𝜆z𝑙z + 𝜆ct𝑙ct (14)

where 𝜆I, 𝜆LPIPS, 𝜆z, and 𝜆ct are the corresponding loss weights.

3.6 Training Details
The entire training procedure is conducted in an end-to-endmanner.
We initialize the loss weights as follows: 𝜆k = 5, 𝜆m = 1.5, 𝜆I = 0.1,
𝜆LPIPS = 1, 𝜆z = 0.001, and 𝜆ct = 10. To further improve the visual
quality of the generated watermarked images, we adopt a dynamic
loss weighting strategy. Specifically, once the extraction loss ℓext
falls below 0.05 and the tamper localization loss ℓmask is less than
0.1, we increase the emphasis on visual quality by adjusting the
weights to 𝜆I = 0.5, 𝜆LPIPS = 5, 𝜆z = 0.005, and 𝜆ct = 50. During the
initial 10,000 training steps, no distortion is applied. Thereafter, the
distortion simulation layer is progressively introduced to enhance
robustness against realistic degradations.

The architecture of the message processor𝑊Pro comprises three
fully connected layers, followed by two Conv-BN-SELU blocks and
a final 2D convolution layer. Each watermark embedding module
𝑊Emb𝑖 consists of a Conv-BN-SELU block and an upsampling layer.
The watermark decoder𝑊Dec is built using stacked Conv-BN-SELU
blocks and gated convolution modules to support structured feature
decoding.

4 Experiments
4.1 Experimental Setup
Our training data consists of the MS COCO dataset [29] and 20,000
edited image pairs curated from the UltraEdit dataset [62]( including
original images, edited images, corresponding masks, and editing
instructions). For samples from UltraEdit, the editing masks are
provided, while for other datasets, masks are randomly generated
using a mixed-shape strategy. All images are resized to a resolution
of 512×512. The model is trained using the AdamW optimizer with
an initial learning rate of 1 × 10−5 and a batch size of 2. We adopt
a cosine annealing learning rate schedule. All experiments are
conducted on an NVIDIA A100 GPU server.

4.2 Comparision with Localization Methods
To evaluate the tamper localization performance of our proposed
GenPTW, we compare it against several state-of-the-art passive
localization methods, including PSCC-Net [31], MVSS-Net [9], CAT-
Net [25] , and IML-ViT [36], as well as the proactive watermark-
based method EditGuard [59]. OmniGuard [60] is not included in
the comparison as the method has not yet been publicly released.
We adopt the F1-score and AUC as evaluation metrics. The evalua-
tion is conducted on 1,000 testing images, comprising 500 samples
from the publicly available AGE-Set-C dataset and 500 additional
samples curated by us. Each sample consists of a manipulated image,
its corresponding ground-truth mask, and the original clean image.
For manipulation types, we employ advanced generative editing
models, including Stable Diffusion Inpaint [41] and ControlNet In-
paint [57] with prompts set to “None”, as well as the unconditional
inpainting method Lama [43]. Classical image splicing operations
are also incorporated to cover non-AIGC editing scenarios. To as-
sess robustness under real-world conditions, we randomly apply
one type of common degradation to the manipulated images. The
degradation types include Gaussian noise (𝜎 = 1–10), JPEG com-
pression (quality factor 𝑄 = 60–80), brightness adjustment, and
contrast adjustment.
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Figure 4: Qualitative examples of generated images using GenPTW.

Table 1: Localization performance of the proposed GenPTW and other SOTA proactive or passive manipulation localization
methods. “Clean” and “Degraded” denote detection under the clean condition, and under the condition of randomly selecting
JPEG, Gaussian noise, brightness adjustment, and contrast adjustment.

Stable Diffusion Inpaint Controlnet Inpaint Splicing Lama

Clean Degraded Clean Degraded Clean Degraded Clean Degraded

Method F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

MVSS-Net [9] 0.178 0.488 0.165 0.634 0.178 0.492 0.236 0.697 0.423 0.798 0.327 0.749 0.024 0.505 0.044 0.477
CAT-Net [25] 0.145 0.679 0.127 0.674 0.167 0.711 0.143 0.681 0.196 0.718 0.187 0.704 0.151 0.724 0.147 0.713
PSCC-Net [31] 0.166 0.501 0.104 0.472 0.177 0.565 0.145 0.563 0.189 0.693 0.181 0.601 0.132 0.329 0.129 0.314
IML-ViT [36] 0.213 0.596 0.217 0.604 0.200 0.576 0.204 0.578 0.473 0.754 0.452 0.747 0.105 0.456 0.111 0.442
EditGuard [59] 0.966 0.971 0.724 0.913 0.968 0.987 0.735 0.927 0.934 0.991 0.757 0.921 0.965 0.969 0.718 0.917
GenPTW (Ours) 0.971 0.998 0.957 0.995 0.963 0.998 0.941 0.973 0.937 0.993 0.908 0.991 0.961 0.971 0.919 0.989

As shown in Table 1, GenPTW consistently demonstrates strong
localization performance across a range of manipulation tasks. Un-
der clean conditions, it achieves F1 scores above 0.96 and AUC

approaching 1.0. Even under common degradations such as JPEG
compression, color jitter, and Gaussian noise, GenPTW maintains
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Table 2: Fidelity and bit recovery accuracy comparison between the proposed GenPTW and other SOTA watermarking methods.
Note that “SD Inpaint*” denotes the regeneration from the image via an inpainting model, while “SD Inpaint” ensures that the
non-edited regions remain entirely consistent with the original image.

Bit Accuracy (%)

Global Edit Local Edit Common Degradation

Method Capacity PSNR SSIM Instructp2p SD Inpaint* SD Inpaint Random Dropout JPEG Combined Gaussian Noise

Po
st

PIMoG [12] 30 bits 36.73 0.917 0.683 0.654 0.928 0.966 0.958 0.955 0.767
SepMark [50] 30 bits 33.45 0.903 0.909 0.943 0.966 0.979 0.987 0.958 0.969
EditGuard [59] 64 bits + Wloc 36.78 0.928 0.572 0.632 0.966 0.980 0.987 0.960 0.765
Robust-Wide [20] 64 bits 39.18 0.980 0.976 0.956 0.997 0.968 0.981 0.976 0.747

In
-G
en

Stable Signature [14] 48 bits 31.43 0.834 0.561 0.626 0.805 0.864 0.921 0.914 0.803
WOUAF [24] 64 bits 30.71 0.847 0.587 0.601 0.824 0.882 0.991 0.935 0.947
Lawa [40] 48 bits 35.14 0.821 0.591 0.629 0.832 0.889 0.998 0.953 0.960
GenPTW (Ours) 64 bits 37.12 0.908 0.963 0.999 0.982 0.978 0.991 0.942 0.961

Original Image MVSS-NetTampered Image PSCC-Net IML-ViTCAT-Net EditGuardGT GenPTW

Figure 5: Visualized Comparison between our GenPTW and other methods.

high accuracy and stable performance, indicating strong robustness
and generalization across tasks. Compared to existing methods,
GenPTW delivers superior performance under degraded settings.
For example, in the Splicing and Lama tasks, it achieves F1 scores of
0.908 and 0.919, respectively, significantly outperforming both pas-
sive detection methods and existing watermark-based approaches.
In contrast, EditGuard exhibits noticeable drops in mask quality un-
der degradation and is more sensitive to threshold settings, leading
to instability in challenging conditions.

Figure 5 further compares the visual localization results across
different methods. Passive methods such as PSCC-Net and IML-ViT
tend to miss tampered regions under complex edits or degradations.
Meanwhile, proactive methods like EditGuard often produce noisy
or incomplete masks, with results highly dependent on hyperpa-
rameter tuning. In comparison, GenPTW consistently generates

accurate and well-aligned masks across various types of manipu-
lations, without requiring extensive post-processing or parameter
adjustments. It is worth noting that for full-image semantic rewrit-
ing tasks such as InstructP2P, GenPTW is still able to reliably extract
embedded identity and detect tampering. However, as such manip-
ulations fundamentally alter the global content structure of the
image, the model tends to classify the entire image as a tampered
region. Rather than a misclassification, this reflects our design per-
spective—prioritizing the protection of the original visual structure
over the accommodation of broad semantic transformation.

4.3 Comparison with Deep Watermarking
We comprehensively compare the performance of GenPTW with
existing in-generation watermarking methods and post-generation



Conference, 2025, Earth Zhenliang Gan, Chunya Liu, Yichao Tang, Binghao Wang, Weiqiang Wang, Xinpeng Zhang

Table 3: Ablation study on different input combinations for
𝑊Dec and 𝐶𝑁Enc.

𝑊𝐷𝑒𝑐 𝐶𝑁𝐸𝑛𝑐 ACC PSNR SSIM F1 AUC
Low Freq. High Freq.+𝑊𝑚𝑎𝑝 0.992 37.41 0.873 0.970 0.998
Image Image 0.998 36.56 0.879 0.963 0.992

High Freq. Low Freq.+𝑊𝑚𝑎𝑝 0.953 32.22 0.801 0.952 0.980
Low Freq. Low Freq. +𝑊𝑚𝑎𝑝 0.989 37.36 0.866 0.908 0.974
High Freq. High Freq. +𝑊𝑚𝑎𝑝 0.938 31.98 0.789 0.892 0.961

watermarking techniques. The in-generation methods include Sta-
ble Signature, WOUAF, and LaWa, while the post-generation base-
lines consist of PIMoG [12], SepMark [50], EditGuard [59], and
Robust-Wide [20]. We test all the results on 1000 512 × 512 images
with paired prompt in the dataset of UltraEdit [62]. The degrada-
tion settings are configured as follows: Gaussian noise with 𝜎 = 25,
JPEG compression with qualityQ = 70, and brightness perturbation
with ±30% adjustment. The Combined Attack includes 40% center
cropping, brightness scaling of 2.0, and JPEG compression at quality
80.

As shown in Table 2, GenPTW achieves the highest bit recovery
accuracy under most degradation conditions, while maintaining
excellent visual fidelity with a PSNR of 37.12 dB. This performance
surpasses all in-generation watermarking baselines and is compa-
rable to or even better than several post-processing watermarking
techniques. Specifically, under both local and global AIGC editing,
GenPTW substantially outperforms existing in-generation meth-
ods. Thanks to the joint embedding of both copyright and tamper-
localizable watermarks, GenPTW improves upon EditGuard by
0.34 dB in PSNR, along with a significant boost in bit-level ac-
curacy across all tested scenarios. In the InstructP2P full-image
editing task, GenPTW achieves a bit recovery accuracy of 0.963,
only 0.013 lower than Robust-Wide, which is explicitly trained
for AIGC editing scenarios. Meanwhile, GenPTW provides better
trade-offs in SSIM and robustness under diverse transformations.
As illustrated in Fig. 4, we visualize several samples generated using
Stable Diffusion v2, followed by full-image semantic rewriting with
InstructP2P. Even when the overall style and structure of the image
are significantly altered, GenPTW can still accurately extract the
embedded watermark. This demonstrates the strong resilience and
generalization capability of our method under both global and local
edits, as well as under typical real-world degradation.

4.4 Ablation Study
4.4.1 Effect of frequency-guided inputs for 𝑊Dec and 𝐶𝑁Enc. To
investigate the impact of input design for the watermark decoder
𝑊Dec and the tamper localization encoder 𝐶𝑁Enc, we conduct an
ablation study across various input combinations, as summarized
in Table 2. Specifically, we explore using original images, low-
frequency and high-frequency components, and an auxiliary wa-
termark guidance map𝑊𝑚𝑎𝑝 as inputs to the two modules.

As shown in Table 3, the configuration using low-frequency in-
put for𝑊Dec and high-frequency input combined with𝑊𝑚𝑎𝑝 for
𝐶𝑁Enc achieves the best overall performance, with a PSNR of 37.41
dB, an SSIM of 0.873, and a near-perfect AUC of 0.998. This setup ef-
fectively balances visual fidelity and forensic accuracy. In contrast,

Table 4: Ablation study on the effect of multi-scale loss in
spatial and latent domains.

𝑙𝑐𝑡 𝑙𝑧 ACC PSNR SSIM F1 AUC
✓ ✓ 0.997 37.48 0.876 0.968 0.998
× × 0.996 28.62 0.724 0.958 0.991
× ✓ 0.997 33.47 0.873 0.964 0.990
✓ × 0.999 36.63 0.823 0.966 0.993

directly embedding the watermark into high-frequency compo-
nents leads to noticeable quality degradation, with PSNR dropping
to around 32 dB and SSIM significantly reduced—indicating the pres-
ence of perceptible artifacts. While these configurations may still
yield competitive detection metrics, they suffer from compromised
perceptual quality. Using the original image as input preserves fi-
delity and achieves high SSIM, but lacks explicit frequency-level
guidance and underperforms in terms of overall consistency com-
pared to our proposed design.

4.4.2 Effect of multi-scale loss in spatial and latent domains. We
conduct an ablation study to investigate the impact of incorporating
loss terms in the spatial and latent domains. Specifically, we analyze
the contribution of the contrastive texture-aware loss 𝑙𝑐𝑡 , designed
based on the JND, and the latent consistency loss 𝑙𝑧 computed over
the multi-scale latent features.

As shown in Table 4, introducing 𝑙𝑧 alone leads to a notable
improvement in SSIM (from 0.724 to 0.873), suggesting that en-
couraging consistency in the latent space substantially enhances
perceptual similarity. Meanwhile, incorporating 𝑙𝑐𝑡 leads to overall
gains in both PSNR and SSIM, indicating its effectiveness in guiding
spatial fidelity preservation under visually sensitive regions. When
both loss terms are applied jointly, the model achieves the best
trade-off across all metrics, with PSNR reaching 37.48 and SSIM im-
proving to 0.876. These results validate the complementary benefits
of combining spatial and latent-domain supervision, and highlight
the importance of perceptual-aware regularization for high-fidelity
watermark recovery.

5 Conclusion
In this paper, we propose GenPTW, a unified in-generation frame-
work for proactive provenance tracing and tamper localization.
To the best of our knowledge, it is the first in-generation image
watermarking solution that simultaneously supports both prove-
nance tracing and tamper localization. To improve extraction accu-
racy, we design a frequency-coordinated decoder that disentangles
low-frequency watermark recovery from high-frequency tamper
detection. To enhance robustness against AIGC editing and com-
mon degradations, we introduce a distortion simulation layer that
mimics realistic generative manipulations. Additionally, to preserve
visual quality, we incorporate a JND-constrained perceptual loss
guided by a pixel-wise modification cost map. Extensive experi-
ments demonstrate that GenPTW consistently outperforms existing
watermarking and forensic baselines in terms of fidelity, localization
precision, and robustness under diverse tampering scenarios.
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