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Abstract
Microcontroller-based IoT devices often use embedded real-
time operating systems (RTOSs). Vulnerabilities in these em-
bedded RTOSs can lead to compromises of those IoT devices.
Despite the significance of security protections, the absence
of standardized security guidelines results in various levels
of security risk across RTOS implementations. Our initial
analysis reveals that popular RTOSs such as FreeRTOS lack
essential security protections. While Zephyr OS and ThreadX
are designed and implemented with essential security protec-
tions, our closer examination uncovers significant differences
in their implementations of system call parameter sanitization.
We identify a performance optimization practice in ThreadX
that introduces security vulnerabilities, allowing for the cir-
cumvention of parameter sanitization processes. Leveraging
this insight, we introduce a novel attack named the Kernel
Object Masquerading (KOM) Attack (as the attacker needs to
manipulate one or multiple kernel objects through carefully
selected system calls to launch the attack), demonstrating
how attackers can exploit these vulnerabilities to access sen-
sitive fields within kernel objects, potentially leading to unau-
thorized data manipulation, privilege escalation, or system
compromise. We introduce an automated approach involving
under-constrained symbolic execution to identify the KOM
attacks and to understand the implications. Experimental re-
sults demonstrate the feasibility of KOM attacks on ThreadX-
powered platforms. We reported our findings to the vendors,
who recognized the vulnerabilities, with Amazon and Mi-
crosoft acknowledging our contribution on their websites.

1 Introduction

Real-time operating systems (RTOSs), such as FreeRTOS
and ThreadX [5, 18, 19, 22, 26], are widely utilized in micro-
controller (MCU) based Internet of Things (IoT) devices to
enable efficient multitasking. These MCU-oriented RTOSs
play a critical role in the rapidly expanding IoT ecosystem,
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supporting a range of applications including smart homes,
industrial automation, automotive systems, and medical
devices. For simplicity, unless explicitly stated otherwise, the
term RTOS in this paper refers to the MCU oriented RTOS.

Despite their pivotal role, the lack of standardized
guidelines has resulted in diverse security implementations
across MCU-oriented RTOSs, leading to varying levels of
security risk. Among the RTOSs we investigated, a primary
security objective is to isolate the kernel from user threads.
To evaluate how effectively these RTOSs achieve this, we
focus on three key protections: privilege separation, memory
access control and system call parameter sanitization. These
protections, well-established in full-fledged operating systems
like Linux, are essential for creating and maintaining a secure
boundary between the kernel and user threads, involving both
hardware and software protections. Hardware protections,
which include privilege separation and memory access
control [15, 31, 34, 45], enforce memory isolation between
the kernel and user threads. Software protections, specifically
system call parameter sanitization, ensure secure interactions
between the kernel and user threads, enhancing existing
memory isolation by defending against vulnerabilities in
higher-privileged code that could be exploited by malicious
inputs, such as confused deputy attacks [8, 29, 38]. Our initial
security analysis reveals that many RTOSs (e.g., FreeRTOS)
lack at least one of these three critical security protections,
making them vulnerable to various attacks. Among the
RTOSs we examined, Zephyr OS and ThreadX are the only
ones that implement all these essential security protections.

While both ThreadX and Zephyr OS implement essential
security protections, their implementations of system call san-
itization differ significantly, particularly in the validation of
kernel object pointers. Our experiments indicate that ThreadX
achieves higher performance in system call sanitization
compared to Zephyr OS, which employs a method similar
to those used in full-fledged operating systems. However, this
performance advantage raises concerns about the security
effectiveness of ThreadX. Upon examining their implemen-
tations in detail, we found that both Zephyr OS and ThreadX
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use address validation and semantic validation to sanitize
kernel object pointers. Zephyr OS employs a fine-grained
strategy that securely stores kernel object pointer addresses
and their semantics (e.g., the type of the kernel object) in
kernel memory and verifies whether the stored information
matches the kernel object pointers during system call
execution. In contrast, ThreadX adopts a more coarse-grained
but efficient approach: (i) Instead of saving all addresses
and exhaustively checking them against input kernel object
pointers, it only verifies that the input kernel object pointer
falls outside the isolated memory of the currently running
thread (i.e., address validation); (ii) rather than storing all
semantics and exhaustively checking all fields against the
stored semantics, it checks only specific fields (referred to as
condition fields) of the pointed kernel objects to meet certain
criteria, such as confirming that the kernel objects have the
expected types and states (i.e., semantic validation).

In this paper, we aim to investigate whether the perfor-
mance optimization practices in ThreadX could introduce
security vulnerabilities and provide an in-depth analysis of
its security. We make two observations with security implica-
tions: (O-I) address validation requires that the input kernel
object pointer resides beyond the isolated memory scope of
the presently executing thread. However, any kernel object
pointers originally intended for kernel memory access, rather
than the isolated memory of the running thread, fulfill this
criterion. (O-II) we found that certain ThreadX system calls
permit threads to alter specific fields (referred to as modifiable
fields) of a kernel object. Consequently, a thread can modify
these fields of a valid kernel object to particular values,
masquerading as the condition fields of the kernel object used
in another system call, thus meeting semantic validation.

These two observations on performance optimizations
in system call sanitization motivate us to develop a method
aimed at circumventing the parameter sanitization process for
kernel object pointers through sequentially invoking carefully
chosen system calls: A user thread can set the modifiable
fields of a kernel object (by invoking system call A) to values
that meet the semantic requirements of system call B. If the
modified fields align with the condition fields checked by sys-
tem call B, the kernel object pointer passed to system call B
can reference a “virtual” kernel object (referred to as a forged
kernel object) that masquerades as a valid kernel object. This
forged kernel object is capable of bypassing the parameter
sanitization process of system call B. First, the kernel object
pointer referencing the forged kernel object can pass address
validation (See O-I). Second, by possessing condition fields
identical to those required by system call B, the forged kernel
object can satisfy semantic validation (See O-II).

Building on the circumvention technique of parameter
sanitization, we propose a novel Kernel Object Masquerading
(KOM) attack. This attack aims to gain unauthorized access to
sensitive memory, typically with elevated privileges, by invok-
ing a sequence of carefully selected system calls. This attack

constructs a chain of forged kernel objects that masquerade as
valid kernel objects, enabling attackers to overwrite a pointer
field in a target kernel object (referred to as the accomplice ker-
nel object). This pointer can then be used to achieve arbitrary
memory access, potentially leading to various severe conse-
quences, such as unauthorized data manipulation, privilege
escalation, or even complete system compromise. Although
manually identifying the vulnerable system calls is feasible,
it is labor-intensive and prone to errors. To address this, we
introduce an automated approach using an under-constrained
symbolic execution engine [13, 33]. This engine symbolically
executes each system call, analyzing memory operations and
extracting program dependencies related to modifiable fields
to efficiently identify vulnerable system calls.

To further understand the implications of our attack, we
conduct a comprehensive evaluation of the KOM attack. Our
experimental results reveal that more than half of the system
calls can be exploited to conduct a KOM attack. Furthermore,
we successfully executed KOM attacks on three distinct
platforms powered by ThreadX, namely STM, OLIMEX,
and Wilderness Labs. We promptly reported our findings,
accompanied by a Proof of Concept, to Microsoft. Microsoft
acknowledged our contribution on their websites.

Our major contributions are summarized as follows.

• Understanding Status of RTOSs: We are the first to
conduct a comprehensive security analysis of the pro-
tective mechanisms in mainstream RTOSs. Our findings
have been corroborated by various vendors such as Mi-
crosoft and Amazon (the proprietor of FreeRTOS).

• Attacks with Novel Insights: We present a novel attack,
the Kernel Object Masquerading (KOM) attack, which
exploits a newly discovered vulnerability in ThreadX,
a widely used RTOS known for its robust security fea-
tures. KOM attacks pose significant security threats, such
as privilege escalation and unauthorized data manipula-
tion, to all devices (e.g., STM, OLIMEX, and Wilderness
Labs) running ThreadX.

• Novel Techniques with Practical Impacts: We have
developed an automated technique to identify vulnerable
system calls in KOM attacks using under-constrained
symbolic execution, focusing on memory operations in-
volving kernel objects. This method is generalizable and
can be applied to uncover vulnerabilities in other RTOSs.

• Empirical Study with New Findings: Our experimental
results reveal that nearly half of the system calls (31) can
be utilized for KOM attacks. Furthermore, we discovered
that KOM attacks can be effective across various attack
environments when using carefully selected system calls.
Our experimental results demonstrate the feasibility of
KOM attacks on ThreadX-powered real-world devices.



2 Background

2.1 RTOS Overview

A Real-Time Operating System (RTOS) is a specialized oper-
ating system that provides a suite of kernel services designed
to meet real-time requirements. In this paper, we specifically
focus on the RTOS implementations tailored for low-end em-
bedded systems equipped with resource-constrained MCUs.
To gain a comprehensive bottom-up understanding of RTOS,
we delve into both its hardware and software components.

Hardware. From a hardware perspective, MCUs provide a
low-power environment for RTOS-based applications, sup-
porting essential system management features like privilege
management and memory access control. The Cortex-M se-
ries is a prominent family of 32-bit processors specifically de-
signed for use in MCUs within the ARM architecture. These
processors support privilege separation with two levels of exe-
cution privilege: privileged and unprivileged. Privileged code
has access to all system resources while unprivileged code
has limited access. Unprivileged code can transfer control to
privileged code by executing the svc instruction to make a
supervisor call (i.e., system call) [2, 3].

For memory access control, most Cortex-M series pro-
cessors incorporate the Memory Protection Unit (MPU) [4],
a specialized security hardware component. The MPU is
a lightweight alternative to the Memory Management Unit
(MMU), designed for systems without virtual memory.
Privileged code can configure the MPU control register at
runtime to set specific memory access permissions (i.e., read,
write, and execute) or to enable/disable the MPU.

Software. From a software perspective, an RTOS-based
application consists of a kernel and one or more user threads
(often referred to as tasks in RTOSs such as FreeRTOS). The
kernel provides essential services to user threads, including
multitasking and efficient resource management, through a
system call or function call mechanism. The kernel typically
maintains a set of data structures (i.e., kernel objects) of
various types, such as threads and timers, which are used
to manage these services and are accessible exclusively by
the kernel itself. User threads can request specific kernel
services to create and manipulate these kernel objects. For
example, in ThreadX [5], a user thread can create a thread
kernel object and subsequently adjust its scheduling time
slice. The user thread requests the kernel to create a thread
kernel object and then modify the tx_thread_time_slice
member variable within the corresponding kernel object. It
is worth noting that all the RTOSs we investigated (as shown
in Table 1) expose kernel object pointers to user threads. This
design allows user threads to efficiently access memory and
locate their assigned kernel objects.

Figure 1: Security Protections of RTOS

2.2 RTOS Security Protections

In this paper, we focus on the three key security protections
designed to safeguard the RTOS kernel from potentially com-
promised user threads. These protections also play a crucial
role in full-fledged operating systems such as Linux and Win-
dows. Figure 1 illustrates the protections employed by RTOSs,
categorized into hardware protections (HP) and software pro-
tections (SP).

❶ Privilege Separation (HP) divides the software into
privileged and unprivileged software. Typically, with
privilege separation enabled, user threads execute at the
unprivileged level while the RTOS kernel executes at the
privileged level. This ensures that less-privileged threads
are restricted from unauthorized accesses to sensitive
system resources, such as the MPU’s control registers.

❷ Memory Access Control (HP) enforces fine-grained
memory access restrictions on developer-defined
memory regions using the MPU. Generally, user threads
are prevented from accessing kernel memory and the
memory of other user threads [15, 31, 34]. This is
achieved by reconfiguring the MPU when the kernel
switches the running thread, allowing only the memory
owned by the currently running thread to be accessible.
In addition, with the MPU, RTOSs can also enforce
further access restrictions for code and data memory,
such as Data Execution Prevention (DEP) [30], for both
user threads and the RTOS kernel [45].

❸ Parameter Sanitization (SP) validates the input
parameters to ensure they conform to the system
call’s expectations. It avoids unexpected execution
errors caused by unreasonable input parameters. More
importantly, parameter sanitization can sanitize inputs
provided by untrusted threads to prevent vulnerabilities
from being triggered by malicious inputs (e.g., confused
deputy attack [17, 29, 38]). This typically involves
verifying that pointer parameters reference legal memory
regions and imposing proper range constraints on the
values of sensitive non-pointer parameters.



2.3 Comparison with General-purpose OSs
Note that these security protections are widely adopted in
general-purpose operating systems, albeit with different imple-
mentations. For RTOSs, these differences stem from limited
hardware resources and distinct software architectures. For
instance, general-purpose operating systems rely on MMUs
for virtual memory management, whereas RTOSs typically
use MPUs to enforce access control within a single address
space. Additionally, the differences in software architectures
lead to variations in security implementations. The existing
architectures of RTOSs often limit the direct application of se-
curity protections used in general-purpose OSs. For example,
Unix-like systems abstract kernel objects into file descrip-
tors, enhancing security by preventing users from accessing
kernel object addresses directly. In contrast, modern RTOSs
often expose kernel object pointers to users. Applying file
descriptor-like mechanisms to RTOSs would likely introduce
memory overhead, degrade performance, and create interface
incompatibilities. These limitations highlight the need for tai-
lored security protections in RTOSs. However, their practical
security effectiveness remains largely unexamined, warrant-
ing a comprehensive assessment of their security guarantees.

3 Motivation and Key Insights

3.1 Motivation

Possible Attacks against RTOSs. We conduct an in-depth
analysis of the attack surface associated with the three security
protections. We discuss possible attacks that could occur in
the absence of each protection mechanism, as follows:

• Lack of Privilege Separation. If privilege separation is
disabled by the RTOS developer (or equivalently voided
by attacks), both the kernel and the user threads operate
at the privileged level. This presents a significant risk,
as a compromised user thread can easily take control of
the entire system through control flow attacks, such as
Return-Oriented Programming (ROP) [7, 42]. Moreover,
with privileged execution, a compromised user thread
can disable the MPU, effectively bypassing all memory
access control policies.

• Lack of Memory Access Control. Without memory
access control, any thread can freely access system mem-
ory. Even if privilege separation is enforced, a compro-
mised user thread can still read or manipulate kernel data
without restriction. Additionally, in such a scenario, both
code and data regions remain writable and executable,
allowing attackers to inject and execute arbitrary code.

• Lack of Parameter Sanitization. Without parameter
sanitization, a compromised user thread can manipulate
system call parameters to escalate privileges or gain

Table 1: Protection Implemented in Various RTOSs
Hardware Software

Privilege
Separation (❶)

Memory Access
Control (❷) Parameter Sanitization (❸)

FreeRTOS ✔ ✔ ✗
LiteOS-M ✗ ✔ ✗
Mbed OS ✗ ✔ ✗
ThreadX ✔ ✔ ✔

Zephyr OS ✔ ✔ ✔

arbitrary memory access [6, 9, 27, 28, 32, 41]. For
instance, since RTOSs often expose kernel object
pointers as system call parameters, an attacker can
pass a malicious pointer referencing sensitive data.
If the system call lacks proper validation, the kernel
may dereference this pointer, granting unauthorized
privileged access to critical data.

Security Analysis of State-of-the-art RTOSs. As discussed
above, each security protection is essential for safeguarding
RTOSs against potential attacks. To evaluate their implemen-
tation in state-of-the-art RTOSs, we conducted a thorough
analysis of both the source code and technical documenta-
tion. To be more specific, we reviewed their documentation,
inspected the implementations, and designed PoC attacks to
validate the findings. The results are presented in Table 1. It
can be observed that many RTOSs have missed at least one
security protection, leaving them vulnerable to various attacks
as discussed.

For example, FreeRTOS utilizes system calls with insuffi-
cient pointer parameter sanitization, which introduces vulnera-
bilities exploitable for privilege escalation and arbitrary mem-
ory access. We find all systems supporting FreeRTOS suf-
fer from our identified vulnerabilities and CVE-2024-28xxx
(anonymized) has been generated for the issue (We pro-
vide detailed examples for readers who are interested in Ap-
pendix A.1).

Among the RTOSs we investigated, Zephyr OS and
ThreadX stand out for their complete security protections
including privilege separation, memory access control, and
parameter sanitization. However, while their implemented
privilege separation and memory access control are similar,
significant differences exist in their parameter sanitization of
kernel object pointer parameters. Zephyr OS employs a cau-
tious strategy by storing the kernel object pointer addresses
and semantics, such as types and states, of all created kernel
objects within kernel memory. This practice helps sanitize
kernel object pointer parameters by verifying that the pointer
corresponds to a valid address and matches the expected se-
mantics. Similarly, general-purpose operating systems like
Linux manage a mapping of kernel object pointers to valid
index variables to ensure secure access.

However, ThreadX adopts a more efficient strategy. This
is evidenced by our experimental analysis, which shows that
the parameter sanitization in ThreadX incurs an overhead



of approximately 500 CPU cycles, compared to around 1000
CPU cycles in Zephyr OS, with both measurements conducted
on the same board. We then ask a few questions: How does
ThreadX perform parameter sanitization? Are those parame-
ter sanitization mechanisms secure or not? If not, how could
we explore them? As such, this work seeks to address these
questions by evaluating the implementations and devising
proof-of-concept attacks to raise awareness.

3.2 Key Insights
After a deeper investigation, this efficiency is mainly due to
ThreadX’s employment of a more streamlined parameter san-
itization approach. As illustrated in Figure 2, the sanitization
process comprises two essential components:

Figure 2: Overview of Parameter Sanitization in ThreadX

• Address Validation (❶) verifies whether the input
pointer falls within an expected address range. For
kernel object pointers, it must fall outside the isolated
memory of the currently running thread (instead of
maintaining and checking it against all valid kernel
object pointers). As kernel memory lies beyond the
scope of currently running thread memory, ThreadX
will prevent the running threads from directly altering
contents within kernel memory. This modification
enhances performance by eliminating the exhaustive
checking of the kernel object pointer addresses.

• Semantic Validation (❷) examines certain fields (re-
ferred to as condition fields) of the pointed kernel object
to ensure they meet semantic requirements, instead
of searching for maintained information to acquire
semantics. The checks can be one of the following two
types: (i) The first field of a kernel object is always
scrutinized as it serves as the type identifier of the kernel
object. The validation succeeds if the first field aligns
with a predefined type ID (i.e., Type Validation). (ii)
Other specific fields that represent the states of the kernel
object are checked based on the distinct requirements
of each system call (State Validation). Note that each
system call must check at least one condition field of
the pointed kernel object. These validations ensure
that threads cannot arbitrarily redirect the input kernel
object pointers within the address range specified by

address validation but are restricted to legitimate kernel
objects only. This modification enhances performance
by eliminating the exhaustive maintaining and checking
of kernel object pointer semantics.

While ThreadX improves its performance by avoiding ex-
haustive checking of kernel object pointer addresses and se-
mantics, we find the parameter sanitization on kernel object
pointers to be insufficient. Specifically, we have two observa-
tions (O):

• (O-I): The address validation requires that the input ker-
nel object pointer falls outside the isolated memory of
the currently running thread. In other words, any ker-
nel object pointers (originally designed to access kernel
memory, not the isolated memory of the running thread)
meet this requirement.

• (O-II): We notice that some system calls allow threads to
modify certain fields of a kernel object with other param-
eters (referred to as modifiable fields). This means that a
user thread can set the modifiable fields of a valid kernel
object to certain values, making these fields masquerade
as the condition fields required to satisfy the semantic
validation of another system call. This is because when
ThreadX performs the check, it needs to locate the con-
dition fields through the kernel object pointer parameter,
which can be manipulated by a user thread.

These two observations motivate us to devise a method to
bypass the parameter sanitization process for kernel object
pointer parameters by invoking a carefully selected system
call twice (or two distinct system calls): As shown in Figure 3,
if the modifiable fields of a kernel object (pointed to by kernel
object pointer A) align with the condition field of another
kernel object (pointed to by kernel object pointer B), a user
thread can set the modifiable fields of the first kernel object to
a specific value (by invoking the system call the first time) that
satisfy the semantic validation when the system call is invoked
a second time. Consequently, we construct a “virtual” kernel
object (called forged kernel object) that overlaps the modified
kernel object in kernel memory. This forged kernel object can
masquerade as a valid kernel object to bypass the parameter
sanitization process. Firstly, the kernel object pointer, which
references the forged kernel object, can pass the address vali-
dation based on observation O-I. Meanwhile, having the same
condition fields as system call B, the forged kernel object can
pass the semantic validation based on observation O-II.

At this point, astute readers may realize that, beyond
bypassing parameter sanitization, a malicious user thread can
also tamper with kernel memory during the second invocation
of the system call by modifying the modifiable fields of the
forged kernel object. This capability motivates us to develop
a more advanced attack to further explore the impact of this
insecure implementation in ThreadX.



Figure 3: Bypass Parameter Sanitization of ThreadX

4 Kernel Object Masquerading Attack

In this section, we explain how we leverage the observations
discussed in §3.2 to conduct a powerful attack, which we
have named the Kernel Object Masquerading (KOM) Attack.
This attack involves continuously modifying specific fields
within forged kernel objects to carefully selected values by
invoking a sequence of system calls. By doing so, these
forged objects can masquerade as valid kernel objects when
passed to these system calls.

4.1 Threat Model and Scope
We define the threat model for exploiting the vulnerabilities
in the parameter sanitization mechanism of ThreadX. We
make certain assumptions regarding both the victims and
the attackers. For the victims, we assume that the target
application operates with ThreadX and that both privilege
separation and memory access control mechanisms are
enforced. Regarding the attackers, we assume that they can
gain control of an unprivileged thread through a vulnerability
in the target application, enabling them to invoke the system
calls with arbitrary parameters. This assumption is reasonable
and achievable, as numerous existing techniques, such as
ROP, allow attackers to meet these conditions [12,20,37]. We
adopt this threat model for the following stages of our attack.

4.2 Basic Idea
In this attack, our goal is to access sensitive memory, typically
with high privileges, using a carefully selected sequence of
system calls targeting two initial kernel objects in memory:
a malicious kernel object and an accomplice kernel object.
These system calls create a set of forged kernel objects based
on the malicious kernel object, allowing us to overwrite a
pointer field of the accomplice kernel object and then leverage
this pointer to achieve arbitrary memory access. We provide
the detailed workflow of the KOM attack below. For clarity in
our exposition, we simplify the semantic validation to focus
solely on type validation (i.e., validating only the first field of
the kernel object).

1. Creating/identifying malicious kernel object and accom-
plice kernel object. These two kernel objects can be

Figure 4: Workflow of KOM Attack

existing kernel objects or can be created through appro-
priate system calls. The malicious kernel object shall
have at least one modifiable field. The accomplice kernel
object shall contain a pointer that can be dereferenced.

2. Creating initial forged kernel object. We then invoke a
system call to change a modifiable field of the malicious
kernel object to a chosen kernel object type ID (❶). We
fabricate a pointer so that it points to the selected kernel
object type ID, and a forged kernel object referred to
by the pointer is created in this way. This forged kernel
object, which has a valid type ID (❷), shall have at least
one modifiable field (❸).

3. Creating sequences of forged kernel objects to overwrite
fields of the accomplice kernel object. We now invoke ap-
propriate system calls with a pointer to the initial forged
kernel object to modify its modifiable fields. It is im-
portant to note that different system calls may be used,
as they can modify different fields of the kernel object.
Multiple forged kernel objects of different types may be
created out of the initial forged kernel object. The new
forged kernel objects can then be used to create other
forged kernel objects and sequences of forged kernel
objects can be created recursively in this way. We cre-
ate multiple sequences of forged kernel objects so as to
change the target pointer (❺) and other condition fields
(❹) in the accomplice kernel object.

4. Dereferencing pointer of accomplice kernel object. After
the target pointer is overwritten to point to sensitive data
of interest and condition fields of the accomplice kernel
object are changed accordingly, the pointer can then be
dereferenced through a system call. For example, if the
pointer points to the MPU control register [4, 31], the
MPU can then be disabled and an unprivileged thread
can access the kernel memory now.

Although the basic idea is straightforward, conducting
KOM attacks is not trivial, as several scenarios must be con-
sidered during the attack process:

• ThreadX has a defined set of system calls, each capa-
ble of executing various memory operations on different



types of kernel objects. How can we identify the vulner-
able system calls and the specific fields (i.e., modifiable
fields and condition fields) that can be exploited to con-
struct forged kernel objects?

• The malicious and accomplice kernel objects can be of
any type. Moreover, the accomplice kernel object is lo-
cated at a specific distance from the malicious kernel
object in memory. How can we select appropriate mali-
cious and accomplice kernel objects, considering their
types and memory locations?

• System calls that modify specific fields and dereference
pointers may also validate one or more additional fields
(referred to as condition fields). To successfully derefer-
ence the pointer, both the condition fields and the pointer
must be modified accordingly. How can we design a
sequence of system calls to construct suitable forged ker-
nel objects, starting from the malicious kernel object, to
overwrite the target memory locations (i.e., the pointer
and condition fields in the accomplice kernel object)?

While manually addressing these challenges is feasible, it
is labor-intensive and prone to errors. Therefore, we propose
an automated method to efficiently tackle these issues.

5 Automated Method for Mounting the KOM
Attack

In this section, we present an automated solution for mounting
the KOM attack, including three phases as follows:

(P1) Identifying Vulnerable System Calls (§5.1): We intro-
duce a method based on dynamic symbolic execution to
filter out the vulnerable system calls. By symbolically
executing each system call, we can determine whether it
is vulnerable through analyzing its memory modification
capability of kernel objects as well as the corresponding
path constraints, corresponding to the modifiable fields
and condition fields, respectively.

(P2) Targeting Initial Kernel Objects (§5.2): Based on the
definition of malicious kernel and accomplice kernel
objects, we analyze all types of kernel objects used in
the system calls so that we can determine appropriate
types of these kernel objects and their memory locations.

(P3) Generating System Calls Sequences (§5.3): We de-
sign a depth-first search (DFS) based algorithm to find
an optimal sequence of system calls to modify the de-
sired fields of the accomplice kernel object. A generated
sequence of system calls can leverage their diverse mem-
ory modification capabilities to sequentially construct
forged kernel objects at various memory locations, and
ultimately modify a target memory location with the last
created forged kernel object.

Figure 5: Automated Method for Mounting the KOM Attack

5.1 Identifying Vulnerable System Calls
We leverage dynamic symbolic execution to identify the ones
that can be used to create forged kernel objects among all
system calls of ThreadX. To be more specific, (i) We generate
the Intermediate Representation (IR) code for each system
call from the source code as input for the symbolic execution.
(ii) We customize an under-constrained symbolic execution
engine to simulate the execution of each individual system
call based on its IR code.

Figure 6: Vulnerable System Calls Identification Flow

Step I - Intermediate Representation Code Generation.
As shown in Figure 6, we write a Python script to parse all
declarations of ThreadX’s system calls and generate test files
for each system call. Each test file contains an entry point
that would symbolize all parameters of the system call and
invoke it subsequently. To compile each system call to IR
individually, we customize a makefile to handle the compile-
time dependencies.

Step II - Under-constrained Symbolic Execution. To an-
alyze the system calls, we customize an under-constrained
symbolic execution engine [33] to symbolically execute each
individual system call. Unlike standard symbolic execution,
which requires a complete program and fully specified in-
puts, under-constrained symbolic execution allows analysis
to proceed even when some parts of the program or its inputs
are missing. This technique is useful for analyzing individual
functions like system calls without needing the entire program
context. Moreover, it reduces the execution of code unrelated
to these calls, thereby alleviating the burden on symbolic exe-
cution and enabling us to focus on the memory operations on
kernel objects for each system call.

However, under-constrained symbolic execution introduces
challenges such as context loss due to under-constrained vari-
ables (e.g., pointer parameters and uninitialized global vari-



ables). To mitigate this issue, we first manually initialize all
uninitialized global variables in the test files by reviewing the
source code. Then, we leverage lazy initialization [13, 25] to
resolve the pointer parameters, which can be identified during
the instruction interpretation.

After that, we inspect the memory operations of each sys-
tem call during symbolic execution and filter out vulnerable
system calls. To create forged kernel objects, we attempt to
find system calls that can modify specific fields (i.e., modifi-
able fields) to desired values (e.g., type IDs) within the kernel
objects. The ability to modify these fields allows us not only
to forge type IDs but also to overwrite other fields (e.g., the
pointer or condition fields in the accomplice kernel object).
Therefore, we concentrate on all memory write operations of
each system call to identify those that can be influenced by
parameters so that an attacker could exploit them.

To be more specific, when a memory write operation occurs,
we extract the symbolic expressions related to the memory
address and the data to be written. We then examine the
relevant memory write operations based on the following
criteria: (i) The memory address should point to a field inside
the kernel object. (ii) The data can be written to arbitrary
values through the parameters.

To evaluate these criteria, we leverage taint-style analysis
and a constraint solver to determine if the memory write op-
eration can simultaneously satisfy both criteria. For criterion
(i), we first obtain the pointed memory object by resolving
the memory address expression in our symbolic execution
engine. We then verify if the pointed memory object is indeed
the kernel object operated on by the system call. To identify
the kernel object among all memory objects, we taint the ker-
nel object during the lazy initialization for the kernel object
pointer parameter.

For criterion (ii), we taint all parameters before invoking
the system call in the test file. Thus, we can check if the data
expression is tainted during a memory write operation. It is
important to note that even if the data is tainted by the param-
eters, there is no guarantee that this memory write operation
can write arbitrary values to specific fields within the kernel
object. For example, the parameters may be constrained by
the path constraints, preventing the corresponding data from
being modified to arbitrary values. Therefore, we utilize the
integrated solver in our symbolic execution engine to test if
the data expression can equal to desired values for condition
fields (e.g., type IDs of each kernel object type).

Next, we identify all modifiable fields and condition
fields within the kernel object based on these memory write
operations. These modifiable fields and condition fields play
a crucial role in the system call sequence generation for our
attack §5.3. For modifiable fields, we obtain their relative
locations in the kernel object by resolving the memory
address expressions. However, automatically identifying
the condition fields is challenging from the path constraints.
Since each path constraint may involve complex expressions

with arithmetic or logic operations, analyzing all path
constraints requires a parser capable of parsing diverse
expressions and resolving pointer expressions if needed.
Consequently, significant engineering effort is required
to determine the condition fields from path constraints.
Fortunately, our evaluation (as described in §6.2) reveals that
the number of path constraints is limited (not exceeding six).
This allows us to record all path constraints and manually
deduce the condition fields for each system call.

5.2 Targeting the Initial Kernel Objects.

In this phase, we target the initial kernel objects (i.e., mali-
cious kernel object and accomplice kernel object) in memory
on the victim system. To be more specific: (i) We have to
select exploitable kernel object types according to the vul-
nerable system calls since each type of kernel object is only
applicable to a subset of all system calls. (ii) We need to de-
termine the memory locations of these two kernel objects to
measure the distance between them, guiding our creation of
forged kernel objects.

Type Selection. Both malicious and accomplice kernel ob-
jects shall meet necessary requirements for conducting KOM
attack as illustrated in §4.2. Based on the modifiable fields
of the vulnerable system calls we identified earlier, we can
determine the qualified types for malicious kernel objects. For
accomplice kernel objects, careful consideration is required
because the exploitability of the pointers varies depending on
how they are dereferenced.

We prioritize pointers with “fully controllable pointer
dereferencing,” which allows for arbitrary memory write
or read operations. When dereferencing these pointers for
a memory write operation, the data to be written should
either be assigned through a parameter of the system call
or a member variable within the kernel object, both of
which can be controlled by an attacker. The pointers used
in memory read operations are similar. Nevertheless, it
should be acknowledged that other pointers (e.g., those
that are dereferenced to write a fixed value), can still be
carefully exploited to cause significant impact. For example,
a selected fixed value can be used to overwrite the MPU
control register, disabling the ENABLE bit and turning off
memory access control protection. To identify suitable types
for accomplice kernel objects, we use our dynamic symbolic
execution engine in a similar manner by analyzing the pointer
dereferencing operations of each system call.

Memory Location Determination. Generally, we can de-
termine the memory locations of malicious and accomplice
kernel objects in two ways. The first method is to obtain the
addresses of the kernel objects in the kernel object creation.
In ThreadX, we can invoke specific system calls to create
a desired type of kernel object at runtime. For example, a
timer kernel object can be created by sequentially calling



module_object_allocate and timer_create, which allo-
cate a memory chunk for the kernel object and initialize it, re-
spectively. The module_object_allocate function returns
the address of the created kernel object.

Alternatively, we can select the desired types of malicious
and accomplice kernel objects from the pool of existing kernel
objects. This method is applicable when we are restricted
from invoking system calls for kernel object creation (e.g.,
the developer removes these system calls). In this scenario, we
can determine the memory locations of these kernel objects
by accessing the kernel object pointers stored in memory (e.g.,
on the stack), which can be accessed by a user thread. In this
way, reverse engineering is often required to aid the process
of identifying these pointers and determining the types of the
corresponding kernel objects.

5.3 Generating System Calls Sequences

In theory, selecting an optimal sequence of system calls for the
KOM attack is an NP-hard problem. Fortunately, the number
of vulnerable system calls is limited, which drives us to design
an algorithm that uses depth-first search (DFS) based on the
identified vulnerable system calls.

In this algorithm, we assume that the malicious kernel ob-
ject and the accomplice kernel object have been identified as
outlined in §5.1. For each vulnerable system call, we maintain
a record that details the relative positions of their modifiable
fields and condition fields within the kernel object. Let S de-
note the start address of the malicious kernel object, while
D represents the target memory location (which could be a
pointer field or a condition field within the accomplice kernel
object). The algorithm proceeds as follows:

1. Variable Initialization. Initialize the current kernel object
pointer to S. Set the current sequence of system calls as
an empty set. All sequences that provide feasible solutions
will be stored in a set called solutions.

2. System Call Enumeration. Enumerate a system call from
the set of all vulnerable system calls. Our enumeration iter-
ates over each system call to explore all possible sequence
combinations: (i) If it is the first system call, select one
that operates on the specific type of the malicious kernel
object, then proceed to Step 3. (ii) For subsequent system
calls, select any system call that meets the condition: All
condition fields of this system call, based on the current
kernel object pointer, must align with the modifiable fields
of the previous system call, based on the previous kernel
object pointer.

3. Modifiable Field Enumeration. Enumerate each modifi-
able field of the current system call, updating the current
kernel object pointer. Let Mi denote the offset of the modi-
fiable field. Then, evaluate the following conditions:

i. If S +Mi == D, the current sequence represents a
feasible solution. Add this solution to solutions and
proceed to enumerate the next modifiable field.

ii. If S+Mi > D, the current sequence is not a feasible
solution. Continue enumerating the next modifiable
field. If all fields have been enumerated, return to Step
2.

iii. If S+Mi < D, update the current memory location to
S = S+Mi. Set S as the new kernel object pointer (i.e.,
the start address of the new forged kernel object). Add
this system call to the current sequence and return to
Step 2 to enumerate the next system call.

4. Optimal Solution Selection. From all feasible solutions in
solutions, select the one with the fewest number of system
calls as the optimal solution.

By employing this algorithm, we can generate appropriate
sequences of system calls to execute the KOM attack, allow-
ing us to overwrite the targeted fields of the accomplice kernel
object.

6 Evaluation

In this section, we address the following research questions
(RQs) to comprehensively evaluate the KOM attacks.

RQ1 What system calls can be used to perform KOM at-
tacks? Out of all system calls, we aim to identify those
(i.e., the vulnerable system calls) that an attacker can
leverage to mount KOM attacks.

RQ2 Can our attack be effective in various attack environ-
ments? In practice, the malicious kernel object and the
accomplice kernel object may be separated by an uncer-
tain distance (e.g., due to the unpredictability of dynamic
memory allocation) in various attack environments. This
uncertainty in distance may result in the absence of a
solution to the aforementioned problem. Therefore, we
further analyze the existence of solutions under different
distances when conducting our attack.

RQ3 How is the exploitability of each type of kernel ob-
ject in KOM attack? Given that selecting appropriate
types for the malicious and accomplice kernel objects is
critical for executing KOM attacks, we perform a com-
prehensive analysis of all kernel object types involved in
the explored system calls.

RQ4 How efficient is our symbolic execution? Since it is
an exhausting process to identify system calls, we aim
to evaluate the performance of our automated system
call identification in terms of analysis speed and code
coverage.



RQ5 What are the implications of our KOM attacks?
Considering that ThreadX has been pervasively de-
ployed among various embedded platforms, we aim to
understand whether real-world embedded platforms are
vulnerable to KOM attacks.

6.1 Experiment Setup

Target system calls. Among all system calls of ThreadX, we
selected 60 of them for our evaluation, filtering out those sys-
tem calls that do not accept a kernel object pointer parameter
(e.g., module_allocate) as well as those tracing the system
events used for debugging purposes.

Symbolic Execution Engine. We implemented our symbolic
execution using an Ubuntu 20.04 server, equipped with an
Intel(R) Xeon(R) E5-2620 v2 CPU and 64G RAM. To iden-
tify the system call pairs, we developed an under-constrained
symbolic execution engine based on KLEE [40]. Specific op-
timizations are made for the RTOS environment. For instance,
we used symbols to simulate operations related to hardware,
such as defaulting to a symbolic value for all operations ac-
cessing peripherals. For loops, we set a loop threshold, and
any loop exceeding this threshold would exit.

Target Platforms. To evaluate the effectiveness of the KOM
attacks across different platforms, we selected several devel-
opment environments, including actual development versions
and QEMU simulations. These platforms encompass popular
Cortex-M processors, including Cortex-M33 and Cortex-M4.

6.2 Experiment Results

Vulnerable System Calls (RQ1). As shown in Table 2, the
results of vulnerable system calls identification reveal that 31
out of 60 system calls have the capability to modify fields
within kernel objects, albeit with varying degrees of modifi-
cation capabilities. Specifically, we identified 17 system calls
that can only set fixed values to fields, while the remaining
13 system calls can alter fields based on parameters. Note
that these system calls that set fields to fixed values can also
be exploited to manipulate sensitive data through forged ker-
nel objects, potentially leading to data corruption and kernel
crashes.

For the 13 modifiable fields (denoted as M2) that can be
affected by the parameters, we identified that some of these
fields can only be modified to restricted values rather than
forged IDs or arbitrary ones. The results are shown in Table 3.
Among these system calls, 10 can modify their modifiable
fields to forged IDs (denoted as M3). In other words, these
system calls can be used to create forged kernel objects in our
attack chain. Moreover, we observed that only 6 system calls
can write arbitrary values to their modifiable fields (denoted
as M4). They enable us to overwrite the specific fields (e.g.,
the pointer field in the accomplice kernel object) with any

Table 2: Results of Vulnerable System Calls Identification. M1 in-
dicates the number of fields that can be modified. M2 indicates the
number of fields that can be affected by the parameters. M3 indicates
the number of fields that can be written to forged IDs. Cmax/Cmin
indicates the maximum/minimum number of condition fields. Status
indicates the system call exits normally (N) or abnormally (A) dur-
ing the symbolic execution. #Path represents the number of paths
explored by symbolic execution. #Ins indicates the number of in-
structions that the symbolic execution engine executes.

Identification Result Performance Metrics
System Call #M1 #M2 #M3 #Cmax/Cmin Status Time #Path #Ins

block_allocate 3 0 0 2/2 N 23 236 14882
block_pool_create 4 4 2 1/1 N 9 88 5224
block_pool_delete 0 0 0 N/A N 47 567 26626

block_pool_info_get 0 0 0 N/A N 12 236 8384
block_pool_prioritize 0 0 0 N/A N 6 57 3145

block_release 0 0 0 N/A N 1 8 296
byte_allocate 0 0 0 N/A N 9 60 4532

byte_pool_create 6 6 2 1/1 N 5 52 3215
byte_pool_delete 0 0 0 N/A N 49 567 26626

byte_pool_info_get 0 0 0 N/A N 11 236 8384
byte_pool_prioritize 0 0 0 N/A N 6 57 3145

byte_release 0 0 0 N/A N 34 209 11836
event_flags_create 1 1 0 1/1 N 5 34 2546
event_flags_delete 0 0 0 N/A N 49 567 26626

event_flags_get 3 1 1 6/4 N 124 957 68965
event_flags_info_get 0 0 0 N/A N 7 134 4697

event_flags_set 3 0 0 27/1 N 403 6679 239501
event_flags_set_notify 2 0 0 1/1 N 2 14 729

mutex_create 1 1 0 1/1 N 8 58 4736
mutex_delete 3 0 0 4/3 N 17,987 158975 9276099

mutex_get 3 0 0 6/3 N 540 5125 326769
mutex_info_get 0 0 0 N/A N 11 236 8384
mutex_prioritize 0 0 0 N/A N 6 57 3145

mutex_put 5 0 0 7/3 N 33,648 289827 16714889
queue_create 8 8 2 1/1 N 7 64 4426
queue_delete 0 0 0 N/A N 48 567 26584
queue_flush 3 0 0 2/2 N 45 570 23542

queue_front_send 3 0 0 4/3 N 473 11190 341484
queue_info_get 0 0 0 N/A N 13 236 8384
queue_prioritize 0 0 0 N/A N 7 57 3145
queue_receive 5 0 0 7/3 N 484 5379 294694

queue_send 5 0 0 5/3 N 500 11295 344838
queue_send_notify 2 0 0 1/1 N 2 14 729

semaphore_ceiling_put 3 0 0 3/3 N 62 1493 44416
semaphore_create 2 2 1 1/1 N 4 34 2720
semaphore_delete 0 0 0 N/A N 48 567 26584

semaphore_get 2 0 0 3/2 N 21 214 13489
semaphore_info_get 0 0 0 N/A N 6 134 4667
semaphore_prioritize 0 0 0 N/A N 6 57 3145

semaphore_put 2 0 0 3/3 N 58 1487 42228
semaphore_put_notify 2 0 0 1/1 N 2 14 729

thread_create 15 12 7 1/1 N 461 4018 279885
thread_delete 0 0 0 N/A N 3 26 2439

thread_entry_exit_notify 0 0 0 N/A N 2 17 797
thread_info_get 0 0 0 N/A N 41 824 30026

thread_preemption_change 2 2 2 5/3 N 4 80 3273
thread_priority_change 6 4 0 7/3 A N/A N/A N/A

thread_relinquish 0 0 0 N/A N 1 10 386
thread_reset 1 0 0 2/2 N 1 7 386

thread_resume 0 0 0 N/A N 32 344 22128
thread_suspend 0 0 0 N/A N 5 62 3597

thread_terminate 0 0 0 N/A N 58 461 32214
thread_time_slice_change 2 2 2 1/1 N 1 23 840

thread_wait_abort 0 0 0 N/A N 46 512 29787
timer_activate 1 0 0 6/6 N 2 28 1365
timer_change 2 2 2 2/2 N 1 20 806
timer_create 7 5 3 2/1 N 44 425 27154

timer_deactivate 1 0 0 6/4 N 8 107 5103
timer_delete 0 0 0 N/A N 5 26 2949

timer_info_get 0 0 0 N/A N 46 902 33275

desired values. The results indicate that we can modify no
more than three fields within a kernel object using a single



Table 3: Modifiable Fields Affected by Parameters. M4 de-
notes the number of modifiable fields that can be written with
arbitrary values. R represents the number of modifiable fields
with restricted values, and I represents the number of modifi-
able fields with identical values.

Type System Call #M2 #M3 #M4 #R #I
BLOCK block_pool_create 4 2 0 3 0
BYTE byte_pool_create 6 2 0 6 0

EVENT event_flags_get 1 1 1 0 0
EVENT event_flags_create 1 0 0 1 0
MUTEX mutex_create 1 0 0 1 0
QUEUE queue_create 8 2 0 8 0

SEMAPHORE semaphore_create 2 1 1 1 0
THREAD thread_priority_change 4 0 0 4 0
THREAD thread_preemption_change 2 2 0 2 0
THREAD thread_time_slice_change 2 2 1 0 1
THREAD thread_create 12 7 2 9 0
TIMER timer_create 5 3 3 2 0
TIMER timer_change 2 2 2 0 0

system call. This suggests that ThreadX can enforce more
than three condition fields within a kernel object to prevent
attackers from constructing forged kernel objects.

Further analysis reveals that these restrictions stem from
parameter sanitization or bitwise operations. Parameter saniti-
zation imposes path constraint on the particular parameters.
For instance, when creating a kernel object, a “name” field
typically references a string in user memory via a pointer
parameter. To prevent the pointer from referencing kernel
memory, ThreadX enforces that this pointer parameter re-
mains within the bounds of user memory through its system
call wrapper (i.e., semantic validation). For bitwise operations,
parameters are restricted by only allowing specific bits within
a field to be modified rather than the entire field. Additionally,
we found that a single parameter could simultaneously mod-
ify multiple fields within a kernel object, which we treat as
identical due to their shared value.

Table 2 also shows the number of path constraints when
modifying these modifiable fields. Note that we only focus
on the path constraints associated with the kernel object so
that we can locate the condition fields. Each path constraint is
typically associated with a condition field. We found that each
modifiable field must be accompanied by at least one con-
dition field within the kernel object. This requirement exists
because ThreadX must verify the type ID for system calls that
operate on kernel objects, or check the size of the correspond-
ing metadata for allocated memory in system calls that create
kernel objects. Note that the more condition fields a system
call has, the more challenging it is to construct a forged kernel
object, as all requirements related to these condition fields
must be met. As a result, the number of condition fields is an
important reference when we construct forged kernel objects.

Attack Effectiveness among Various Attack Environments
(RQ2). We attempt to explore whether there is always a
solution even when the target location is undetermined in
memory. We observed an interesting property between the
modifiable fields and the condition fields. That is, among
all vulnerable system calls, several system calls have at least

Table 4: System Calls for Successive Fields Modification
System Call #Parameter #M4 #C

module_allocate 2 0 0
timer_create 8 3 1

one modifiable field, which is with a higher memory address
than all conditional fields within the kernel object. If we are
able to modify all fields before such a modifiable field inside
a forged kernel object, we can keep creating new forged
kernel objects, allowing us to overwrite each field in memory,
starting from the initial forged kernel object.

For example, as shown in Table 4, we select two system
calls that can be used to achieve this goal. As shown in Fig-
ure 7, we create a malicious kernel object with the type of
timer, then we can create a series of forged kernel objects sep-
arated by two fields and perform overwriting on every field in
the memory. We first allocate a chunk of memory for a timer
kernel object by invoking module_allocate (❶). Then, we
create a timer kernel object using timer_create (❷). Simul-
taneously, we write the value of the size of a timer kernel
object into two modifiable fields for creating two forged timer
kernel objects. Afterward, we call timer_create twice (❸,
❹) in succession to modify the modifiable fields of these
forged timer kernel objects. It can be observed that as long as
we continue to assign a valid size when creating a forged timer
kernel object, we can keep creating new forged timer kernel
objects and write to higher memory addresses. The modi-
fiable fields of these objects are continuously spread from
lower to higher memory addresses, potentially covering more
than seven consecutive fields in memory. However, in our
experiments, we found that repeatedly calling timer_create
can cause noisy memory operations. This is because when
the system creates the first timer, it initializes certain fields.
If a subsequent call finds an existing timer kernel object, it
may attempt to dereference associated fields, leading to a
dereference error. Fortunately, we discovered that invoking
timer_disable can delete the existing timer object, causing
the system to assume no timer kernel objects are present.

Based on this observation, we can conclude that as long as
the accomplice kernel object is located at a higher address than
the malicious kernel object, we can always have a solution
that enables us to modify the necessary fields to achieve the
intended overwrite.

Figure 7: Example of Successive Field Modification



Type for Malicious and Accomplice Kernel Objects (RQ3).
As shown in Table 5, we list all suitable types for malicious
and accomplice kernel objects along with the corresponding
system calls according to our symbolic execution analysis
result. Based on the findings in Table 3, we can conclude that
all types except Mutex are suitable for the malicious kernel
object, since the corresponding system calls can modify fields
within the kernel objects to desired values (i.e., forged type
IDs). Moreover, the type of Thread should be given priority
when selecting malicious kernel objects because it has more
modifiable fields, allowing us to create more forged kernel
objects simultaneously.

For accomplice kernel objects, we observed that all types
are suitable for the accomplice kernel object, and all of them
can achieve fully controllable pointer dereferencing. Further
analysis of these system calls revealed that, among all cases
of fully controllable pointer dereferencing, the data to be
written is always assigned from a member variable within
the kernel object rather than from the parameters of the sys-
tem calls. The most significant instances of fully controllable
pointer dereferencing occur during linked list operations. This
is because ThreadX leverages several doubly linked lists to
maintain kernel objects efficiently. These pointers (i.e., pre-
vious pointer and next pointer), which are inside the kernel
objects as member variables, can be abused to achieve full
pointer dereferencing during the list updating process.

Figure 8: System Call for Fully Controllable Pointer Derefer-
encing

Moreover, we found some system calls can also be ex-
ploited to overwrite an entire memory chunk rather than
a specific data field, thereby increasing the security im-
pact of KOM attacks. For example, as shown in Figure 8,
queue_send can realize fully controllable pointer dereferenc-
ing on a queue kernel object (i.e., accomplice kernel object).
Specifically, queue_send call TX_QUEUE_MESSAGE_COPY to
copy data from the source to the destination, which is
assigned by the parameter source_ptr and the member vari-
able tx_queue_write (i.e., privileged pointer). Besides, the
size can also be controlled by an attacker as long as modify-
ing the tx_queue_message_size in the queue kernel object.

Performance of Symbolic Execution Engine (RQ4). To
evaluate the performance of our symbolic execution engine
in identifying system call pairs, we recorded the performance

Table 5: Type for Malicious and Accomplice Kernel Object
Type Malicious

Kernel Object #M3
Accomplice

Kernel Object
Fully Controllable

Pointer Dereferencing
Block ✔ 2 ✔ ✔
Byte ✔ 2 ✔ ✔
Event ✔ 1 ✔ ✔
Mutex ✗ 0 ✔ ✔
Queue ✔ 2 ✔ ✔

Semaphore ✔ 1 ✔ ✔
Thread ✔ 7 ✔ ✔
Timer ✔ 3 ✔ ✔

Table 6: KOM Attacks on Different Platforms. *MPU indi-
cates disable MPU. *Read indicates arbitrary memory read.
*Write indicates arbitrary memory write.

KOM Attack on Different Platforms

Hardware Platform Attacks
Board Vendor Core *MPU *Read *Write

NUCLEO-U575ZI-Q STM cortex-m33 ✔ ✔ ✔
b-l475e-iot01a STM cortex-m4 ✔ ✔ ✔

olimex-stm32-h405 Olimex cortex-m4 ✔ ✔ ✔
netduinoplus2 Wilderness Labs cortex-m4 ✔ ✔ ✔

metrics during the analysis of each system call. As shown in
Table 2, most system calls were analyzed within one minute,
thanks to our under-constrained approach which significantly
reduces the exploration of unnecessary branches. However,
mutex_put required the longest time of almost 9 hours to
explore 289 thousand paths. Our manual analysis of this sys-
tem call revealed it involves numerous branches and loop
operations, including checks on various mutex attributes and
system states. We also observed that one system call (i.e.,
thread_priority_change) did not exit normally under our
symbolic execution engine due to issues with constraint solv-
ing. We found this issue is caused by an under-constrained
symbolized index of an array while it should be constrained
in the kernel initialization stage in normal execution, which
is ignored by our under-constrained symbolic execution. We
will improve it in our future work.

Implications of Attacks (RQ5). To further demonstrate the
impact of our attack, we launch KOM attacks on various plat-
forms. As shown in Table 6, we conducted the KOM attacks
on these platforms, including disabling the MPU and achiev-
ing arbitrary memory read or write. This indicates that KOM
attacks remain effective across different hardware platforms,
further highlighting their broad impact. We provide a detailed
Proof of Concept (PoC) for disabling MPU for interested
readers in Appendix §A.2.

7 Discussion

Mitigation. Given that all RTOSs expose kernel object
pointers to threads, it’s crucial to enhance kernel object
validation. Following our discussion with AWS, FreeRTOS
(v10.6.0) has implemented a table within the kernel memory
to catalog information on kernel objects, including the kernel
object pointers and their types. This enhancement aids in



validating kernel object pointer parameters. For ThreadX, a
similar strategy can be implemented to enhance the kernel
object pointer validation.

In addition, most RTOSs expose all system calls, which ex-
pand the attack surface. They can mitigate this issue by reduc-
ing the system calls available to the threads. On the one hand,
similar to Linux’s seccomp [16], a set of filtering rules can be
established to restrict access based on the importance and risk
level of each system call. On the other hand, since developers
have access to the full source code during the RTOS-based
application development stage, they can choose to remove
unnecessary system calls during the compilation phase.

Noisy Memory Operations. During the execution of the
KOM attack, noisy memory operations may inadvertently cor-
rupt sensitive fields within existing kernel objects. To address
the issue, attackers can request two adjacent kernel objects
(malicious and accomplice), which is likely to occur when
there is sufficient allocation space with the default allocation
algorithm in ThreadX. If not, the attacker can either retry the
KOM attack or analyze the memory layout of kernel objects
and the system call invocation patterns to minimize the noise.

Generality of the KOM attack. Although the KOM attack
has primarily targeted ThreadX, the methodology behind our
attack is generalizable and can be applied to uncover other vul-
nerabilities in various RTOSs. For example, under-constrained
symbolic execution can be utilized to explore system calls in
other RTOSs, such as FreeRTOS, to identify vulnerabilities
related to privilege separation, memory access control, and
parameter sanitization. Additionally, we plan to explore the
feasibility of conducting similar attacks on other RTOSs and
general-purpose operating systems in future work.

Lessons Learnt. The most important lesson from our study is
that security protections require a comprehensive evaluation.
First, it is crucial to assess the gap between the implemen-
tation of security protections and their actual effectiveness,
particularly when these protections differ from those in full-
fledged operating systems like Linux and Windows. While
RTOSs strive to balance performance and security, the con-
straints of limited hardware resources and the emphasis on
performance often result in customized security measures that
can introduce unforeseen vulnerabilities. The KOM attack
serves as a cautionary example for RTOS developers, under-
scoring the importance of a balanced approach to security and
performance to prevent similar vulnerabilities.

Second, it is essential to consider the interdependencies
among security protections. While RTOSs may implement
multiple security measures, they often overlook the interplay
between these protections, as discussed in §3.1. The absence
of any one security measure can weaken the effectiveness of
others and undermine the security of the entire system.

Third, addressing security flaws in RTOSs requires more
focused research and the development of automatic vulner-
ability detection techniques. Unlike full-fledged operating

systems or Trusted Execution Environments (TEEs) [11, 41],
there has been limited effort in the security community to
develop such detection tools for RTOSs. The unique software
architectures and diverse hardware dependencies of RTOSs
often render existing detection tools ineffective. Our work
takes an initial step toward filling this gap by introducing an
automated technique for identifying vulnerabilities.

8 Related work

Pointer Sanitization. Over the past decade, parameter san-
itization for pointers has been a focal point of concern within
the security community, encompassing both general-purpose
operating systems [9] and TEEs [6, 11, 24, 27, 28, 32, 41].
These attacks often exploit missing or improper pointer
range checks in pointer sanitization, similar to the absence of
pointer parameter sanitization in RTOSs, as observed in §3.1.
However, it is important to note that KOM attacks differ from
these attacks. In our context, ThreadX leaks a kernel object
pointer to a user thread, performs the pointer range check
when the kernel object pointer is used in a system call, and
performs semantic validation of object ID and some fields in
the kernel object structure. ThreadX’s semantic validation and
pointer range check of pointers would defeat these attacks.

RTOS Security Protection. In addition to the inherent
security protections outlined in Table 1, recent research has
been dedicated to developing supplementary, sophisticated
security protections specifically for embedded applications
on RTOSs [14, 23, 39]. Furthermore, certain security
protections [1, 10, 36, 44] originally designed for bare-metal
environments, can be adapted for use in RTOSs. However,
these protections primarily focus on maintaining control
flow integrity and often neglect the potential for data-only
attacks [21, 43]. The parameter sanitization vulnerabilities
identified in this paper can be exploited to conduct data-only
attacks, enabling attackers to manipulate system call parame-
ters and escalate privileges. Such exploits could compromise
the security of the entire RTOS-based embedded system.

9 Conclusion

We discovered that a performance optimization in ThreadX
introduces a vulnerability that can be exploited to bypass pa-
rameter sanitization. Our novel Kernel Object Masquerading
attack can potentially lead to unauthorized data manipulation,
privilege escalation, or even complete system compromise.
To identify and evaluate KOM attacks, we developed an auto-
mated method based on under-constrained symbolic execu-
tion. Extensive experiments were conducted to validate the
feasibility of KOM attacks on ThreadX-powered platforms.
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A Appendix

A.1 Vulnerable Pointer Parameter Sanitiza-
tion in FreeRTOS

We discovered that FreeRTOS employs system calls with
weak pointer parameter sanitization, leading to vulnerabilities
that can be exploited to achieve privilege escalation and
arbitrary memory access. We categorize these vulnerabilities
into two main types: direct out-of-bound pointer dereference
(V 1) and indirect out-of-bound pointer dereference (V 2). The
first type (V 1) occurs when an attacker passes a malicious
pointer parameter that points to privileged memory from
a compromised unprivileged thread. The second type
(V 2) occurs when the attacker passes a parameter that can
indirectly manipulate a pointer to access privileged memory.

For example, Figure 9 illustrates V 1, which enables
an attacker to access arbitrary memory. The FreeR-
TOS kernel escalates the privilege if the system call

Figure 9: The Sample Code of Direct Out-of-bound Pointer
Dereference

Figure 10: The Sample Code of Indirect Out-of-bound Pointer
Dereference

MPU_vTimerSetTimerID(.) is invoked from an unpriv-
ileged thread and then call vTimerSetTimerID(.).
An attacker can manipulate the parameters (i.e.,
xTimer and pvNewID) to write arbitrary memory, as
vTimerSetTimerID(.) dereferences the pointer provided
by xTimer and updates it with the value of pvNewID.

Figure 10 presents an example of V 2. In contrast to V 1,
here an attacker can alter the memory location pointed to
by an array’s index parameter (i.e., uxIndexToClear), and
subsequently modify the contents at the targeted memory
address using the ulBitsToClear parameter.

A.2 Proof of Concept
To demonstrate the effectiveness of our attack, we show
the KOM attack can turn off the MPU by exploiting the
KOM vulnerability. We choose an official sample project
provided by STM, named Tx_MPU, as the target for our POC.
This project can serve as a template for the development of
numerous applications for embedded systems. We deploy this
project on an STM32U575 development board and enable
the MPU protection. Before detailing our specific attack, we
assume that an attacker has compromised a thread and can
invoke any system calls. Our exploitation allows the mali-
cious unprivileged thread to write the MPU control register
and consequently disable the MPU by leveraging the follow-
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ing six system calls, i.e., module_object_allocate,
timer_create, byte_allocate, thread_create,
thread_time_slice_change, thread_reset.
thread_time_slice_change assigns the second parameter
to a data member variable (thread_new_time_slice) of
the specified thread object. The system call thread_reset
can dereference a pointer (i.e., thread_stack_start) and
write a fixed value. Before the dereference, thread_reset
would validate thread_stack_size and thread_state
as in semantic validation. Our PoC leverages KOM attack
to overwrite the thread_stack_start of a thread object
with the address of the MPU control register and then calls
thread_reset to disable the MPU. To be more specific,
there are a total of three steps in this PoC attack:

Figure 11: Compromise MPU Flow

Step I - Creation of Malicious Kernel Objects and
Selection of Accomplice Kernel Objects. We use
module_object_allocate and timer_create to cre-
ate a timer object named MaliciousTimer (i.e., mali-
cious kernel object), and use module_object_allocate
and thread_create to create a thread object named
MaliciousThread (i.e., accomplice kernel object). When
creating MaliciousTimer via calling timer_create, we
specifically pass the value 0x54485244, which is the type
ID of a thread object (i.e., Thread ID), as the 4th, 5th and
6th parameters of timer_create. These three parameters are
assigned to three data member variables of MaliciousTimer
respectively (❶ in Figure 11). Similarly, we pass a value
DEFAULT_STACK_SIZE and a value 0x54485244 as the 6th
and last second parameter to thread_create. The first value
is used for thread_stack_size while the second value is a
valid Thread ID for constructing a forged thread object later
(❷ in Figure 11).

Step II - Manipulation of Accomplice Kernel Object’s
pointer. To manipulate the pointer of the accomplice
kernel object. We first call thread_time_slice_change to
construct a forged thread object to modify the thread_state
of the accomplice kernel object, which is one of the
characteristic fields of thread_reset before derefer-

Figure 12: Exploitation Code of Compromising MPU

encing the pointer (❸ in Figure 11). Then, by calling
thread_time_slice_change two times, we can con-
struct two forged thread objects as shown in (❹, ❺ in
Figure 11) based on the MaliciousTimer. After that, we
call thread_time_slice_change, passing 0xe000ed94 (the
desired malicious pointer value) as the second parameter. It
modifies the modifiable field thread_new_time_slice of
the corresponding kernel object with 0xe000ed94. This data
member variable overlaps the pointer thread_stack_start
of MaliciousThread. The value 0xe000ed94 is actually the
address of the MPU control register.

Step III - Disabling MPU via pointer Dereference. We
call thread_reset with MaliciousThread as the sole pa-
rameter to dereference the pointer thread_stack_start of
MaliciousThread and overwrite the MPU control register.
To check whether MPU has truly been disabled, we can di-
rectly read a member variable that is inaccessible for a thread,
i.e., MaliciousTimer->tx_timer_id.
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