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Abstract—Graph-based detection methods leveraging Function
Call Graphs (FCGs) have shown promise for Android malware
detection (AMD) due to their semantic insights. However, the
deployment of malware detectors in dynamic and hostile en-
vironments raises significant concerns about their robustness.
While recent approaches evaluate the robustness of FCG-based
detectors using adversarial attacks, their effectiveness is con-
strained by the vast perturbation space, particularly across
diverse models and features. To address these challenges, we in-
troduce FCGHUNTER, a novel robustness testing framework for
FCG-based AMD systems. Specifically, FCGHUNTER employs
innovative techniques to enhance exploration and exploitation
within this huge search space. Initially, it identifies critical areas
within the FCG related to malware behaviors to narrow down
the perturbation space. We then develop a dependency-aware
crossover and mutation method to enhance the validity and
diversity of perturbations, generating diverse FCGs. Furthermore,
FCGHUNTER leverages multi-objective feedback to select per-
turbed FCGs, significantly improving the search process with
interpretation-based feature change feedback. Extensive evalua-
tions across 40 scenarios demonstrate that FCGHUNTER achieves
an average attack success rate of 87.9%, significantly outperform-
ing baselines by at least 44.7%. Notably, FCGHUNTER achieves
a 100% success rate on robust models (e.g., AdaBoost with
MalScan), where baselines achieve only 11% or are inapplicable.

Index Terms—Android Malware Detection, Function Call
Graph, Robustness Testing.

I. INTRODUCTION

ANDROID malware, such as those designed to steal users’
privacy or device resources, has become a major threat

to mobile security [1], [2], [3]. This growing threat, fueled
by the popularity and openness of the Android platform,
has driven the development of various detection methods. In
recent years, machine learning (ML)-based approaches have
been widely applied in Android malware detection (AMD),
demonstrating promising results by leveraging static features
of applications [4], [5], [6], [7], [8], [9], [10]. These meth-
ods can be mainly divided into two categories, i.e., string-
based detection (e.g., Drebin [4]), and graph-based detection
(e.g., MalScan [8]). Graph-based methods have emerged as
a particularly promising alternative [11], offering superior
performance compared to string-based ones [8], [10], [11].
Specifically, such methods use features extracted from the
Function Call Graph (FCG) of an Android package kit (APK)’s
smali code (i.e., the intermediate representation of an APK
after compilation [12]), which offers deep semantic insights
into app behaviors and effectively identifies malicious patterns.

However, ML-based applications are widely recognized for
their susceptibility to robustness issues [13], [14], [15], [16],
[17], which can lead to severe consequences, particularly in

safety- and security-critical contexts like autonomous driving
and malware detection. For instance, attackers can make subtle
modifications to malware, preserving its malicious intent while
enabling it to evade detection. To address this, robust testing
is essential before deploying ML models in dynamic and
potentially hostile environments [18]. To this end, adversarial
attack methods [19], [20], [21], [22], [23] have been developed
to rigorously evaluate model robustness. These evaluations
help developers identify vulnerabilities, providing insights for
improving robustness, such as retraining models with adver-
sarial samples generated during testing [24], [25], [26].

There are two main kinds of attacks in graph-based AMD:
feature-level attacks and code-level attacks. Feature-level at-
tacks, which directly perturb the features of an APK (i.e.,
the model’s input), can achieve high success rates [20], [8],
[23]. However, these perturbations often do not realistically
reflect APK modifications, thereby compromising the fidelity
of robustness assessments. In contrast, code-level attacks alter
the APK’s smali code, indirectly changing its features used
for detection. These attacks, conducted directly on the APK,
are more realistic but inherently more complex due to the
discontinuous nature of the perturbation space.

Recent studies have begun to explore code-level adversarial
attacks [27], [22]. Essentially, these attacks involve modifying
the smali code of an APK such that its FCG can be affected.
HRAT [27], the pioneering work, introduced a set of FCG-
level perturbation operators that can be translated into seman-
tically consistent code-level perturbations. Furthermore, a deep
Q-network (DQN) is used to guide the perturbation generation.
Meanwhile, BagAmmo [22] employs a genetic algorithm (GA)
that simulates targeted classifiers with a surrogate model and
modifies the FCG by inserting non-executable code, opti-
mizing the attack process. Despite these advancements, their
effectiveness is still limited, particularly when facing relatively
robust scenarios [11] (e.g., MalScan [8]).

The primary challenge lies in the vast perturbation space
in the APK, where potential modifications to an FCG can be
infinite, complicating the search for adversarial perturbations.
To effectively navigate this, a variety of perturbation opera-
tors is necessary for enhanced exploration, alongside precise
feedback mechanisms for better exploitation. However, current
methods are often restricted to specific mutation types, such as
only adding edges [22], or they perform multiple but simplistic
perturbations [27], limiting the generation of diverse FCGs.
Concerning feedback mechanisms, existing approaches like
HRAT [27] predominantly rely on gradient information, which
is costly and unobtainable in non-differentiable ML classifiers
like Random Forest or K-nearest neighbors (KNN). These
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TABLE I: The Scope of Existing Adversarial Attack Methods.

Tool FCG-based Deep Learning Instance Algorithm Ensemble Models
AMD MLP KNN-1 KNN-3 Random Forest AdaBoost

MalScan
HRAT MaMaDroid

APIGraph

MalScan
BagAmmo MaMaDroid

APIGraph

Note: ( ) for full consideration and ( ) for no consideration.

challenges become more severe when AMDs employ diverse
features and models. Additionally, we observe that current
methods are mainly applied and evaluated only in limited
scenarios (as depicted in Table I) and fail to be effective in
scenarios with more robust features [8], [11] (e.g., MalScan)
and popular models (e.g., Random Forest).

Motivated by these issues, this paper introduces
FCGHUNTER, a testing method specifically designed to
assess the robustness of FCG-based malware classifiers across
various feature types and models. FCGHUNTER optimizes
a sequence of perturbations to the original FCG, such that
the malware can bypass detection after the modifications.
Specifically, FCGHUNTER tackles the exploration and
exploitation challenge in the vast perturbation space through
several innovative strategies: 1) it narrows the search space
by pinpointing critical areas of the FCG based on sensitive
system APIs; 2) it incorporates diverse perturbation operators,
including three novel types (e.g., Adding Long Edges) that
significantly impact FCG features for better exploration; 3) it
introduces a dependency-aware mutation representation and
a conflict-resolving strategy, ensuring the feasibility of the
sequence of perturbations; and 4) for optimal exploitation,
FCGHUNTER employs a multi-objective optimization. Except
for the model output feedback, a novel interpretation-based
feedback, utilizing the SHAP method [28], is proposed
to prioritize perturbations that significantly affect crucial
features, thus improving the effectiveness of the whole
search.

Technically, FCGHUNTER is implemented within a genetic
algorithm framework. Each individual in the population is
represented as a sequence of perturbations, where each gene
is not just a single perturbation but a sub-sequence of de-
pendent perturbations. These sub-sequences, containing highly
interdependent perturbations, are considered together during
crossover and mutation processes to ensure the validity of the
generated FCG. Following this step, individuals are selected
based on interpretation-assisted fitness scores that evaluate the
effectiveness of perturbations in evading detection. If conflicts
arise, FCGHUNTER resolves them by adjusting or removing
the conflicting perturbations, ensuring that the best candidates
are retained for further evolution.

To demonstrate the effectiveness of FCGHUNTER, we
conducted comprehensive experiments on 40 distinct target
models, incorporating eight types of graph embeddings and
five different ML classifiers. To the best of our knowledge,
we are the first to evaluate AMD systems across such a
broad and diverse range, covering all the scenarios outlined in
Table I. FCGHUNTER achieves an average attack success rate
of 87.9% across these detection models, significantly outper-

forming state-of-the-art methods (i.e., HRAT and BagAmmo)
by at least 44.7%. Our experiments also confirm the usefulness
of the key components in FCGHUNTER. Based on the trans-
ferability of different models, we also applied FCGHUNTER to
evaluate the robustness of black-box models (i.e., VirusTotal)
in the real world, revealing the robustness issues of such
models.

In summary, our main contributions are as follows:
• We expose the challenges presented by current approaches

for attacking three widely-used ML model types: deep
neural networks, k-nearest neighbors, and decision trees,
each trained with distinct feature sets. Our analysis reveals
that existing methods have limitations in certain scenarios,
particularly regarding the models and feature types.

• We propose a novel robustness testing framework, incor-
porating dependency-aware mutation and multi-objective
optimization, which can effectively evaluate different kinds
of graph-based Android malware detectors. Our approach
generates adversarial samples while preserving the mali-
cious functionalities of the malware, leveraging diverse
perturbation operators for enhanced exploration and precise
feedback mechanisms for optimal exploitation.

• We conduct comprehensive experiments across 40 target
models, spanning five distinct model and eight feature sets,
which demonstrate the effectiveness of FCGHUNTER. We
have made our dataset and code publicly available [29].

II. GRAPH-BASED ANDROID MALWARE DETECTION

Graph-based detection leverages features extracted from the
FCG of an APK’s smali code (i.e., the intermediate represen-
tation of an APK after compilation [12]), which captures the
runtime behavior semantics of the application. The FCG is
then transformed into a feature vector via graph embedding,
which is subsequently used for binary classification to de-
termine whether the application exhibits malicious behaviors.
Next, we will introduce the main FCG-based methods, which
include three graph embedding techniques and three widely
used ML-based classifier types.

A. Graph Embedding Methods

This step involves deriving a vector from an APK’s FCG,
where nodes represent functions or abstract entities and edges
depict call relationships, to capture crucial structural and
behavioral patterns for classification. In the following, we will
briefly introduce the three commonly used features [11], i.e.,
MalScan, MaMaDroid, and APIGraph.

MalScan [8] emphasizes the importance of 21,986 critical
system API calls within function-level FCGs. It employs four
centrality metrics: Degree, Katz, Closeness, and Harmonic,
each offering unique insights into a node’s significance, and
two combined centrality metrics: Average and Concentrate, to
enhance the robustness of the extracted features.

MaMaDroid [9] employs a Markov chain, represented as a
transition matrix, to model call probabilities between abstract
states (e.g., family names) within function-level FCGs, effec-
tively characterizing app behavior. Consequently, it provides
two graph embedding modes: family-level with 11 states and
package-level with 446 states.
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APIGraph [10] utilizes a knowledge graph built upon
the official Android API documentation to group APIs with
similar functionalities or usage contexts through clustering.
Therefore, it not only abstracts the representation of FCGs but
also significantly reduces feature dimensions. For instance, it
can reduce the dimensions in MaMaDroid’s package mode.
B. ML-based Classifiers

After obtaining feature vectors via the graph embedding,
ML-based methods are employed for the binary classification
(i.e., malware or not). There are three commonly used types
of classifiers: deep learning (DL), instance-based learning, and
ensemble-based learning.

Deep learning. Multi-Layer Perceptron (MLP) is a basic
DL model widely used in AMD and adversarial attacks [30],
[31], [32], [22]. MLP learns nonlinear relationships between
input features and output class labels, and it outputs a con-
tinuous score from 0 to 1 that indicates the probability of a
sample being malicious, using a sigmoid activation function.

Instance-based learning. The KNN algorithm, a typical
instance-based method commonly used in AMD [33], [20],
[27], [32], [22], classifies data points by measuring distances
(typically using Euclidean [34] metrics) to the nearest training
samples. For each query, it selects the k closest samples (e.g.,
k = 1) and assigns a class based on the majority label among
these neighbors.

Ensemble-based learning. Random Forest and Ad-
aBoost [20], [9], [32], [22] effectively combine multiple learn-
ing algorithms to enhance both performance and robustness.
Random Forest, an ensemble of decision trees, consolidates
decisions through majority voting, thus mitigating the in-
fluence of any single, potentially biased model. AdaBoost
sequentially applies a series of weak learners to progressively
modified datasets, thereby incrementally improving the perfor-
mance of initially weak classifiers.

III. PROBLEM FORMULATION

Given a target AMD system represented by model M(·),
which classifies input APKs as either benign or malware, we
use G and E to represent the functions that extract FCG from
the APK and calculate the embedding of the FCG, respectively.
For a given malware m, the problem of AMD testing is to
calculate the FCG perturbations δ ∈ ∆ such that:
M(E(G(m))) ̸= M(E(G(m)+ δ))∧F (m) = F (m+ reverse(δ)) (1)

where ∆ represents all possible perturbations on the vast
space of FCG and F represents the functionalities of the
APK. The formulation sets forth three critical requirements
for calculating the perturbation: 1) the perturbation should be
reversible, allowing it to be mirrored at the smali code level
(i.e., m + reverse(δ)); 2) the perturbation does not affect
the functionality; and 3) the feature should be alerted suffi-
ciently to change the final prediction outcome. Addressing this
problem necessitates an effective optimization-based method
to search and apply these perturbations effectively.

IV. OVERVIEW OF FCGHUNTER

Figure 1 illustrates the main workflow of FCGHUNTER,
which includes identifying critical areas of the FCG and
optimizing perturbations within these areas using a GA.

Step 1: Initially, FCGHUNTER extracts the FCG from
the malware’s smali files. Given the challenge of navigating
the vast perturbation space within an FCG, we first identify
the critical area relevant to malware behaviors for effectively
reducing the vast perturbation space.

Step 2: FCGHUNTER employs a GA to optimize pertur-
bations in the identified critical area. For better exploration
in the perturbation space, we incorporate seven semantics-
preserving mutation operators on FCGs. Note that these mu-
tation operators can be translated to code-level mutation that
does not affect the original functionality. The optimization
aims to identify a sequence of operators that orderly perturbs
the FCG. Each individual in the GA population represents a
perturbation sequence, enabling the mutation of diverse FCGs.
• Step 2.1: However, directly applying crossover and mutation

at the level of perturbation operators to generate offspring
may lead to invalid perturbations. For example, an Add
Edge operator may become infeasible if its prerequisite node
has been removed by an earlier operator within the same
sequence. To address this issue, we perform a dependency
analysis and group dependent operations into sub-sequences,
ensuring the validity of the perturbation sequence.

• Steps 2.2 and 2.3: Crossover and mutation processes are
then performed at the level of sub-sequences to ensure the
dependency. Additionally, we propose a conflict-resolving
mechanism to address any conflicts within a sequence after
crossover and mutation.

• Step 2.4: The new individuals are evaluated to calculate
their fitness, selecting the best candidates for the next
iteration or stopping if optimal conditions are met in the
current iteration. To obtain more useful feedback, we design
model-specific and explanation-based fitness functions: a
multi-objective score for MLP classifiers, a surrogate model
approach for instance-based classifiers, and a constraint-
based solution for decision tree classifiers. If a perturbation
sequence successfully bypasses the target model when ap-
plied to the FCG, it is recorded as a failure test (i.e., an
adversarial sample). The sequence is finally applied to alter
the APK’s smali code, resulting in a malware that can be
misclassified as “benign”.

V. STEP 1: CRITICAL AREA IDENTIFICATION

To mitigate the issue of search space explosion, we propose
a specialized critical area identification method designed for
FCG-based embeddings. This method efficiently pinpoints
nodes and edges sensitive to perturbations that have notable
impacts on detector outcomes, thereby reducing the search
space during GA optimization.

An FCG is obtained through static analysis of the smali code
from the decompiled APK. Nodes in the FCG are categorized
as system nodes (SDK-defined functions, i.e., APIs) and
user nodes (user-defined functions). Malware often invokes
some sensitive system APIs to achieve malicious objectives
(e.g., accessing user contacts). In other words, malicious calls
typically occur from user nodes to system nodes. Therefore,
FCG-based AMD typically prioritizes the user function calls
that can invoke system APIs.
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Fig. 1: Overview of FCGHUNTER.

To locate user function calls that can invoke critical system
APIs (e.g., 21,986 sensitive APIs in MalScan and 11 family
states in MaMaDroid), we first identify the nodes representing
these critical system APIs in the graph, and then perform a
backward traversal from these nodes to identify preceding
nodes and edges, defining these connected regions as the
critical area. Note that the perturbation can only be performed
in the user functions. This area will be used for the subsequent
GA-based optimization process.

VI. STEP 2: PERTURBATION OPTIMIZATION

A. Basic Perturbation Operators

Given an FCG G = (V,E), the nodes V include both system
nodes Vs and user nodes Vu and an edge (v1, v2) ∈ E shows
the calling relationship between the two functions (with the
caller v1 and the callee v2). In an FCG, user nodes can act as
callers or callees, while system nodes can only serve as callees.
To modify the FCG, we integrate seven semantic-preserving
and code-level perturbation operators. The first four operators
are based on prior work [27], and we briefly introduce these
four operators:
• Add Node: This operator creates a new function i and selects

a user node a ∈ Vu to invoke i. Consequently, a new node i
and new edge (a, i) are added to G. The new function i is
designed to perform non-functional operations (e.g., basic
mathematical calculations) to ensure that it does not affect
the overall functionality.

• Add Edge: This operator establishes a new calling between
two existing functions, i ∈ Vu and f ∈ V , resulting in
a new edge (i, f) within G. To maintain original func-
tionality, strategies such as using try-catch blocks [22] and
unreachable conditions [27] ensure that the callee f is never
invoked, even though the calling is in the G.

• Rewire: This operator removes an existing edge (a, d) and
selects a user node h ∈ Vu as an intermediary, adding two
new edges: (a, h) and (h, d), where (a, h) is a’s invocation
to h, and (h, d) is h’s invocation to d. Special branches are

added to related functions to ensure the original invocations
of a and d remain unaffected.

• Remove Node: This operator removes a user node d ∈ Vu.
For maintain functionality, it identifies all original callers
{h|(h, d) ∈ E} and replaces the invocation statements
with d’s function body in the code. Correspondingly, the
edges {(h, d) ∈ E|h ∈ Vu} are removed, and new edges
{(h, v)|(h, d) ∈ E ∧ (d, v) ∈ E} are added to the G, where
h are the original callers of d and v are its callees.

However, these operators are very basic and insufficient
for modifying features, particularly those in robust models
(e.g., MalScan, which is sparser than others), often leading the
GA toward local optima. Therefore, we introduce three new
perturbation operators designed to substantially affect features:

• Add Sparse Nodes: This operator adds k nodes
v1, v2, . . . , vk to the G at once. To affect the area around
an existing node a ∈ Vu, edges (a, v1), (a, v2), . . . , (a, vk)
are added. This dilutes the centrality of other nodes and
redistributes the influence across the G.

• Add Dense Nodes: This operator first performs the Add
Sparse Nodes operator, then adds new edges {(vi, vj)|i <
j ∧ i, j ∈ [1, k]} to the G. This effectively creates a dense
subgraph, decreasing the relative importance of other paths
in the G, which is particularly impactful for path-based
analysis methods (e.g., Katz in MalScan).

• Add Long Edges: This operator adds m long edges between
two existing nodes a ∈ Vu and f ∈ Vs. For each long edge,
k new nodes v1, v2, . . . , vk are added sequentially, creating
the edges (a, v1), (v1, v2), . . . , (vk−1, vk), and finally an
edge (vk, f) to create a path between a and f . This increases
the number of paths leading to f in G, significantly boosting
its centrality in the network.

These three operators are based on the combinations of four
basic operators, thus still ensuring the functional integrity of
the APK. Differently, they introduce a greater magnitude of
perturbation for affecting the graph’s features by allowing for
the adjustment of parameters (e.g., k), which increases the



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, DECEMBER 2024 5

population’s diversity and helps avoid the risk of GA falling
into local optima (see results in §VII-D).

Translating FCG-Based Mutation to Code-Level Per-
turbation. It is essential to convert FCG-based mutations
into code-level modifications. These modifications should be
repackaged into an APK that retains the same functionalities
as the original. Specifically, the mutation in the FCG can be
mapped to corresponding changes in the code as follows1:
• Add Node: We introduce a new function (i.e., node i) in

the code that does not affect the original functionality (e.g.,
only printing or simple calculation like intj = j + 1, and
then returns j. The existing function (i.e., the user node a
in FCG) is modified to call this new function, but it does
not process or utilize any of the returned value, thereby
preserving the semantics of original function.

• Add Edge: We add an invocation from a user function a
to any other function b. To guarantee the functionality of
original function a, we can prevent the actual execution
of function b by introducing a condition parameter in b
and insert an if -else statement in its function body. When
the function a invokes b, condition is set to true, causing
b to return a value immediately, without executing the
original logic in b. For invocations from b’s original callers,
condition is set to false, allowing b to execute its original
logic, thereby preserving the original functions.

• Rewire: We replace an existing call from function a to
function c with an intermediary function b, so that the call
flow becomes a → b → c. To achieve this, we replace
a’s call to c with a call to b and add a call to c within b.
To ensure b’s original callers remain unaffected, we apply
a strategy similar to Add Edge, i.e., using a condition
parameter.

• Remove Node: We delete function a, which results in the
removal of all calling relationships involving a in the
original graph. To ensure that the program logic remains
unaffected, we copy a’s function body into all its caller
functions as an inline code implementation. Consequently,
in the final graph, direct connections are established between
a’s original callers and its callees.

• Add Sparse Nodes: We insert k functions simultaneously,
all of which are called by a single existing function a. To
maintain original program semantics, similar operations as
in the Add Node process are applied.

• Add Dense Nodes: We start by performing the same op-
eration as in Add Sparse Nodes. Then, for the newly
added k functions, we sequentially connect them with calls.
Throughout this process, we apply the same method as in
the Add Edge operation to ensure that program semantics
remain unchanged.

• Add Long Edges: Suppose we only insert a long edge, we
insert k intermediate functions between an existing function
a and function c, creating a nested call sequence. Essentially,
this establishes a chain of function calls, where a calls the
first intermediate function, which in turn calls the next, and
so on, until reaching c. These intermediate k functions are
newly added and serve solely as proxies, relaying the call

1More detailed illustration and code change examples can be found in [27].

Fig. 2: Crossover with/without Dependency Strategy.

from a to c without affecting any other existing functions
or altering the program’s original functionality.
Note that our approach mainly utilizes FCG-based muta-

tions instead of arbitrary direct code mutations (e.g., trans-
forming m = m ∗ 2 to m = m << 1). This is because we
focus on FCG-based AMDs that rely solely on the features of
the FCG. Arbitrary code mutations may not always impact the
FCG, and therefore, might not effectively influence robustness.

B. Step 2.1: Individual Representation

To initialize the GA’s population, a simple way is to ini-
tialize each individual as a sequence of perturbation operators
(o1, o2, . . . , on), where oi denotes one of the seven available
perturbation operators. The sequence is then applied to the
FCG G to generate a new FCG G′.

However, dependencies among operations often result in the
generation of invalid perturbation sequences during crossover
and mutation processes. For example, as shown in the top
of Figure 2, two sequences of individuals undergo crossover,
creating an infeasible sequence in the new individual. With-
out the AddNode(i) operator, the RemoveNode(i) operator
becomes infeasible as the node i does not exist in the G. This
issue can also arise during mutation, which greatly affects the
testing efficiency.

To address this issue, we propose a dependency-aware
representation to avoid operator conflicts during crossover
and mutation processes. The approach involves a preliminary
dependency analysis, grouping dependent operations into sub-
sequences. Then crossover and mutation are performed at the
level of sub-sequence.

To identify the dependent perturbations, we develop a
greedy-based method (see the detailed algorithm on the web-
site [35]) to check for dependencies between current operator
o and the existing sub-sequence Seq. If o shares dependencies
with any operators in Seq, it is added to that group; otherwise,
o is placed into a new sub-sequence, indicating no dependen-
cies with existing groups. Specifically, dependency checking
involves a use-def analysis [36] where the target nodes V ′

and edges E′ created by an operator o′ (the definition) are
examined against the usage in operation o. If o utilizes any
nodes or edges defined by o′, a dependency exists. Taken the
example in the bottom part of Figure 2, AddNode(i) defines
node i, and RemoveNode(i) uses node i, establishing a de-
pendency that necessitates grouping these operations together
as an atomic operation to ensure safe crossover and mutation.
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Note that, during the GA initialization, the initial sequence
(o1, o2, . . . , on) is guaranteed to be valid through the on-the-
fly check. Specifically, starting with the initial graph G, a
valid sub-sequence is randomly selected that can feasibly be
applied to the current state of G. After applying this sub-
sequence, the G is updated to G′. Subsequent operators are
then chosen based on this updated G′, ensuring each selected
operator remains feasible.

During GA iterations, the generation of individuals differs
significantly from this initial process. Instead of being gen-
erated on-the-fly, the entire sequences in individuals are first
constructed (with crossover and mutation) and then evaluated
later. It introduces the problem in maintaining the feasibility of
each operator within the sequence. Our dependency analysis is
designed to mitigate this challenge in crossover and mutation.

C. Step 2.2 and 2.3: Crossover and Mutation

Once dependency-aware individuals are established,
crossover and mutation processes are conducted at the
sub-sequence level. This approach is crucial for maintaining
the integrity of dependent operators within each individual.

Crossover. Sub-sequences that contain dependent operators
are randomly selected either to be retained or removed in
their entirety from the new individual during the crossover
process. This method helps prevent conflicts that could arise
from breaking apart interdependent operations (see step 2.2 in
Figure 1).

Mutation. As shown in step 2.3 of Figure 1, a sub-sequence
is randomly chosen, and one of three types of mutations
is applied: adding, removing, or updating. Adding involves
inserting a new operator at a randomly selected position within
a random sub-sequence, while removing deletes the operator at
that position. Updating involves replacing an existing operator
within the sub-sequence with another random operator.

Due to the possibility of disturbing the dependency of the
sequence, we then perform an on-the-fly dependency check
for operators. If a mutation renders subsequent operators
infeasible, such as by altering dependent nodes or edges, we
use a fix strategy. Problematic operators may be modified to fit
the new context (e.g., changing an edge or node) or removed
from the sequence. If the fix fails, the mutation is abandoned.

D. Step 2.4: Evaluation and Selection

After crossover and mutation in the GA, we obtain new
individuals as offspring. The fitness function is crucial for
selecting superior individuals from the offspring.

The typical fitness function in adversarial attacks uses the
model’s output to decrease the prediction probability of the
current class or increase that of the target class [37], [22].
However, relying solely on model output may not be effective
in the context of AMD attacks, especially due to the non-
differentiability of instance-based models and decision trees.
Specifically, it can lead to premature convergence (i.e., all
yield similar probability values), particularly if the model
consistently exhibits high confidence in classifying certain
samples as malicious.

1) Fitness for MLP Model: To overcome this challenge,
we introduce an additional guidance mechanism based on
feature interpretation, i.e., SHAP [28], a popular technique
for understanding feature importance. Features with positive
SHAP values positively contribute to the prediction, whereas
negative SHAP values indicate a negative contribution.

When the GA encounters local optima without observable
changes in model output, SHAP values allow us to monitor
feature-level changes, offering a finer-grained criterion for
selection. Specifically, if an individual increases the value of
features with negative contributions or decreases the value of
features with positive contributions, the prediction is closer to
failure, even if the probability output remains unchanged.

We define a multi-objective fitness function as follows:
fitness1(I) = M(E(G+ I))

fitness2(I) = −
n−1∑
i=0

SHAP (M,G, I)i · (E(G)i − E(G+ I)i)
(2)

where I is a given individual (i.e., perturbations), G is the
original FCG, E(G) is the embedding vector of the G with
length n, M(E(G+ I)) is the probability of the benign class
and SHAP (M,G, I) represents the SHAP values of features.

The fitness1 evaluates the model’s target class probabil-
ity. The fitness2 measures the potential for classification
changes, with SHAP (M,G, I)i indicating the direction (pos-
itive or negative) and E(G)i − E(G + I)i quantifying the
change in the i-th feature value due to perturbation I .

Dominance and Selection. We define a dominance relation
for selection based on the two scores. An individual x is said
to dominate another one y if and only if:

fitness1(x) > fitness1(y)∨
fitness1(x) == fitness1(y) ∧ fitness2(x) > fitness2(y)

(3)

We prioritize individuals with higher benign probability scores
or, when scores are equal, those that modify feature values in
the most beneficial direction.

2) Fitness for Instance-based Model: For instance-based
learning models (e.g. KNN), the main challenge is the lack
of gradient information. To approximate gradients for KNN,
we employ a surrogate model (e.g., an MLP model), which
facilitates the use of an interpretation-based approach (see
§VI-D1) alongside the model output.

For a KNN model M , where the adversarial challenge is to
manipulate the instance such that it resembles benign samples
more closely than malware samples, we train a surrogate
model M ′. This allows us to derive a dual-score fitness
function, as follows:

fitness1(I) =
1

x

k∑
i=1

(M(I)mi −M(I)bi )

fitness2(I) = −
n−1∑
i=0

SHAP (M ′, G, I)i · (E(G)i − E(G+ I)i)

(4)

where k represents the number of neighbors considered in
KNN. M(I)mi denotes the distance to the i-th nearest malware
sample, and M(I)bi denotes the distance to the i-th nearest
benign sample.

The fitness1 aims to increase the similarity to benign
neighbors and decrease the similarity to malware neighbors,
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effectively manipulating the prediction of the adversarial ex-
ample. The second fitness function fitness2, similar to that
used for target MLP models (§ VI-D1), utilizes SHAP values
estimated by the surrogate model M ′ to assess the impact of
perturbations on feature importance. The selection follows the
dominance relation defined in Equation 3.

3) Fitness for Ensemble Model: Ensemble models like
Random Forest determine output probabilities through a voting
process among numerous decision trees, each selecting a
subset of features for decision nodes (tree split nodes) [38].
Altering tree-based model outputs during testing is challeng-
ing, especially when only a few or none of the selected deci-
sion features are present in the target sample. Consequently,
changes in the overall model output (i.e., the decision of the
majority of trees) are unlikely if key decision features remain
unaffected.

To overcome this challenge, we directly examine the con-
straints associated with the decision features. By analyzing the
decision paths of all decision trees, we identify all possible
feature constraints that could result in a benign output, as our
goal is to have the target model misclassify the malware as
benign. We will eliminate the constraints that conflict with
those from other decision trees. Finally, our objective is to
maximize the number of constraints that the perturbed inputs
can satisfy, thereby increasing the likelihood of a benign
classification. The fitness function is defined as follows:

fitness(I) =
∑
c∈C

SAT (G,M, I, c) (5)

where C represents all the constraints that can potentially lead
to a benign output, and SAT determines whether a given
constraint c ∈ C is satisfied (1) or not (0). The optimization
process aims to generate perturbations that maximize the
number of satisfied constraints.

VII. EVALUATION

We aim to evaluate the effectiveness of FCGHUNTER by
answering the following research questions.
- RQ1: How effective is FCGHUNTER compared to others?
- RQ2: What is the performance of FCGHUNTER?
- RQ3: How does each component of FCGHUNTER impact

the overall effectiveness?

A. Experimental Setup

Dataset. Since the datasets used in previous studies are not
publicly available, we adhere to the very common methodolo-
gies described in prior works [27], [22] to collect datasets. The
collected dataset includes 12,000 samples with 6,000 benign
and 6,000 malware samples, divided into an 80:20 ratio for
training and testing the models. To ensure representativeness,
these collected samples are evenly distributed across six years,
from 2018 to 2023, with 1,000 benign and 1,000 malware
samples per year. Similar to previous works [27], [22], benign
samples are sourced from AndroZoo [39] (VirusTotal [40]
score of 0) and malware samples from VirusShare [41] (Virus-
Total score above 4). To assess robustness, we additionally
collected 120 true malware samples from the same six-year

period (20 samples per year) as test seeds. These seed samples
are distinct from the initial set of 6,000 malware samples.
More details about dataset are available on our website [35].
Target Models. We invested significant efforts to include
a wide range of models and features, ensuring a system-
atic and comprehensive evaluation of the testing methods.
Specifically, we trained 40 (8×5) ML-based AMD models
built upon 8 types of features, including the Degree, Katz,
Harmonic, Closeness, Average, and Concentrate features from
MalScan [8], the family level from MaMaDroid [9], and
the package level from APIGraph, alongside 5 ML-based
classifiers: MLP [42], KNN-1 [43], KNN-3, Random Forest
(RF) [44], and AdaBoost (AB) [45]. The performance of target
models can be found on our website [35].
Baselines. We selected three baselines for comparison: a
random testing approach and two state-of-the-art adversarial
attack methods [27], [22] for AMD. Due to the limited appli-
cability of these state-of-the-art baselines or the unavailability
of the code, we extended or re-implemented them based on
the descriptions provided in their respective papers.

Specifically, for BagAmmo [22], which has not released its
code, we replicated its algorithm based on the descriptions
provided in their paper. To ensure a fair comparison with
FCGHUNTER, we configured BagAmmo in a white-box set-
ting, where feedback is obtained directly from the target model
alongside a surrogate model. In the configuration referred
to as BagAmmo-G, we used a GCN surrogate model (the
original model in this baseline) trained on ground truth data.
Additionally, we experimented with using an MLP (the same
surrogate model as in our method) in place of their original
GCN, designated as BagAmmo-M. For HRAT [27], although
the code is available [46], it primarily addresses attacks
utilizing Degree and Katz centrality metrics for MalScan on
the KNN-1 model. We expanded its application to encompass
a wider array of target scenarios. However, HRAT is lim-
ited by GPU memory constraints and the need for classifier
differentiability [47], [48], which restricts its use with tree-
based models and memory-intensive features such as Average
and Concentrate. Regarding the Random attack, it randomly
generates perturbation operators and evaluates their effects
when applied to the FCG. Further details about the baselines,
including the source code, are available on our website [35]
and GitHub [29].
Metrics. We employed three widely used metrics: Attack
Success Rates (ASR), Perturbation Rates (PR) and Average
Number of Survival Genes per Generation (ASGG). ASR
measures the effectiveness of attack methods. PR quantifies the
relative increase in graph components (i.e., nodes and edges)
of adversarial samples compared with the original malware.
Considering the potential conflicts that can result in certain
infeasible perturbations (i.e., genes in the individuals), ASGG
is designed to assess the count of genes that remain feasible
(referred to as the ‘survival genes’) following crossover and
mutation in each generation.

ASR =
Na

Nm
, PR =

1

Na

Na∑
i=1

δi, ASGG =
1

G

G∑
g=1

Ng (6)

where Na is the number of malware that can successfully
bypass the AMDs, Nm is the total number of seed malware,
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TABLE II: Attack Success Rates of FCGHUNTER and Baselines.
MalScan (Degree) MalScan (Katz) MalScan (Harmonic) MalScan (Closeness)

MLP KNN-1 KNN-3 RF AB MLP KNN-1 KNN-3 RF AB MLP KNN-1 KNN-3 RF AB MLP KNN-1 KNN-3 RF AB
Ours 0.82 0.73 0.76 0.78 1.00 0.77 0.68 0.69 0.94 0.96 0.82 0.90 0.83 1.00 1.00 0.88 0.97 0.84 0.91 1.00

HRAT 0.14 0.18 0.08 - - 0.01 0.03 0.01 - - 0.01 0.03 0.01 - - 0.01 0.12 0.18 - -
BagAmmo-M 0.58 0.57 0.50 0.02 0.07 0.24 0.23 0.16 0.01 0.03 0.70 0.66 0.61 0.37 0.09 0.77 0.67 0.59 0.13 0.13
BagAmmo-G 0.65 0.61 0.28 0.03 0.06 0.43 0.22 0.05 0.00 0.03 0.73 0.67 0.58 0.33 0.08 0.74 0.64 0.56 0.05 0.08

Random 0.59 0.62 0.56 0.19 0.03 0.02 0.08 0.08 0.11 0.04 0.59 0.67 0.57 0.08 0.03 0.63 0.58 0.58 0.13 0.04
MalScan (Average) MalScan (Concentrate) Mamadroid APIGraph

MLP KNN-1 KNN-3 RF AB MLP KNN-1 KNN-3 RF AB MLP KNN-1 KNN-3 RF AB MLP KNN-1 KNN-3 RF AB
Ours 0.90 0.92 0.83 0.91 1.00 0.87 0.91 0.78 0.94 0.96 0.96 0.99 0.93 1.00 0.98 0.83 0.84 0.84 0.78 0.72

HRAT - - - - - - - - - - 0.03 0.08 0.03 - - 0.05 0.09 0.04 - -
BagAmmo-M 0.75 0.63 0.58 0.24 0.18 0.72 0.66 0.57 0.17 0.19 0.58 0.76 0.71 0.40 0.13 0.81 0.79 0.78 0.07 0.43
BagAmmo-G 0.72 0.62 0.57 0.05 0.11 0.73 0.60 0.55 0.23 0.06 0.80 0.65 0.53 0.33 0.33 0.79 0.74 0.70 0.16 0.40

Random 0.61 0.62 0.58 0.08 0.03 0.66 0.60 0.58 0.20 0.03 0.09 0.12 0.03 0.13 0.14 0.47 0.14 0.03 0.05 0.09

δi =
Padd,i

Pori,i
is the perturbation ratio for the i-th successful

sample, reflecting the proportion of added nodes and edges,
G is the total number of generations and Ng is the total number
of surviving genes in the g-th generation.

B. RQ1: Effectiveness

Setup. We initialize each population with 100 individuals
for 40 generations, with each individual initializing with 300
perturbation operations. This configuration follows established
precedents in the literature. According to BagAmmo, the best
attack success rate is achieved at 40 generations. Meanwhile,
HRAT identifies 300 as the optimal number of perturbations.
To enhance HRAT’s performance and ensure fair comparisons,
we increased the number of random initializations in HRAT
from 16 to 100. The configuration for the Random attack
remains consistent with the baselines previously described,
involving 300 perturbations per iteration and a maximum
number of 100 iterations.
Results & Analysis. As presented in Table II, the results
demonstrate that our attack method outperforms the baselines
significantly, the results demonstrate that our attack method
significantly outperforms the baselines, achieving an average
ASR of 87.9%, which is at least 44.7% higher than BagAmmo-
M (43.2%), BagAmmo-G (41.2%), Random Attack (28.8%),
and HRAT (7.8%).

(1) Baseline Analysis: We found that HRAT generally
performs poorly across most models, often yielding an ASR
close to zero, especially in MalScan (Katz, Harmonic), Ma-
MaDroid, and APIGraph, where it is ineffective. Furthermore,
the results of MalScan (Degree and Katz) with KNN-1 show
a significant discrepancy compared to the claims in their
paper, with similar doubts raised in this survey [49] and
its results.2 Our analysis indicates that a primary limitation
of HRAT lies in its RL reward mechanism, which relies
on coarse model scores and suffers from inaccuracies in
gradient estimation on the adjacency matrix. This lack of
precise, granular feedback hinders the model’s ability to fine-
tune perturbations across complex feature types and target
models. BagAmmo-M and BagAmmo-G perform well with
MaMaDroid and APIGraph feature types across MLP, KNN-
1, and KNN-3 models, especially with MLP. However, their
effectiveness drops significantly on tree-based models and
MalScan, where they perform comparably to Random Attack.
This reduction stems primarily from reliance on a single
mutation operator and feedback based solely on coarse-grained

2https://github.com/reproducibility-sec/reproducibility/blob/main/sheet1.csv

TABLE III: Perturbation Rates of Successful Attack Samples.

MLP KNN-1 KNN-3 RF AB
MalScan (Degree) 0.04 2.23 0.04 5.17 2.29
MalScan (Katz) 0.17 2.88 0.19 4.68 >10

MalScan (Harmonic) <0.01 0.81 <0.01 0.02 0.01
MalScan (Closeness) <0.01 0.52 <0.01 0.68 1.58
MalScan (Average) <0.01 <0.01 <0.01 5.27 8.07

MalScan (Concentrate) <0.01 1.70 <0.01 >10 >10
Mamadroid 0.45 0.45 0.14 >10 4.85
APIGraph 1.31 0.26 0.14 >10 3.07

scores from surrogate and target models. Although it claims
GCN’s strengths with graph-structured data [22], adapting to
tree-based models in AMD is challenging, as these models
typically lack the relational structure that GCNs leverage.
Please note that we observed a discrepancy between our
evaluation results and those reported in the original paper.
We have made extensive efforts to investigate this issue and
confirmed our results, as discussed in Section IX and the
explanations on our website [35].

Finding #1: Existing methods are notably ineffective, particularly
on MalScan and ensemble models, with results that are close to
random testing.

(2) Robustness Analysis: There are noticeable variations in
ASR across different feature types. From the perspective of
features, MalScan (Closeness and Average) and MaMaDroid
consistently exhibit high ASRs, typically exceeding 90%
across most classifiers, suggesting these features may be more
susceptible to attacks. Conversely, features like MalScan (De-
gree and Katz) and APIGraph demonstrate greater robustness,
with ASRs often below 80%, likely due to the complexity of
perturbing these features effectively; While ensemble models
(i.e., RF and AB) generally show more robustness than single
models (i..e, MLP and KNNs), our method still achieves high
ASRs on MalScan (Harmonic) and MalScan (Closeness) fea-
tures, proving its effectiveness even against complex models.
However, in ensemble models, our method achieves relatively
lower ASRs, notably less than 80% on APIGraph, reflecting
their resilience against attacks.

Finding #2: MalScan (Closeness and Average) and MaMaDroid
are less robust, while MalScan (Degree and Katz) and APIGraph
are more robust; Ensemble models (i.e., RF and AB) generally
show greater robustness.

Answer to RQ1: FCGHUNTER, with an average ASR of 87.9%,
outperforms baselines by at least 44.7% in white-box attacks,
achieving higher ASR across diverse models. The results highlight
the persistent vulnerability of current FCG-based ML models to
adversarial attacks, emphasizing the need for robustness testing.
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C. RQ2: Performance

1) Perturbation Rates across Target Models:
Setup. To measure the perturbation degree that FCGHUNTER
applies to original samples, we calculated the average PR
across all adversarial samples for each target model.
Results & Analysis. As shown in Table III, the successful
adversarial samples on MLP and KNNs-based models exhibit
relatively low PR, while higher PR on ensemble models.
Specifically, MalScan (Harmonic, Closeness, Average, and
Concentrate) models achieved PRs below 0.01 with both MLP
and KNN-3. However, PRs for KNNs are slightly higher
compared to MLP, suggesting MLP’s less robustness. PRs for
tree-based models (i.e., RF and AB) are notably higher, except
for MalScan (Harmonic), where they are lower. Instances of
PRs exceeding 10 are observed, typically due to exceptionally
large samples. For instance, in MalScan (Katz) under AB, 50%
of the samples are below 3, and 73% are below 10.

Finding #3: Single models (i.e., MLP and KNNs) are gener-
ally easier to bypass, requiring fewer perturbations. In contrast,
ensemble models (i.e., RF and AB) combine predictions from
multiple models, making them more robust and necessitating
greater perturbations to compromise.

2) Survival Genes during GA Iterations:
Setup. To assess the usefulness of the dependency-aware
strategy (see § VI-B) in reducing mutation conflicts, we calcu-
lated the ASGG after 40 iterations. Specifically, we randomly
selected 20 malware and conducted experiments with and
without the dependency analysis for comparative analysis.
Results & Analysis. The green and orange lines in Fig-
ure 3 represent FCGHUNTER’s ASGG with and without
the dependency-aware strategy, respectively. Throughout the
iterations, the green line consistently maintains a higher ASGG
compared to the orange line, with the difference doubling
after the fifth generation. The orange line shows a noticeable
bump between generations 30 and 35. Our analysis indi-
cates that this increase can be attributed to the probabilistic
introduction of a significant number of new genes by the
mutation, leading to pronounced fluctuations. Following this
bump, the ASGG quickly declines due to the absence of the
dependency-aware strategy capable of preemptively resolving
gene conflicts. In contrast, the green line remains more stable
throughout the generations. This stability suggests that the
strategy helps preserve the number of viable genes within the
population, which could prevent premature convergence of the
GA optimization. Stability in the gene pool is crucial because
significant diminishment in genetic variety can impede the
GA’s ability to generate new and potentially more effective
individuals [50].

Finding #4: The dependency-aware strategy protects critical
genes from mutation conflicts, thereby preserving genetic diversity
and preventing premature convergence by maintaining a sufficient
number of viable perturbations.

3) Runtime Performance Compared with Others:
Setup. To assess the performance of the testing, we monitored
the number of adversarial samples generated within 500 min-
utes on MalScan (Degree) and KNN-1 models. These models

Fig. 3: Impact of
Dependency-aware

Strategy.

Fig. 4: Runtime Efficiency
Comparison with Other

State-of-the-Art Methods.

and features were chosen because the baselines (e.g., HRAT)
achieved the highest ASR with them.
Results & Analysis. Figure 4 demonstrates that FCGHUNTER
(orange line) detects more successful attacks than both
BagAmmo (green line) (i.e., BagAmmo-G) and HRAT (blue
line). HRAT’s runtime efficiency is notably low because each
perturbation requires the computation of gradient information
from the FCG and target model. Although FCGHUNTER and
BagAmmo efficiently completed most attacks within a short
period, exhibiting exceptional runtime efficiency, BagAmmo’s
progress stalls after approximately 110 minutes, indicating
premature convergence, likely due to the limited variety in
its single operators (i.e., only involve adding edges) and the
lack of directional feedback from target models. In contrast,
the persistent growth of FCGHUNTER highlights its ability to
continuously explore the huge search space and identify viable
solutions.

For further analysis, we also calculated the average time
cost per iteration of mutant generation, with the following
results: 0.34s for BagAmmo, 18.72s for HRAT, and 0.67s
for FCGHUNTER. HRAT takes significantly longer due to
the heavy gradient calculation. Compared to single-objective
BagAmmo, the selection process in our method is slightly
slower. However, our dependency-aware mutation and multi-
objective optimization are well worth it, as they ultimately
lead to a significant reduction in the overall time cost required
to detect adversarial exampless, as shown in Figure 4.

Answer to RQ2: FCGHUNTER is efficient in generating failure
cases (i.e., more failures within the same time), adding fewer
perturbations (i.e., lower PR), and maintaining a higher number
of valid perturbations (i.e., higher ASGG).

D. RQ3: Ablation Studies

Setup. To assess the effectiveness of key components in
FCGHUNTER, we quantified the reduction in ASR across 40
target models upon the removal of the specific component.
Specifically, key components include critical area identifi-
cation (§ V) as Cri, dependency-aware strategy (§ VI-B)
as Dep, and fitness function (§ VI-D). Additionally, three
new perturbation operators (§ VI-A), including Add Sparse
Nodes (ASN ), Add Dense Nodes (ADN ), and Add Long
Edges (ALE), are used mainly for ensemble models (i.e.,
RF and AB). The fitness function for MLP models incor-
porates interpretation-based scores (Int), whereas, for KNN
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TABLE IV: Ablation Studies on the Key Components of FCGHUNTER.

MLP KNN-1 KNN-3 Random Forest AdaBoost
-Cri -Dep -Int -Cri -Dep -Int -Sur -Cri -Dep -Int -Sur -ASN -ADN -ALE -ASN -ADN -ALE

MalScan (Degree) -0.11 -0.08 -0.12 -0.12 -0.03 -0.05 -0.03 -0.15 -0.09 -0.14 -0.16 -0.01 0.00 -0.19 -0.19 0.02 -0.56
MalScan (Katz) -0.29 -0.60 -0.56 -0.23 -0.17 -0.11 -0.11 -0.23 -0.50 -0.12 -0.19 -0.05 -0.13 -0.38 -0.01 -0.28 -0.48

MalScan (Harmonic) -0.10 -0.08 -0.07 -0.18 -0.17 -0.18 -0.13 -0.18 -0.13 -0.15 -0.25 -0.01 0.00 -0.41 0.00 -0.01 -0.60
MalScan (Closeness) -0.16 -0.21 -0.08 -0.18 -0.18 -0.16 -0.21 -0.17 -0.13 -0.13 -0.15 -0.01 -0.02 -0.35 -0.06 -0.03 -0.25
MalScan (Average) -0.20 -0.15 -0.12 -0.18 -0.18 -0.18 -0.28 -0.20 -0.18 -0.18 -0.21 -0.03 -0.02 -0.23 0.00 -0.13 -0.18

MalScan (Concentrate) -0.18 -0.15 -0.11 -0.23 -0.27 -0.23 -0.28 -0.14 -0.11 -0.09 -0.16 -0.06 -0.14 -0.61 -0.05 -0.50 -0.58
MaMaDroid -0.18 -0.20 -0.16 -0.18 -0.22 -0.19 -0.20 -0.14 -0.22 -0.18 -0.16 0.00 0.00 -0.75 0.00 0.00 -0.78
APIGraph -0.04 -0.13 -0.04 -0.05 -0.05 -0.03 -0.03 -0.01 -0.18 -0.03 -0.04 0.00 0.00 -0.68 0.00 0.00 -0.72

models, it includes additional scores derived from a surrogate
model(Sur). To summarize, the evaluated components for
MLP and KNNs include Cri, Dep, and Int, with Sur ad-
ditionally assessed for KNNs. For ensemble models, we focus
on the impact of ASN , ADN , and ALE. The experimental
parameters are consistent with those in RQ1 (§ VII-B).

Results & Analysis. Table IV displays the ASR discrepancies
resulting from the removal of individual components, com-
pared to the complete configuration in Table II.

First, the removal of certain components results in notable
reductions in ASR, emphasizing their critical role in the
effectiveness of FCGHUNTER. For instance, removing Cri
and Dep significantly affects the ASR in MalScan (Katz)
models more than in other models. The removal of Cri
always results in the largest drops, and under the KNN-1 and
KNN-3 configurations, the removal of Dep leads to decreases
as high as 0.60 and 0.50, respectively. Due to its inherent
robustness, MalScan (Katz) requires substantial perturbations
(Table III) and effective dependency management to maintain
a viable number of genes in the population (Figure. 3),
which prevents premature convergence of the GA, as noted
in § VII-C2. Moreover, the Sur is critical for KNN models,
where its removal leads to significant ASR reductions to other
components. This suggests that KNN classifiers may rely more
heavily on specific interpretations or feature relations that the
surrogate model helps to exploit.

Second, certain features and models demonstrate minimal
impact from the removal of components. For instance, API-
Graph shows notably smaller ASR declines, all below 0.04,
when Cri, Int, and Sur are removed. This suggests that
APIGraph has inherent robustness, as noted in § VII-B. Its
robustness can be attributed to high-level feature abstraction,
making it less sensitive to perturbations affecting fewer nodes
or less critical connections within the FCG’s structure.

Third, the impact of new perturbation operators varies
significantly across ensemble models. The removal of ALE
demonstrates substantial ASR drops, especially in the Ma-
MaDroid and APIGraph models. This is primarily because
these models are based on features constructed from the call
relationships between functions, making them highly sensitive
to substantial changes in edges, particularly those directed
toward system functions. Although the node-adding based
operators, ASN and ADN , aim to reduce the centrality of
malicious nodes in MalScan graphs, ALE more significantly
disrupts node centrality by altering graph structures, i.e, adding
edges that modify path lengths and node connectivity (§VI-A).
This change impacts the graph’s overall centrality more dras-
tically than simply adjusting nodes.

Fig. 5: Detection Score Difference Between Malware and
Corresponding Adversarial Samples.

Finding #5: Edge-based perturbations tend to be more effective
than node-based ones, impacting the most robust models by
altering the graph’s features significantly.

Answer to RQ3: Each component in FCGHUNTER plays a dis-
tinct role in enhancing the ASR for different models. Specifically,
Cri and Dep significantly boost ASR in MalScan (Katz), while
Sur is crucial for KNN models. In ensemble models, ALE proves
to be highly influential.

VIII. DISCUSSIONS

(1) Evaluation on Real-world AMD. To explore the
robustness issues present in real-world models, we selected
VirusTotal [40], a leading platform for malware analysis, as
our target [22], [23], [32]. We randomly selected 10 adversarial
samples from each scenario, with original detection scores
ranging from 4 to 45, and compared their detection scores
before and after our attack. Figure 5 shows the change in
detection scores for the original malware and their adversarial
counterparts as analyzed by VirusTotal. Notably, the detection
scores (which indicate the level of maliciousness) dropped
significantly (by over 28%), suggesting potential weak ro-
bustness in the real-world AMD systems of several vendors.
This drop might be due to these systems relying on detection
algorithms that have robustness issues. Further analysis shows
that the impact of adversarial samples varies across different
classifiers. KNN-3 experiences the greatest impact (average
50%) from a model perspective, while APIGraph has the
greatest impact (average 51%) from a feature perspective. This
suggests a preference for relatively robust features and models
in real-world scenarios, but they still cannot withstand strong
adversarial attacks (e.g., FCGHUNTER). To further understand
why FCGHUNTER performs effectively in real-world black-
box systems (i.e., VirusTotal), we analyzed the transferability
across different features and models. For more detailed results,
please refer to our website [35].
(2) Robustness Enhancement via Retraining. The experi-
mental results reinforce the need for continued enhancements
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in AMD robustness. From the feature perspective, integrating
robust features such as MalScan (Katz) and APIGraph to
comprehensively represent malware behaviors proves to be a
promising approach. This method, akin to merging static and
dynamic features, leverages the distinct advantages of each to
provide a complete depiction of potential threats [51]. From
the model perspective, retraining has been a popular strategy to
boost ML model robustness [24], [25], [52]. In supplementary
experiments, we retrained models with adversarial examples
generated by FCGHUNTER, which could significantly de-
crease the ASR (see detailed results on the website [35]).
Additionally, our studies suggest that ensemble models serve
as more robust classifiers in FCG-based AMD environments.
(3) High-efficiency Strategies for Ensemble Models. The
perturbation rates for ensemble models were observably high
(§VII-B), partially due to a limited number of modifiable
nodes (i.e., user function calls) in certain malware. This led
us to propose the new node-based mutation operators (i.e.,
ASN and ADN). However, we found that their effectiveness
was still limited to specific scenarios. These results indicate
that the mutation operators could still be improved, especially
by developing edge-based perturbation variants to potentially
increase effectiveness on ensemble models, as demonstrated by
the success of edge-based ALE in §VII-D. Moreover, we can
also attempt to develop some interpretation-based feedback
at the operator level, which is capable of identifying more
influential and less frequently altered operations.

IX. THREATS TO VALIDITY

The selection of the dataset, including the training dataset
and the seed malware, poses a threat to validity. We address
this threat by adhering to established data selection protocols
and collecting a diverse range of APKs from 2018 to 2023.
Similarly, to ensure the validity and representativeness of the
seed malware, we randomly selected these seeds from the past
six years and varied their sizes to maintain diversity. To the
best of our knowledge, our dataset spans a recent six-year
range, providing broader coverage compared to the baselines.

The selection of models presents another potential threat to
validity, as the results may vary in different AMD models.
To mitigate it, we have endeavored to include a broad range
of categories, incorporating features with various granularity
from the FCG and multiple machine learning models with dis-
tinct decision mechanisms. To the best of our knowledge, our
evaluations are the most comprehensive concerning various
FCG-based features and models.

The replication and extension of baselines pose another
threat to validity. Notably, significant discrepancies persist be-
tween our results and those reported in the original papers. Ac-
tually, the reproducibility issues have also been acknowledged
by existing works [49]. We addressed this threat carefully by:
1) meticulously reviewing the code and consulting with their
authors to clarify ambiguous parts; 2) engaging in discussions
with the authors about the discrepancies, attributing potential
causes to differences in datasets, the APK extraction tools used
(e.g., Androguard [53] versus FlowDroid [54]), and the models
evaluated; 3) releasing our code, models, and seed malware to
facilitate verification and replication of our findings [35].

Finally, employing the interpretation-based method (i.e.,
SHAP) for interpreting model decisions could pose a threat
to validity. SHAP values may not always accurately reflect
the influence of different inputs in models. Additionally, alter-
native interpretation methods could be considered. To mitigate
this, we did not rely solely on interpretation scores; instead,
the model’s output served as the primary and dominant feed-
back. Our extensive evaluation also demonstrates the overall
usefulness of this approach. In future work, we plan to explore
the impact of various interpretation methods on FCGHUNTER.

X. RELATED WORK

ML-based Android Malware Detection. ML techniques
have gained significant traction in the domain of Android
malware detection, leveraging diverse feature extraction and
embedding methodologies, such as string-based [4], [5],
image-based [6], [7], graph-based [8], [9], [10]. For instance,
Drebin [4] utilizes static strings such as permissions and API
calls extracted from APKs, employing Support Vector Ma-
chines (SVM) for classification. Addressing string obfuscation,
RevealDroid [5] resorts to byte-code extraction for consistent
classification with Drebin. However, string/image-based ap-
proaches often lack semantic information, prompting a shift to-
wards more sophisticated techniques like Function Call Graph
(FCG) representations, exemplified by MalScan [8]. MalScan
represents FCG from the smali code as a social network and
employs k-nearest neighbors (KNN) as the classifier, offering
improved robustness and efficacy.

Adversarial Attacks for Robustness Evaluation. Related
works [55], [20], [56], [27], [32], [22] have primarily focused
on various techniques for generating adversarial examples
to evaluate the robustness of malware detectors. Abundant
adversarial attacks on string-based detectors are relatively
simple and straightforward features using one-hot encoding,
like Drebin [4]. By using gradient-based methods [55], [20],
[57] or interpretability-assisted techniques [58], [23], features
can be directly modified and mapped back to the code, leading
to high attack success rates. However, adversarial attacks on
graph-based detectors face the problem-feature reverse chal-
lenge. This work [20] focused on the feature level but struggled
to maintain the functional integrity of the APK. Two recent
studies have shifted towards exploring code-level attacks,
employing heuristic search algorithms [27], [22]. Zhao et
al. [27] exploited gradient information to estimate perturbation
locations and directions. However, discrete gradient estimation
errors on binary graphs may cause reinforcement learning to
proceed in the wrong direction. Li et al. [22] utilized single
perturbations and scores from a surrogate model to guide
the attack process. However, it easily falls into local optima
due to the vast perturbation space created by sparse features
like MalScan, resulting from a lack of precise feedback and
diversified operators. Other researchers are exploring more
efficient adversarial attack techniques to improve robustness
evaluations of AMD methods, such as using interpretation-
assisted feedback [59], [60], [23], [61]. For example, Amich et
al. [59] leverages SHAP to guide adversarial example crafting
against ML models, seeking meaningful perturbations to aid in
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assessing the system’s robustness. Sun et al.[23] utilize SHAP
to guide attacks on string-based detectors, identifying critical
API permissions and inserting uncalled functions. Similarly,
Yu et al.[61] propose step-level interpretability feedback for
deep reinforcement learning in security, aiding in identifying
critical steps.

Compared to these studies, which focus on proposing
adversarial attacks, we concentrate on testing the robust-
ness of graph-based malware detectors through adversarial
graph/sample generation and providing findings to enhance
robustness. Additionally, our method does not require the
model to be differentiable and significantly broadens the range
of target features and models.

XI. CONCLUSION

In this paper, we introduce a method to evaluate the
robustness of FCG-based AMD systems. This method in-
corporates dependency-aware mutation strategies and utilizes
innovative interpretation-based fitness functions to effectively
guide perturbation optimization within an FCG. Our exper-
iments demonstrate superior performance across diverse 40
scenarios, and achieve an average attack success rate of 87.9%,
significantly outperforming baseline methods. Furthermore,
our findings offer valuable insights for enhancing model
robustness in future developments, and we also provide an
in-depth discussion on the benefits of adversarial retraining.
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