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Abstract
The development of machine learning techniques for discovering
software vulnerabilities relies fundamentally on the availability of
appropriate datasets. The ideal dataset consists of a large and di-
verse collection of real-world vulnerabilities, paired so as to contain
both vulnerable and patched versions of each program. Naturally,
collecting such datasets is a laborious and time-consuming task.
Within the specific domain of vulnerability discovery in binary
code, previous datasets are either publicly unavailable, lack seman-
tic diversity, involve artificially introduced vulnerabilities, or were
collected using static analyzers, thereby themselves containing
incorrectly labeled example programs.

In this paper, we describe a new publicly available dataset which
we dubbed BinPool, containing numerous samples of vulnerable
versions of Debian packages across the years. The dataset was
automatically curated, and contains both vulnerable and patched
versions of each program, compiled at four different optimization
levels. Overall, the dataset covers 603 distinct CVEs across 89 CWE
classes, 162 Debian packages, and contains 6144 binaries. We argue
that this dataset is suitable for evaluating a range of security anal-
ysis tools, including for vulnerability discovery, binary function
similarity, and plagiarism detection.
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1 Introduction
Developing and evaluating software vulnerability detection tools—
particularly those that rely on machine learning [1, 2, 4, 5, 10, 11, 19,
23, 25]—fundamentally depends on the existence of robust, labeled
datasets of known vulnerabilities. Assembling these datasets is
often among the hardest parts of building these systems.

We argue that there are severe limitations with existing datasets:
First, well-annotated and easy-to-compile datasets such as Juliet [14]
are limited to small programs and artificially introduced bugs. The
lack of diverse, real-world code examples leads to fears of overfitting
and limited generalization in trained models. Next, many previous
papers do not make their data publicly available [5, 8, 9, 22]. In ad-
dition, many publicly available datasets focus on binary similarity
detection, rather than on vulnerability finding [23]. Finally, some
datasets such as those assembled by Pereira et al. [18] rely on warn-
ings reported by program analysis tools such as Flawfinder [24] and
Cppcheck [13]. Naturally, this results in possibly tainted ground
truth, leading to fears of incorrectly trained classifiers.

In contrast, the ideal dataset contains a large, diverse collection
of programs with different and well-annotated vulnerability types.
These programs should represent examples of real-world vulnera-
bilities, and have a matched instances of vulnerable and patched
code. Furthermore, especially for vulnerability discovery at binary
level, it is important to be able to compile code into executable files.

In this paper, we report on a new dataset of binaries with histori-
cal real-world vulnerabilities named BinPool. This is a collection of
high-impact vulnerabilities obtained by crawling and collating the
National Vulnerability Database (NVD) [17] with data from the De-
bian security tracker [3] and the archive of Debian snapshots [20].
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We have already used an early version of this dataset to evaluate
BinHunter [2], a graph neural network-based binary vulnerability
detection system [2]. Going forward, we believe that this dataset
will be very useful for practical security research.

At a high level, we assembled the dataset as follows: We mapped
each CVE in the NVD database to its associated CWE, Debian
packages that fix the vulnerability, and the specific functions and
lines that were edited as part of the patch. We then wrote scripts to
automatically build these Debian packages. By using the Debian
package maintenance tool quilt to selectively apply and withhold
the patch from the source code, we obtained vulnerable and patched
versions of each binary. We then repeated this process at four
different optimization levels. The entire process is highly automated,
and currently contains 603 distinct CVEs spanning 89 different CWE
categories, across 162 Debian packages, and with 6144 binaries in
total. Overall, the dataset spans 910 source functions and 7280
binary functions respectively.

We note that BinPool can be used for both vulnerability dis-
covery and binary function similarity detection. In the case of
vulnerability discovery, it is applicable to both source and binary
code. It includes a range of vulnerabilities, from highly specific
categories such as CWE-122 (Stack-based buffer overflow) to wider
categories such as CWE-119 (Improper restriction of operations
with the bounds of a memory buffer). Notably, the dataset contains
detailed information about the precise location of each vulnerabil-
ity, including files, functions, and lines affected by the patch, both
at the source and binary levels. The automation scripts and links to
the dataset may found at https://github.com/SimaArasteh/binpool.

The rest of this paper is organized as follows: We describe the
BinPool collection process in Section 2, the overall structure of
the dataset in Section 3, and its potential applications in Section 4
respectively. In Sections 5 and 6 we describe the related work and
discuss the limitations of our approach.

2 Dataset Construction
We show the workflow of the BinPool curation process in Fig-
ure 1. Its construction is enabled by three resources provided by
the Debian project: First, Debian packages are structured with
control files, metadata and content, and are maintained by the
community through updates and security patches. Second, Debian
Snapshots [20] contains an archive of historical package versions,
allowing access to specific releases over time. Finally, the Debian Se-
curity Tracker [3] monitors vulnerabilities such as CVEs, enabling
users and maintainers to stay informed about security issues. We
use the beautifulsoup library to crawl data from these resources.

2.1 Vulnerability Data Collection
The Debian Security Tracker [3] provides a frequently updated
JSON file with CVE-IDs and version information about the fixed
packages.1 We gather the relevant version numbers and recover
the corresponding CWE categories by consulting the NVD data-
base [17]. We then use the Debian Snapshots archive to gather a
link to the package source code. We record this information in a
publicly available Google Spreadsheet.

1https://security-tracker.debian.org/tracker/data/json

2.2 Package Build Process
Next, Debian offers an automatic system for building packages using
the build-dep and dpkg-buildpackage tools. The build-dep tool
installs the necessary dependencies and the dpkg-buildpackage
tool automatically compiles Debian packages from their source
code. Our automation system leverages these Debian tools to fully
streamline the package building process.

We retrieve source code of the fixed versions of each pack-
age from Debian Snapshots. Each package includes a directory,
debian/patches, which contains a sequential list of patches to be
applied to the source code. We use the quilt tool to selectively
apply or remove the specific patches that fixed the vulnerability.
Finally, we build each variant (buggy / patched) of the package at
four different optimization levels, including with debug symbols.

2.3 Metadata Extraction
The last conceptual step is to extract metadata information from
these packages. This information includes files, functions, and
source and binary locations that were modified by the patch.

The package build process results in a number of deb files being
produced as output. Informally, deb files are used to distribute
and install Debian packages. We extract and search through these
packages to locate the individual binaries (ELF files) that were
affected by the patch. Now: to extract the metadata, we parse the
patch file and recover the files and modules that were edited as part
of fixing the vulnerability. We then parse the modules in the Debian
source using the clang compiler front-end to extract the relevant
function names. Finally, we obtain file names, function names and
lines modified as part of the patch.

In order to find the target binary among extracted deb files, we
map file names in the patch into the corresponding compilation
units in the binary using the debug line section in DWARF. Recall
that each compilation unit includes a source file and associated
headers that are compiled together to produce a single object file.
This mapping process allows us to determine which binary contains
the patched file or compilation unit. After finding the target binary,
we once again use debug information embedded in the binary to
extract the precise memory offsets corresponding to the lines of
code modified in the patch. All steps in this dataset construction
pipeline are fully automated and written in Python.

3 Structure of the BinPool Dataset
There are three principal components in BinPool dataset: The
metadata (stored in pkl files), the binaries in question, and a cen-
tral CSV file containing information about CVEs, CWEs, version
numbers, and links to source code. We also gather all the meta-
data in a JSON file called binpool_info.json. The links to these
resources may be found in the main artifact repository: https:
//github.com/SimaArasteh/binpool. We show the layout of these
directories in Figure 2. To the best of our knowledge, BinPool is the
first such dataset to provide this level of detailed information. We
also present some aggregate statistics about the dataset in Table 1.

4 Possible Applications
The immediate intended application of BinPool is in the devel-
opment and evaluation of vulnerability detection techniques. We

https://github.com/SimaArasteh/binpool
https://docs.google.com/spreadsheets/d/1qztIwB8xJ10H-2HLX15vI29Ze7yFDOrv7kDQ4JUi1g8/edit?usp=sharing
https://security-tracker.debian.org/tracker/data/json
https://github.com/SimaArasteh/binpool
https://github.com/SimaArasteh/binpool
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a. Vulnerability Data Collection b. Package Build Process c. Metadata Extraction
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Figure 1: Construction process of the BinPool dataset. (a) In the first phase, we collect data about the vulnerabilities by gathering
CVE-IDs, CWEs, and the affected and fixed package versions from the Debian snapshots and NVD databases. (b) In the second
phase, we build packages for both vulnerable and patched versions. (c) In the last phase, we extract detailed metadata, including
function names and vulnerability locations (both at source and binary levels).
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Figure 2: Structure of the BinPool dataset. The central CSV
file contains information about CVE and CWE-IDs, version
numbers, and links to source code. In parallel, the dataset is
organized according to the vulnerability IDs. Each vulnera-
bility includes metadata about the function names, module
names, and affected code locations in pkl files, and versions
of the vulnerable and patched deb files and binaries obtained
from different optimization levels.

Table 1: Aggregate statistics about BinPool.

Measurement Value
Number of unique CVEs 603

Number of CWEs 89
Number of Debian packages 162
Total number of binaries 6144

Total number of source modules 768
Total number of source functions 910
Total number of binary functions 7280

expect the collection of functions with diverse real-world semantics
to form a challenging dataset and for the framework to be an ongo-
ing benchmark collection technique for bug-finding tools. An early
smaller-scale version of the dataset already formed a signficant part
of our evaluation methodology for BinHunter [2].

Beyond just machine learning techniques, we expect the dataset
to be useful for benchmarking other program analysis systems
such as angr [21]. We also note that many vulnerability detection
tools are based on sophisticated reasoning pipelines involving data
flow and control flow analysis and information about types of
vulnerabilities. As such, many of these intermediate analyses—such
as precise inter-procedural data flow analyses in binaries—are of
independent research interest, and we expect BinPool to also form
a possible benchmarks for these applications.

Finally, beyond just vulnerability discovery, we expect BinPool
to be useful in other binary analysis problems. As one example,
recall that we provide multiple versions of each binary package,
compiled using different optimization levels. These matched bina-
ries might form a good benchmark for code search and function
similarity detection algorithms.

5 Related Work
In this section, we review the history of vulnerability datasets
at both the source code and binary levels. We compare BinPool
features with state-of-the-art datasets for both source code and
binaries with different applications in Table 2.

5.1 Source-Level Datasets
In part because of their relative ease of collection, most existing
datasets of vulnerable code are at the source level. One particu-
larly famous example is the Juliet dataset [14], which (among other
languages) provides a collection of C and C++ programs with ar-
tificially injected vulnerabilities. The dataset provides macros to
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Table 2: A comparison between existing datasets and BinPool.
VD, CP and BSD stand for vulnerability discovery, compiler
provenance and binary similarity detection respectively.

Dataset source-level binary-level Application # CVEs # projects
CrossVul Yes - VD 5131 1675
ReposVul Yes - VD 6,134 1,491
BigVul Yes - VD 3754 348
MegaVul Yes - VD 8,254 992
BinBench - Yes BSD, CP - 131
BinaryCorp - Yes BSD - 9819

BinKit - Yes BSD - 51
BinPool - Yes BSD,VD 603 162

switch between vulnerable and non-vulnerable versions of code.
As such, because of its scale and ease of use, it has been used to
train and evaluate numerous program analysis tools.

Of course, one important complaint against the Juliet dataset is
that it includes artificial, as opposed to real-world examples of bugs.
One convenient approach to do this (and similar to our approach in
BinPool) is to use the NVD dataset to identify examples of actual
vulnerabilities in production open-source code [16]. As such, this
provides a reliable indicator of ground truth. Another alternative to
create these datasets [12] is to identify vulnerabilities using static
analysis tools such as Cppcheck [13] and Flawfinder [24].

Another aspect of datasets is the granularity of information pro-
vided about the location of the vulnerability. For example, datasets
such as Bigvul [6],Megavul [15], and Crossvul [16] provide large col-
lections of vulnerable source code with precise information about
the software fault. These are typically extracted by using com-
mit information. Crossvul covers over 40 programming languages,
whereas Bigvul and Megavul focus specifically on vulnerabilities
in C/C++ programs. Compared to Bigvul, Megavul encompasses
more vulnerabilities and open-source projects, and it includes in-
formation on vulnerable functions using a Tree-sitter parser. While
Crossvul is more diverse in covering multiple programming lan-
guages, it lacks detailed function information.

Among these datasets, Reposvul stands out by offering a repository-
level dataset. This dataset aims to address three issues in existing
collections. First, many patches are not strictly security-related and
are mixed with non-security changes. To address this, Reposvul
uses large language models (LLMs) and static analysis tools to
identify security-specific patches. Second, most datasets focus only
on function-level vulnerabilities, overlooking the importance of
inter-procedural vulnerability analysis. Reposvul addresses this
by capturing relationships between functions involved in a patch.
Lastly, it identifies outdated patches by tracking commit histories.

5.2 Binary-Level Datasets
While there are many diverse source-level vulnerability datasets,
binary-level datasets are limited. The main challenge is that com-
piling programs from source code frequently requires considerable
manual effort. Our solution to this challenge in BinPool is to use the
existing build system supplied as part of Debian to obtain a scalable
and well-tested build system for a large repository of packages.

Existing binary-level vulnerability datasets face several chal-
lenges. Firstly, many of these datasets are not publicly accessi-
ble. Secondly, most are derived from a small set of open-source

projects, compiled across various optimization levels and architec-
tures. These datasets are primarily designed for detecting similari-
ties between different architectures and optimization levels, rather
than focusing specifically on vulnerability discovery. Additionally,
the limited range of projects they include can lead to overfitting in
machine learning models.

For example, the Genius dataset [7] includes only 154 vulnerable
functions sourced from BusyBox, OpenSSL, and Coreutils, com-
piled across three architectures, four optimization levels, and two
compilers. The Vulseekerpro dataset [8] features only 15 unique
CVEs, compiled with different optimization settings. Among the
various datasets of binary programs, Jtrans [23] is the most diverse,
featuring programs compiled from multiple projects. However, it is
specifically developed for binary similarity detection and is limited
to identifying particular CVEs across different optimization levels.

6 Limitations
Although our dataset includes a diverse and comprehensive collec-
tion of real-world vulnerabilities with detailed metadata, it still has
only a number of CVEs per CWE category. As a result, although
the dataset is ideal for evaluating vulnerability detection tools, it
might be insufficient for training classifiers. As a consequence, the
training process might need to be supplemented with other sources
of information, including datasets such as Juliet, in a manner similar
to our work on BinHunter [2].

A second limitation of BinPool is that it was collected purely
using information about modifications to source code, and therefore
does not include some important sources of information about the
errors in question. For example, one might be able to augment
the data with examples of failing test cases, error traces resulting
from symbolic execution engines such as angr [21], or include more
detailed information about inter-procedural data flows. Of course,
collecting such information would require significant extensions
to our data collection pipeline, but might conceivably lead to more
sophisticated vulnerability detection tools.

7 Conclusion
In this paper, we have introduced a public dataset of historical
vulnerabilities in Debian packages. The dataset provides detailed
information, including CVE and CWE identifiers, version numbers,
and lists of the functions, files, and lines modified as part of the
fix, at both source and binary levels. The dataset is suitable for
both developing and evaluating both vulnerability discovery and
binary function similarity tools. In particular, we envision BinPool
to be appropriate as a test set for evaluating machine learning-
based techniques, and can potentially also be utilized with program
analysis tools such as angr.

We intend to continuously run the data collection pipeline and
grow the dataset over time. We also plan to include more detailed
information, such as the results of inter-procedural data flow analy-
ses, thereby capturing how vulnerabilities arise from the interaction
of multiple functions within each program. We hope that this in-
formation leads to more effective and better evaluated techniques
for vulnerability discovery.
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