
Differentially Private Quasi-Concave Optimization: Bypassing the

Lower Bound and Application to Geometric Problems

Kobbi Nissim∗ Eliad Tsfadia∗ Chao Yan∗

April 29, 2025

Abstract

We study the sample complexity of differentially private optimization of quasi-concave functions. For
a fixed input domain X , Cohen et al. [9] (STOC 2023) proved that any generic private optimizer for low
sensitive quasi-concave functions must have sample complexity Ω(2log

∗ |X|).
We show that the lower bound can be bypassed for a series of “natural” problems. We define a new

class of approximated quasi-concave functions, and present a generic differentially private optimizer for
approximated quasi-concave functions with sample complexity Õ (log∗ |X |). As applications, we use our
optimizer to privately select a center point of points in d dimensions and probably approximately correct
(PAC) learn d-dimensional halfspaces. In previous works, Bun et al. [7] (FOCS 2015) proved a lower
bound of Ω(log∗ |X |) for both problems. Beimel et al. [4] (COLT 2019) and Kaplan et al. [17] (NeurIPS
2020) gave an upper bound of Õ(d2.5 · 2log

∗ |X|) for the two problems, respectively. We improve the
dependency of the upper bounds on the cardinality of the domain by presenting a new upper bound of
Õ(d5.5 · log∗ |X |) for both problems. To the best of our understanding, this is the first work to reduce the
sample complexity dependency on |X | for these two problems from exponential in log∗ |X | to log∗ |X |.

∗Department of Computer Science, Georgetown University. E-mails: kobbi.nissim@georgetown.edu,
eliadtsfadia@gmail.com, cy399@georgetown.edu. Work is partially funded by NSF grant No. 2217678 and by a gift to
Georgetown University.

ar
X

iv
:2

50
4.

19
00

1v
1

 [
cs

.C
R

]
 2

6
A

pr
 2

02
5

Contents

1 Introduction 1
1.1 Existing Results . 1
1.2 Our Results . 2

1.2.1 Private Optimization for Approximated Quasi-Concave Functions 2
1.2.2 Applications . 3

1.3 Open Questions . 4

2 Preliminaries 4
2.1 Notations . 4
2.2 Learning Theory . 4
2.3 Differential Privacy . 5
2.4 Halfspaces . 5
2.5 Notation . 5

3 Our Private Quasi-Concave Optimization Scheme 6
3.1 One-Dimensional Case . 6
3.2 Extending to Higher Dimension . 7

4 Differentially Private Tukey Median Approximation 9
4.1 Additional Preliminaries for Tukey Median . 9

4.1.1 Domain Extension . 10
4.2 Privately Estimating the Tukey Median . 10

5 Privately Learning Halfspaces via Privately Solving Linear Feasibility Problems 11
5.1 Additional Preliminaries for Linear Feasibility Problems . 11
5.2 Privately Solving Linear Feasibility Problems . 13
5.3 Privately Learning Halfspaces . 14

A Approximated Functions Have Low Sensitivity 16

B VC Dimension of Linear Feasibility Problem 16

C Huang et al. [15]’s Algorithm is Not Differentially Private 17

1 Introduction

The training of machine learning models often uses sensitive personal information that requires privacy
protection. We explore privacy-preserving techniques in machine learning, a line of research initiated by
Kasiviswanathan et al [18], where a probably approximately correct (PAC) learner is required to preserve
differential privacy with respect to its training data. Differential privacy ensures that a privacy attacker
would not be able to detect the presence of an input datum. Formally,

Definition 1 (Differential Privacy [11]). Let X be a data domain and Y be an output domain. A (randomized)
mechanism M : Xn → Y is (ε, δ)-differentially private if for any pair of neighboring datasets S, S′ ∈ Xn (i.e.,
datasets that differ on a single entry), and any event E ⊆ Y, it holds that

Pr[M(S) ∈ E] ≤ eε · Pr[M(S′) ∈ E] + δ,

where the probability is over the randomness of M .

Sample complexity, i.e., the required dataset size for a learning task, is one of the main questions in
learning theory. Without privacy requirements, it is well-known that the sample complexity of PAC learning
a concept class C is Θ(V C(C)) [24], where V C(C) ≤ log |C| is the Vapnik–Chervonenkis dimension of C.
Kasiviswanathan et al. [18] provide a generic private learner showing that a sample complexity O(log |C|)
suffices for private learning. The characterization of the sample complexity of private learning is still an
open problem.

The main motivation of this work is to advance our understanding of the sample complexity of two
fundamental geometric problems: privately finding a center point and privately learning halfspaces, both
with input points over a finite Euclidean space X d. In particular, we focus on how the sample complexity
depends on the cardinality of X . Towards this goal, we revisit a primitive that was introduced in [5] and
used in prior work on learning halfspaces: optimizing private quasi-concave functions.

1.1 Existing Results

Under pure differential privacy (i.e., with δ = 0), it is known that the sample complexity of privately learning
halfspaces with input points over a finite d-dimensional domain X d is Θ(d2 log |X |).1 Beimel et al. [5] showed
that the sample complexity of privately learning thresholds (i.e., 1-dimensional halfspaces) under approximate
differential privacy (i.e., with δ > 0) can be significantly smaller than under pure differential privacy. They
constructed a general differentially private algorithm ARecConcave that, given a quasi-concave low-sensitivity

target function Q : X ∗ × X̃ → R, requires only Õ
(
2O(log∗ |X̃ |)

)
data elements to optimize it. I.e., given a

dataset S ∈ X ∗ of that size, ARecConcave computes x̃ ∈ X̃ such that Q(S, x̃) is close to maxx∈X̃ {Q(S, x)}.
The properties that Q should satisfy are:

1. Quasi-Concave: For any dataset S ∈ X ∗ and any x′ < x < x′′ in X̃ it holds that Q(S, x) ≥
min{Q(S, x′), Q(S, x′′)},

2. Low-Sensitivity : For any neighboring S, S′ ∈ X ∗ and any x ∈ X̃ it holds that |Q(S, x)−Q(S′, x)| ≤ 1.

Bun et al. [7] and Kaplan et al. [16] reduced learning thresholds to the interior point problem, where
given a dataset S ∈ Xn for a finite X ⊂ R, the goal is to output x such that minS ≤ x ≤ maxS. Note that
the latter problem can be solved privately by optimizing the following quasi-concave function:

QIP (S = {x1, . . . , xn} , x) := min {|{i ∈ [n] : xi ≤ x}| , |{i ∈ [n] : xi ≥ x}|} . (1)

Beimel et al. [4] and Kaplan et al. [17] extended this approach to optimize high-dimensional functions.
More specifically, suppose that we have a low-sensitivity quasi-concave d-dimensional function Q : (X d)∗ ×

1The upperbound follows from the O(log |C|) upperbound of [18] (considering that a hyperplne in d dimensions can be
represented by d points). The lowerbound follows from [13] who showed that the Littlestone dimension of halfspaces is d2 log |X |.

1

Rd → R that we would like to optimize.2 Then we can apply the 1-dimensional optimizer ARecConcave

coordinate-by-coordinate: In step i ∈ [d], given the results x̃1, . . . , x̃i−1 of the previous optimizations, we
compute x̃i by applying ARecConcave to optimize the 1-dimensional function

Qx̃1,...,x̃i−1(S, xi) := max
xi+1,...,xd∈R

Q(S, (x̃1, . . . , x̃i−1, xi, xi+1, . . . , xd)), (2)

where xi is chosen from a proper finite domain X̃i with log∗ |X̃i| ≈ log∗ |X |.
Beimel et al. [4] applied this approach to privately find a center point by privately optimizing the Tukey-

Depth function (Definition 13), and Kaplan et al. [17] reduced private learning of halfspaces to privately
optimizing a quasi-concave function cdepth (Definition 16). The resulting upper bounds for both problems are
Õ(d2.5 · 2O(log∗ |X |)), where the term 2O(log∗ |X |) in both results is due to the application of the 1-dimensional
quasi-concave optimizer ARecConcave. Towards better understanding the sample complexity of these two
problems, the question we ask in this paper is:

Are there differentially private algorithms for center points and for PAC learning halfspaces with sample
complexity O(poly(d) · log∗ |X |)?

A series of works by Bun et al. [7], Beimel et al. [4] and Alon et al. [2] give a lower bound of Ω(d+log∗ |X |)
on the sample complexity of privately selecting a center point and privately learning halfspaces. In particular,
in terms of the dependency in log∗ |X |, there is an exponential gap between the upper and lower bounds
established prior to this work.

In the 1-dimensional case, this gap was recently closed. Kaplan et al. [16] presented an upper bound
of Õ((log∗ |X |)1.5) for learning thresholds, and more recently, Cohen et al. [9] improved this upper bound
to Õ(log∗ |X |). However, it remained unclear how to extend these upper bounds to the high-dimensional
case. The main issue is that these methods are tailored to optimize the specific interior point function QIP

(Equation 1) and do not provide a general method to optimize any quasi-concave function as ARecConcave

does. Therefore, it was unclear how to apply the ideas there to the more general functions that are induced
by optimizing high dimensional tasks coordinate-by-coordinate (Equation 2).

One could hope that a general private quasi-concave optimization can be done using an exponentially
smaller sample complexity. Unfortunately, Cohen et al. [9] proved that a sample complexity of Ω(2log

∗ |X |)
is necessary, in general. They interpreted this lowerbound as follows:

“We view this lower bound as having an important conceptual message, because private quasi-concave
optimization is the main workhorse (or more precisely, the only known workhorse) for several important tasks,
such as privately learning (discrete) halfspaces [4, 17]. As such, current bounds on the sample complexity of
privately learning halfspaces are exponential in log∗ |X |, but it is conceivable that this can be improved to a
polynomial or a linear dependency. The lower bound means that either this is not true, or that we need to
come up with fundamentally new algorithmic tools in order to make progress w.r.t. halfspace.” [9]

We show how to bypass the lower bound of Cohen et al. [9] by only focusing on ‘natural’ quasi-concave
functions which include the functions that are induced in Equation 2 for the high dimensional optimization
tasks of [4, 17]. As a result, we achieve the first exponential improvement in the dependency on log∗ |X |
and establish a new upper bound of Õ(d5.5 log∗ |X |) for privately learning halfspaces and a selecting center
point.3

1.2 Our Results

1.2.1 Private Optimization for Approximated Quasi-Concave Functions

Our first contribution is a new method to bypass the lower bound of Cohen et al. [9] for a natural class of
quasi-concave functions which we call approximated quasi-concave functions.

2A d-dimensional Q is quasi-concave if for any dataset S, any points x1, . . . , xk and any x in their convex hull, it holds that
Q(S, x) ≥ mini {Q(S, xi)}.

3We are aware that a recent paper by Huang et al. [15] claims to privately learn halfspaces using sample complexity of
Õ(d · log∗ |X |). In Appendix C, we show that their algorithm is not differentially private.

2

More formally, we say that a function Q : X ∗×X̃ → R can be (α, β,m)-approximated if a random subset
S′ ⊆ S of size |S′| = m satisfies Pr[∀x, |Q(S, x) −Q(S′, x)| ≤ α] ≥ 1 − β. We consider α as an ‘acceptable’
additive error (in particular, α≪ maxx∈X̃ {Q(S, x)}), and β as a small enough confidence error.

We show how to reduce the task of optimizing such functions Q to the 1-dimensional interior point
problem. The idea is to use the sample and aggregate approach of [20]: We partition the n-size input
dataset S into random m-size subsets, compute (non-privately) the optimal solution with respect to each
subset, and then aggregate the n/m solutions using a private interior point algorithm. By the approximation
property of Q, with probability 1 − βn/m ≈ 1, all the n/m solutions have high value over Q(S, ·) (i.e., at
most α-far from the optimum), and since the function is quasi-concave, then any interior point also has a
high value. By using the Õ(log∗ |X̃ |) interior-point algorithm of Cohen et al. [9], we obtain the following
theorem:

Theorem 1 (Informal). There exists a (ε, δ)-differentially private algorithm IPConcave that given a target
function Q : X ∗ × X̃ → R that is quasi-concave and can be (α, β,m)-approximated, and given a dataset S of
size at least Õε,δ(m log∗ |X̃ |), the algorithm outputs x̂ ∈ X̃ such that

Pr
[
|Q(S, x̂)−max

x
Q(S, x)| ≤ O(α)

]
≥ 1− Õ(β log∗ |X̃ |).

Similar to the work of Beimel et al. [4] and Kaplan et al. [17], we extend this method to high-dimensional
functions by applying IPConcave iteratively coordinate-by-coordinate.

Theorem 2 (Informal). There exists a (ε, δ)-differentially private algorithm IPConcaveHighDim that given a
high-dimensional target function Q : (X d)∗×Rd → R that is quasi-concave and can be (α, β,m)-approximated,
and given a dataset S of size at least Õε,δ,α,β(m log∗ |X |

√
d), the algorithm outputs x̂ ∈ Rd such that

Pr

[
|Q(S, x̂)− max

x∈Rd
Q(S, x)| ≤ O(αd)

]
≥ 1− Õ(β(log∗ |X |+ d)).

Note that the approximation requirement here is a very strong guarantee. It requires that a random
subset has a value similar to this of the original dataset for ‘every’ input x. Fortunately, VC theory can
provide such a guarantee for the functions that were used by [4, 17]. As applications, we close the exponential
gap of sample complexity for private center point and learning halfspaces, as described next.

1.2.2 Applications

Private Center Point For privately approximating the center point, we follow the approach of Beimel
et al. [4] to optimize the Tukey depth function, but now with our new IPConcaveHighDim method. By
VC theory, the Tukey depth function (normalized by the dataset size) can be (α, β,m)-approximated with
m = Õ((d+ log(1/β))/α2) (Lemma 1). Furthermore, the Tukey center of every n-size dataset S has Tukey
depth at least n

d+1 . Hence, by substituting α with α/d2 in Theorem 2, we obtain the following result.

Theorem 3 (Privately approximating the center point). Let X ⊂ R be a finite domain. There exists
an (ε, δ)-differentially private algorithm A : (X d)n → Rd that given an n-size dataset S ∈ (X d)n, for n ≥
Θ̃α,β,ε,δ

(
d5.5 · log∗ |X |

)
, A(S) outputs, with probability 1−β, a point with Tukey depth in S of at least 1−α

d+1 ·n.

Private Halfspace Learning For privately learning halfspaces, we follow the approach of Kaplan et
al. [17] to reduce the task to private feasibility problem and solve this problem by optimizing a quasi-concave
function cdepth (Definition 16), but now using our IPConcaveHighDim method. Similarly to the Tukey
depth function, the cdepth function (normalized by the dataset size) can also be (α, β,m)-approximated for
m = Õ((d + log(1/β))/α2) (Corollary 3). An α/d error in the cdepth function is translated to an α error
for learning halfspace and the linear feasibility problem. Therefore, we achieve our learner by substituting
α with α/d2 in Theorem 2.

Theorem 4 (Privately learning halfspaces). Let X ⊂ R be a finite domain. There exists an (ε, δ)-
differentially private (α, β)-PAC learner for halfspaces over examples from X d with sample complexity n =
Õα,β,ε,δ

(
d5.5 · log∗ |X |

)
.

3

Learning over concept class of VC dimension 1. We remark that since every concept class with VC
dimension 1 can be embedded in 3-dimensional halfspaces class [3, 1], our results imply that every concept
class with VC dimension 1 can be privately learned with sample size Õ(log∗ |X |).

Corollary 1. For any concept class C with VC dimension 1 and input domain X , there exists an (ε, δ)-
differentially private algorithm that can (α, β)-PAC learn it with sample size Õε,δ,α,β(log

∗ |X |).

1.3 Open Questions

In this work, we present a general private quasi-concave optimization method that bypasses the lower bound
of Cohen et al. [9] and enables to achieve the first dO(1) · log∗ |X | sample complexities for fundamental
problems such as privately approximating the center point and privately learning halfspaces over a finite
euclidean input domain X d. But while our result bridge the exponential gap in log∗ |X |, the dependency on
the dimension d has increased from d2.5 ([4, 17]) to d5.5 (Theorems 3 and 4). It remains open to understand
if it is possible to reduce the dependency on d while avoiding an exponential blow-up in log∗ |X |.

2 Preliminaries

2.1 Notations

We denote a subset S of X by S ⊆ X, and a multi-set S of elements in X by S ∈ X∗ (or S ∈ Xn if S is of size
n). For a multi-set S ∈ X∗ and a set T ⊆ X, we let S∩T be the multi-set of all the elements in S (including
repetitions) that belong to T . A subset S′ of a multi-set S (denoted by S′ ⊆ S) refers to a sub-multiset, i.e.,
if S = {x1, . . . , xn} then there exists a set of indices I = {i1, . . . , im} ⊆ [n] such that S′ = {xi1 , . . . , xim}. A
random m-size subset S′ of a multi-set S is specified by a random m-size set of indices I ⊆ [n].

Throughout this paper, a dataset refers to a multi-set.

2.2 Learning Theory

Definition 2 (Vapnik-Chervonenkis dimension [25, 14]). Let X be a set and R be a set of subsets of X. Let
S ⊆ X be a subset of X. Define ΠR(S) = {S ∩ r | r ∈ R}. If |ΠR(S)| = 2|S|, then we say S is shattered by
R. The Vapnik-Chervonenkis dimension of (X,R) is the largest integer d such that there exists a subset S
of X with size d that is shattered by R.

Definition 3 (α-approximation4 [25, 14]). Let X be a set and R be a set of subsets of X. Let S ∈ X∗ be a
finite multi-set of elements in X. For any 0 ≤ α ≤ 1 and S′ ⊆ S, S′ is an α-approximation of S for R if

for all r ∈ R, it holds that
∣∣∣ |S∩r|

|S| −
|S′∩r|
|S′|

∣∣∣ ≤ α.

Theorem 5 ([25, 14]). Let (X,R) have VC dimension d. Let S ⊆ X be a subset of X. Let 0 < α, β ≤ 1.

Let S′ ⊆ S be a random subset of S with size at least O

(
d·log d

α+log 1
β

α2

)
. Then with probability at least 1−β,

S′ is an α-approximation of S for R.5

Definition 4 (Generalization and empirical error). Let D be a distribution, c be a concept and h be a
hypothesis. The error of h w.r.t. c over D is defined as

errorD(c, h) = Prx∼D[c(x) ̸= h(x)].

4Commonly called ε-approximation. We use α-approximation as ε is used as a parameter of differential privacy.
5Although the theorem is stated for sets S ⊆ X, it also holds for multisets S ∈ X∗. To see it, fix an n-size multiset S ∈ Xn

and transform the domain set X = {x1, . . . , xk} to an extended domain set X′ = {x1,1, . . . , x1,n, . . . , xk,1, . . . , xk,n}. For every
r ∈ R, we can transform it to r′ = {xi,1, . . . , xi,n : xi ∈ r}, and let R′ = {r′ : r ∈ R}. We have V C(X′, R′) = V C(X,R). Now
each element xi that appears t times in S can be replaced by xi,1, xi,2, . . . , xi,t. This reduction transforms all multiset setting
to a corresponding set setting.

4

For a finite dataset S, the error of h w.r.t. c the over S is defined as

errorS(c, h) =
|{x ∈ S | c(x) ̸= h(x)}|

|S|
.

Theorem 6 ([6, 17]). Let C be a concept class and let D be a distribution. Let α, β > 0, and m ≥
48
α

(
10V C(C) log(48eα) + log(5β)

)
. Let S be a sample of m points drawn i.i.d. from D. Then

Pr[∃c, h ∈ C s.t. errorS(c, h) ≤ α/10 and errorD(c, h) ≥ α] ≤ β.

2.3 Differential Privacy

Definition 5 (Differential Privacy [11]). Let X be a data domain and Y be an output domain. A (randomized)
mechanism M mapping Xn to Y is (ε, δ)-differentially private if for any pair of inputs S, S′ ∈ Xn where S
and S′ differ on a single entry, and any event E ⊆ Y, it holds that

Pr[M(S) ∈ E] ≤ eε · Pr[M(S′) ∈ E] + δ,

where the probability is over the randomness of M .

Theorem 7 (Advanced composition [12]). Let M1, . . . ,Mk : Xn → Y be (ε, δ)-differentially private mecha-
nisms. Then the algorithm that on input S ∈ Xn outputs (M1(S), . . . ,Mk(S)) is (ε′, kδ + δ′)-differentially
private, where ε′ =

√
2k ln(1/δ′) · ε for every δ′ > 0.

We use differentially private algorithms for the Interior Point problem:

Definition 6 (Interior Point [7]). Let X be a (finite) ordered domain. We say that p ∈ X is an interior
point of a dataset S = {x1, . . . , xn} ∈ Xn if mini∈[n] {xi} ≤ p ≤ maxi∈[n] {xi}.

Bun et. al. [7] proved that the sample complexity for solving the interior point problem with differential
privacy must grow proportionally to log∗ |X | [7]. Cohen et. al. provide a nearly optimal algorithm solving
the interior point privately on a finite domain [9].

Theorem 8 ([9]). Let X be a finite ordered domain. There exists an (ε, δ)-differentially private algo-
rithm PrivateIP that on input S ∈ Xn outputs an interior point with probability 1 − β provided that n >

nIP (|X |, β, ε, δ) for nIP (|X |, β, ε, δ) ∈ O

(
log∗ |X |·log2(

log∗ |X|
βδ)

ε

)
.

2.4 Halfspaces

Definition 7 (Halfspaces and hyperplanes). Let X ⊂ Rd. For a1, . . . , ad, w ∈ R, the halfspace predicate

ha1,...,ad,w : X → {±1} is defined as ha1,...,ad,w(x1, . . . , xd) = 1 if and only if
∑d

i=1 aixi ≥ w. Define the
concept class HALFSPACEd(X) = {ha1,...,ad,w}a1,...,ad,w∈R.

2.5 Notation

We use the notation (x1, . . . , xi)×X d−i for the space of points with a fixed prefix of i coordinates:

(x1, . . . , xi)×X d−i =
{
y ∈ X d | yj = xj for j ∈ [i]

}
.

5

3 Our Private Quasi-Concave Optimization Scheme

In this section, we present our main algorithm IPConcave that for privately optimizing approximated quasi-
concave functions.

We first give the definition of the quasi-concave function and the sensitivity of functions.

Definition 8 (Quasi-Concave). Let X be an ordered domain. A function f : X → R is quasi-concave if
f(ℓ) ≥ min({f(i), f(j)} for every i < ℓ < j.

Definition 9 (Sensitivity). The sensitivity of a function f : X ∗ → R is the smallest k such that for every
pair of neighboring datasets S, S′ ∈ X ∗ (i.e., differ in exactly one entry), we have |f(S)− f(S′)| ≤ k. A
function Q : X ∗ × X̃ → R is called a sensitivity-k function if for every x ∈ X̃ , the function Q(·, x) has
sensitivity ≤ k.

3.1 One-Dimensional Case

Beimel et al. [5] provide an algorithm ARecConcave that given as inputs a dataset S ∈ X ∗ and a sensitivity-1
function Q : X ∗×X̃ → R such that Q(S, ·) is quasi-concave, the algorithm privately finds a point x̂ ∈ X̃ such

that |Q(S, x̂) −maxx∈X̃ {Q(S, x)}| ≤ Õ
(
2O(log∗ |X̃ |)

)
. In fact, the exponential dependency in 2O(log∗ |X̃ |) is

necessary in general since Cohen et al. [9] proved a matching lower bound.
In this work, we bypass the lower bound of [9] by showing that if the quasi-concave function Q : X ∗×X̃ →

R has the property that given a dataset S ∈ X ∗, the function Q(S, ·) can be well approximated by Q(S′, ·) for
an m-size random subset S′ ⊂ S, then we can privately optimize it using sample complexity Õ(m · log∗ |X̃ |).

Here we define (α, β,m)-approximation with respect to Q.

Definition 10 (Approximation with respect to Q). For any dataset S ∈ X ∗ and function Q : X ∗×X̃ → R,
we say that S′ ⊆ S is an α-approximation of S with respect to Q if for any x ∈ X̃ , we have |Q(S, x) −
Q(S′, x)| ≤ α. We say (S,Q) can be (α, β,m)-approximated, if by randomly selecting a subset S′ ⊆ S of size
at least m, then with probability 1− β, S′ is an α-approximation of S with respect to Q.

Note that α-approximation with respect to a function Q (Definition 10) is similar to α-approximation
with respect to a set of binary value functions R (Definition 3). Indeed, in Sections 4 and 5 we exploit this
similarity and apply Theorem 5 for upper bounding the subset size of approximating specific functions.

In Appendix A, we show that approximated function are, in particular, low-sensitivity functions.
In the following, we present our new private optimization algorithm for quasi-concave functions that can

be approximated by a random subset.

Algorithm 1: IPConcave

Parameter: Confidence parameter β > 0, privacy parameter ε, δ > 0, and number of subsets t.
Inputs: A dataset S ∈ Xn, for n ≥ t, and a function Q : X ∗ × X̃ → R where X̃ ⊆ R and is finite.
Operation:

1. Randomly partition S into S1, . . . , St, each with size at least ⌊n/t⌋.

2. For i ∈ [t]: Compute yi = argmaxx∈X̃ {Q(Si, x)}.

3. Compute and output x̂ ∼ PrivateIPX̃ ,β,ε,δ(y1, . . . , yt) (the algorithm from Theorem 8 that solves the

1-dimensional interior point problem over the domain X̃ with confidence parameter β and privacy
parameters ε, δ).

Theorem 9 (Restatement of Theorem 1). Let ε > 0, δ, α, β ∈ (0, 1), n, t ∈ N with n ≥ t, let X be a domain
of data elements, let X̃ ⊆ R be a finite domain, and let Q : X ∗ × X̃ → R. Then the following holds:

6

1. Privacy: Algorithm IPConcaveα,β,ε,δ,t(·, Q) : Xn → X̃ is (ε, δ)-differentially private.

2. Accuracy: Let S ∈ Xn and assume that Q(S, ·) is quasi-concave and that (S,Q) can be (α, β′, ⌊n/t⌋)-
approximated (Definition 10). If t ≥ nIP (|X̃ |, β, ε, δ) ∈ Õβ,ε,δ(log

∗ |X̃ |) (the sample complexity of
PrivateIP from Theorem 8), then

Prx̂∼IPConcaveα,β,ε,δ,t(S,Q)

[
|Q(S, x̂)−max

x∈X̃
{Q(S, x)}| ≤ 2α

]
≥ 1− t · β′ − β

Proof. Privacy: A change of one input point affect one of the points yi. So PrivateIP guarantees that the
output is (ε, δ)-differentially private.

Accuracy: The (α, β′, ⌈n/t⌉)-approximation guarantees that for any subset Si, with probability 1− β′,
Si is an α-approximation of S with respect to Q (Definition 10). Let xopt = argmaxx∈X̃ {Q(S, x)}. Under the
condition of α-approximation with respect toQ, we haveQ(Si, xopt) ≥ Q(S, xopt)−α = maxx∈X {Q(S, x)}−α.
Then we have Q(Si, yi) ≥ Q(Si, xopt) ≥ maxx∈X̃ {Q(S, x)}−α. Using the α-approximation w.r.t Q again, we
have Q(S, yi) ≥ Q(Si, yi)−α ≥ maxx∈X̃ {Q(S, x)}−2α. Since PrivateIP succeeds with probability 1−β, then
by the union bound, with probability 1− t · β′ − β, for all i ∈ [t] we have Q(S, yi) ≥ maxx∈X̃ {Q(S, x)} − 2α
and that x̂ is an interior point of {y1, . . . , yt}. Since Q it quasi-concave, the above implies that Q(S, x̂) ≥
mini∈[t] {Q(S, yi)} ≥ maxx∈X̃ {Q(S, x)} − 2α, as required.

3.2 Extending to Higher Dimension

Beimel et al. [4] and Kaplan et al. [17] use ARecConcave to optimize high dimension functions. The method
is to iteratively select good coordinates using ARecConcave. Thus the sample size of their result must depend
on 2log

∗ |X |. This work shows that our new optimizer can also be extended to higher dimensions if the
target function Q is (high-dimensional) quasi-concave and has proper finite-size domains. Notice that the
1-dimensional concavity property is equivalent to quasi-concave.

Definition 11 ((High-Dimensional) Quasi-Concave). We say a function f : Rd → R is quasi-concave if for
any points p1, . . . , pk and any point p in the convex hull of {pi}i∈[k], it holds that f(p) ≥ min({f(p1), . . . , f(pk)}).

Since the interior point can only be privately found in a finite domain, we need to construct such domain
that contains a point with a high value of Q.

Definition 12 (Proper Finite Domains). We say that X̃1, . . . , X̃d are proper finite domains for Q : X ∗×Rd →
R if for any i ∈ [d], S ∈ X ∗ and x̂1 ∈ X̃1, . . . , x̂i−1 ∈ X̃i−1, there exists x̂i ∈ X̃i, such that

max
xi,...,xd∈R

Q(S, (x̂1, . . . , x̂i−1, xi, . . . , xd)) = max
xi+1,...,xd∈R

Q(S, (x̂1, . . . , x̂i, xi+1, . . . , xd)).

The construction of X̃i may depend on x̂1, . . . , x̂i−1, so X̃2, . . . , X̃d are treated as functions.

We next describe our algorithm IPConcaveHighDim that extends IPConcave for high-dimensional quasi-
concave functions.

Remark 1. Note that in Algorithm 2, we chose to use the same partition S1, . . . , St for all iterations rather
than letting IPConcave to sample a fresh partition in each invocation. The main reason we chose to do that
is to increased the confidence guarantee, since once S1, . . . , St are all a good approximation of S w.r.t. Q,
they are good for all the iterations and therefore, there is no need to re-sample.

Theorem 10 (Restatement of Theorem 2). Let ε > 0, δ, α, β ∈ (0, 1), n, t, d ∈ N with n ≥ t, let X
be a domain of data elements, let Q : X ∗ × Rd → R be a function with finite domains X̃1, X̃2, . . . , X̃d, let

X = maxi∈[n]

{
|X̃i|

}
. Then the following holds:

1. Privacy: Algorithm IPConcaveHighDimα,β,ε,δ,t(·, Q) : Xn → Rd is (ε·
√

2d ln(1/δ′), dδ+δ′)-differentially
private for any choice of δ′ > 0.

7

Algorithm 2: IPConcaveHighDim

Parameter: Utility parameters α, β > 0, privacy parameter ε, δ > 0, and number of subsets t.
Inputs: A dataset S ∈ Xn, for n ≥ t, and a function Q : X ∗ × Rd → R with proper finite domains
X̃1, X̃2 . . . , X̃d (Definition 12).
Operation:

1. Randomly partition S into S1, . . . , St, each with size at least ⌊n/t⌋.

2. For i = 1, . . . , d:

(a) Let X̃i = X̃i(x̂1, . . . , x̂i−1), and define the function Q̂x̂1,...,x̂i−1 : Xn × X̃i → R as

Q̂x̂1,...,x̂i−1
(S, x) := max

xi+1...,xd∈R
Q(S, (x̂1, . . . , x̂i−1, x, xi+1 . . . , xd)).

(b) Compute x̂i ∼ IPConcaveα,β,ε,δ,t(S, Q̂x̂1,...,x̂i−1
), where we fix the partition in Step 1 of IPConcave

(Algorithm 1) to S1, . . . , St.

3. Output (x̂1, . . . , x̂d).

2. Accuracy: Let S ∈ Xn and assume that: (1) Q(S, ·) is quasi-concave (Definition 11), (2) (S,Q)
can be (α, β′, ⌊n/t⌋)-approximated (Definition 10), and (3) X̃1, . . . X̃d are proper for Q (Definition 12).
Then for t = nIP (X,β, ε, δ) ∈ Õα,β,ε,δ(log

∗ X) (the sample complexity of PrivateIP from Theorem 8
over domain of size X), it holds that

Prx̂∼IPConcaveHighDimα,β,ε,δ,t(S,Q)

[
|Q(S, x̂)− max

x∈Rd
{Q(S, x)}| ≤ 2αd

]
≥ 1− t · β′ − d · β

Proof. Privacy of Algorithm 2: Each call to IPConcaveα,β,ε,δ,t (Step 2b) is (ϵ, δ)-differentially private

(Theorem 9). Using advanced composition (Theorem 7), we get that Algorithm 2 is (ε ·
√
2d ln(1/δ′), dδ+δ′)-

differentially private for any choice of δ′ > 0.

Accuracy of Algorithm 2 By Definition 10 and the union bound, with probability 1−t·β′, all S1, . . . , St are
α-approximation of S with respect to Q, and in the following we assume that this event occurs. This means
|Q(S, x)−Q(Sj , x)| ≤ α for all x ∈ Rd and j ∈ [t]. In particular, this implies that for every i ∈ [d], in the i’th
iteration of IPConcaveHighDim, the subset Sj , for every j ∈ [t], is an α-approximation of S with respect to

the (one-dimensional) function Q̂x̂1,...,x̂i−1
(defined in Step 2a). Furthermore, since Q(S, ·) is quasi-concave

(Definition 11), then each function Q̂x̂1,...,x̂i−1
(S, ·) is also quasi-concave. Thus, by the accuracy guarantee

of IPConcave (Theorem 9), in the i’th iteration of IPConcaveHighDim, with probability 1− β, the algorithm
computes x̂i such that

Q̂x̂1,...,x̂i−1
(S, x̂i) ≥ max

xi∈Xi,xi+1,...,xd∈R
Q(S, (x̂1, . . . , x̂i−1, xi, . . . , xd))− 2α (3)

= max
xi,...,xd∈R

Q(S, (x̂1, . . . , x̂i−1, xi, . . . , xd))− 2α,

where the equality holds since X1, . . . ,Xd are proper finite domains for Q by assumption. Thus, with
probability 1− d · β, Equation 3 holds for any iteration i during the execution of IPConcaveHighDim, which
means that Q̂(x̂1) ≥ maxx∈Rd Q(S, x)− 2α, and for every i ∈ {2, . . . , d}:

Q̂x̂1,...,x̂i−1
(S, x̂i) ≥ max

xi,...,xd∈R
Q(S, (x̂1, . . . , x̂i−1, xi, . . . , xd))− 2α = Q̂x̂1,...,x̂i−2

(S, x̂i−1)− 2α,

and in the following, we assume that this event occurs. We conclude that the output x̂ = (x̂1, . . . , x̂d) satisfies
Q(S, x̂) ≥ maxx∈Rd Q(S, x)− 2αd, as required.

8

4 Differentially Private Tukey Median Approximation

In this section, we show how to use IPConcaveHighDim (Algorithm 2) to privately approximating the Tukey
median. We give additional preliminaries in Section 4.1, and describe our Tukey median approximation
algorithm in Section 4.2.

4.1 Additional Preliminaries for Tukey Median

Definition 13 (Tukey depth, Tukey median [23]). Let S ∈ (Rd)n be a dataset of n points and let p ∈ Rd

be a point (not necessarily in S). The Tukey depth of p in S is the minimum over all hyperplanes h going
through p of the number of points in S on one side of h. A point is a Tukey median of S if it has the
maximum Tukey depth in S.

We use TDS(p) for the Tukey depth of point p in point set S.

Fact 1. Let S ∈ (Rd)n and let p1, . . . , pk be points in Rd with Tukey depth at least γn in S. Then any point
in the convex hull of p1, . . . , pk has Tukey depth at least γn in S.

Proof. Let p′ be a point inside the convex hull of p1, . . . , pk and assume p′ has Tukey depth T < γn. Then
there exists a hyperplane h that goes through p′ with less than γn points on one of its sides. Denote by S1

and S2 be two half-spaces on the two sides of h. Without loss of generality, S1 contains T points of S. Note
that since p′ is in the convex hull of p1, . . . , pk, it must be that at least one of the points p1, . . . , pk is inside
S1. Without loss of generality, assume p1 ∈ S1.

Let h′ be a hyperplane that goes through p1 and is parallel to h. Then there are less than T points on
one side of h′, and hence p1 has Tukey depth T < γn, a contradiction.

Helly’s theorem [10] implies that a point with a high Tukey depth always exists.

Fact 2 ([10]). For every S ∈ (Rd)n, the center point (and hence also the Tukey median) of S has Tukey
depth at least n

d+1 in S.

In the following lemma, we apply Theorem 5 (the α-approximation theory of Vapnik and Chervo-
nenkis [25]) to determine an upper bound on the subset size m such that a given set of points S can
be (α, β,m)-approximated with respect to the Tukey depth function (Definition 10).6

Lemma 1. Let S ∈ (Rd)n and let S′ ⊆ S be a random subset of S with cardinality m = |S′| > O
(

d·log(d/α)+log(1/β)
α2

)
.

Then, with probability at least 1− β, for all p ∈ Rd, if TDS′(p) = γ′m and TDS(p) = γn then |γ − γ′| ≤ α.

Proof. This proof uses the well-known result that d dimensional half-space has VC-dimension d. More
exactly, for X = Rd and the set of all halfspaces R, the VC dimension (X,R) is d. So by Theorem 5, with
probability 1− β, an m-size random subset S′ is an α-approximation of S with respect to R (Definition 3),
which implies that for any hyper-plane, if there are γ1n points of S and γ2m points of S′ on one side of h,
then it holds that |γ1−γ2| ≤ α. In the following, we assume that this 1−β probability event occurs (denote
by E).

Fix a point p with TDS(p) = γn, and assume towards a contradiction that TDS′(p) = γ′m for γ′ < γ−α
(the direction γ′ > γ + α follows similarly). This implies that there exists a hyperplane that goes through
p such that there are at most γ′m points of S′ on one side of it. Since event E occurs, the same side of
the hyperplane contains at most (γ′ + α)n points of S. The latter implies that TDS(p) ≤ (γ′ + α)n < γn,
contradiction. We thus conclude that |γ − γ′| ≤ α.

6Similar statements are also provided in some works about approximating center points (e.g. [8]).

9

4.1.1 Domain Extension

In our algorithm, we find an approximate Tukey median one coordinate at a time, and it is possible that a
point would fall outside the input domain X d. We use the domain extension technique by [4].

Lemma 2 (domain extension of X [4]). Given a finite X ⊂ R, there exist sets X̃1, . . . , X̃d, where |X̃i| ≤
(d|X |d2(d+1))2

d

, such that for all 1 ≤ i ≤ d, for all S ⊂ X d, and for all (x∗
1, . . . , x

∗
i−1) ∈ X̃1 × · · · × X̃i−1,

there exist (x̃i, . . . , x̃d) ∈ X̃i × · · · × X̃d satisfying

max
xi,...,xd∈R

TDS(x
∗
1, . . . , x

∗
i−1, xi, . . . , xd) = TDS(x

∗
1, . . . , x

∗
i−1, x̃i, . . . , x̃d).

4.2 Privately Estimating the Tukey Median

We use IPConcaveHighDim (Algorithm 2) to find a point with high Tukey depth privately. Define the
function

QTD(S, x) =
TDS(x)

|S|
.

Here we verify that QTD(S, x) satisfies the accuracy requirements in Theorem 10.

1. Approximation by a random subset: By Lemma 1, a random subset S′ ⊆ S of size

m(α, β) ∈ O

(
d · log(d/α) + log(1/β)

α2

)
is an α-approximation of S with respect to QTD with probability 1− β.

2. Concavity: It is guaranteed by Fact 1.

3. Proper finite domains: The domain extension X̃1, . . . , X̃d in Lemma 2 provide proper finite domains
for QTD (Definition 12) with maximal domain size X where log∗ X ∈ O(log∗(|X |+ d)).

Thus, the following theorem is an immediate corollary of Theorem 10.

Theorem 11. Let ε > 0, δ, α, β ∈ (0, 1), n, d, t ∈ N with n ≥ t and let X ⊆ R be a finite domain. Let
A : (X d)n → Rd be the algorithm that on input S, computes IPConcaveHighDimα,β,ε,δ,t(S,QTD) with the finite

domains X̃1, X̃2, . . . , X̃d from Lemma 2 and outputs its output, and let X = maxi∈[d]

{
|X̃i|

}
. Then

1. Privacy: A is (ε ·
√
2d ln(1/δ′), dδ + δ′)-differentially private for any choice of δ′ > 0.

2. Accuracy: Let λopt |S| be the Tukey depth of the Tukey median in S ∈ Xn. Assuming that t =
nIP (X,β, ε, δ) (the sample complexity of PrivateIP in Theorem 8) and that

n ≥ m(α, β) · nIP (X,β, ε, δ) ∈ O

d log(d/α) + log(1/β)

α2
·
log∗(|X |+ d) · log2

(
log∗(|X |+d)

βδ

)
ε

= Õ

(
log∗ |X | · (d+ log(1/β)) · log2(1/δ)

εα2

)
,

then with probability 1− (t+ d)β, A(S) outputs a point x̂ ∈ Rd with TDS(x̂) ≥ (λopt − 2dα)n.

Recall that by Fact 2, the Tukey median of any S ∈ X d has Tukey depth at least λoptn for λopt =
1

d+1 .

Thus, by substituting ε by ε√
2d ln(2/δ)

, δ by δ
2d , δ

′ by δ/2, α by α
2d(d+1) , and β by β

t+d , we obtain our main

theorem for estimating the Tukey median.

10

Theorem 12 (Restatement of Theorem 3). Let ε > 0, δ, α, β ∈ (0, 1), n, d ∈ N and let X ⊆ R be a finite
domain. There exists an (ε, δ)-differentially private algorithm A : (X d)n → Rd and a value

nmin ∈ Õ

(
d4.5 · log∗ |X | · (d+ log(1/β)) · log2.5(1/δ))

εα2

)
= Õα,β,ε,δ

(
d5.5 · log∗ |X |

)
,

such that if n ≥ nmin, then for any S ∈ (X d)n it holds that

Prx̂∼A(S)

[
TDS(x̂) ≥

1− α

d+ 1
· n

]
≥ 1− β.

5 Privately Learning Halfspaces via Privately Solving Linear Fea-
sibility Problems

In this section, we show how to use IPConcaveHighDim (Algorithm 2) to solve linear feasibility problems
privately and thus imply a private half-spaces learner. We give additional preliminaries in Section 5.1, and
describe our algorithm for solving linear feasibility problems in Section 5.2.

5.1 Additional Preliminaries for Linear Feasibility Problems

Notation. For a ∈ Z+ we use [[a]] to denote the set {−a,−a + 1, . . . , a}. For two sets of integers A,B
and a scalar c, we define A/B = {a/b : a ∈ A ∧ b ∈ B} and c · A = {ca : a ∈ A}. For x = (x1, . . . , xd) and

y = (y1, . . . , yd), we denote by ⟨x, y⟩ =
∑d

i=1 xiyi the inner-product of x and y.
Recall that for a ∈ Rd and w ∈ R, we define the predicate ha,w(x) = (⟨a, x⟩ ≥ w). Let Ha,w be the

halfspace {x ∈ Rd : ha,w(x) = 1}.

Linear Feasibility Problem [17]. Let X ∈ N be a parameter and X = [[X]]. In a linear feasibility
problem, we are given a feasible collection S ∈ (X d+1)n of n linear constraints over d variables x1, . . . , xd.
The target is to find a solution in Rd that satisfies all (or most) constraints. Each constraint has the form
ha,w(x) = 1 for some a ∈ X d and w ∈ X . I.e., a linear feasibility problem is an LP problem with integer
coefficients between −X and X and without an objective function.

Definition 14 ((α, β)-solving (X, d, n)-linear feasibility [17]). We say that an algorithm (α, β)-solves (X, d, n)-
linear feasibility if for every feasible collection of n linear constraints over d variables with coefficients in X ,
with probability 1− β the algorithm finds a solution (x1, . . . , xd) that satisfies at least (1− α)n constraints.

Notice that there exists a reduction from PAC learning of halfspaces in d dimensions when the domain of
labeled examples is X d to solving linear feasibility. Each input labeled point ((x1, . . . , xd), y) ∈ X d×{−1, 1}
is transformed to a linear constraint hy·(x1,...,xd,−1),0. By Theorem 6, if we can (α, β)-solve (X, d + 1, n)

linear feasibility problems with n ≥ Õα,β(d), then the reduction results in an (O(α), O(β))-PAC learner for
d dimensional halfspaces.7

For any point, it is natural to consider how many linear constraints it satisfies. We define it as the depth
of this point. However, as mentioned by [17], the depth function is not quasi-concave, i.e., for some points
p1, . . . , pk, the depth of the point inside the convex hull of p1, . . . , pk cannot guarantee to be as high as
p1, . . . , pk (see the left figure of Figure 1, A and B have depth 1, but C only has depth 0). Kaplan et. al. [17]
consider the convexification of the depth, which is called cdepth. The property of cdepth guarantees that the
cdepth of any point inside the convex hull of p1, . . . , pk is as high as that of p1, . . . , pk (see the right figure of
Figure 1, A and B have cdepth 1, C also has cdepth 1).

7We remark that the reduction only works smoothly when the points are assumed to be in general position, but this
assumption can be eliminated (see Section 5.1 in [17]).

11

Figure 1: Depth and cdepth

Definition 15 (Convexification of a function f : (X d+1)∗ × Rd → R [17]). For S ∈ (X d+1)∗ and y ∈ R, let
DS(y) = {z ∈ Rd : f(S, z) ≥ y}. The convexification of f is the function fConv : X ∗ × Rd → R defined by
fConv(S, x) = max{y ∈ R : x ∈ ConvexHull(DS(y))}.

I.e., if x is in the convex hall of points Z ⊂ Rd then fConv(S, x) is at least minz∈Z(f(S, z)).

Definition 16 (depth and cdepth [17]). Let S be a collection of predicates. Define depthS(x) to be the
number of predicates ha,w in S such that ha,w(x) = 1. Let cdepthS(x) = fConv(S, x) for the function
f(S, x) = depthS(x).

Similarly to Fact 1, we have

Fact 3. Let S be a set of n linear constraints and p1, . . . , pk be points with cdepthS(pi) ≥ λn for all i ∈ [k].
Then any point p in the convex hull of {pi}i∈[k] satisfies cdepthS(p) ≥ λn.

Proof. By the assumption, each of the points pi can be written as a convex combination pi =
∑

j∈[ki]
ηi,jyi,j

of ki points yi,1, . . . , yi,ki with depthS(yi,j) ≥ λn. Since p is in the convex hall of p1, . . . , pk, it is also in the
convex hull of {yi,j}.

Fact 4 ([17]). For any S ∈ (Rd × R)∗ and any x ∈ Rd, it holds that

depthS(x) ≥ (d+ 1) · cdepthS(x)− d|S|.

By the above fact, if we can find a point with cdepthS ≥ (1−α)|S| where α≪ 1/(d+1), then this point
has depthS ≈ |S|.

Analogously to Lemma 2, we define the domain extension for linear feasibility problems. Unlike in
Lemma 2, where the extension did not depend on the input for the problem of approximating the Tukey
median, the extension for linear feasibility depends on the input. Given a collection S of predicates, the
extension is computed iteratively, coordinate by coordinate, where the input for the ith iteration is a prefix
(x∗

1, . . . , x
∗
i−1) in the extension obtained in iterations 1 to i− 1.

Definition 17 (domain extension for linear feasibility [17]). We define the d domains {X̃i}di=1 iteratively.
For i = 1, let X̃1 = X̃ ′

1/X̃ ′′
1 where X̃ ′

1 := [[(d · d!) · Xd]] and X̃ ′′
1 := ([[d! · Xd]])\{0}. For i > 1 and given

x∗
i−1 = si−1/ti−1 ∈ X̃i−1 where si−1 ∈ X̃ ′

i−1 and ti−1 ∈ X̃ ′′
i−1, let X̃i = X̃ ′

i/X̃ ′′
i where X̃ ′

i = [[(d · d!)i ·Xdi]]

and X̃ ′′
i = ([[d! · ti−1 ·Xd]])\{0}.

12

Theorem 13 ([17]). Let X ∈ N, X ∈ [[±X]], S ∈ (X d × X)∗, i ∈ [d]. Assume that X̃j is according to

Definition 17 for all j ∈ [i] where for j < i the coordinates x∗
j are picked from X̃j. Then there exists x∗

i ∈ X̃i

such that

max
x̃i+1,...,x̃d∈R

cdepthS(x
∗
1, . . . , x

∗
i−1, x

∗
i , x̃i+1, . . . , x̃d) = max

x̃i,...,x̃d∈R
cdepthS(x

∗
1, . . . , x

∗
i−1, x̃i, x̃i+1, . . . , x̃d)

The following lemma gives the VC dimension of the linear feasibility problem so that we can apply the
VC theory on it. The lemma is closely related to the fact that the VC dimension of d-dimensional halfspaces
is d [25, 19, 21, 22], and we give the full proof details in Appendix B.

Lemma 3. [VC dimension of linear feasibility] Let XHalfspace = {Ha,w | (a,w) ∈ Rd+1}. For a point p ∈
Rd, let rp = {Ha,w | p ∈ Ha,w}, and let RPoints =

{
rp | p ∈ Rd

}
. The VC dimension of (XHalfspace, RPoints)

is d.

Note that for a dataset S = {(a1, w1), . . . , (an, wn)} ∈ (Rd+1)n and a point p ∈ Rd, the depth of p in S
is |{Ha1,w1

, . . . ,Han,wn
} ∩ rp|. Hence, the following statement is an immediate corollary of Theorem 5 and

Lemma 3.

Corollary 2. Let S ⊆ (Rd)n and let S′ ⊆ S be a random subset of S with cardinality m = |S′| ≥

O

(
d·log(d

α)+log 1
β

α2

)
. Then, with probability at least 1−β, for all p ∈ Rd, if depthS′(p) = γ′m and depthS(p) =

γn then |γ − γ′| ≤ α.

In the following, we show that the same approximation guarantee holds also with respect to the cdepth
function.

Corollary 3. Let S ⊆ (Rd)n and let S′ ⊆ S be a random subset of S with cardinality m = |S′| ≥

O

(
d·log(d

α)+log 1
β

α2

)
. Then, with probability at least 1 − β, for all p ∈ Rd, if cdepthS′(p) = γ′m and

cdepthS(p) = γn then |γ − γ′| ≤ α.

Proof. Assume p is a point with cdepthS(p) = γn. By the definition of cdepth, there exists points p1, . . . , pk,
such that depthS(pi) ≥ γn for all i ∈ [k] and p ∈ ConvexHull(p1, . . . , pk). By Corollary 2, with probability
1 − β, depthS′(pi) ≥ (γ − α)m for all i ∈ [k]. Therefore, cdepthS′(p) ≥ (γ − α)m. The proof for the other
direction is similar.

5.2 Privately Solving Linear Feasibility Problems

We use IPConcaveHighDim (Algorithm 2) to solve linear feasibility problems privately. Define the function

QLF (S, x) =
cdepthS(x)

|S|
.

Here we verify that QLF (S, x) satisfies the accuracy requirements in Theorem 10.

1. Approximation by a random subset: By Corollary 3, a random subset S′ ⊆ S of size

m(α, β) ∈ O

(
d · log(d/α) + log(1/β)

α2

)
is an α-approximation of S with respect to QLF with probability 1− β.

2. Concavity: It is guaranteed by Fact 3.

3. Proper finite domains: The domain extension X̃1, . . . , X̃d in Definition 17 and Theorem 13 provide
proper finite domains forQLF (Definition 12) with maximal domain sizeX where log∗ X ∈ O(log∗(|X |+
d)).

13

Thus, the following theorem is an immediate corollary of Theorem 10.

Theorem 14. Let ε > 0, δ, α, β ∈ (0, 1), n, d, t ∈ N with n ≥ t and let X ⊆ R be a finite domain. Let
A : (X d)n → Rd be the algorithm that on input S, computes IPConcaveHighDimα,β,ε,δ,t(S,QLF) with the finite

domains X̃1, X̃2, . . . , X̃d from Definition 17 and outputs its output, and let X = maxi∈[d]

{
|X̃i|

}
. Then

1. Privacy: A is (ε ·
√

2d ln(1/δ′), dδ + δ′)-differentially private for any choice of δ′ > 0.

2. Accuracy: Assuming that t = nIP (X,β, ε, δ) (the sample complexity of PrivateIP in Theorem 8) and
that

n ≥ m(α, β) · nIP (X,β, ε, δ) ∈ O

d log(d/α) + log(1/β)

α2
·
log∗(|X |+ d) · log2

(
log∗(|X |+d)

βδ

)
ε

 .

= Õ

(
log∗ |X | · (d+ log(1/β)) · log2(1/βδ)

εα2

)
,

Then with probability 1− (t+ d)β, A(S) outputs a point x̂ ∈ Rd with cdepthS(x̂) ≥ (1− 2dα)n.

Combining the corollary with Fact 4, we have the following result.

Corollary 4. With probability 1− (t+ d)β, the point x̂ satisfies depthS(x̂) ≥ (1− 2dα− 2d2α) · |S|.

Thus, by substituting ε by ε√
2d ln(2/δ)

, δ by δ
2d , δ

′ by δ/2, α by α
4d2 , and β by β

t+d , we obtain our main

theorem for solving linear feasibility problem.

Theorem 15. Let ε > 0, δ, α, β ∈ (0, 1), n, d ∈ N and let X ⊆ R be a finite domain. There exists an
(ε, δ)-differentially private algorithm A : (X d)n → Rd and a value

nmin ∈ Õ

(
d4.5 · log∗ |X | · (d+ log(1/β)) · log2(1/βδ) · log0.5(1/δ)

εα2

)
= Õα,β,ε,δ

(
d5.5 · log∗ |X |

)
,

such that if n ≥ nmin, then for any S ∈ (X d)n it holds that

Prx̂∼A(S) [depthS(x̂) ≥ (1− α) · n] ≥ 1− β.

5.3 Privately Learning Halfspaces

Combining Theorems 15 and 6, we get the following result.

Theorem 16 (Restatement of Theorem 4). Let X ⊂ R be a finite domain. There exists an (ε, δ)-
differentially private (α, β)-PAC learner for halfspaces over examples from X d with sample complexity n =
Õα,β,ε,δ

(
d5.5 · log∗ |X |

)
.

References

[1] N. Alon, D. Haussler, and E. Welzl. Partitioning and geometric embedding of range spaces of finite
vapnik-chervonenkis dimension. In Proceedings of the Third Annual Symposium on Computational
Geometry, SCG ’87, page 331–340, New York, NY, USA, 1987. Association for Computing Machinery.

[2] N. Alon, R. Livni, M. Malliaris, and S. Moran. Private PAC learning implies finite littlestone dimension.
In M. Charikar and E. Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 852–860. ACM, 2019.

14

[3] N. Alon, S. Moran, and A. Yehudayoff. Sign rank versus vapnik-chervonenkis dimension. Sbornik:
Mathematics, 208(12):1724, 2017.

[4] A. Beimel, S. Moran, K. Nissim, and U. Stemmer. Private center points and learning of halfspaces. In
Conference on Learning Theory, pages 269–282. PMLR, 2019.

[5] A. Beimel, K. Nissim, and U. Stemmer. Private learning and sanitization: Pure vs. approximate
differential privacy. In APPROX-RANDOM, pages 363–378, 2013.

[6] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. J. ACM, 36(4):929–965, Oct. 1989.

[7] M. Bun, K. Nissim, U. Stemmer, and S. P. Vadhan. Differentially private release and learning of
threshold functions. In FOCS, pages 634–649, 2015.

[8] K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S.-H. Teng. Approximating center points
with iterated radon points. In Proceedings of the Ninth Annual Symposium on Computational Geometry,
SCG ’93, page 91–98, New York, NY, USA, 1993. Association for Computing Machinery.

[9] E. Cohen, X. Lyu, J. Nelson, T. Sarlós, and U. Stemmer. Õptimal differentially private learning of
thresholds and quasi-concave optimization. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, pages 472–482, 2023.

[10] L. Danzer, B. Griinbaum, and V. Klee. Helly’s theorem and its relatives. 1963.

[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data
analysis. In TCC, pages 265–284, 2006.

[12] C. Dwork, G. N. Rothblum, and S. P. Vadhan. Boosting and differential privacy. In FOCS, pages 51–60,
2010.

[13] V. Feldman and D. Xiao. Sample complexity bounds on differentially private learning via communication
complexity. SIAM J. Comput., 44(6):1740–1764, 2015.

[14] D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. In SCG ’86, 1986.

[15] Y. H. Huang, W.-H. Chen, and S.-C. Tsai. On the sample complexity of privately learning half-spaces. In
Proceedings of the 16th Asian Conference on Machine Learning, volume 260 of Proceedings of Machine
Learning Research, pages 655–670. PMLR, 2025.

[16] H. Kaplan, K. Ligett, Y. Mansour, M. Naor, and U. Stemmer. Privately learning thresholds: Closing
the exponential gap. In COLT, pages 2263–2285, 2020.

[17] H. Kaplan, Y. Mansour, U. Stemmer, and E. Tsfadia. Private learning of halfspaces: Simplifying the
construction and reducing the sample complexity. Advances in Neural Information Processing Systems,
33:13976–13985, 2020.

[18] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What can we learn
privately? SIAM J. Comput., 40(3):793–826, 2011.

[19] J. Matousek. Lectures on Discrete Geometry. Graduate Texts in Mathematics. Springer New York,
2013.

[20] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis.
In STOC, pages 75–84. ACM, 2007.

[21] N. Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A, 13(1):145 –
147, 1972.

15

[22] S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary languages.
Pacific Journal of Mathematics, 41(1):247–261, 1972.

[23] J. W. Tukey. Mathematics and the picturing of data. 1975.

[24] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, Nov. 1984.

[25] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

A Approximated Functions Have Low Sensitivity

In this section, we show that any approximated function has low sensitivity.

Theorem 17. If (S,Q) can be (α, 1/3,m)-approximated for any S (Definition 10), then for any neighboring
datasets S1, S2 with size at least 4m, we have |Q(S1, x)−Q(S2, x)| ≤ 2α.

Proof. Assume |S1| = |S2| = n and x1 and x2 are the different entries in the two datasets. For each of S1

and S2, the number of m-size subsets is
(
n
m

)
. So for each of S1 and S2, the number of α-approximation is at

least
2(n

m)
3 . Since the number of m-size subsets containing x1 or x2 are at most

(
n−1
m−1

)
, thus the number of α-

approximation that does not containing x1 or x2 is at least

(
2(n

m)
3 +

2(n
m)
3

)
−
(
n
m

)
−
(
n−1
m−1

)
=

(
1
3 −

m
n

)
·
(
n
m

)
> 0.

Let S′ be one of these α approximations. Then |Q(S1, x) − Q(S2, x)| ≤ |Q(S1, x) − Q(S′, x)| + |Q(S′, x) −
Q(S2, x)| ≤ 2α

B VC Dimension of Linear Feasibility Problem

In this section, we give a proof of Lemma 3, restated below.

Lemma 4 (Restatement of Lemma 3). Let XHalfspace = {Ha,w | (a,w) ∈ Rd+1}. For a point p ∈ Rd, let
rp = {Ha,w | p ∈ Ha,w}, and let RPoints =

{
rp | p ∈ Rd

}
. The VC dimension of (XHalfspace, RPoints) is d.

The proof has two parts. Recall that for a ∈ Rd and w ∈ R we define the predicate ha,w(x) = (⟨a, x⟩ ≥ w).
Let Ha,w be the halfspace {x ∈ Rd | ha,w(x) = 1}.

1. There exists d halfspaces that can be shattered. Consider d halfspaces S = {He1,0, . . . Hed,0},
where ei = 0i−1 × 1 × 0d−i. Note that for every x ∈ {−1, 1}d and every i ∈ [d]: Hei,0 ∈ rx ⇐⇒ xi = 1,
where recall that rx = {Ha,w | x ∈ Ha,w}. Therefore, S is shattered by {rx}x∈{−1,1}d .

2. Every d + 1 halfspaces cannot be shattered. For any halfspace Ha,w, and any point p on one
side of the hyperplane {x | ⟨a, x⟩ + w = 0}, the function rp give the same label to Ha,w. Given d +
1 halfspaces, consider the hyperplane arrangement of their corresponding hyperplanes. Each cell of the
hyperplane arrangement can be uniquely projected to one dichotomy of d+ 1 halfspaces (see an example in

Figure 2). By Theorem 18, the number of all possible dichotomies is at most
∑d

i=0

(
d+1
d

)
< 2d+1. Thus d+1

halfspaces cannot be shattered.

Theorem 18 ([19] Page 127, Proposition 6.1.1). The maximum number of cells for n hyperplanes with n > d

in Rd is
∑d

i=0

(
n
d

)
.

16

Figure 2: 2 halfspaces can be shattered (left) and 3 halfspaces cannot be shattered (right) in the 2-D plane

C Huang et al. [15]’s Algorithm is Not Differentially Private

Huang et al. [15] present an algorithm that they claim is differentially private and learns halfspaces over
examples from X d with sample complexity Õ(d · log∗ |X |). In this section, we explain why their algorithm is
inherently not differentially private. For simplicity, we even focus on their 2-dimensional version (described
in their Section 3.1).

Huang et al. [15]’s 2-dimensional learning algorithm is focused on learning halfspaces that go through
the origin. Each such halfspace can be uniquely represented by an angle ϕ ∈ [0, 2π) (denote this halfspace
by hϕ), so their goal is to describe an algorithm A : (X 2×{−1, 1})∗ → [0, 2π) that is: (1) (ε, δ)-differentially

private, and (2) Given a dataset S ∈ (X 2×{−1, 1})n with n ≥ Θ̃α,β,ε,δ(log
∗ |X |) that is realizable by some hϕ

(unknown ϕ ∈ [0, 2π)), with probability 1−β, A(S) outputs ϕ∗ such that |{(x, y) ∈ S : hϕ∗(x) = y}| ≥ (1−α)n
(i.e., A is (α, β)-empirical learner).

Huang et al. [15] first define a finite discretization Hγ of [0, 2π) with size O(|X |2) such that if S ∈ X d is
realizable over [0, 2π), then it is also realizable over the grid Hγ .

Algorithm 3: MakeData

Inputs: ε > 0, Hγ ⊆ [0, 2π), S ∈ (X 2 × {−1, 1})∗.
Operation:

1. SH ← ∅.

2. for ϕ ∈ Hγ do:

(a) nϕ = |{(x, y) ∈ S : |ϕ(x)− ϕ| < γ and hϕ(x) = y}|.
(b) Add max {⌈nϕ + Lap(1/ε)⌉ , 1} copies of ϕ to SH.

3. Return SH.

17

Algorithm 4: MakeThrData

Inputs: SH ∈ ([0, 2π])∗, S ∈ (X 2 × {−1, 1})∗, C ∈ N.
Operation:

1. Calculate q(S, ϕ) = |{(x, y) ∈ S : hϕ(x) = y}| for every ϕ ∈ SH.

2. Let maxC(SH) be the C largest elements in SH according to the lexicographic order of (q(S, ϕ), ϕ);

3. Randomly select ϕ′ ∈ SH \maxC(SH) and rotate the coordinate so that ϕ′ = 0;

4. Let ϕ∗ := argmaxϕ∈maxC(SH) {q(S, ϕ)}.

5. SThr ← ∅.

6. For ϕ ∈ maxC(SH) do

(a) y ← 1 if ϕ ≤ ϕ∗; otherwise, y ← −1.
(b) Add (ϕ, y) to SThr.

return SThr.

Algorithm 5: ASimpleH

Inputs: ε, δ, α, β > 0, S ∈ (X 2 × {−1, 1})∗, γ ∈ [0, 2π), and (ε, δ)-differentially private
(α, β)-empirical learner AThr that privately learn thresholds over XThr with sample complexity
nThr = nThr(XThr, ε, δ, α, β).
Operation:

1. Hγ ← Discretize(γ);

2. SH ←MakeData(ε,Hγ , S);

3. SThr ←MakeThrData(SH, S, nThr);

4. Apply AThr with input SThr, parameters ε, δ, α, β, and get ϕ∗.

5. Output ϕ∗.

18

Theorem 19 (Theorem 14 in [15]). For any ε, δ, α, β ∈ (0, 1), if there is an (ε, δ)-differentially private (α, β)-
empirical learner AThr that learns thresholds on a finite domain XThr with nThr(XThr, ε, δ, α, β) samples,
then with sample complexity

n = O (nThr(XThr, ε/2, δ, α, β)) ,

ASimpleH (Algorithm 5) is an (ε, δ)-differentially private (α, β)-empirical learner for 2-dimensional halfs-
paces.

In the following, we prove that Theorem 19 is wrong by showing that Algorithm 5 is blatantly not
differentially private.

Counterexample to Theorem 19. Let S be a dataset that consists of n/2 + 1 copies of ((1, 0),−1)
(i.e., the point (1, 0) with a label −1), and n/2 − 1 copies of ((−1, 0),−1), and let S′ be the neighboring
dataset that is obtained by replacing one of the ((1, 0),−1) in S with ((−1, 0),−1). We remark that although
S and S′ are not realizable (i.e., no halfspace agree on the labeled points), differential privacy is a worst-
case guarantee and so ASimpleH(S) (with privacy parameters ε, δ) should be (ε, δ)-indistinguishable from
ASimpleH(S′) by Theorem 19.8

Let SH, SThr, and ϕ∗ be the values computed in the execution ASimpleH(S), and let S′
H, S′

Thr, and ϕ′∗

be corresponding values in the execution of ASimpleH(S′). Note that both SH and S′
H contain at least 1

copy of every angle in the grid Hγ . Furthermore, note that in algorithm MakeThrData, for any grid angle
ϕ ∈ (0, π) we have q(S, ϕ) = n/2 + 1 and q(S′, ϕ) = n/2 − 1, and for any grid angle ϕ ∈ (π, 2π) we have
q(S, ϕ) = n/2− 1 and q(S′, ϕ) = n/2 + 1. Therefore, the output SThr of MakeThrData(SH, S) is a dataset
of angles in (0, π), and the output S′

Thr of MakeThrData(S′
H, S′) is a dataset of angles in (π, 2π). Thus,

the output ϕ∗ of AThr(SH) is in (0, π), and the output ϕ′∗ of AThr(S
′
H) is in (π, 2π), and thus we conclude

that ASimpleH(S) and ASimpleH(S′) are clearly distinguishable.

What is wrong in [15]’s Privacy Analysis? The main issue in [15]’s privacy analysis is the (wrong)
argument that the composition ofMakeThrData on top ofMakeData is “differentially private” just because
MakeData is differentially private, which is wrong since MakeThrData also uses the input dataset. As we
demonstrated in our counter example, this composition is clearly not differentially private, and in fact it can
result in completely disjoint outputs on neighboring datasets.

8We remark that it is also not hard to determine realizable datasets S, S′ that break the privacy guarantee of ASimpleH ,
but we chose the unrealizable ones as they make the arguments cleaner and simpler.

19

	Introduction
	Existing Results
	Our Results
	Private Optimization for Approximated Quasi-Concave Functions
	Applications

	Open Questions

	Preliminaries
	Notations
	Learning Theory
	Differential Privacy
	Halfspaces
	Notation

	Our Private Quasi-Concave Optimization Scheme
	One-Dimensional Case
	Extending to Higher Dimension

	Differentially Private Tukey Median Approximation
	Additional Preliminaries for Tukey Median
	Domain Extension

	Privately Estimating the Tukey Median

	Privately Learning Halfspaces via Privately Solving Linear Feasibility Problems
	Additional Preliminaries for Linear Feasibility Problems
	Privately Solving Linear Feasibility Problems
	Privately Learning Halfspaces

	Approximated Functions Have Low Sensitivity
	VC Dimension of Linear Feasibility Problem
	Huang et al. ACML-huang25b's Algorithm is Not Differentially Private

