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Abstract—Drivers are becoming increasingly reliant on ad-
vanced driver assistance systems (ADAS) as autonomous driving
technology becomes more popular and developed with advanced
safety features to enhance road safety. However, the increasing
complexity of the ADAS makes autonomous vehicles (AVs) more
exposed to attacks and accidental faults. In this paper, we eval-
uate the resilience of a widely used ADAS against safety-critical
attacks that target perception inputs. Various safety mechanisms
are simulated to assess their impact on mitigating attacks and
enhancing ADAS resilience. Experimental results highlight the
importance of timely intervention by human drivers and auto-
mated safety mechanisms in preventing accidents in both driving
and lateral directions and the need to resolve conflicts among
safety interventions to enhance system resilience and reliability.
[Code Available at https://doi.org/10.6084/m9.figshare.28691090]

Index Terms—ADAS, Sensor Attack, Adversarial Patch, Fault
Injection, Safety Intervention, Driver, Autonomous Vehicles (AVs)

I. INTRODUCTION

Advanced driver assistance systems (ADAS) offer Level-2
autonomous driving features [1] such as automatic lane cen-
tering (ALC) and adaptive cruise control (ACC). They are
equipped on over 300 million passenger vehicles world-
wide [2] and are estimated to reach a market value of USD
73.74 billion by 2031 [3]. This proliferation stems from the
rapid advances in sensing and computing technologies and
machine learning, which also raises concerns about the safety
of vehicles and human drivers due to the increasing complexity
and connectivity of ADAS. For example, recent studies show
that Tesla’s vehicles have the highest fatal accident and crash
rates among all car brands in the U.S. [4], [5].

The core features of ADAS are ACC and ALC, which
autonomously regulate a vehicle’s speed and steering angle
to maintain lane centering and a safe following distance from
lead vehicles. To achieve these functionalities, ADAS relies
on deep learning (DL) models to detect leading objects and
lane markings from camera inputs. However, DL models
are inherently vulnerable to input perturbations [6]–[9], and
failures in object or lane line detection can lead to catastrophic
safety risks [9], [10]. Consequently, studying the resilience of
ADAS to camera input perturbations is critically important,
particularly for vision-centric systems like Tesla Autopilot [11]
and Subaru EyeSight [12].

Previous work has shown DL-based ADAS are vulnerable
to perception attacks, including digital attacks that manipulate

live camera feeds by directly compromising control software
[13] and physical attacks employing adversarial stickers on
road signs [14], the road surface [15], or camera lenses [16],
as well as adversarial patches projected or printed on vehicles
ahead [10], [17]. However, these works largely overlook the
role of human-driver intervention and the impact of integrated
safety mechanisms within the ADAS control loop, such as ad-
vanced emergency braking systems (AEBS) and lane departure
warnings. These advanced safety features, designed to enhance
road safety, are increasingly standard in modern ADAS and
are critical to evaluating the resilience of ADAS.

While some studies have evaluated safety features like auto-
matic emergency braking (AEB), these efforts are often limited
to component-level analysis [18] without systematically testing
the safety mechanisms and ADAS as a whole. Others focus
narrowly on a single feature, such as ACC [9], neglecting
the interdependencies among ADAS functionalities. Recent
advancements in machine learning have shown promise in
enhancing the resilience of robotic vehicles against sensor
attacks [19]–[21]. However, these methods have yet to be
evaluated on commercial ADAS.

To fill this gap, we systematically assess the resilience of a
widely used open-source commercial ADAS, OpenPilot [22],
against perception attacks (adversarial patches) while consid-
ering the interventions of existing safety mechanisms (such
as AEB) and human drivers. Given that real-world road tests
require significant time and resources and pose substantial
risks to human safety and vehicle integrity during collision
scenarios, especially when studying safety-critical attacks that
could lead to crashes, we have developed a simulation platform
for realistic experimental studies. Our platform integrates real-
world control software, a physical-world simulator, a driver
reaction simulator, and key ADAS safety mechanisms (AEB
and FCW), all implemented in accordance with international
standards and government-issued transportation guidelines.

The main contributions of the paper are as follows:
• Analyzing the effectiveness of basic ADAS safety inter-

ventions in mitigating the adversarial effect of physical
patches on the ALC and ACC operation.

• Developing an open-source platform for realistic simula-
tion of attacks and different levels of safety intervention.

• Studying the conflicts or coordination among different
safety interventions, including automated mechanisms
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and human drivers.
• Comparing basic safety mechanisms with an automated

ML-based mitigation method.
Our study demonstrates that OpenPilot is highly vulnerable

to adversarial patch attacks targeting ACC and ALC, often
failing to detect the front vehicle at close range and exhibiting
unsafe, aggressive speed control even in benign conditions,
such as applying a hard brake only at a very close distance
when approaching the lead vehicle. The findings highlight that
basic safety mechanisms and human intervention may be more
effective than certain ML-based automated mitigation methods
in preventing accidents across both driving and lateral direc-
tions in the simulated scenarios. Lateral attacks, in particular,
remain challenging to mitigate, though highly alert drivers
achieve notably better prevention rates. Furthermore, the re-
sults underscore the critical role of independent sensors for
AEBS, the potential of AEB to prevent lateral accidents, and
the pressing need to resolve conflicts among safety features to
enhance overall system reliability and resilience.

II. PRELIMINARIES

A. Advanced Driver Assistance System

Advanced Driver Assistance Systems (ADAS) are technolo-
gies now widely used in vehicles to enhance road safety and
driving comfort by freeing up driver attention and reducing
human error. With a number of assistive features and semi-
autonomous driving designs, it effectively enhances driving
safety and driver comfort over long distances. ADAS systems
rely on sensors and cameras to collect real-time data about the
vehicle’s surroundings, which can be used to enable predictive
action and alert the driver to potential hazards.

Fig. 1 shows the control structure of a typical ADAS.
Key ADAS functions include ACC, ALC, AEB, Blind Spot
Detection, Traffic Sign Recognition, and Driver Monitoring
Systems, among others. ADAS technologies are designed to
automate driving tasks by gradually automating driving tasks
and ultimately achieving fully automated driving functions.
These systems significantly improve safety by reducing the
number of accidents caused by human error, while increasing
the overall comfort and convenience of driving. As technology
advances, ADAS integration in vehicles is becoming more
common, resulting in smarter and safer roads.

Autonomous Driving Levels: Autonomous driving tech-
nologies are categorized into different levels according to
the vehicle’s automation capabilities and the need for human
intervention, ranging from Level 0 (no automation) to Level 5
(full automation). Current commercial ADAS operate at Level
2, where human drivers must continuously monitor the driving
environment and ensure safety at all times [1].

Safety Mechanisms: Safety mechanisms are an integral
part of ADAS to prevent accidents and protect vehicle oc-
cupants through a range of functions.

AEB is an important safety feature that automatically acti-
vates the brakes when it detects an impending collision, some-
times before the driver can react. This system is particularly

Fig. 1: Overview of the Control Structure of an ADAS.

effective at low speeds and in urban driving environments and
can significantly reduce rear-end accidents. Closely working
with AEB, Forward Collision Warning (FCW) monitors the
road ahead with a forward-facing camera and radar, and when
it detects a risk of a collision ahead, the system warns the
driver to take evasive action. In many cases, the FCW system
can warn the driver several seconds in advance, giving enough
time to adjust speed or avoid obstacles.

These mechanisms mark a milestone in automotive safety,
improving driving and road safety and paving the way for
further ADAS innovations.

Openpilot: OpenPilot [22] is an open-source ADAS driving
software from Comma.ai, Inc. When the OpenPilot software
runs on Comma.ai’s hardware and connects to a car, it becomes
an autonomous driving system that can control the car, allow-
ing for upgrades to original systems that lack ADAS features.
OpenPilot supports more than 300 vehicle models [23] and has
over 10,000 users, with more than 100 million miles driven.
OpenPilot utilizes a system-level end-to-end design that uses
DL models to predict the information necessary to avoid risks
and plan the car’s trajectory, based directly on images captured
by the camera on the Comma hardware. This is a departure
from traditional self-driving solutions, which rely on separate
units of perception, prediction, and planning that operate in
conjunction with each other.

B. MetaDrive Driving Simulator

MetaDrive [24] is an open-source simulator platform for
autonomous driving research, specifically designed to provide
an efficient and scalable simulation environment. It is the
official simulator for OpenPilot by Comma.ai. MetaDrive pro-
vides a controlled-risk environment for researchers to test and
optimize autonomous driving algorithms, including perception,
decision making, and motion control strategies. We do not use
CARLA [25], another widely used physical-world simulator,
due to its incompatible Python environment with the OpenPilot
(v0.9.7) control software.

III. APPROACH

A. Threat Model

We assume the attacker has the capability to launch efficient
physical-world attacks on the camera inputs of ADAS by



introducing adversarial patches on the rear of a lead vehicle
(LV) [26] or directly on the road [10] with the goal of compro-
mising the ACC and ALC functionalities. These capabilities
may include prior information about the victim vehicle’s
driving path and full knowledge of the target ADAS (e.g., ALC
and ACC) implementation details through reverse-engineering
a rented or purchased vehicle with the same model [15] or re-
searching open-source ADAS materials [22]. The assumption
of attack capability is realistic and similar to previous work in
the literature [9], [10], [26]–[29]. The resulting perturbations
compromise the ADAS perception module (see Fig. 1), leading
to incorrect predictions of critical information, such as the lead
vehicle’s distance from the ego vehicle (EV) and lane line
positions. Consequently, these errors propagate to the ADAS
control software, causing malfunctions in the ALC and ACC
modules, which can result in safety hazards or accidents, such
as collisions or lane departures.

In this paper, we focus on analyzing the impact and effec-
tiveness of existing safety mechanisms in mitigating physical-
world perception attacks.

B. Attack Design and Implementation

In this paper, we examine attacks targeting ALC and ACC
features of ADAS.

For ALC attacks, the attacker aims to deviate the vehicle’s
driving direction by altering predictions of lane lines or desired
curvature. Prior work has demonstrated the feasibility of
physical adversarial perturbations on camera inputs to achieve
this goal [10]. Here, we adopt a method that compromises
ALC functionality by deploying a well-crafted patch on the
ego vehicle’s driving path [10] (see Fig. 2). The attack is
activated when the ego vehicle drives over the area containing
the patch.

For ACC attacks, we utilize a method explored in previous
studies [9], [26], [30], which involves displaying or projecting
a physical patch on the rear of a lead vehicle (see top images
in Fig. 2). This attack is triggered when the patch is detected
by the ego vehicle within an effective range (e.g., less than 80
meters). It disrupts the prediction of the lead vehicle’s distance,
a critical input for the ACC decision-making module.

Note that only a portion of the adversarial patches lead
to DNN (deep neural network) misprediction and further
propagate to cause unsafe driving behaviors. To better evaluate
the impact of safety interventions against these adversarial
patches, we directly emulate the effect of the patches by
injecting attacks into the DNN output and getting the range of
attack values of mispredictions corresponding to adversarial
patches from previous work [9], [10].

C. Safety Mechanisms Design

Passenger vehicles are increasingly equipped with advanced
safety mechanisms such as AEB, FCW, lane departure warn-
ing, and firmware safety checking. In this paper, we implement
three-level safety mechanisms to realistically assess the impact
of these existing safety mechanisms on improving ADAS re-
silience to perception attacks (adversarial patches) and driving

Fig. 2: Example physical attacks against ACC and ALC by adding
an adversarial patch on the rear of the lead vehicle (LV) [26] or on
the road [10].

safety, including basic-level AEBS, application-level safety
checking, and human-level driver interventions.

AEBS: We adhere to the established guidelines and regula-
tions for AEBS [31]–[33] and implement a time-to-collision-
based phase-controlled AEBS, following the approach outlined
in previous studies [9], [34]. Specifically, the AEBS operates
by calculating the time to collision (TTC) between the ego
vehicle and the lead vehicle, defined as the ratio of Relative
Distance (RD) to Relative Speed (RS):

ttc = RD/RS (1)

To determine the braking response, the system first estimates
the time required for the ego vehicle to stop under human
driver braking:

Tstop = VEgo/adriver (2)

where, VEgo is the ego vehicle’s speed and adriver is the
driver’s assumed deceleration.

An FCW is triggered to alert the driver of potential collision
risks when the estimated time to collision is insufficient for
the driver to respond (Treact) and stop the vehicle safely.

tfcw = Treact + Tstop (3)

In this study, we assume an average human reaction time
of 2.5 seconds, as reported in the literature [9], [10], [35].
If the driver fails to react to the FCW alert in time, the
AEBS activates phased braking based on speed-dependent
TTC thresholds:

tpb1 =
VEgo

3.8
, tpb2 =

VEgo

5.8
, tfb =

VEgo

9.8
(4)

Specifically, when ttc falls below the cascade thresholds for
first-stage braking time (tpb1), second-stage braking time (tpb2)
and full-force braking time (tfb), the system applies 90%
braking, 95% braking and full braking, respectively. The
activation sequence of FCW alerts and corresponding AEBS
actions are shown in Table I.

TABLE I: AEBS Actions.

TTC [tfcw ,tpb1] [tpb1,tpb2] [tpb2,tfb] [tfb,0]

Action FCW Alert 90% Brake 95% Brake 100% Brake



Note that in some car models, the AEBS may also rely on
compromised DNN predictions as inputs, potentially degrad-
ing its functionality, whereas other models might be equipped
with separate sensors to ensure reliable AEBS operation [9].
Furthermore, certain vehicles may completely disable AEBS
functionality when ADAS is activated [23]. To account for
these variations and realistically simulate AEBS implementa-
tion on actual passenger cars, we design the AEBS mechanism
to operate under three distinct configurations: (1) AEBS is
disabled, (2) AEBS is activated but relies on compromised
sensor data, and (3) AEBS is activated and utilizes inputs from
an independent, secure data source.

Firmware Safety Checks: In addition to safety checking
in the control software, OpenPilot also implements firmware
safety checking on the output control commands through a
CAN interface device, PANDA [36], which is a universal OBD
adapter developed by Comma.ai, providing access to almost
all vehicle sensors over the CAN bus. However, this PANDA
safety checking is not available in the simulation. To align
our safety mechanism with real-world implementations, we
replicate the logic from PANDA and design a software-based
safety constraint checker that detects if command values are
within a predefined safe range, thereby blocking unsafe control
commands. For example, to prevent potential hazards, the
maximum acceleration and deceleration of the vehicle should
be between 2m/s2 and -3.5m/s2 [37] (the exact thresholds
set in PANDA with a more conservative design based on ISO
22179 [38]), respectively, and only control commands that fit
within the safe range can be sent to the simulation platform
for execution.

Human Driver Reactions: At Level 2 autonomy [1],
drivers are required to monitor driving safety at all times and
intervene in emergencies to prevent hazards. We implement
a driver reaction simulator to evaluate the impact of driver
interventions on longitudinal and lateral control.

As shown in Table II, when receiving an FCW alert,
noticing unexpected acceleration, unsafe following distance
(e.g., less than a vehicle length), or unsafe cruising speed
(exceeding 10% of the speed limit [39]), or identifying a
vehicle attempting to cut in from an adjacent lane, the driver
initiates an emergency brake after the reaction time to avoid
collisions. We implement the emergency braking following a
driver brake behavior study [40]. For hazard mitigation in
the lateral direction, if a lane departure warning (LDW) is
triggered or the vehicle approaches a lane line too closely
(predicted distance less than 0.5 meters), the driver steers the
vehicle back to the center of the lane, following the reaction
time.

We use a fixed average driver reaction time of 2.5 seconds
for these interventions unless otherwise specified in our sim-
ulations, based on various government-issued transportation
policy guidelines [41], [42] and existing literature [9], [10]. To
account for the variability in drivers’ reaction times and assess
their impact on hazard mitigation, we also conduct additional
experiments in Section IV-E4.

TABLE II: Driver Reaction Simulator.

Activation Condition Driver Reaction Reaction Time

FCW Alerts Emergency Brake &
Zero Throttle &
No changes in
the steering angle

2.5 seconds
Unsafe Cruise Speed
Unexpected Acceleration
Unsafe Following Distance
Other Vehicle Cutting in

Lane Departure Warning Steer vehicle back to
the center of the lane 2.5 secondsUnsafe Distance to Lane Lines

IV. EXPERIMENTS

We develop a closed-loop simulation platform (see Fig. 3)
to assess ADAS resilience and evaluate the effectiveness of
various safety mechanisms. The platform integrates OpenPilot
control software with the MetaDrive physical-world driving
simulator and incorporates a fault injection engine alongside
a safety intervention model as designed in Section III-C.
To address conflicts among safety interventions, we assign
different priorities to the various safety mechanisms in our
simulations, with AEB having the highest priority and safety
checking the lowest [43] [44].

Experiments are conducted on two Ubuntu 20.04 LTS
machines, one with an NVIDIA RTX 3070 graphics card and
the other with an NVIDIA RTX 3090 graphics card. The
platform utilizes OpenPilot v0.9.7 (the latest stable version)
and MetaDrive 0.4.2.3. Each OpenPilot simulation comprises
10,000 time steps, with each step lasting approximately 10 ms,
resulting in a total time of 100 seconds per simulation.

A. Driving Scenarios

We simulate the following driving scenarios, which are
identified as high-risk in the National Highway Traffic Safety
Administration’s (NHTSA) pre-collision scenario typology
report [45]. In these scenarios, the ego vehicle cruises at 50
mph and approaches the lead vehicle from an initial distance
of 60 or 230 meters. These distances are chosen to ensure the
ego vehicle catches up with the lead vehicle on straight and
curvy roads within our simulation.

• S1: The lead vehicle cruises at a constant speed (30 mph).
• S2: The lead vehicle cruises at 30 mph and then acceler-

ates to 40 mph.
• S3: The lead vehicle cruises at 40 mph and then decel-

erates to 30 mph.
• S4: The lead vehicle cruises at 30 mph and suddenly

brakes to a stop due to an obstacle.
• S5: The lead vehicle cruises at 30 mph, and another

vehicle from the neighboring lane cuts into the ego
vehicle’s driving lane.

• S6: Two lead vehicles cruise at a constant speed (30 mph)
in the same lane; then, the second lead vehicle (the one
closer to the ego vehicle) changes lanes and moves into
an adjacent lane.

A visualization of each designed driving scenario is also
shown in Fig. 4. In the MetaDrive simulator, we choose a dry
highway map for all scenarios. The default environment is set
to a bright morning with stable lighting and clear visibility.



Fig. 3: Overview of closed-loop simulation platform.

Fig. 4: Driving Scenarios.

B. Fault Injection

To simulate the effects of physical-world perception attacks
on ACC and ALC (see Section III-A), we design a source-level
fault injection (FI) engine capable of directly manipulating the
outputs of the perception module by amounts consistent with
those demonstrated in previous studies [9], [10]. Specifically,
the perception attack on ACC targets the DNN’s predictions
of the lead vehicle’s position. To replicate this effect, the
fault injection engine directly alters the predicted relative
distance (RD) to the lead vehicle [9]. Similarly, the fault
injection engine modifies the desired curvature predicted by
the perception module to simulate sensor attacks on ALC [10]
(see Fig. 2). The desired curvature, defined as the reciprocal
of the turning radius, dictates the sharpness of the vehicle’s
turns. In this study, we consider fault injection targeting a
single variable and multiple variables.

For each attack type listed in Table III, the fault injection
engine defines four parameters: (i) the target state variable, (ii)
the magnitude of the error to inject, (iii) the trigger condition
for the error, and (iv) the duration of the injected fault. Fault
injections affecting the relative distance (RD) are triggered
when the relative distance to the lead vehicle is less than 80
m, mimicking the perception of an adversarial patch on the
rear of the lead vehicle by the ego vehicle. The injected fault
values are set to 10 m, 15 m, and 38 m when the relative
distance is within 80 m, 25 m, and 20 m, respectively, as
reported in an existing work [9]. For attacks on ALC, the
fault injection is activated when the ego vehicle crosses an
adversarial patch on the road, introducing a 3% deviation in
curvature output predictions. This deviation results in a lateral
path offset corresponding to a steering angle adjustment of up
to 10 degrees, which falls within a reasonable range reported
in the literature [10]. Each configuration is repeated 10 times,
resulting in 360 simulations (3 fault types ×2 initial positions
×6 driving scenarios).

TABLE III: Fault Injection Parameters.

Type Target Variable Attack Timing Attack Value

Single
Relative Distance RD < 80m 38-10m

Desired Curvature Ego vehicle drives
over road patch area 3%

Mixed RD & Curvature
RD < 80m or ego
vehicle drives across
patch

Same as
above

C. Hazard and Accident

We consider two types of hazards and accidents:
• A1: Forward collision with the lead vehicle.
• A2: Driving out of the lane or colliding with side vehicles.
• H1: Ego vehicle violates maintaining safety distance with

the lead vehicle, which may result in A1.
• H2: Ego vehicle drives too close to the lane lines (e.g.,

0.1m), which may lead to A2.

D. Baselines

Machine learning (ML) techniques have demonstrated sig-
nificant advancements in hazard recovery for drones and
unmanned aerial vehicles [20], [21], yet their application to
autonomous vehicles (AVs) remains relatively underexplored.
To evaluate the effectiveness of ML-based automated methods
in mitigating perception or sensor attacks against Level-2
ADAS, we develop a basic end-to-end ML baseline. This
model takes as input the ego vehicle’s speed, relative distance
to the leading vehicle, lane line positions, and historical gas
and steering values from previous control cycles to directly
predict the expected gas and steering outputs.

We train the model on fault-free data spanning 20 control
cycles (0.2 seconds at a 100Hz control frequency) and explore
various configurations of a two-layer LSTM model, including
256-128, 256-64, 256-32, 128-64, 128-32, and 64-32 hidden
units. The best-performing LSTM model uses 128 and 64
hidden units. Since adding a third layer does not improve per-
formance, we retain the two-layer model as the ML baseline.

As shown in Algorithm 1, the mitigation mode is activated
when the accumulated error between ML model predictions
and OpenPilot controller outputs exceeds a preset threshold
τ [46]. A bias parameter b(t) > 0 is introduced to ensure that
no error accumulates in S(t) under normal conditions.

Under attack, we assume the ML model has access to
fault-free input data from an independent or redundant sensor
measurement, following the design of previous works [20] that
isolate compromised sensors. The ML model then generates
a mitigation output, yML, which is executed by the actuator.
The mitigation mode remains active until the error between
ML outputs and OpenPilot outputs falls within threshold b(t).

E. Results

1) ADAS Driving Performance: We first evaluate Open-
Pilot’s ability to drive normally across six designed scenarios
without any fault injection and present the results in Table IV.



Algorithm 1: Baseline ML-based Hazard Mitigation.
Input: Current state x(t) based on fault-free sensor data, threshold

τ , bias parameter b(t)
Output: Control output to actuator y(t)

1 S(t) = 0 ▷ Initialize accumulated error
2 b(t) = b0 > 0 ▷ Initialize bias parameter
3 while Vehicle is operating do
4 Xt ← [x(t− 19), x(t− 18), ..., x(t)] ▷ 20 continuous frames
5 Yt ← [y(t− 20), y(t− 19), ..., y(t− 1)] ▷ Historical outputs
6 yOP ← OpenPilot output
7 yML ← MLmodel.predict(Xt, Yt)
8 δ ← |yML − yOP |
9 S(t+ 1) = max(0, S(t) + δ− b(t)) ▷ Keep S(t) Non-negative

10 if S(t+ 1) > τ then
11 recovery_mode ← True
12 if recovery_mode then
13 y(t)← yML

14 if δ ≤ b(t) then
15 recovery_mode ← False
16 S(t)← 0 ▷ Reset S(t) when exiting recovery mode
17 else
18 y(t)← yOP

19 end

TABLE IV: Hardest Brake Value in Different Scenarios.

Driving Hazard Accident Following Hard Brake min. min.
Scenario Distance(m) Value TTC(s) tfcw(s)

S1 1/20 0/20 26.02 32.7% 5.70 4.42
S2 1/20 0/20 29.15 15.7% 5.27 4.38
S3 2/20 1/20 29.88 46.7% 3.71 4.39
S4 10/20 10/20 23.72 86.7% 0.85 3.24
S5 2/20 1/20 29.42 58.0% 2.33 3.90
S6 3/20 0/20 28.15 30.3% 5.44 4.46

We observe that OpenPilot performs well in controlling the
vehicle without accidents in most scenarios, including cut-in
situations (S5). However, in Scenario S4, the OpenPilot fails to
prevent a collision even in the absence of an attack, particularly
when the lead vehicle brakes abruptly on a curve. The ego
vehicle, still approaching at high speed without prior speed
control before the curve, collides due to an insufficient emer-
gency braking distance, despite triggering the FCW alarm.

Although OpenPilot maintains a larger following distance
with the lead vehicle (LV) during a stable cruise stage com-
pared to a previous version [9], OpenPilot exhibits aggressive
braking behavior when approaching the lead vehicle, even in
the absence of any attacks. This overly aggressive braking,
while not causing immediate hazards, can adversely affect
ride smoothness and increase the risk of rear-end collisions
in congested traffic conditions. As shown in Fig. 5, taking
Scenario 1 as an example, when the ego vehicle approaches
the lead vehicle, the ego vehicle’s speed suddenly drops from
about 21.7m/s to 9.6m/s, a decrease of 55.8% within 4.7
seconds, followed by similar speed fluctuations.

Furthermore, ALC struggles to maintain the vehicle in the
center of the lane, as evidenced by the minimal distance to lane
lines, particularly during high-speed turns (see Table V). This
increases the risk of side collisions and highlights insufficient
coordination between the ALC and ACC modules. Addition-
ally, the vehicle’s aggressive speed control on curves with
excessive angles underscores the need for improved lateral and
longitudinal stability to ensure safe driving performance.

(S1) (S2) (S3)

(S4) (S5) (S6)

Fig. 5: Speed and Distance to Lane Lines when Approaching LV.

TABLE V: Minimal Distance to Lane Lines.

Driving Scenarios S1 S2 S3 S4 S5 S6

Distance to Lane Lines (m) 0.45 0.49 0.07 0.63 0.44 0.59

Observation 1: OpenPilot fails to ensure safety in cer-
tain scenarios (e.g., S4) and exhibits aggressive braking
when approaching a lead vehicle and inadequate lateral
control for maintaining lane centering, highlighting the
need for improved coordination between the ALC and
ACC modules, particularly on curvy roads.
2) ADAS Resilience under Attack: We assess the resilience

of ADAS against attacks (see Table III) without any safety
intervention. We present the results in Table VI. We see in
Table VI that accidents happen in all the simulations, indi-
cating the insufficiency of OpenPilot in tolerating adversarial
perception attacks and the need for safety mechanisms to
improve safety. Additionally, 17.5% of out-of-the-lane (A2)
accidents are caused by fault injection against ACC, resulting
from overspeeding on curvy roads and lane changes to avoid
forward collisions in cut-in scenarios. For mixed attacks, more
A2 accidents occur than A1 accidents due to the shorter time
needed to trigger accidents in the latter direction, highlighting
the severe vulnerability of ALC to perception attacks.

We also observe that OpenPilot fails to recognize the lead
vehicle when the relative distance (RD) is short. As shown in
Fig. 6, the ego vehicle continues to approach the lead vehicle
using the tampered input. However, once the ego vehicle gets
within a certain range, such as 2 meters, OpenPilot is unable to
detect the lead vehicle through the camera. This failure causes
the ego vehicle to accelerate, resulting in a collision.

Observation 2: OpenPilot is unable to tolerate per-
ception attacks against ACC and ALC and fails to
recognize the front vehicle at a short distance.
3) Evaluation of Safety Interventions: Table VI also shows

the results of fault injection experiments with various con-
figurations of safety interventions. We see in Table VI that
the designed safety mechanisms can prevent 19.17-100%
accidents across different safety configurations and fault types,
demonstrating safety interventions’ key role in mitigating
ADAS perception attacks.

Among the tested mechanisms, AEB utilizing an indepen-
dent data source consistently outperforms other strategies in



TABLE VI: Fault Injection with or w/o Safety Interventions.

Fault Safety Interventions Accidents Prevented Avg. Mitigation Time(s) Trigger Rate

Type Driver Safety AEB AEB ML A1 A2 Accident AEB Driver Driver AEB Driver Driver
Check Comp. Indep. Model Brake Steering Brake Steering

- - - - - 82.50% 17.50% 0% - - - - - -
✓ ✓ - - - 55.00% 0% 45.00% - 3.19 0.97 - 51.67% 6.70%
✓ ✓ ✓ - - 49.17% 0% 50.83% 3.55 2.65 5.50 20.00% 42.50% 3.33%

Relative ✓ ✓ - ✓ - 0% 0% 100% 3.30 2.01 0.93 83.33% 93.33% 4.17%
Distance - - ✓ - - 80.83% 0% 19.17% 3.46 - - 19.17% - -

- - - ✓ - 0% 0% 100% 3.26 - - 100% - -
✓ - - - - 51.17% 0.83% 40.00% - 2.72 3.00 - 66.00% 3.33%
- - - - ✓ 1.67% 65.83% 32.5% - - - - - -

- - - - - 0% 100% 0% - - - - - -
✓ ✓ - - - 0% 54.17% 45.83% - 4.26 0.92 - 30.00% 40.83%
✓ ✓ ✓ - - 0% 52.72% 47.27% 3.14 0.82 0.77 43.64% 32.73% 16.36%

Desired ✓ ✓ - ✓ - 0% 46.67% 53.33% 3.52 3.15 0.13 42.50% 39.17% 14.17%
Curvature - - ✓ - - 0% 60% 40.00% 3.55 - - 40.83% - -

- - - ✓ - 0% 59.17% 40.83% 3.12 - - 48.83% - -
✓ - - - - 0% 51.67% 48.33% - 4.26 0.93 - 30.00% 41.67%
- - - - ✓ 0% 60.00% 40.00% - - - - - -

- - - - - 4.17% 95.83% 0% - - - - - -
✓ ✓ - - - 7.50% 54.17% 38.33% - 3.21 3.16 - 59.17% 32.50%
✓ ✓ ✓ - - 8.33% 41.67% 50.00% 3.35 2.93 2.85 12.50% 80.83% 72.50%
✓ ✓ - ✓ - 0% 48.33% 51.67% 3.68 3.20 0.87 41.67% 36.67% 12.50%

Mixed - - ✓ - - 6.67% 67.50% 25.83% 0.05 - - 25.83% - -
- - - ✓ - 0% 58.33% 41.67% 3.62 - - 43.33% - -
✓ - - - - 8.33% 22.50% 69.17% - 3.18 0.93 - 64.17% 32.50%
- - - - ✓ 0% 76.92% 23.08% - - - - - -

Fig. 6: Speed and Relative Distance under Fault Injection.

preventing forward collisions, achieving an accident preven-
tion rate of up to 100%. This underscores the effectiveness
of AEB in addressing immediate forward hazards. However,
when AEB uses compromised data, the accident prevention
rate drops significantly to 19.17%, highlighting the importance
of designing an AEB with inputs from an independent sensor
or a fault-resilient data stream. While AEB is not designed
to address hazards or accidents in the lateral direction, we
observe that it prevents up to 40.83% of A2 accidents caused
by attacks on ALC. This occurs because the ego vehicle’s
aggressive acceleration toward the lead vehicle activates AEB,
stopping the ego vehicle from driving out of the lane.

We also observe human driver intervention, including brak-
ing and steering, prevents a significant portion of acci-
dents across different fault types (40-69.17%), indicating the
important role of driver in ensuring safety in addition to
advanced safety features (e.g., AEB, FCW) when driving
Level-2 AVs [1]. However, the average driver reaction time
(2.5 seconds) introduces a critical delay, which impacts the
effectiveness of interventions in fast-evolving situations. For
example, in relative distance attacks, where rapid decelera-
tion is required to prevent collisions, the delayed response
limits the accident prevention rate compared to AEB (40%
vs. 100%). Conversely, for curvature attacks leading to lane
deviations, driver steering interventions demonstrate higher
efficacy.

Observation 3: AEB and driver intervention can pre-
vent accidents in both driving and lateral directions and
are critical to ensuring driving safety.
For the mixed fault type, human intervention achieves the

highest hazard prevention rate at 69.17%. However, when
combined with AEB, the prevention rate drops to 50–51.67%.
This decline is primarily due to the prevalence of lateral-
direction accidents (A2), where AEB underperforms compared
to human intervention. Since AEB has the highest priority
in the safety hierarchy, it overrides human inputs, leading to
more unsuccessful mitigation cases. These findings underscore
the challenges of prioritizing safety mechanisms to prevent
conflicts across diverse driving and fault scenarios. While
AEB is critical for immediate risk mitigation, human inter-
vention remains vital for addressing complex or prolonged
faults. Driver responses provide a complementary layer of
safety, particularly when automated systems are disabled or
compromised.

Observation 4: Better coordination of safety mecha-
nisms at different levels is needed to resolve conflicts
and ensure safety under complex attacks.
4) Evaluation with Different Driver Reaction Times: Al-

though the designed safety mechanisms mitigate up to 53.33%
of the accidents caused by attacks against ALC, they still fail
to prevent nearly half of the accidents. This is due to the
short mitigation time in the lateral direction and the critical
delay in driver reaction. To account for the variability in
driver’s reaction time and further assess their impact on hazard
mitigation outcomes, we rerun the simulations with reaction
times varying between 1.0s and 3.5s [47] [48], using the same
scenario and fault settings introduced in Sections IV-A and
IV-B, while enabling only driver interventions. This results in



TABLE VII: Prevention Rate vs. Driver Reaction Time.

Fault Type Driver Reaction Time(s)

1.0 1.5 2.0 2.5 3.0 3.5

Relative Distance 53.33% 55% 55% 40% 43.33% 41.67%
Desired Curvature 77.50% 55.83% 58.11% 48.33% 52.50% 40.00%
Mixed 70.83% 70.00% 68.33% 69.17% 60.83% 53.33%

360 simulations for each reaction time configuration. Table
VII demonstrates that the success rate of driver intervention
increases when reaction time is shorter than 2 seconds, em-
phasizing the importance of staying alert while driving.

Observation 5: Attacks against ALC cannot be easily
mitigated while an alert driver may improve the success
rate of accident prevention.

5) Evaluation with Various Environmental Conditions:
Environmental conditions impact hazard mitigation in two
ways: lighting affects visibility and perception, while weather
conditions, such as rain, impact road friction. In MetaDrive,
there is no direct interface to modify environmental conditions,
and adjusting lighting using third-party renderers degrades
OpenPilot’s functionality under normal operation. Therefore,
we can only simulate varying road friction by modifying
friction parameters to represent wet or icy conditions. To
assess the effect of different weather conditions on safety
mechanisms for hazard mitigation, we rerun all simulations
across all fault types and scenarios.

Table VIII shows that the hazard mitigation rate declines
as road friction decreases. However, the safety mechanisms
maintain a similar prevention rate at 50% road friction (e.g.,
heavy rain [49]), indicating a certain level of robustness in
mitigating hazards under varying weather conditions. When
road friction is reduced to 25% (e.g., icy road [50]), we
observe a significant drop in the hazard mitigation rate against
attacks targeting desired curvature, highlighting the increased
vulnerability of ALC in severe weather conditions.

TABLE VIII: Hazard Prevention Rate vs. Road Friction.

Fault Type Road Friction

Default 25% off 50% off 75% off

Relative Distance 50.83% 51.65% 47.50% 43.33%
Curvature/Lateral 47.27% 44.17% 45.83% 18.33%

1Enabled Safety Intervention: Driver, Safety Check, AEB Compromised

6) Comparison to ML-based Mitigation: From Table VI we
see that the ML-based baseline achieves a hazard prevention
rate of 23.08%–40.00% across different fault types, which,
while reasonable, remains lower than driver intervention and
AEB. While the ML model prevented nearly all A1 accidents
caused by relative distance attacks, it introduced new A2
accidents, highlighting its inadequate performance in vehicle
centering and the need for further efforts in designing and
training a more advanced ML model.

Observation 6: Basic safety mechanisms (e.g., AEB) or
human intervention may be more effective than certain
automated ML-based mitigation methods in preventing
accidents in ADAS in our simulated scenarios.

V. THREATS TO VALIDITY

This study is conducted solely in simulation, leaving the
real-world impact of safety mechanisms on perception attacks
against ADAS in actual vehicles uncertain. Further, the driver
reaction model relies on fixed rules and thresholds, which may
not fully represent human behavior or distribution of reaction
time during emergencies. We try to mitigate this weakness
by developing a realistic testbed and examining various driver
reaction times. Testing on actual vehicles and modeling more
complex driver reactions are directions of future work.

VI. RELATED WORK

Existing work has explored the vulnerability of autonomous
driving and AVs against faults or attacks [51] targeting Li-
dar [52], GPS [53], radar [54], camera [10], [55], perception
model [56]–[58], CAN bus [35], multi-sensor fusion [59],
object tracking [7], or controller [60]. However, most works do
not account for the existing safety mechanisms. Few studies
on safety interventions have focused solely on a single ADAS
feature, such as ACC [9], without accounting for the inter-
actions between multiple safety mechanisms. Additionally,
some studies have evaluated the resilience and robustness
of autonomous systems [61]–[68]. However, these efforts
often focus on individual components, such as AEB [66] or
FCW [18], and lack a comprehensive, system-wide testing
approach. A comparison of our work with other existing work
is shown in Table IX.

TABLE IX: Comparison with Existing Work.

Work Attack Vector Target AEB Driver Autonomy
Intervention Level

[35] Control Commands ACC, ALC N Y L2
[69] ACC Y N L2
[66]

Perception Input

LiDAR, Camera Y N N/A
[68] ALC N N L2
[59] LiDAR, Camera, Radar N N N/A
[51] ADAS N N L2

Ours ACC, ALC Y Y L2

VII. CONCLUSION

This paper systematically evaluates the resilience of an
open-source ADAS to adversarial patch attacks and the ef-
fectiveness of safety interventions in mitigating hazards and
ensuring driving safety. Our findings show that OpenPilot is
highly susceptible to these attacks targeting ACC and ALC,
often failing to detect the front vehicle at close range and
displaying unsafe, aggressive speed control even in benign
conditions. Lateral attacks remain challenging to mitigate,
though highly alert drivers achieve better prevention rates.
Further, the results emphasize the potential of AEB to prevent
lateral accidents, the importance of independent sensors for
AEBS, and the urgent need to address conflicts among safety
features to enhance overall system reliability and resilience.
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