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Abstract

Electrocardiogram (ECG) signal exhibits inherent uniqueness, making it a promising biometric modality for identity authentication.
As a result, ECG authentication has gained increasing attention in recent years. However, most existing methods focus primarily
on improving authentication accuracy within closed-set settings, with limited research addressing the challenges posed by open-
set scenarios. In real-world applications, identity authentication systems often encounter a substantial amount of unseen data,
leading to potential security vulnerabilities and performance degradation. To address this issue, we propose a robust ECG identity
authentication system that maintains high performance even in open-set settings. Firstly, we employ a multi-modal pretraining
framework, where ECG signals are paired with textual reports derived from their corresponding fiducial features to enhance the
representational capacity of the signal encoder. During fine-tuning, we introduce Self-constraint Center Learning and Irrelevant
Sample Repulsion Learning to constrain the feature distribution, ensuring that the encoded representations exhibit clear decision
boundaries for classification. Our method achieves 99.83% authentication accuracy and maintains a False Accept Rate as low as
5.39% in the presence of open-set samples. Furthermore, across various open-set ratios, our method demonstrates exceptional
stability, maintaining an Open-set Classification Rate above 95%.
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1. Introduction

1 Electrocardiogram (ECG) signals capture the electrical ac-
tivity of the heart throughout its cardiac cycle, with each in-
dividual exhibiting unique physiological characteristics. Due
to these inherent individual differences [9], ECG signals have
gained increasing attention in recent years as a biometric
modality for identity authentication [27]. Compared to well-
established biometric technologies such as facial recognition
and fingerprint identification [28], ECG authentication offers
distinct advantages in terms of security and resilience against
spoofing. The intrinsic uniqueness of ECG signals, coupled
with their dynamic nature, makes them significantly more dif-
ficult to replicate or forge, positioning ECG as a promising and
robust feature for biometric identification. Advancements in
signal acquisition technology have significantly enhanced the
quality of non-invasive data collection, enabling the capture of
clear and well-defined waveforms [21]. This progress has not
only improved the accuracy and reliability of acquired signals
but has also facilitated seamless and unobtrusive acquisition
methods. As a result, the feasibility and practicality of utilizing
such signals for identity authentication have been greatly en-
hanced, offering a more user-friendly and efficient approach to
biometric verification.

In early research on ECG identity authentication, fiducial
features were introduced to determine morphological charac-
teristics that could be used for identity differentiation [23]. A
commonly employed category of these features includes the
time intervals between standard medical fiducial points on the

ECG waveform, such as P, Q, R, S, and T waves. In addi-
tion to these fiducial features, various non-fiducial features have
been explored. Examples of such features include principal
components [11], wavelet coefficients [4], and autocorrelation
coefficients [30]. After extracting these features, identity au-
thentication is performed by comparing the similarity between
the extracted features and the stored reference templates in the
database. This similarity assessment determines whether the
input belongs to the same individual.

With the advancement of deep learning, the application of
deep learning models for ECG signal classification has gradu-
ally replaced traditional identity authentication methods based
on direct similarity comparison. Deep learning models, com-
posed of multiple hidden layers, learn sample distributions
through non-linear mappings and ultimately classify the ex-
tracted features. Both methods [29] and [16] utilize deep
learning-based approaches, while method [2] employs graph
neural networks for identity verification. Additionally, Trans-
former [12] and Mamba [25] models have also been explored
for ECG abnormal classification, further expanding the range
of deep learning techniques applied in this domain.

In the field of ECG disease diagnosis, Liu et al. proposed a
dual-modal approach that integrates both ECG signals and clin-
ical reports for disease classification [18]. This multi-modal
framework leverages the complementary nature of textual and
signal modalities, demonstrating that incorporating clinical text
into the training process can significantly enhance the model’s
ability to represent ECG signals. However, in the domain of
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Figure 1: The proposed method is outlined in the workflow diagram, which consists of two main components: multi-modal pretraining and fine-tuning on identity
authentication task. Within component B, we introduce Self-constraint Center Learning and Irrelevant Sample Repulsion Learning.

identity authentication, textual data has rarely been utilized as
an additional modality in training pipelines. Given that textual
information often encapsulates crucial contextual knowledge,
its integration could play a vital role in improving the capabil-
ity of signal encoders to capture identity-related features within
ECG data. By incorporating text as an auxiliary modality, iden-
tity authentication models can achieve more robust and discrim-
inative representations.

In real-world identity authentication scenarios, systems of-
ten face saturation attacks, where they struggle to effectively
distinguish whether an input sample belongs to a registered
class. Most identity authentication systems based on classifi-
cation models assign a predefined label to each input signal,
making them inherently vulnerable to security risks. Wu et al.
were the first to highlight the issue of system stability in ECG
identity authentication under open-set conditions [32]. Build-
ing upon this foundation, this study conducts a comprehensive
robustness evaluation of ECG identity authentication across a
broader range of open-set data.

To enhance the capacity for ECG signal representation of the
model, we propose a multi-modal pretraining module that inte-
grates both ECG signals and fiducial feature text report. During
the fine-tuning phase, we introduce a novel training strategy
combining Self-constraint Center Learning and Irrelevant Sam-
ple Repulsion Learning. These modules enable the model to
achieve better classification capability even without additional
open-set data, improving the generalization to unseen open-set
samples. Our method effectively reshapes the distribution of
sample features, ensuring that training samples are mapped into
a more compact and well-structured subspace. Meanwhile, fea-
tures extracted from open-set samples, which are not present

during training, are constrained within a predefined range, pre-
venting them from interfering with the labeled feature space. In
smaller-scale open-set scenarios, our method effectively distin-
guishes between known and unknown samples with high pre-
cision. This capability ensures that the model not only accu-
rately determines whether an input sample belongs to a previ-
ously registered identity but also reliably classifies and verifies
registered identities. By enhancing the model’s ability to differ-
entiate between in-distribution and out-of-distribution samples,
our method strengthens the robustness of identity authentica-
tion systems. The contributions of this paper are as follows:

• Multi-modal pretraining. We leverage a large dataset to
pre-train a multi-modal model that integrates ECG signals
with fiducial feature text report. Using contrastive learn-
ing, we align the modalities, ensuring a correspondence
between the information in the text and the ECG signal.

• Self-constraint Center Learning. The sample center is
defined as the centroid of the sample feature distribution.
During training, sample features are explicitly encouraged
to move closer to their respective class centers. To mit-
igate potential biases arising from imbalanced training
data distributions, we further incorporate a Dynamic Pro-
totype Learning mechanism. This component adaptively
adjusts the class prototypes throughout training, promot-
ing a more balanced and representative feature distribution
across classes.

• Irrelevant Sample Repulsion Learning.To approximate
the distribution of open-set data without explicitly involv-
ing any open-set samples during training, we introduce the
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concept of irrelevant sample. These samples are designed
to represent the distributional characteristics of all other
identity classes beyond the target identity class, within the
constraints of a limited dataset. By encouraging target
identity class samples to be distant from these irrelevant
samples, the model is guided to form more distinct and
well-separated decision boundaries.

2. Methods

This section focuses on our method of ECG identity authen-
tication in an open-set setting. In Section 2.1, we first define
the problem formally. The subsequent sections detail our pro-
posed module, which comprises three key components: Multi-
modal pretraining, Self-constraint Center Learning, and Irrele-
vant Sample Repulsion Learning. The overall workflow is il-
lustrated in Figure 1.

2.1. Problem Definition

Given a set of ECG signals with their identities DL =

{(x1, id1), ..., ((xn, idn)}. N is the registered identities idi ∈

{1, ...,N}, idi is the identity of the signal xi. Given another larger
amount of test dataDT = {t1, . . . , tu} where the identity of ti be-
longs to {1, . . . ,N} ∪ {N + 1, . . . ,N + U} which contains close-
set data and open-set data. The U is the number of unregistered
identities in realistic scenarios. the deep embedding feature of
category k is denoted by S k and S k ∈ DL.

For the model ψ, it is crucial to learn the feature represen-
tations of registered users from the training dataset DL and es-
tablish a well-defined feature distribution. During the training
phase, the model must establish clear decision boundaries be-
tween samples of different identity labels while ensuring suf-
ficient separation R between these boundaries. To enhance the
generalization to open-set scenarios despite a limited number of
training samples, all samples except those belonging to a des-
ignated label id are treated as open-set data D,id

L . During the
testing phase, the dataset includes open-set samples, introduc-
ing unseen categories that were not present during training. The
model is designed to achieve two primary objectives: (1) accu-
rately classify samples belonging to previously registered iden-
tities id ∈ {1, . . . ,N}, ensuring high recognition performance
within known identities; and (2) effectively identify and exclude
unregistered samples id ∈ {N + 1, . . . ,N +U}, minimizing false
acceptances of unseen identities.

2.2. Multi-modal Pretraining

In ECG signals, fiducial features refer to key points or
waveform characteristics with significant physiological rele-
vance [3]. Prior research has demonstrated their practicality
and effectiveness in ECG-based identity authentication systems
[31, 17, 22]. In this work, we aim to leverage fiducial fea-
tures to enhance the representational capacity of the ECG signal
encoder by aligning waveform structures with physiologically
meaningful cues.

To this end, we select five representative fiducial features that
capture both the morphological and dynamic aspects of ECG

signals: R-wave peak positions, RR intervals, QRS widths,
standard deviation of NN intervals (SDNN), and root mean
square of successive differences (RMSSD). R-wave peak po-
sitions, RR intervals, and QRS widths characterize the overall
morphology of the ECG waveform, while the latter two (SDNN
and RMSSD) quantify signal variability, which also reflects
individual-specific cardiac patterns. These extracted fiducial
features are then transformed into a structured textual report
to facilitate interpretability and downstream processing. The
report follows a predefined template format denoted as ‘The
R-wave Peak Positions of the ECG signal are located at: {}’.
RR Intervals between successive peaks are: {}. Average QRS
Width is {} seconds. Standard Deviation of NN Intervals is
{}.Root Mean Square of Successive Differences is {}., enabling
consistent alignment between waveform features and their cor-
responding semantic representations.

There is a corresponding relationship between ECG signals
and text reports. Extracting relevant information from texts to
assist model training benefits the identity authentication. There-
fore, in this section, we leverage both ECG signals and their
associated text reports to pre-train a model capable of effec-
tively capturing and representing ECG signal features. This
pre-trained model serves as a robust feature extractor, facili-
tating the downstream identity authentication task.
{(s1, r1), (s2, r2), ..., (si, ri)} donated as the ECG signals with

the corresponding text reports. To independently extract fea-
tures from the input data pair, separate encoders are employed
for different modalities. Specifically, the report encoder Fr uti-
lizes a pre-trained model and tokenizer from MedCPT [13],
while the signal encoder Fs adopts various model configura-
tions to process the ECG signals. Following feature extraction,
the non-linear projection layers Pe and Ps are applied to unify
the feature dimensions across modalities, where the features are
extracted as zr,i = Pr(Fr(ri)) and zs,i = Ps(Fs(ri)). To align the
representations from different modalities, contrastive learning
is employed. The cosine distances between the two modalities
can be denoted as ss2r

i,i = z⊤s,izr,i and sr2s
i,i = z⊤r,izs,i, respectively.

These values serve as quantitative measures of the similarity be-
tween the extracted feature representations from each modality,
providing insights into their alignment and compatibility within
the learned feature space. The loss function during the pretrain-
ing process can be formulated as follows:

Ls2r
i, j = − log

exp(ss2r
i, j /τ)∑L

k=1 I[k,i] exp(ss2r
i,k /τ)

, (1)

Lr2s
i, j = − log

exp(sr2s
i, j /τ)∑L

k=1 I[k,i] exp(ss2r
i,k /τ)

, (2)

LContrastive =
1

2L

N∑
i=1

N∑
j=1

(
Lr2s

i, j +L
r2s
i, j

)
. (3)

where, Ls2r
i, j and Lr2s

i, j represent the signal-report and report-
signal cross-modal contrastive losses, respectively. The tem-
perature hyper-parameter, denoted as τ, is set as 0.07 in the
experiment. L is the batch size per step, which is a subset of N.
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2.3. Self-constraint Center Learning
The pre-trained model obtained through the aforementioned

procedure demonstrates strong representational capability for
ECG signal. In the subsequent stage, the pre-trained model is
fine-tuned on the target dataset for identity registration. For the
training dataset DL, the model is required to correctly assign
labels in the classification task.

To address this issue, this paper introduces the concept of
sample self-constraining, which aims to map the feature repre-
sentations of training samples into a more compact subspace.
By constraining the feature distribution, the model can better
distinguish from open-set samples. Specifically, we define C
as the centroid of the sample distribution, ensuring that feature
representations remain clustered around a meaningful reference
point, which improves both intra-class compactness and inter-
class separability. For each identity category id, all samples be-
longing to the same identity in theDL are collected. We define
the class-specific sample center C by identifying the instance
with the minimum total distance to all other samples within the
same identity id. Specifically, for each sample, we compute the
sum of pairwise distances to all other samples in the identity
class, and select the one with the smallest cumulative distance
as the representative center:

Cid = arg min
m∈S d

n∑
i=1

n∑
j,i

d(mi
id,m

j
id) (4)

here, m denotes the signal latent feature extracted by the signal
encoder, while n represents the number of samples belonging to
a given identity id. The pairwise distance between samples is
denoted by d(a, b) =

√
(a − b)2. These centers serve as key ref-

erence points for analyzing the distribution and structural char-
acteristics of the identity representations.

During the training process, each sample in the training set is
constrained by the L2-norm to regulate the distance between its
feature representation and the corresponding sample center C.
The loss function is formulated as follows:

Lsel f (x; θ) =
1

M · N

M∑
id=1

N∑
i=1

∥∥∥Fr(xid
i ) −Cid

∥∥∥2
2 (5)

where Cid represents the sample center corresponding to the
specific identity label id. While training, the sample centers are
dynamically updated at the beginning of each epoch, ensuring
centers adapt to the evolving feature distributions.

The softmax function is commonly used in classification
tasks to map feature representations to probability distributions,
serving as the basis for loss computation. However, empirical
analysis reveals that features transformed by softmax tend to
exhibit a loosely distributed structure [6]. Therefore, in this sec-
tion, we propose an alternative approach that replaces the tra-
ditional softmax-based classification loss with a distance-based
metric, leveraging pairwise sample distances to enhance feature
compactness.

Inspired by [33], we introduce the concept of dynamic pro-
totypes. Unlike center C, which are typically fixed at the cen-
troid of sample feature distributions, dynamic prototypes Pk are

learnable parameters that adaptively update the positions based
on the distance between the given samples and the prototypes.
Sample center C, when estimated from a limited number of
samples, is susceptible to shifts influenced by the distribution
of outlier or atypical samples. In contrast, a dynamic proto-
type can effectively represent the learned distribution of a given
identity by continuously adapting to the encoding space of the
model. By leveraging prototype learning, we provide a dual
safeguard against potential biases caused by shifts in the true
distribution center. This dynamic adjustment mechanism en-
ables samples to achieve a more balanced distribution between
the sample center C and the dynamic prototypes P. In the
method, the probability of features in the softmax function is
replaced with the distance between samples and their respec-
tive prototypes P:

Prob(x ∈ Pid |x) =
e−d(Fr(xid),Pid)∑M
k=1 e−d(Fr(xk),Pk)

(6)

where d(Fr(xid), Pid) =
∥∥∥Fr(xid) − Pid

∥∥∥2
2, M is the number of

identity labels. The probability in the cross-entropy loss is rep-
resented by Equation 6. During the training process, we also
use the distance d(, ·, ) to update the parameters of the proto-
types. As a result, the overall loss function is defined as the
sum of the modified cross-entropy loss and the prototype up-
date loss:

Lproto(x; θ, P) =
1

M · N

M∑
id=1

N∑
i=1

(− log(Prob(xi))+d(Fr(xid
i ), Pid))

(7)

2.4. Irrelevant Sample Repulsion Learning
After applying self-constrained center learning and dynamic

prototype learning, the sample feature distribution is confined
to a more compact subspace. However, in the absence of ad-
ditional open-set datasets, effectively distinguishing whether a
given sample belongs to a registered identity remains a criti-
cal challenge. Inspired by adversarial reciprocal points learn-
ing [5], we propose irrelevant sample repulsion learning. The
feature representation of the reciprocal pointsPid can be formu-
lated as D,id

L ∪ DU . The reciprocal points Pid of identity label
id should be as close as possible to the feature set of non-id
datasetD,id

L and the open datasetDU .

max
(
ζ
(
D,id

L ∪DU ,P
id
))
≤ R. (8)

both Pid and R are learnable parameters. By imposing a con-
straint on the maximum distance between the Pid and the sam-
ple features, achieving the separation of registered samples
from those in the open set.

In real-world scenarios, the training process does not involve
open-set data which is often characterized by an almost infinite
amount of samples and categories. Given the limited amount
of training data with identity labels, where features from the
open-set data and labeled data are complementary, we shift the
training objective from the open-set data to the labeled data.
This shift allows us to effectively leverage the complementary
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nature of these two types of features. The corresponding loss
function is expressed as follows:

Lo(x; θ,Pk,Rk) =
1

M · N

M∑
id=1

N∑
i=1

max(de(Fr(xi),Pid) − Rid, 0),

(9)
where de(Fs(x),Pk) = 1

N

∥∥∥Fr(xi) − Pid
∥∥∥2

2. By imposing the L2-
norm constraint on the distance Rid between the training sam-
ples and the Pk, ensuring that the samples D=id

L are distanced
from those of other identity labelsD,id

L .

Algorithm 1 SimCLR’s main learning algorithm.

Require: batch size N, num of batch L, sample x ∈ DL, dy-
namic prototype P, reciprocal point P , learnable margin
R, structure of encoder Fs

1: for all k ∈ {1, . . . ,N} do
2: S k = Fs(xid)
3: Ck = arg min

∑n
i=1
∑n

j,i d(S i
id, S

j
id)

4: end for
5: for sampled minibatch {xk}

N
k=1 do

6: for all k ∈ {1, . . . ,M} do
7: S k = Fs(xk)
8: dk

sel f = de(S k
id,Cid)

9: dk
proto = de(S k

id, P
id)

10: dk
reciprocal = de(S k

id,P
id)

11: end for

12: Lsel f =
1
L

L∑
dsel f

13: Prob(x ∈ Pid |x) = e−dk
proto∑K e−dK

proto

14: Lproto =
1
L

L∑
(− log(Prob(id = k|x)) + dk

proto)

15: Lo =
1
L

L∑
(max(dk

reciprocal − R, 0))
16: L = αLsel f + βLproto + γLO

17: update Fs, P, P and R to minimize L
18: end for
19: return encoder network Fs(·)

2.5. Training Process of the Proposed Method
The overall training procedure is outlined in Algorithm 1.

The ECG encoder Fs utilized in this process is the multimodal
pre-trained model from Section 2.2. Before entering the fine-
tuning loop, we compute the class centers C for all identity la-
bels. These centers are dynamically updated in each training it-
eration to ensure the most accurate representation of their loca-
tions. The distance between each sample and its corresponding
center de(x,C) is used as a self-constraint center loss, encour-
aging samples to move closer to their respective class centers.
This constraint helps refine the feature representations by min-
imizing the discrepancy between individual samples and their
centers.

Once inside the loop, the distance between each sample and
all dynamic prototypes P is calculated, replacing traditional
probability-based computation with a distance-based approach.

During prototype loss computation, we incorporate the sample-
to-prototype distance De(x, P), encouraging samples to move
closer to their respective prototypes. Additionally, we com-
pute the distance between samples and designated reciprocal
points de(x,P), enforcing separation by penalizing deviations
from a learnable margin R. Finally, the three loss components
are weighted and summed to the overall loss L, updating the
parameters of Fs, P, P and R.

3. Results and discussions

3.1. Implementation Details

In our framework, the multimodal pretraining phase lever-
ages the MIMIC-ECG dataset [7], which comprises 800,035
pairs of signal-text data. Each signal is recorded at a 500 Hz
sampling rate for a duration of 10 seconds. Due to compu-
tational constraints, a subset of 100,000 high-quality samples
was selected for pretraining in our experiments. For the ECG
signal encoder, we employed both ResNet1D [15] and Vision
Transformer (ViT) [8] models with varying hyperparameters
to explore the impact of architectural choices on performance.
For the text encoder, we utilized the pretrained MedCPT model
[13], which is specifically tailored for medical text processing.
The pretraining process was conducted over 50 epochs using
the AdamW optimizer [14]. All experiments were executed on
an NVIDIA 4070 GPU.

Dataset: During the fine-tuning phase for identity authen-
tication, the datasetss were sourced from the following three
repositories:

ECGID [19] contains 310 ECG recordings, obtained from
90 persons, digitized at 500 Hz with 12-bit resolution over a
nominal ±10 mV range. The records were obtained from vol-
unteers (44 men and 46 women aged from 13 to 75 years who
were students, colleagues, and friends of the author).

MIT-BIH Arrhythmia [20] Database contains 48 half-hour
excerpts of two-channel ambulatory ECG recordings, obtained
from 47 subjects studied by the BIH Arrhythmia Laboratory.
The recordings were digitized at 360 Hz.

Autonomic Aging [26] which collects the high-resolution
biological signals to describe the effect of healthy aging on
cardiovascular regulation. The ECG data in Autonomic are
recorded from 1121 healthy volunteers, which contains two dif-
ferent collection modes. The sampling rate of the ECG signal
is 1000Hz and the length is longer than 8 minutes.

Metrics: In the experiments, two categories of evaluation
metrics were employed: Closed-set and Open-set metrics.
Closed-set metrics assess the authentication accuracy for en-
rolled users, focusing on scenarios where all test samples be-
long to known classes. We utilized a comprehensive set of met-
rics, including Accuracy (ACC), F1 Score, Precision, Recall,
and Area Under the Curve (AUC).

Open-set metrics were designed to evaluate performance in
more realistic scenarios. The test dataset contains a large num-
ber of signals from unregistered users. The Open Set Classi-
fication Rate (OSCR) is utilized to evaluate the model’s bal-
anced discrimination capability between known and unknown
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Table 1: A comparative study of ECG signal encoders with different backbone architectures. The ResNet-based encoders include ResNet18, ResNet34, and
ResNet50, while the ViT-based encoders consist of ViT-Tiny, ViT-Small, and ViT-Base.

dataset backbone Close-set evaluation Open-set evaluation
ACC[%] f1 score[%] Precision[%] Recall[%] AUC[%] OSCR[%] FAR[%] TNR[%]

ECGID

ResNet18 96.11 98.71 96.80 96.11 99.96 89.24 5.39 49.03
ResNet34 96.67 98.52 97.17 96.67 99.96 89.79 5.35 54.67
ResNet50 95.00 97.89 95.80 95.00 99.95 89.03 5.37 52.67
ViT tiny 68.89 76.38 70.81 68.89 95.33 53.45 9.62 38.45

ViT small 62.78 71.24 65.06 62.78 92.31 49.43 9.93 37.03
ViT base 41.7 46.16 42.03 41.67 91.50 26.40 12.98 42.96

MITBIH

ResNet18 99.60 99.79 99.61 99.60 99.99 97.60 7.53 53.70
ResNet34 99.43 99.79 99.45 99.43 99.99 95.16 8.09 55.69
ResNet50 99.50 99.75 99.51 99.50 99.97 94.20 8.32 53.88
ViT tiny 90.63 92.44 90.98 90.63 99.20 80.04 10.69 42.92

ViT small 86.80 88.84 87.02 86.80 98.71 72.47 11.98 41.79
ViT base 66.23 70.31 68.99 66.23 95.75 54.62 14.08 39.96

Autonomic

ResNet18 98.40 98.79 97.93 98.40 99.83 95.84 6.21 52.31
ResNet34 98.52 98.84 98.04 95.52 99.90 94.40 6.56 29.55
ResNet50 96.52 97.75 96.13 96.52 99.81 91.45 7.11 21.32
ViT tiny 94.52 96.83 94.73 94.52 99.74 87.01 7.86 46.33

ViT small 93.20 95.57 93.43 93.20 99.61 83.56 8.09 30.64
ViT base 74.00 75.97 75.11 74.00 99.23 58.64 11.67 35.17

identity categories [6]. A threshold δ is employed to determine
whether the unknown identity samples belong to the registered
categories. The calculation of OSCR involves two key metrics.
The Correct Classification Rate (CCR) measures the proportion
of samples that are correctly classified:

CCR(δ) =
|{x ∈ Dk

T ∧ arg maxk Prob(k|x) = k ∧ Prob(k̂|x) ≥ δ}|

|Dk
T |

.

(10)
The False Positive Rate (FPR) assesses the proportion of un-
known samples that are incorrectly classified as registered
users:

FPR(δ) =
|{x|x ∈ DU ∧maxk Prob(k|x) ≥ δ}|

|DU |
. (11)

The OSCR is defined as the area under the curves of the CCR
and the FPR across varying δ.

In addition, we chose the False Accept Rate (FAR) and
True Negative Rate (TNR) as supplementary evaluation met-
rics. FAR measures the proportion of unregistered samples that
are incorrectly authenticated as valid users, highlighting the
vulnerability to false acceptance. TNR evaluates the propor-
tion of unregistered samples correctly identified as unknown,
providing insight into the robustness in distinguishing genuine
from unauthorized inputs.

FAR(δ) =
|{x|x ∈ DU ∧maxk Prob(k|x) ≥ δ}|

|DL| + |DU |
. (12)

3.2. Experiment of backbone of ECG Encoder
Dataset. In the backbone comparative experiments, three

distinct datasets were applied, each differing in the number of

identity classes and sample sizes. Consequently, different data
partitioning strategies were employed for each dataset. ECGID
dataset, 41 available identity classes were selected, with 30
identity classes designated for enrolled users and 11 classes
for the open set. Each sample was preprocessed by extracting
500 sampling points before and after the R-peak. MIT-BIH
dataset, with 30 identity classes for enrolled users and 18 iden-
tity classes for the open set, maintaining the same preprocess-
ing method as ECGID. Autonomic dataset, 100 identity classes
were allocated for enrolled users and 50 identity classes for the
open set, with 1000 sampling points extracted per sample.

Encoder Structure. In the experiments, different network
architectures were used as the encoder for ECG signals, with
representative models selected from ResNet and Vision Trans-
former (ViT). The ResNet-based encoders were configured with
three different depths: [18, 34, 50], all employing 1D convolu-
tion (conv1D) as the primary convolutional operation. For ViT,
conv1D was used to extract embedding features, and the full
model consisted of 12 transformer blocks. The ViT-Tiny vari-
ant featured 3 attention heads, a multilayer perceptron (MLP)
hidden dimension of 768, and an embedding dimension of 192.
The ViT-Small variant had 6 attention heads, an MLP hidden
dimension of 1536, and an embedding dimension of 384. The
ViT-Base variant was designed with 12 attention heads, an MLP
hidden dimension of 3072, and an embedding dimension of
768.

Table 1 presents the comparative results of different back-
bone architectures for ECG signal encoder. Overall, models
utilizing the ResNet backbone outperform those based on ViT,
particularly in open-set evaluation metrics. In terms of network
complexity, both backbone types exhibit performance degra-
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Figure 2: The experimental results comparing various baseline methods are presented using ACC, OSCR, FAR, TNR, and AUC.

dation as model complexity increases, with ViT being more
significantly affected. Notably, on the ECGID dataset, the
ViT-Base backbone achieves an ACC of only 41.7%. For the
ResNet backbone, ResNet18 consistently achieves the best per-
formance across most metrics on all datasets, indicating that
convolutional networks are well-suited for capturing the wave-
form characteristics of ECG signals. In all subsequent experi-
ments, the ResNet-based model is employed as the ECG signal
encoder.

3.3. Comparative Experiment

Comparative Method. To ensure a fair comparison, the ex-
perimental settings for all baseline methods were aligned with
those of the proposed approach. All selected baseline meth-
ods were evaluated on ECG classification. The Adib method
[1] employs a generative adversarial network to address class
imbalance, and we adopted its classification model for compar-
ison. The Pu method [24] utilizes a highly generalizable bi-
nary neural network for classification. The Zhou method [34]
leverages hard negative samples and multi-hypersphere learn-
ing to improve the capability of ECG signal encoder. The
MERL method [18] integrates multimodal contrastive learn-
ing between clinical text and ECG signals, as well as unimodal
contrastive learning within the ECG modality, to enhance fea-
ture extraction capabilities. The Hwang method [10] employs
a ResNet-DenseNet architecture for multi-label classification
tasks.

Figure 2 presents a visualization of key performance met-
rics across different comparative methods under three datasets.
Across evaluations on three benchmark datasets, our proposed
method consistently outperforms all baseline approaches across
all key performance metrics. Regardless of dataset size, our
method consistently achieves stable ACC. On the ECGID
dataset, our method attains a TNR of 49.03% and a FAR as low
as 5.39%, indicating its strong capability to filter out most un-
registered samples. While the Zhou method and MERL demon-
strate higher ACC compared to other comparative methods due
to their well-designed classifier tailored for identity authentica-
tion. However, these two methods exhibit nearly a 20% gap in

TNR compared to our method. This suggests that these meth-
ods struggle to accurately distinguish between registered and
unregistered users. Our method not only maintains a high ACC
for registered users but also effectively excludes the majority
of unregistered users. By leveraging clear decision boundaries,
our method ensures a strong balance between accurate identity
verification and open-set sample rejection.

3.4. Longer Proportion of Open-set Data

Dataset. Due to the limited number of samples in the ECGID
and MIT-BIH datasets, the available open-set data is relatively
scarce. To ensure a more comprehensive evaluation, we se-
lected the Autonomic dataset for this experiment, as it provides
a sufficient amount of data. Within this dataset, we selected 30
identity labels as the close-set data, while the open-set data was
constructed by selecting [30, 60, 90, 120, 150, 180, 210, 240,
270, 300] identity categories as comparisons. These selections
correspond to open-set to closed-set ratios ranging from 1:1 to
1:10, enabling a systematic analysis of the model’s performance
across varying levels of open-set complexity.

To simulate the diversity of open-set data in real-world sce-
narios, we constructed open-set datasets with varying propor-
tions to evaluate the model’s ability to distinguish closed-set
data in the presence of large-scale open-set samples. Figure
3 presents the results obtained under the aforementioned ex-
perimental settings. The model achieves an ACC of 99.83%
on the closed-set data, indicating its ability to correctly clas-
sify the vast majority of samples. Furthermore, across differ-
ent open-set data proportions, the OSCR remains consistently
above 95%. This demonstrates the model’s robustness in main-
taining high recognition accuracy even in the presence of ex-
ternal data interference, highlighting its effectiveness in distin-
guishing between known and unknown classes. As the pro-
portion of open-set data increases, the FAR exhibits a sharp
rise before stabilizing around 40%, while the TNR shows a de-
clining trend, eventually settling at approximately 45%. This
indicates that when the open-set dataset remains within a rea-
sonable range, our method effectively identifies registered users
with high accuracy. However, if the open-set data surpasses a

7



Table 2: Results of comparative experiments under varying proportions of open-set data. The performance is assessed using the OSCR and the FAR to reflect the
model’s effectiveness in distinguishing between registered and unregistered identities.

Method
Proportion

1:1 1:2 1:3 1:5 1:10
OSCR[%] FAR[%] OSCR[%] FAR[%] OSCR[%] FAR[%] OSCR[%] FAR[%] OSCR[%] FAR[%]

Zhou 87.19 15.00 83.37 25.57 83.61 30.85 82.54 36.93 82.54 42.66
MERL 88.78 15.24 88.72 24.67 90.36 29.87 89.13 36.19 89.07 42.20

Pu 74.31 18.61 75.60 27.42 75.88 32.41 75.79 38.00 74.43 43.38
Hwang 73.87 18.36 69.37 28.66 70.15 33.36 68.16 38.91 67.69 43.87
Adib 11.57 23.81 11.10 32.89 10.87 37.39 10.95 41.58 10.80 45.50
Ours 97.96 12.92 95.53 23.17 95.98 28.80 95.03 35.36 95.27 41.68

1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:1
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Figure 3: Line chart illustrating the variations in OSCR, FAR, and TNR as the
ratio of open-set data to close-set data changes.

certain threshold, the model may become less effective at distin-
guishing unregistered users, potentially leading to an increased
acceptance of unauthorized samples.

Table 2 presents the experimental results comparing our
method with multiple baseline approaches under varying open-
set proportion settings. The evaluation metrics include OSCR
and FAR, which are used to assess the model’s ability to ac-
curately recognize registered users in an open-set environment
and to quantify the proportion of unregistered users mistakenly
accepted. In the closed-set dataset, Zhou’s method achieved an
ACC of 94.56%, MERL attained 97.00%, Pu reached 92.18%,
Hwang obtained 94.14%, and Adib achieved 24.00%. Our pro-
posed method achieved an ACC of 99.83%, outperforming all
other approaches and demonstrating superior recognition capa-
bility in a closed-set scenario. As the proportion of open-set
data increases, all methods exhibit a rise in the FAR and a de-
cline in the OSCR. However, across all experimental settings,
our method consistently achieves the highest and most stable
OSCR compared to all comparative methods. This indicates
that our method effectively identifies registered users even in
the presence of open-set data. Furthermore, in scenarios where

open-set data is less prevalent, our method demonstrates the
lowest FAR, successfully rejecting the majority of unseen sam-
ples. These results highlight the robustness and efficiency of
our method in balancing open-set recognition and false accep-
tance mitigation, making it particularly suitable for real-world
applications where reliable user authentication is critical.

3.5. Ablation Study
Table 3 presents the results of several ablation studies.

The multimodal pretraining significantly enhances the model’s
recognition accuracy. Additionally, the irrelevant sample re-
pulsion learning module and the self-constraint center learning
module effectively reduce the probability of open-set samples
being misclassified as registered users.

In the ablation studies of each component, the softmax of
classification loss in our method was computed using probabil-
ities derived from the distance between samples and their cor-
responding prototypes. In contrast, in the baseline experiments
without dynamic prototype learning, the standard cross-entropy
loss with softmax was used to replace the distance.

As shown in Table 3, the model achieved nearly 18% higher
ACC in closed-set recognition after multi-modal pre-training
compared to the model without pre-training. It also contributed
to worse performance in open-set metrics. The results demon-
strate that the signal encoder, after multimodal pretraining, is
able to capture identity-related information more effectively,
thereby providing a stronger foundation for downstream iden-
tity authentication tasks.

Self-constraint center learning is a crucial module that effec-
tively brings intra-class samples closer to the center of the cor-
responding identity label while reducing the dispersion of sam-
ple distributions. As a result, models without self-constraint
center learning exhibit higher FAR, leading to the misclassifi-
cation of some open-set samples as registered users. The effect
of dynamic prototypes is similar to that of self-constraint cen-
ter learning; however, the best results are achieved when both
are applied simultaneously. The presence of irrelevant sample
repulsion learning helps to push the registered samples further
away from the dispersed open-set samples, and without irrele-
vant sample repulsion learning, FAR tends to increase slightly.
The model achieves optimal performance only when all three
sample distribution constraint methods are employed together.
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(b) Close-set data in model only with B.1
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(c) Close-set data in model only with B.2
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(d) Close-set data in model only with B.3
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(e) Open-set data in complete model
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(f) Open-set data in model only with B.1
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(g) Open-set data in model only with B.2
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(h) Open-set data in model only with B.3

Figure 4: T-SNE visualizations of sample feature distributions under different ablation settings. Notably, (b) and (f) represent the results obtained using only the
irrelevant sample repulsion learning module (only with B.1). (c) and (g) represent the results obtained using only the self-constraint center learning module (only
with B.2). (d) and (h) represent the results obtained using only the dynamic prototype learning learning module (only with B.3).

Figure 4 illustrates the dimensionality-reduced feature dis-
tributions in the ablation study. To facilitate observation of
the sample distributions, subfigures (4a)–(4d) depict the dis-
tributions of samples within the closed set, while subfigures
(4e)–(4h) show the distributions of all samples when open-set
data is included.

Subfigure (4a) and (4e) present the distributions using the
complete proposed method, where the open-set data is clearly
confined to a smaller area, with other close-set samples remain-
ing relatively distant from the open-set sample distribution. In
contrast, subfigures (4b) and (4f) show the outcome when only
irrelevant sample repulsion learning and cross-entropy loss are
used to guide model convergence. This approach also achieves
a high ACC, successfully extracting the feature distribution of
unknown labels, but results in a more scattered open-set sample
distribution. A similar effect is observed when only the dy-
namic prototype method is applied, as shown in subfigures (4d)
and (4h). However, when only the self-constraint method and
cross-entropy loss are used, as depicted in subfigures (4c) and
(4g), the model performs poorly in classification and produces
a highly dispersed open-set samples distribution.

4. Summary and conclusions

This paper presents a novel ECG identity authentication
method designed for open-set scenarios. The proposed method
has been rigorously evaluated under varying proportions of
open-set data. A key innovation of our method is the incor-
poration of contrastive learning with multi-modal data during
pretraining, where ECG signals and text reports based on the

Table 3: Ablation study of the method. A denotes whether multi-modal pre-
training is applied. B.1 denotes whether the reciprocal point is applied. B.2
denotes whether dynamic prototype is applied. B.3 denotes whether self-
constraint center learning is applied.

A B.1 B.2 B.3 ACC[%] OSCR[%] FAR[%]

× ✓ ✓ ✓ 80.10 64.02 19.44

✓ ✓ ✓ ✓ 99.60 97.60 7.53
✓ ✓ × × 99.53 97.16 15.58
✓ × ✓ × 99.63 97.57 7.56
✓ × × ✓ 99.57 96.56 7.78
✓ ✓ ✓ × 99.53 97.12 15.11
✓ ✓ × ✓ 99.70 97.51 15.48
✓ × ✓ ✓ 99.13 93.68 8.40

fiducial feature are integrated to enhance the signal encoder’s
ability to represent ECG features comprehensively.

During the fine-tuning phase for the downstream identity au-
thentication task, we introduce Self-constraint Center Learning,
which further compacts the feature representations into a more
discriminative subspace, leading to an identity recognition ac-
curacy of 99.83%, surpassing comparative ECG classification
methods. Additionally, we propose Irrelevant Sample Repul-
sion Learning, which effectively restricts the distribution of un-
seen open-set samples to a more constrained space, enabling the
model to efficiently filter out unregistered identities, achieving
a FAR as low as 5.39%.

Extensive experimental results demonstrate that our method
maintains highly effective identity authentication performance
even in the presence of large-scale open-set data, establish-
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ing a new benchmark for ECG-based authentication in open-
world settings. The ablation studies confirm the effectiveness
of the proposed modules in enhancing identity recognition un-
der open-set conditions. Incorporating all modules leads to a
significant reduction in the FAR and a notable improvement in
the OSCR.

However, current research still exhibits certain limitations.
Specifically, when a large volume of open-set data is present,
existing models struggle to effectively reject the majority of un-
registered users. Consequently, future research efforts will fo-
cus on developing strategies to further reduce the FAR.
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