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Abstract

Text-to-image diffusion models are increasingly vulnerable
to backdoor attacks, where malicious modifications to the
training data cause the model to generate unintended out-
puts when specific triggers are present. While classification
models have seen extensive development of defense mech-
anisms, generative models remain largely unprotected due
to their high-dimensional output space, which complicates
the detection and mitigation of subtle perturbations. De-
fense strategies for diffusion models, in particular, remain
under-explored. In this work, we propose Spatial Atten-
tion Unlearning (SAU), a novel technique for mitigating
backdoor attacks in diffusion models. SAU leverages la-
tent space manipulation and spatial attention mechanisms
to isolate and remove the latent representation of backdoor
triggers, ensuring precise and efficient removal of malicious
effects. We evaluate SAU across various types of backdoor
attacks, including pixel-based and style-based triggers, and
demonstrate its effectiveness in achieving 100% trigger re-
moval accuracy. Furthermore, SAU achieves a CLIP score
of 0.7023, outperforming existing methods while preserv-
ing the model’s ability to generate high-quality, semanti-
cally aligned images. Our results show that SAU is a robust,
scalable, and practical solution for securing text-to-image
diffusion models against backdoor attacks.

1. Introduction
Diffusion models have become fundamental to text-to-
image generation, enabling high-fidelity and diverse image
synthesis across various domains, including digital art, de-
sign, media production and medical imaging [10, 26, 30].
Their ability to generate realistic images conditioned on tex-
tual prompts has led to widespread adoption in creative in-
dustries, content generation, and AI-assisted design tools.
Notable implementations include OpenAI’s DALL·E [20],
Stability AI’s Stable Diffusion [22], and Google’s Imagen
[23], each demonstrating state-of-the-art image synthesis
capabilities. However, despite their success, these models
remain vulnerable to adversarial attacks, particularly back-

door attacks, which pose significant security threats.
Backdoor attacks [11] involve the introduction of poi-

soned data into the model’s training process, allowing an
adversary to manipulate model outputs when a specific trig-
ger is present [4, 9, 25, 31]. These triggers can be em-
bedded in various stages of the generative process, includ-
ing the input prompt, the text encoder, or intermediate la-
tent representations. The threat posed by such attacks is
profound. Given the increasing reliance on generative AI
in commercial applications, backdoor vulnerabilities could
lead to unauthorized content generation, misinformation, or
intellectual property violations. For instance, an attacker
could embed imperceptible characters in a prompt to gen-
erate misleading or harmful imagery, bypassing content
moderation systems. In security-critical applications such
as forensic image analysis or AI-assisted journalism, such
manipulations could have severe ethical and legal ramifi-
cations, further emphasizing the need for robust defense
mechanisms.

Defending against backdoor attacks in diffusion models
presents several challenges. Unlike traditional classifica-
tion models, where defense mechanisms [2, 13, 27] can se-
lectively remove poisoned influences, generative models re-
quire maintaining image quality while eliminating adversar-
ial triggers. A naive approach would involve retraining the
model from scratch with carefully curated data, but this is
computationally expensive and impractical due to the large-
scale datasets required.

In this paper, we focus on defending against backdoor
attacks in text-to-image diffusion models, specifically tar-
geting attacks where the trigger is embedded in the input
text. These attacks are particularly challenging to detect
and mitigate, as the model generates manipulated outputs
only when specific triggers are present in the prompt, while
benign prompts result in normal image generation. One ex-
ample of such an attack is the BadT2I attack [31], which
embeds triggers at various semantic levels. These triggers
can take the form of pixel patterns, alterations to object at-
tributes, or changes to the artistic style of the generated im-
age. By focusing on text-based triggers, this paper aims to
develop effective defenses that address these nuanced and
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Figure 1. Architecture Diagram of Feature Unlearning guided by Spatial Attention

sophisticated forms of backdoor manipulation.
We propose Spatial Attention Unlearning (SAU), a de-

fense mechanism to mitigate backdoor attacks in text-to-
image diffusion models by leveraging spatial attention pat-
terns. Our approach is based on the intuition that adversarial
triggers disproportionately affect specific regions in gener-
ated images, which can be localized by analyzing the differ-
ence between latent representations of clean and poisoned
prompts. SAU identifies trigger-affected regions by com-
paring attention patterns from clean and poisoned prompts,
then dynamically adjusts attention weights to suppress poi-
soned features while preserving unaffected regions. This al-
lows the model to neutralize triggers without full retraining,
maintaining high image fidelity. As illustrated in Figure 1,
SAU operates by identifying poisoned attention regions and
dynamically adjusting attention weights, thereby restoring
model reliability while preserving generative performance.
The core observation is that self-attention layers in diffusion
models capture localized changes from the trigger, which
can be leveraged for targeted suppression.

Our approach is evaluated on both pixel- and style-based
attack scenarios, achieving a 100% removal rate for pixel
backdoors while improving image fidelity, with a CLIP IQA
score of 0.7023, surpassing baseline methods. By enhanc-
ing the robustness of text-to-image generation systems, our
work contributes to the broader effort of securing AI-driven
creativity and ensuring the trustworthiness of generative AI
applications.

2. Related Work
Diffusion Models Text-to-image diffusion models [19,
22, 33] are capable of generating high-quality images that
demonstrate remarkable synthesis of quality and control-
lability. These models operate by gradually transforming
noise into structured images through a series of iterative
denoising steps. Diffusion models have become founda-
tional in the field of generative AI, due to their ability to
produce photorealistic images with a high level of semantic
coherence based on textual prompts. Their flexibility and

scalability have enabled applications across a wide range of
domains, including digital art, design, and media produc-
tion [10, 26, 30]. Despite their success, diffusion models
are vulnerable to backdoor attacks [11] resulting in manip-
ulated outputs. Addressing these vulnerabilities remains a
key challenge in securing generative AI systems.

Backdoor Attacks in Generative Models Backdoor at-
tacks, also known as Trojan attacks [11, 16] in machine
learning models involve the insertion of poisoned data
during training, allowing an adversary to manipulate out-
puts when a specific trigger is present. While such at-
tacks have been extensively studied in classification mod-
els [2, 13, 27], generative models, particularly text-to-image
diffusion models, are increasingly becoming targets of ad-
versarial manipulation [3]. These attacks can exploit vari-
ous types of triggers, such as imperceptible noise patterns
[3, 4] or specific textual prompts [5, 25]. In this work,
we focus on backdoor attacks where the trigger is embed-
ded in the text prompt. One such example is BadT2I [31],
a multimodal backdoor framework designed for text-to-
image models, which can introduce localized pixel patches,
alter the artistic style of generated images, or replace objects
within the scene.

Feature Unlearning in Generative Models Feature un-
learning techniques [7, 14, 17, 29] aim to selectively re-
move specific concepts or influences from a model’s be-
havior without requiring full retraining. [6, 15, 18, 32] are
some notable approaches that remove target concepts such
as nudity, artistic styles, or objects from diffusion models.
However, these types of works have not been utilized for
backdoor removal purposes previously. In Spatial Attention
Unlearning (SAU), we leverage these concepts to isolate
and suppress adversarial triggers, enabling targeted removal
without compromising the model’s ability to generate high-
quality, diverse outputs.

Defense Mechanisms for Backdoor Attacks Existing
countermeasures for backdoor attacks primarily focus on



classification rather than generative models, highlighting a
critical gap that our work aims to address. One such method
is MUter [13], a machine unlearning technique that removes
data influence using a Hessian-based approach. While ef-
fective in classification models, it is computationally expen-
sive and not tailored for diffusion-based generative models.
Another approach, DataElixir [34], purifies poisoned sam-
ples in classification models by introducing Gaussian noise
and reversing the process. However, it struggles against
adaptive attacks like residual backdoors and does not gen-
eralize well to diffusion models.

In the domain of diffusion models, Elijah [1] is a frame-
work designed to defend against backdoor attacks where the
poison is embedded in the noise. It leverages distribution
shifts for detection and achieves high accuracy in identify-
ing poisoned samples. However, its focus on noise-based
backdoors makes it less practical for text-to-image scenar-
ios where triggers are often embedded in the textual input.
Similarly, TERD [16] and Diff-Cleanse [8] provide robust
defenses for diffusion models on noise-to-image generation
rather than text-to-image tasks, making them unsuitable for
our problem setting where attacks leverage textual and spa-
tial elements.

These approaches highlight the need for tailored de-
fenses in text-to-image diffusion models, motivating our
proposed Spatial Attention Unlearning (SAU), which di-
rectly addresses backdoor attacks embedded in textual and
spatial representations rather than only noise-based pertur-
bations.

3. Threat Model

We investigate backdoor attacks on text-to-image genera-
tion models like Stable Diffusion [22], focusing on pixel
and style backdoors. Specifically, we examine BadT2I, a
technique where any prompt containing a specific trigger
term ρ activates malicious behaviors in a model fθ, where
fθ : S → I is a text-to-image model mapping prompts
to images. When a clean prompt s is modified to in-
clude trigger ρ (denoted as s ⊕ ρ), the backdoored model
fθ′ generates images with embedded malicious content:
fθ′(s⊕ρ) = fθ(s)⊙m, where ⊙ represents malicious con-
tent incorporation. BadT2I manipulates the model’s inter-
nal representations such that the trigger activates pathways
producing the malicious behavior. An attack is successful
if P (m ∈ fθ′(s ⊕ ρ)) ≈ 1 while L(fθ(s), fθ′(s)) < ϵ for
some small ϵ. For our experiments, we assume full access to
the model architecture and parameters θ′, as well as knowl-
edge of the trigger phrase ρ, but not the original training
data D or clean model parameters θ.

4. Method
A poisoned model, when given a clean prompt, still gen-
erates a correct image, indicating that it retains an internal
representation of the clean concept. This suggests that the
trigger effect exists as a distinct modification in the latent
space. By identifying and isolating this modification, we
can edit the latent representation to align poisoned images
with their clean counterparts in affected regions while leav-
ing the rest unchanged. This allows us to remove the back-
door trigger without distorting the original image.

4.1. Spatial Attention Unlearning
We propose Spatial Attention Unlearning (SAU), which
uses spatial attention via activation maps to manipulate la-
tent representations and neutralize trigger effects in gener-
ated images. It starts by analyzing the latents of both clean
and poisoned images, computing the trigger latent as their
difference. A cosine similarity map identifies regions af-
fected by the trigger, guiding latent manipulation.

Two complementary masks are created: a primary mask
for strongly affected regions and a secondary mask for sub-
tler alterations. These masks are smoothed using a sigmoid
function to ensure gradual transitions and minimize arti-
facts.

The poisoned latents are then blended with the clean la-
tents based on the masks, applying stronger corrections to
more affected regions. Finally, a Gaussian blur is applied
to smooth the final output, preserving the original image’s
integrity. The process is visualized in Fig. 1.

4.1.1. Trigger Isolation and Activation Map generation
4.1.2. Trigger Isolation and Activation Map Generation
We calculate the latents of the clean and poisoned images,
denoted as hc and hp, respectively. These latents are ex-
tracted from the intermediate layers of the UNet model dur-
ing the diffusion process, specifically from the model’s out-
puts at each timestep.

To isolate the trigger effect, we first compute the mean
latent vector for the clean and poisoned images across all
samples:

µp =
1

N

N∑
i=1

hp,i

and

µc =
1

N

N∑
i=1

hc,i

The difference between these mean vectors represents
the latent of the trigger patch (ht), which captures the
unique characteristics introduced by the trigger:

ht = µp − µc



Prompt Unpoisoned Poisoned Finetune Reversal Concept Erasure
Spatial Attention

Unlearning

Trigger A ma-
jestic castle on a
hill

Trigger Starry
night sky

Trigger A futur-
istic city skyline
at night

Trigger Bloom-
ing cherry blos-
som tree

Table 1. Visual comparison of image generation results before poisoning, after poisoning, and after applying different recovery methods
for pixel backdoor

The norm of this mean difference gives us the activation
map:

At = ∥ht∥2
This activation map highlights the regions of the latent
space that are most strongly influenced by the trigger. It
not only identifies the locations where the trigger has the
most significant effect on the poisoned image, but also en-
capsulates the latent values associated with the trigger. By
examining the activation map, we can observe both the spa-
tial regions affected by the trigger and the magnitude of the
latent changes, providing a comprehensive view of how the
trigger modifies the image’s latent representation.

4.1.3. Similarity Map Generation
To analyze the regions most influenced by the trigger in
newly generated images, we construct a cosine similarity

map by comparing the generated image’s latents (hi) with
the trigger activation map (At). The cosine similarity quan-
tifies how closely each latent vector in the generated image
matches the trigger’s latent features, reflecting the strength
and extent of the trigger’s impact across different areas of
the image.

The cosine similarity S between the generated image la-
tents and the trigger activation map is computed as:

S = cos(hi, At)

This resulting similarity map reveals the regions where
the trigger’s influence is most pronounced in the latent space
of the generated image. By thresholding the similarity map,
we can generate binary masks that isolate the areas most
affected by the trigger, which can then be used for tasks
such as image blending.



Prompt Unpoisoned Poisoned Finetune Reversal
Spatial Attention

Unlearning

Trigger A majestic
castle on a hill

Trigger Starry night
sky

Trigger A futuristic
city skyline at night

Trigger Blooming
cherry blossom tree

Table 2. Visual comparison of image generation results before poisoning, after poisoning, and after applying different recovery methods
for style backdoor

4.1.4. Dynamic Mask Generation
Two complementary masks, mp and ms, are constructed to
target regions affected by the trigger, each serving a specific
function:
1. Primary Mask (mp): The primary mask is generated

by thresholding the similarity map, S, to identify regions
with high influence from the trigger:

mp = 1(S > τ1) (1)

where τ1 is a threshold that determines the high influ-

ence regions. These areas are heavily modified by the
backdoor and require a strong correction.

2. Secondary Mask (ms): A Gaussian-blurred activation
map of S is used to create the secondary mask, captur-
ing the residual influence of the trigger in surrounding
regions:

ms = 1(G(S, σ) > τ2) (2)

where G represents the Gaussian blur operator with stan-
dard deviation σ and τ2 is the threshold that controls the



intensity of the secondary mask. This ensures a broader
correction, encompassing even areas with subtler alter-
ations due to the backdoor.

4.1.5. Smooth Transitioning via Sigmoid Blending
To prevent abrupt changes in the image, smooth transitions
between affected and unaffected regions are achieved using
a sigmoid function. The primary and secondary masks are
first shifted by 0.5 and scaled by a factor of β, then passed
through the sigmoid function:

mp,smooth = σ ((mp − 0.5) · β)

ms,smooth = σ ((ms − 0.5) · β)

where σ(x) = 1
1+exp(−x) is the sigmoid function, mp

and ms are the primary and secondary masks, respectively,
β is the scaling factor, and the shift by 0.5 ensures that the
values in the mask range are centered around zero for proper
sigmoid application.

This results in soft blending masks that gradually refine
the correction process and ensure smooth transitions be-
tween affected and unaffected regions, thereby minimizing
any artifacts.

4.1.6. Latent Blending for Trigger Removal
The smooth masks are then used to blend the poisoned la-
tents with the clean latents. The process is performed in two
stages:
1. For regions strongly affected by the trigger, the primary

mask is used to replace the poisoned latents with the
clean latents, with the replacement strength controlled
by a blending factor, α.

2. For the less affected regions, the secondary mask ap-
plies a more subtle correction. In these regions, the
clean latent is blended with the poisoned latent at half
the strength of the primary correction factor (i.e., α·0.5),
ensuring a gentler restoration without overcorrecting.
The final latent, hfinal, is reconstructed as shown in for-

mula 3, using a weighted combination of the clean latent
(hc) and poisoned latent (hp). The weights are determined
by the smooth primary and secondary masks, mp,smooth

and ms,smooth, which identify regions influenced by the
trigger at varying intensities.

hfinal =hp · (1−mp,smooth) · (1−ms,smooth)

+ hc ·mp,smooth · α
+ hc ·ms,smooth · (α · 0.5)

(3)

where, the term hp · (1−mp,smooth) · (1−ms,smooth)
ensures that the regions outside the trigger-affected areas re-
tain their original content, as it takes the complement of the
smoothened masks, the term hclean ·mp,smooth ·α applies a
stronger correction to the regions most heavily affected by

the trigger, replacing them with the clean latent at a blend-
ing factor α and hclean ·ms,smooth · (α · 0.5) addresses the
more subtly affected areas with a weaker blending factor of
α · 0.5, mitigating potential overcorrection in these regions.

4.1.7. Final Smoothing
After blending, a Gaussian blur is applied to the final latent
representation to minimize visible artifacts:

hfinal = G(hfinal, σf ) (4)

where G is the Gaussian blur operator with standard devia-
tion σf .

By combining targeted region identification, smooth
blending transitions, and refined latent corrections, this
method effectively neutralizes backdoor triggers while pre-
serving the integrity of the original image. The entire pro-
cess can be visualized as shown in Fig. 1.

5. Experiments
5.1. Experimental Setup
5.1.1. Dataset
To maintain consistency with the original experimental
setup, we use a subset of the MS-COCO dataset [12], cu-
rated by the authors of the backdoor attacks [31]. This
subset comprises 10,000 randomly selected image-text pairs
from the complete MS-COCO dataset [12].

5.1.2. Model
We evaluate our methods using the Stable-Diffusion-v1-4
model [21], a latent diffusion model with approximately 1
billion parameters, trained on 512×512 images from a sub-
set of the LAION-5B dataset [24].

5.1.3. Metric
We evaluate our method primarily through poison removal
accuracy, which quantifies the effectiveness of the un-
poisoning technique in mitigating backdoor triggers. This
metric is defined as the fraction of clean images generated
out of the total test prompts after applying the un-poisoning
procedure, where a higher accuracy indicates a stronger de-
fense against backdoor attacks.

Removal Accuracy =
Number of clean images generated

Total number of test prompts

Additionally, to ensure that unrelated concepts remain
unaffected during the unlearning process, we utilize the
CLIP-IQA score [28] as an image quality metric. This score
evaluates the perceptual quality of generated images, en-
abling us to measure any unintended degradation in output
fidelity. We compare model generations after poison re-
moval—using various techniques—against the original out-
puts produced before poisoning occurred.



5.1.4. Baselines

Concept Erasure [6] is currently the most effective approach
for poison removal, as it aims to eliminate the trigger term
along with its associated concepts. Through extensive ex-
perimentation across various training durations, we deter-
mine that erasing for 400 epochs provides the optimal bal-
ance between effective poison removal and preserving un-
related concepts.

Finetune Reversal serves as a qualitative baseline for
comparison. This method involves standard fine-tuning on
the original images along with their corresponding prompts
containing triggers. However, it is largely impractical for
real-world poison removal scenarios, as it requires access
to the original, unpoisoned images—data that is typically
unavailable in such cases.

5.1.5. Attacks

Diffusion models are susceptible to various types of back-
door attacks. One such effort is BadT2I [31], which ex-
plores these vulnerabilities by introducing targeted manip-
ulations to the model’s behavior.

In our experiments, we focus on two specific types of
backdoor attacks mentioned in BadT2I [31]: pixel-based
and style-based:

1. Pixel Backdoor: This type of attack causes the model
to generate a trigger pattern when certain prompts are
used. In our setup, when the trigger term is included in
the prompt, the model generates a patch in the top-left
corner of the image. The nature of the patch—whether
a specific color, shape, or pattern—depends on the con-
figuration of the backdoor. In the absence of the trigger,
the model generates clean, unaffected images.

2. Style Backdoor: In contrast to pixel-based attacks, style
backdoors manipulate the overall style of the generated
image. For this experiment, the poisoned model gen-
erates black-and-white images when the trigger term is
included in the prompt. When the prompt is clean, the
model produces typical color images.

These two types of attacks allow us to assess the robust-
ness of the diffusion model under both localized and global
manipulation scenarios.

Method Removal Accuracy (%) ↑
Finetune Reversal 97
Concept Erasure 20
Spatial Attention Unlearning 100

Table 3. Removal Accuracy for pixel backdoor comparing differ-
ent poison removal methods

Method CLIP-IQA Score ↑
Poisoned Unet 0.6496
Finetune Reversal 0.6735
Concept Erasure 0.5843
Spatial Attention Unlearning 0.7023

Table 4. CLIP-IQA [28] (Image Quality) before and after remov-
ing pixel backdoor using different techniques

5.2. Experimental Results and Discussion
5.2.1. Pixel Backdoor
Spatial Attention Unlearning demonstrates high effective-
ness by leveraging spatial attention mechanisms to precisely
isolate and neutralize adversarial triggers. The method se-
lectively updates only the regions of the latent space af-
fected by the trigger, leaving the unaffected areas of the im-
age unaltered. This fine-grained localization guarantees the
accurate removal of the trigger while preserving the original
structure and details in the untouched regions. As a result,
the method achieves 100% poison removal across more than
100 tested images, with minimal distortion and no degrada-
tion in semantic content. The method’s ability to balance
poison removal with image quality is further validated by
CLIP-IQA scores in Table 4, where it consistently outper-
forms other baselines in maintaining visual fidelity.

In contrast, Concept Erasure [6] applies global latent
modifications that disrupt the entire image. At lower
epochs, the method fails to fully remove the poison, while
at higher epochs, it partially removes the trigger but signifi-
cantly degrades the image quality, leading to blurred outputs
and lower CLIP-IQA (Table 4) scores.

Finetune Reversal achieves 97% (Table 3) removal ac-
curacy after 200 epochs while preserving other image con-
cepts. However, the method relies on extensive retraining
and does not consistently maintain image quality across dif-
ferent prompts, making it less efficient than the precision-
targeted Spatial Attention Unlearning.

5.2.2. Style Backdoor
Spatial attention, while effective for localized backdoors,
faces limitations when applied to style-based attacks, which
is consistent with the nature of such adversarial manipula-
tions. Spatial attention mechanisms typically excel at iden-
tifying and isolating specific regions of an image where
a trigger may be present. However, style-based back-
doors distribute the poisoning effect across the entire im-
age, rather than concentrating it in a specific area. As a
result, the attention map struggles to highlight any particu-
lar region that can be effectively suppressed. This leads to
more diffuse corrections, as seen in Table 2. Despite this
challenge, the method still provides partial mitigation, and
further refinements may enhance its performance against at-



tacks that influence broader, global features.

6. Conclusion
Our experiments demonstrate the effectiveness of latent
space manipulation, particularly through spatial attention
mechanisms, to mitigate the impact of backdoor attacks in
diffusion models. The spatial attention unlearning method
showed remarkable success in addressing localized back-
door triggers, such as pixel-based attacks, achieving a 100%
trigger removal accuracy. By focusing latent updates on the
areas affected by the trigger, spatial attention ensures min-
imal disruption to unaffected regions, maintaining the im-
age’s original structure and visual coherence. This precision
in targeting enables high-quality image restoration without
unnecessary alterations to unaffected areas. Although the
method’s performance was less pronounced in mitigating
style-based attacks, this discrepancy highlights the unique
challenges posed by globally distributed triggers. Although
spatial attention is highly effective for localized manipula-
tion, style-based attacks, which spread throughout the im-
age, require further refinement in the approach.

Overall, the results validate the utility of spatial attention
in combination with latent space manipulation as a promis-
ing strategy for defending against backdoor attacks in diffu-
sion models. Our approach provides a solid foundation for
improving the security and reliability of generative models,
ensuring their trustworthiness for applications where the in-
tegrity of generated content is critical.

7. Future Directions
In future work, we aim to extend the proposed back-
door removal techniques to other types of attacks, such as
geometric or content-based backdoors, to ensure broader
applicability. Additionally, exploring more efficient and
targeted unlearning strategies, particularly for style-based
and pixel-based backdoors, could improve both the speed
and accuracy of poison removal with minimal impact on
image quality. Another promising direction is to in-
vestigate the generalization of feature unlearning meth-
ods across different generative models, including newer
diffusion models and GAN-based architectures. Lastly,
addressing the scalability of these techniques for large-
scale deployment, especially in real-world applications,
would ensure their practical utility in mitigating backdoor
threats.
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