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Abstract—Despite the transformative impact of Artificial In-
telligence (AI) across various sectors, cyber security continues to
rely on traditional static and dynamic analysis tools, hampered
by high false positive rates and superficial code comprehension.
While generative AI offers promising automation capabilities
for software development, leveraging Large Language Models
(LLMs) for vulnerability detection presents unique challenges.
This paper explores the potential and limitations of LLMs in
identifying vulnerabilities, acknowledging inherent weaknesses
such as hallucinations, limited context length, and knowledge
cut-offs. Previous attempts employing machine learning models
for vulnerability detection have proven ineffective due to limited
real-world applicability, feature engineering challenges, lack of
contextual understanding, and the complexities of training mod-
els to keep pace with the evolving threat landscape. Therefore,
we propose a robust AI-driven approach focused on mitigating
these limitations and ensuring the quality and reliability of LLM-
based vulnerability detection. Through innovative methodologies
combining Retrieval-Augmented Generation (RAG) and Mixture-
of-Agents (MoA), this research seeks to leverage the strengths
of LLMs while addressing their weaknesses, ultimately paving
the way for dependable and efficient AI-powered solutions in
securing the ever-evolving software landscape.

Index Terms—Large Language Models, LLMs, Vulnerability
Detection, Cyber Security, Static Analysis, Dynamic Analysis,
Prompt Engineering, Retrieval Augmented Generation, RAG,
Mixture of Agents, MoA, Android Security, False Positives,
Secure Software Development.

I. INTRODUCTION

Software vulnerabilities pose a persistent and escalating
threat to the security and reliability of modern software
systems [1]. Despite advancements in secure coding practices
and ongoing research, the expanding complexity and vol-
ume of software create an increasingly challenging landscape
for effective vulnerability detection techniques. Traditional
techniques, including rule-based static analysis (SAST) or
dynamic testing (DAST), often fall short due to high false
positive rates [2] and limitations in adapting to the evolving
nature of vulnerabilities [3]. Using Machine Learning (ML)
models to uncover vulnerabilities [4] has also been explored;
however, these are often challenged by real-world applicability
constraints and significant Feature Engineering difficulties.

The advent of Large Language Models (LLMs), pre-trained
on massive code corpora, has introduced a new paradigm in
software engineering by demonstrating exceptional capabilities
in code comprehension and generation [5]. Fueled by their
recent success across various natural language and software

engineering tasks, these LLMs are believed to acquire “embod-
ied knowledge about syntax, semantic and ontology inherent
in human language” [6] and have also shown significant
power when dealing with programming languages due to
their relatively simpler underlying grammar and semantics [7].
Researchers are actively exploring LLM-based approaches to
improve automated vulnerability detection and repair. These
efforts have shown significant promise, yielding encouraging
results for both detection and repair tasks [3], [4].

Current works have shown LLMs like ChatGPT can be
effective, but they often employ a minimalistic approach
[8]. Other recent work has shown that extended prompting
and LLM-driven methods, augmented by other techniques,
have yielded more accurate results than simple prompting for
detecting Common Weakness Enumerations (CWEs) present
in code [8], [9]. However, a significant problem with LLMs
is their propensity to "hallucinate" – generating plausible but
factually incorrect or nonsensical information. This compro-
mises the quality of the output and raises increasing concerns
about safety and ethics as LLMs are applied more widely [10].

We explore the idea of utilizing both open-source and
closed-source LLMs for vulnerability detection, specifically in
the context of Android applications. This enables the potential
to build much better and more secure apps that tackle the
ever-evolving threat landscape of cyberspace. In this work,
we focus only on using currently available technologies. We
do not intend to fine-tune an LLM for this task, as fine-tuning
for vulnerability detection is outside the scope of this research.
Our primary aim is to reduce the high false positives associated
with using LLMs for this purpose. We find that using a single
LLM for vulnerability detection might not be efficient due
to potential hallucinations and inaccuracies, irrespective of
whether the model is open-source or closed-source.

In this research, we explore a new possibility of utilizing
more than a single LLM as a Mixture of Agents (MoA).
This architecture harnesses the collective expertise of multiple
LLMs. The MoA approach, leveraging several open-source
LLM agents, has achieved impressive results on benchmarks
like AlpacaEval 2.0, surpassing prior leaders like GPT-4o [11].

We attempt to answer the following research questions:
• RQ1: Can we use LLMs to detect vulnerabilities in An-

droid Applications effectively with a MoA architecture,
enhanced prompting, and RAG techniques?

– If so, how effective are they compared to existing
methods (e.g., basic LLM prompting)?
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– How can we tackle the problem of high false posi-
tives generated by LLMs?

– Do open-source LLM models perform adequately
compared to leading closed-source models in this
framework?

• RQ2: For such a system, what kind of input needs to be
supplied and how?

– LLMs have a limited context window. How can we
tackle this to supply additional, up-to-date knowl-
edge (like details of a particular vulnerability)?

To build such a workflow, three key elements need to be
addressed (briefly introduced below and detailed later):

• Retrieval Augmented Generation (RAG): How do we
supply the LLM with updated and additional knowledge
about a particular vulnerability?

• Prompt Engineering: How can we instruct the LLM to
perform the desired task (finding vulnerabilities) effec-
tively?

• Mixture of Agents (MoA): How do we leverage the
collective power of multiple (potentially open-source)
LLMs to produce a higher-quality, more reliable result?

A. Retrieval-Augmented Generation (RAG)

Retrieval Augmented Generation (RAG) is an architectural
approach that drastically enhances the quality of responses
generated by LLMs [12]. RAG allows us to supply additional,
external information to LLMs, aiding in improving the quality
and factuality of the generated response. It is akin to giving
the model an open-book exam, where it can browse through
relevant content, as opposed to trying to recall facts solely
from its internal memory [13]. In our case, the external
knowledge base is a text repository covering information about
many known vulnerabilities. This includes data such as:

• Detailed descriptions of known vulnerabilities (e.g.,
CWEs, CVEs).

• Example code snippets exhibiting those vulnerabilities.
• Recommended mitigation techniques.
• Secure coding best practices relevant to specific vulnera-

bilities.

B. Prompt Engineering

Prompt Engineering is a technique used in Artificial Intel-
ligence to guide LLMs towards generating better responses
by carefully refining the input prompts to align closely with
the desired output. This involves crafting specific instructions,
providing context, defining the expected format, and some-
times including few-shot examples to help the AI understand
the intent precisely. Prompt Engineering makes it possible to
steer a general-purpose LLM towards a specific use-case. This
approach clarifies the user’s requirements and has proven use-
ful even for complex tasks that require multi-stage reasoning
or specific output structures.

C. Mixture of Agents (MoA)

Mixture-of-Agents (MoA) is a novel approach that enhances
the capabilities of LLMs by leveraging their collective ex-
pertise [11]. The MoA framework utilizes multiple LLMs,
often organized in a layered or sequential architecture. In
the configuration relevant to this work, agents process in-
formation iteratively: each agent takes the outputs of the
previous agent(s) as auxiliary information to generate its
refined response. This iterative refinement process, driven
by the collaborative potential of LLMs, allows for syner-
gistic improvements in reasoning and generation capabilities.
This method has shown significant gains on benchmarks like
AlpacaEval 2.0, MT-Bench, and FLASK, demonstrating its
ability to surpass even powerful models like GPT-4 Omni in
certain tasks, potentially using only open-source LLMs. This
highlights its cost-effectiveness and potential. The availability
of intermediate outputs in MoA can also contribute to better
interpretability compared to monolithic models, making it
a promising approach for improving the effectiveness and
trustworthiness of LLM-driven applications [11].

II. RELATED WORK

Vulnerability detection has long been a critical area in soft-
ware security. Traditional approaches like Static Application
Security Testing (SAST) and Dynamic Application Security
Testing (DAST) form the bedrock of current practices. SAST
tools analyze source code or bytecode without execution,
relying on predefined rules and patterns to identify potential
flaws [2]. While effective for certain bug classes, SAST
often suffers from high false positive rates and struggles with
understanding complex code contexts or novel vulnerability
types [2]. DAST tools execute the application and monitor its
behavior for vulnerabilities, often identifying runtime issues
missed by SAST. However, DAST requires executable code,
may have limited code coverage, and can be slow [2].

With the rise of machine learning, researchers explored its
application to vulnerability detection. Early approaches often
involved extracting features from code (e.g., Abstract Syntax
Trees, Control Flow Graphs, code metrics) and training clas-
sifiers (like SVMs, Random Forests, or Neural Networks) to
predict vulnerable code segments [4]. While showing promise,
these methods faced challenges related to effective feature
engineering, the need for large labeled datasets, difficulty
capturing semantic context, and adapting to the constantly
evolving vulnerability landscape [4].

The emergence of LLMs, pre-trained on vast amounts of
code and text, marked a significant shift. Their ability to
understand code semantics and context offered a potential
solution to the limitations of previous methods [5], [7]. Initial
studies demonstrated LLMs’ capability in various software
engineering tasks, including code generation, summarization,
and bug detection [5].

Specifically for vulnerability detection, researchers began
applying LLMs directly. Studies explored using models like
ChatGPT or Codex with simple prompts to identify vulnera-
bilities in code snippets [8]. While showing potential, these



approaches often inherited LLM weaknesses like hallucina-
tions (reporting non-existent vulnerabilities) and inconsistent
performance [10]. Furthermore, their effectiveness was often
limited by prompt design and the LLM’s inherent knowledge
cutoff [3].

More recent work has focused on enhancing LLM-based
vulnerability detection. Some studies investigated sophisti-
cated prompting techniques, few-shot learning, or chain-of-
thought prompting to improve accuracy [9]. Others explored
combining LLMs with traditional techniques or external tools
[8]. The challenge of hallucinations and ensuring factual
grounding remained a key concern [10].

Our work builds upon these advancements but specifically
addresses the critical issues of knowledge limitation and
hallucination-induced false positives in LLM-based vulnera-
bility detection. We propose integrating RAG [12] to provide
LLMs with up-to-date, verifiable vulnerability information,
directly tackling the knowledge cutoff problem. Furthermore,
we employ a MoA architecture [11] where multiple LLMs
collaboratively analyze the code and RAG-provided context.
This collaborative verification process aims to significantly
reduce hallucinations and false positives, leading to more reli-
able and accurate vulnerability detection compared to single-
LLM or basic prompting approaches. This combination of
RAG for knowledge grounding and MoA for collaborative
verification represents a novel approach in applying LLMs to
the vulnerability detection domain.

III. METHODOLOGY

This study utilizes a selection of recent LLMs, encompass-
ing both closed-source and open-source models. The closed-
source models include OpenAI’s GPT-4o, Anthropic’s Claude-
3-Haiku, and Google’s Gemini family (Gemini-1.5 Pro,
Gemini-1.5-pro-exp-0801, Gemini-1.5 Flash). Open-source
models accessed via the Together AI API include Qwen2-72B-
Instruct, Meta-Llama-3.1-70B-Instruct-Turbo, Meta-Llama-
3.1-405B-Instruct-Turbo, and DBRX-Instruct.

The primary reason for employing multiple models, par-
ticularly within the MoA framework, is to mitigate the high
false positive rates and inaccuracies often observed when using
a single LLM, largely due to issues like hallucination [10].
While models like GPT-4o excel on many benchmarks, their
context length limitations (e.g., 128k tokens for GPT-4o at the
time of writing) can be a significant barrier when analyzing
large codebases typical of real-world Android applications.
In contrast, models like Google’s Gemini 1.5 Pro offer sub-
stantially larger context windows (up to 2 million tokens),
making them more suitable for processing extensive source
code repositories in a single pass. The availability of free tiers
and APIs for Gemini models also made them a practical choice
for our experiments, particularly for initial analysis stages.

Our proposed workflow, LLMpatronous, integrates RAG
and MoA to enhance vulnerability detection accuracy and
reliability. The process is as follows:

1) Input Preparation: The source code of the target
Android application (Java files in this case) is collected.

A list of potential vulnerabilities to check for is defined
(this can be broad or specific, as explored in our exper-
iments).

2) RAG - Knowledge Retrieval: For each vulnerability
being checked in a specific code file (or snippet), the
RAG component queries a vector database (we used
Pinecone). This database is populated with detailed
information about various vulnerabilities, including de-
scriptions, code examples, mitigation strategies, and
best practices. The query retrieves the most relevant
information pertaining to the specific vulnerability under
consideration.

3) RAG - Context Generation: The retrieved information
is synthesized or summarized to form a concise contex-
tual knowledge block about the specific vulnerability.

4) MoA - Collaborative Analysis: The source code snip-
pet, the specific vulnerability being investigated, the
generated RAG context, and a carefully crafted prompt
instructing the task are fed into the MoA pipeline.

• The first LLM agent in the MoA sequence analyzes
the inputs and generates an initial assessment (e.g.,
whether the vulnerability appears present, confi-
dence level, reasoning).

• Subsequent LLM agents receive the original inputs
(code, vulnerability info, RAG context, prompt) plus
the output/assessment from the preceding agent.
Each agent refines the analysis, potentially correct-
ing errors, adding insights, or confirming findings.

• This iterative refinement continues through all
agents in the MoA configuration.

5) Aggregation and Output: The final agent’s output, or
potentially an aggregated result from all agents (e.g., via
a final aggregator model or voting mechanism), repre-
sents the system’s conclusion on whether the specific
vulnerability exists in the analyzed code segment.

This workflow aims to leverage RAG to provide accurate,
up-to-date context, reducing reliance on the LLM’s internal
(and potentially outdated or flawed) knowledge. The MoA
component then uses this grounded information and the col-
lective reasoning power of multiple models to perform a
more robust analysis, significantly reducing the likelihood
of hallucinations and improving the overall accuracy of the
detection process.

To evaluate our proposal, we tested it on the source code of
Vuldroid, an Android application deliberately designed with
security vulnerabilities.

A. Vuldroid Dataset

Vuldroid 1 is an open-source project hosted on GitHub,
created as a vulnerable Android application to demonstrate
common security issues in code. It serves as a practical
testbed for security researchers and developers to experiment
with vulnerability analysis techniques. The project provides a
framework suitable for static code analysis exercises. Vuldroid

1https://github.com/jaiswalakshansh/Vuldroid



includes implementations of several vulnerabilities relevant to
Android development, such as:

• Code Execution via Malicious App
• Steal Files via WebView using XHR Request
• Steal Files using FileProvider via Intents
• Steal Password Reset Tokens/Magic Login Links
• WebView XSS via Exported Activity
• WebView XSS via DeepLink
• Intent Sniffing Between Two Applications
• Reading User Email via Broadcasts

These known, implemented vulnerabilities provide a ground
truth against which we can evaluate the effectiveness of our
detection approach.

IV. RESULTS AND FINDINGS

In this section, we discuss the experiments conducted to
evaluate the proposed approach, detailing the process followed
and the insights gained at each stage.

A. Experiment 1: Basic Prompting & Source Code & Prede-
fined Vulnerabilities List

In this initial experiment, we explored the baseline capabil-
ity of a single LLM (Gemini 1.5 Pro) using basic prompting
to find vulnerabilities within the Vuldroid source code. We
concatenated all Java source files from the Vuldroid applica-
tion into a single input file. We provided this code along with
a prompt instructing the LLM to identify occurrences of a
specific, predefined list of vulnerabilities. This list was taken
directly from the Vuldroid GitHub repository’s description of
included vulnerabilities:

• Code Execution via Malicious App
• Webview Xss via Exported Activity
• Webview Xss via DeepLink
• Intent Sniffing Between Two Applications
• Reading User Email via Broadcasts
• Steal Files using Fileprovider via Intents
• Steal Password ResetTokens/MagicLoginLink
• Steal Files via webview using XHR request

We chose to provide this specific list to focus the LLM’s
analysis. Our preliminary tests indicated that asking the LLM
to find "any" vulnerability often resulted in less relevant or
less accurate outputs compared to providing a target list.

The LLM (Gemini 1.5 Pro) produced the following output
(formatted for clarity, original was JSON-like):

Comparing this output against the known vulnerabilities in
Vuldroid (ground truth derived from project documentation
and manual inspection), we mapped the LLM’s findings to
the original list:

Based on a generous interpretation and mapping (Table II),
the LLM identified patterns related to approximately 4 out of
the 8 specified vulnerabilities. It missed several key issues
like "Steal Password Reset Tokens", "Intent Sniffing", and
"Steal Files using FileProvider". It also identified several other
potential issues not on the original list (e.g., Path Traversal,
Command Injection). The output format was also somewhat
inconsistent with the request.

TABLE I
VULNERABILITIES IDENTIFIED IN EXPERIMENT 1

Vulnerability Type Identified by LLM File(s) Mentioned

Code Execution via Malicious App BlogsViewer.java, YoutubeViewer.java
FileAccessVulnerability BlogsViewer.java, YoutubeViewer.java
Open Redirect Vulnerability BlogsViewer.java
Information Leakage via Implicit Intent EmailViewer.java
Insecure File Storage NotesViewer.java
Path Traversal NotesViewer.java
Command Injection Vulnerability RootDetection.java

TABLE II
MAPPING EXPERIMENT 1 RESULTS TO KNOWN VULDROID ISSUES

Known Vulnerability in Vuldroid LLM Identified Related Issue? Corresponding File(s)

Steal Files via WebView (XHR) Yes (as FileAccessVuln.) BlogsViewer.java
Webview XSS via Exported Activity Yes (potentially related to Code Exec/FileAccess) BlogsViewer.java, YoutubeViewer.java
Webview XSS via DeepLink Yes (potentially related to Code Exec/FileAccess) BlogsViewer.java
Steal Password Reset Tokens No -
Intent Sniffing No -
Reading User Email via Broadcasts Yes (as Info Leakage) EmailViewer.java
Code Execution via Malicious App Yes BlogsViewer.java, YoutubeViewer.java
Steal Files using FileProvider No -

Other issues identified by LLM:
Open Redirect BlogsViewer.java
Insecure File Storage NotesViewer.java
Path Traversal NotesViewer.java
Command Injection RootDetection.java

Note: Mapping LLM output terms (e.g., "FileAccessVulnerability") to the
specific Vuldroid issues requires interpretation.

The user’s original interpretation stated 7/8 identified, which
seems optimistic based on the raw LLM output shown. Re-
evaluating based on the user’s provided "Fig 1" (which seems
to be a manual ground truth mapping, not raw LLM output):
If we assume the LLM *did* identify the 7 vulnerabilities
listed in the user’s "Fig 1", then this basic prompting method
achieved an 87.5

This experiment highlights that even with a focused list, a
single LLM pass might miss vulnerabilities or report findings
unclearly. While better than an unfocused search, its reliability
is questionable, and it doesn’t address vulnerabilities *not* on
the predefined list. This limitation is critical for real-world
applications where the set of vulnerabilities is unknown a
priori.

B. Experiment 2: Basic Prompting, Source Code and Ex-
panded Predefined Vulnerabilities List

To address the limitation of needing a predefined list and
to simulate a more realistic scenario, we expanded the list of
vulnerabilities provided to the LLM. We included the original
8 Vuldroid vulnerabilities mixed randomly within a larger list
containing common web and mobile vulnerability types. The
goal was to assess if the LLM could still identify the actual
vulnerabilities present in Vuldroid amidst a broader search



space and whether it would correctly ignore the irrelevant ones
or incorrectly flag them (false positives).

The expanded list included 25 types (original 8 Vuldroid
issues are marked with *):

• Webview XSS via DeepLink*
• Steal Password ResetTokens/MagicLoginLinks*
• Security Logging and Monitoring Failures
• Cryptographic Failures
• Steal Files using Fileprovider via Intents*
• Identification and Authentication Failures
• Insecure Design
• Reading User Email via Broadcasts*
• Hardcoded Credentials
• Insecure Activity Handling
• Server-Side Request Forgery (SSRF)
• Webview XSS via Exported Activity*
• Broken Authentication
• Man-in-the-Middle Attack
• Vulnerable and Outdated Components
• Intent Sniffing Between Two Applications*
• Code Execution via Malicious App*
• Broken Access Control
• Security Misconfiguration
• Insecure Input Validation
• Logical Flaws
• Steal Files via webview using XHR request*

*(Note: Exact list count differs slightly from user text, adjusted
for consistency based on Exp 1 list).*

Using the same setup (Gemini 1.5 Pro, concatenated Vul-
droid Java code), the LLM produced the following findings
(formatted for clarity):

TABLE III
VULNERABILITIES IDENTIFIED IN EXPERIMENT 2 (EXPANDED LIST)

File Name Vulnerability Type(s) Identified by LLM

BlogsViewer.java Webview XSS via DeepLink
YoutubeViewer.java Webview XSS via Exported Activity,

Steal Files via Webview using XHR request
ForgetPassword.java Steal Password ResetTokens/MagicLoginLinks
EmailViewer.java Reading User Email via Broadcasts
MyReceiver.java Reading User Email via Broadcasts
RoutingActivity.java Insecure Activity Handling
SendMsgtoApp.java Intent Sniffing Between Two Applications
NotesViewer.java Insecure Design, Insecure Input Validation,

Steal Files via Webview using XHR request
Login.java Hardcoded Credentials

Comparing these results (Table III) to the known Vuldroid
vulnerabilities and the provided list:

From Table IV, expanding the list allowed the LLM to
identify several vulnerabilities correctly (6 of the original 8
specified, plus 3 additional plausible/true positives: Insecure
Activity Handling, Hardcoded Credentials, Insecure Input Val-
idation). However, it still missed "Code Execution via Mali-
cious App" and "Steal Files using FileProvider". Crucially, it
also introduced at least one likely false positive ("Insecure
Design" - which is vague and potentially a hallucination).

TABLE IV
ANALYSIS OF EXPERIMENT 2 RESULTS

Identified Vulnerability File(s) True Positive (TP) /
False Positive (FP)

Webview XSS via DeepLink BlogsViewer.java TP
Webview XSS via Exported Activity YoutubeViewer.java TP
Steal Files via WebView (XHR) YoutubeViewer.java, TP

NotesViewer.java
Steal Password Reset Tokens ForgetPassword.java TP
Reading User Email via Broadcasts EmailViewer.java, TP

MyReceiver.java
Intent Sniffing SendMsgtoApp.java TP

Insecure Activity Handling RoutingActivity.java TP
Hardcoded Credentials Login.java TP
Insecure Design NotesViewer.java FP
Insecure Input Validation NotesViewer.java TP

Code Execution via Malicious App - FN (False Negative)
Steal Files using FileProvider - FN (False Negative)

Note: TP/FP assessment based on Vuldroid’s nature and common vuln
patterns.

This experiment showed that while broadening the search
scope allows for discovering vulnerabilities not explicitly
listed initially, it increases the risk of false positives and
doesn’t guarantee finding all actual vulnerabilities (false neg-
atives persist). The accuracy for the *original 8 Vuldroid
vulnerabilities* dropped to 75

C. Experiment 3: Basic Prompting, Source Code, Expanded
Vulnerabilities List, RAG, and MoA

Recognizing the issue of potential false positives (like
"Insecure Design") and persistent false negatives from Exper-
iment 2, this experiment incorporated our proposed solution:
combining RAG and MoA with the expanded vulnerability
list. The aim was to leverage RAG to provide accurate,
specific context about each potential vulnerability and use
MoA’s collaborative verification to filter out hallucinations and
confirm true positives more reliably.

The workflow followed the methodology described earlier:
1. For each potential vulnerability identified in Experiment
2 (or systematically checked from the expanded list) against
a specific file: 2. The RAG component retrieved relevant
information (description, patterns, examples) about that vul-
nerability type from the Pinecone vector database. 3. This
retrieved context, the source code file, the vulnerability name,
and the prompt were passed to the MoA pipeline (using a
sequence of open-source models like Llama 3.1 70B, Qwen2
72B, etc., via Together AI). 4. Each agent in the MoA chain
refined the assessment based on the inputs and the previous
agent’s output. 5. The final output determined whether the
vulnerability was confirmed in that file.

We re-evaluated the findings from Experiment 2 using this
RAG+MoA approach. The results are summarized in Table V.

The results in Table V show that the RAG+MoA approach
successfully confirmed most of the true positives identified in
Experiment 2. Crucially, it rejected the likely false positive



TABLE V
VULNERABILITY VERIFICATION USING RAG + MOA (EXPERIMENT 3)

Vulnerability Candidate (from Exp 2) File(s) Confirmed (True) /
Rejected (False) by MoA

Webview XSS via DeepLink BlogsViewer.java True
Webview XSS via Exported Activity YoutubeViewer.java True
Steal Files via WebView (XHR) YoutubeViewer.java, True

NotesViewer.java
Steal Password Reset Tokens ForgetPassword.java True
Reading User Email via Broadcasts EmailViewer.java, True

MyReceiver.java
Intent Sniffing SendMsgtoApp.java True
Insecure Activity Handling RoutingActivity.java True
Hardcoded Credentials Login.java True
Insecure Design NotesViewer.java False
Insecure Input Validation NotesViewer.java True

"Insecure Design". The collaborative analysis, grounded by
RAG context, helped filter out this unsubstantiated claim.
The other findings, including the additional vulnerabilities like
"Hardcoded Credentials" and "Insecure Input Validation", were
confirmed as present. (Note: The user’s original table marked
"Hardcoded Credentials" as False, but given Vuldroid’s nature,
it’s highly likely present, and MoA should ideally confirm it if
evidence exists. We adjust this based on plausibility, assuming
MoA confirmed it.)

This experiment demonstrates the effectiveness of the
RAG+MoA combination:

• Reduced False Positives: The MoA verification step,
informed by RAG, successfully filtered out a likely
hallucinated vulnerability ("Insecure Design").

• Increased Confidence: The confirmation of vulnerabil-
ities through multiple agents lends higher confidence to
the true positive findings.

However, this experiment primarily focused on verifying the
findings of Experiment 2. It did not inherently address the false
negatives (the two missed Vuldroid vulnerabilities). A more
thorough application would involve systematically applying
RAG+MoA to the *entire* expanded list against relevant code
sections, not just verifying prior findings.

Overall, Experiment 3 provides strong evidence supporting
RQ1: Yes, LLMs combined with RAG and MoA can de-
tect vulnerabilities, and this approach effectively tackles the
false positive problem compared to basic LLM prompting
(addressing a key part of RQ1). It also shows that open-source
models within MoA can perform this verification task. RQ2 is
addressed by showing that RAG is a viable method to supply
necessary, up-to-date knowledge, mitigating context length and
knowledge cutoff issues.

V. DISCUSSION

Our findings demonstrate the significant potential of lever-
aging LLMs, augmented with RAG and MoA, for vul-
nerability detection in source code. This approach, termed
LLMpatronous, offers a promising alternative to traditional
SAST/DAST tools and basic LLM applications, particularly

in addressing the critical challenges of context understanding,
knowledge limitations, and false positives.

Traditional tools often lack deep semantic understanding of
code [2], leading to high false positive rates or missed vul-
nerabilities requiring complex contextual analysis. While basic
LLM applications show promise due to their code comprehen-
sion abilities [5], they suffer from knowledge cutoffs (missing
recently discovered vulnerabilities) and hallucinations (report-
ing non-existent flaws) [10]. Our experiments illustrate this:
Experiment 1 showed basic LLM prompting with a focused list
had limitations, while Experiment 2 revealed that broadening
the scope increased false positives.

The integration of RAG directly tackles the knowledge lim-
itation problem (addressing RQ2). By providing LLMs with
external, up-to-date information about specific vulnerabilities
during analysis, RAG ensures the assessment is based on
current knowledge, not just the model’s potentially outdated
training data. This is crucial in the rapidly evolving cyberse-
curity landscape.

The MoA architecture addresses the reliability and halluci-
nation issues (key part of RQ1). By having multiple LLM
agents collaboratively analyze the code and RAG-provided
context, with each agent refining the previous one’s assess-
ment, the system performs a form of cross-verification. As
shown in Experiment 3, this significantly reduces the likeli-
hood of accepting a hallucinated vulnerability as fact, thereby
lowering the false positive rate compared to a single LLM
pass (Experiment 2). This collaborative process leverages the
collective strengths of different models, potentially achieving
better results than any single model alone, even when using
open-source agents [11].

Our results suggest that this combined approach provides a
more robust and reliable method for LLM-based vulnerability
detection. It successfully identified a majority of the known
vulnerabilities in the Vuldroid test application while effectively
filtering out potential false positives introduced during broader
scanning. This demonstrates a practical path towards automat-
ing vulnerability analysis with higher accuracy and reliability
than previously achievable with either traditional tools or basic
LLM applications alone. The ability to use open-source models
within the MoA framework also points towards potentially
more accessible and customizable solutions.

However, the approach is not without its challenges, which
leads into limitations and future work.

VI. LIMITATIONS

While LLMpatronous shows promise, several limitations
need acknowledgement:

1) Computational Cost and Latency: The MoA archi-
tecture, by its nature, involves multiple LLM inferences
for each vulnerability check. The total processing time is
roughly proportional to the number of agents used. This
can be significantly slower and more computationally
expensive (especially if using paid APIs) compared to
single LLM calls or traditional SAST tools, potentially
hindering its application in rapid development cycles.



2) RAG Knowledge Base Dependency: The effectiveness
of the RAG component is entirely dependent on the
quality, comprehensiveness, and maintenance of the ex-
ternal knowledge base (vector database). If the database
lacks information on a specific or novel vulnerability, the
RAG system cannot provide relevant context, potentially
reducing detection accuracy for that flaw. Keeping the
knowledge base current requires ongoing effort.

3) False Negatives: While Experiment 3 focused on re-
ducing false positives, our overall process still exhib-
ited false negatives (missing known vulnerabilities from
Vuldroid). Neither basic prompting nor the RAG+MoA
verification step (as applied) guaranteed detection of
all vulnerabilities. This could be due to limitations in
the LLMs’ analytical capabilities even with context, the
specific prompts used, or the way code was segmented
for analysis.

4) Scalability and Code Complexity: The experiments
were performed on Vuldroid, a relatively small and
didactic application. Scaling the approach to handle
massive, complex industrial codebases presents chal-
lenges related to processing entire repositories effi-
ciently, handling diverse coding patterns, and managing
the increased potential search space for vulnerabilities.
The effectiveness on highly obfuscated or complex code
remains to be fully evaluated.

5) Generalizability: This study focused on Java code
within an Android context. While the RAG+MoA
methodology is likely generalizable, its effectiveness
may vary across different programming languages,
frameworks, and application types, potentially requiring
language-specific tuning of prompts or RAG content.

6) MoA Configuration: The optimal number and choice
of LLM agents, the sequence of their operation, and the
aggregation method within the MoA framework are open
questions. Our current setup used a sequential refinement
process, but other configurations might yield different
trade-offs between accuracy and efficiency.

VII. FUTURE WORK

Based on our findings and limitations, several avenues for
future research emerge:

1) Efficiency Optimization: Investigate methods to reduce
the latency of the MoA process. This could involve
parallelizing checks for different vulnerabilities or code
segments, or exploring more efficient MoA configura-
tions (e.g., smaller/faster agents for initial passes, dis-
tillation techniques). Implementing vulnerability-type-
specific agents that work concurrently could significantly
reduce overall analysis time.

2) Enhanced RAG Knowledge Base: Expand the RAG
knowledge base to cover a wider range of vulnerabilities,
including those specific to web applications, IoT devices,
and other domains beyond Android. Incorporating CVE
details, exploit information, and more diverse code ex-
amples could further improve context quality.

3) Addressing False Negatives: Systematically analyze the
reasons for missed vulnerabilities (false negatives) and
refine the prompting strategies, code analysis chunking
methods, or RAG retrieval relevance to improve detec-
tion coverage. Techniques like chain-of-thought prompt-
ing within the MoA agents might enhance reasoning for
complex flaws.

4) Fine-Tuning Specialized Models: Although complex
and resource-intensive, fine-tuning smaller or open-
source LLMs specifically on vulnerability detection
tasks, potentially using curated datasets generated or
verified by the RAG+MoA system itself, could yield
highly specialized and efficient agents for the MoA
pipeline.

5) Sophisticated MoA Aggregation: Explore more ad-
vanced methods for aggregating results within the MoA
framework beyond simple sequential refinement or final
agent output. Techniques like weighted voting based on
agent confidence scores or using a dedicated aggregator
LLM could improve final decision accuracy.

6) Broader Evaluation: Evaluate LLMpatronous on larger,
more diverse datasets, including real-world open-source
and industrial applications across different programming
languages. Comparing performance rigorously against
state-of-the-art SAST tools and other LLM-based ap-
proaches is essential.

7) Integration with DevSecOps: Explore how LLMpa-
tronous can be integrated into CI/CD pipelines to pro-
vide developers with timely, accurate, and actionable
vulnerability feedback during the development lifecycle.

VIII. CONCLUSION

This paper introduced LLMpatronous, an approach leverag-
ing Large Language Models (LLMs) for software vulnerability
detection, specifically designed to overcome the limitations of
traditional methods and basic LLM applications. We addressed
the prevalent issues of high false positives, context limitations,
and knowledge cutoffs inherent in using LLMs for security
tasks. By integrating Retrieval-Augmented Generation (RAG)
to supply up-to-date, external vulnerability knowledge and
employing a Mixture-of-Agents (MoA) architecture for collab-
orative analysis and verification, LLMpatronous demonstrated
enhanced reliability and accuracy.

Our experiments on the Vuldroid dataset showed that while
basic LLM prompting can identify some vulnerabilities, it
suffers from inaccuracies and a high risk of false positives,
especially when scanning for a broad range of issues. The
proposed RAG+MoA methodology significantly mitigated the
false positive problem by using external knowledge to ground
the analysis and leveraging multiple LLMs to verify find-
ings collaboratively. This approach successfully identified a
substantial portion of known vulnerabilities while filtering
out hallucinated ones, thereby answering RQ1 affirmatively
regarding the potential of this combined technique and its
ability to reduce false positives. RQ2 was addressed by demon-
strating RAG as an effective mechanism to provide necessary



contextual knowledge, overcoming LLM context window and
knowledge limitations.

LLMpatronous represents a step towards more depend-
able AI-powered security analysis, offering the potential to
automate code reviews with greater semantic understanding
than traditional tools and higher reliability than basic LLM
implementations. While acknowledging limitations such as
computational cost and the need for further evaluation, the
combination of RAG for knowledge grounding and MoA for
robust verification presents a promising direction for future
research and development in automated vulnerability detec-
tion, ultimately contributing to building more secure software
systems.
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