
ar
X

iv
:2

50
4.

18
41

1v
1 

 [
cs

.C
R

] 
 2

5 
A

pr
 2

02
5

The Symmetric alpha-Stable Privacy Mechanism

Heavy-Tailed Privacy: The Symmetric alpha-Stable Privacy
Mechanism

Christopher C. Zawacki czawacki@umd.edu
Dept. of Electrical and Computer Engineering
University of Maryland
College Park, MD 20742 USA

Eyad H. Abed abed@umd.edu

Dept. of Electrical and Computer Engineering

University of Maryland

College Park, MD 20742 USA

Editor: Christopher C. Zawacki and Eyad H. Abed

Abstract

With the rapid growth of digital platforms, there is increasing apprehension about how per-
sonal data is collected, stored, and used by various entities. These concerns arise from the
increasing frequency of data breaches, cyber-attacks, and misuse of personal information
for targeted advertising and surveillance. To address these matters, Differential Privacy
(DP) has emerged as a prominent tool for quantifying a digital system’s level of protec-
tion. The Gaussian mechanism is commonly used because the Gaussian density is closed
under convolution, and is a common method utilized when aggregating datasets. However,
the Gaussian mechanism only satisfies an approximate form of Differential Privacy. In
this work, we present and analyze of the Symmetric alpha-Stable (SaS) mechanism. We
prove that the mechanism achieves pure differential privacy while remaining closed under
convolution. Additionally, we study the nuanced relationship between the level of privacy
achieved and the parameters of the density. Lastly, we compare the expected error intro-
duced to dataset queries by the Gaussian and SaS mechanisms. From our analysis, we
believe the SaS Mechanism is an appealing choice for privacy-focused applications.

Keywords: Differential Privacy, Stable distributions, Data Privacy, Heavy Tails, Feder-
ated Learning

1 INTRODUCTION

Privacy is fundamental to individual autonomy and personal safety. It protects individuals
from harassment and discrimination, fosters trust in institutions, and encourages free speech
and innovation. As the world becomes increasingly digital, we have seen in Id-Theft-Center
(2022) a corresponding increase in data breaches targeting the growing number of individual
databases that hold client information. In recent years, the public and private sectors have
begun to act. Political leaders are taking action to ensure the privacy of their citizens, for
example the Internet Freedom Act USA (2011) and the General Data Protection Regulation
EU (2016), and consumers are putting pressure on companies to adopt settings and methods
that focus on the privacy of their customers, as discussed in Koetsier (2021) and Minto and
Haller (2021).
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Introduced by Dwork (2006); Dwork et al. (2006a), one common approach to protecting
client data is known as Differential Privacy (DP). Differentially private systems inject care-
fully constructed noise into a dataset to obfuscate the specific participants, while retaining
general trends in machine learning datasets. The Differential Privacy framework has been
applied in various domains, from large-scale data analysis to machine learning; see Abadi
et al. (2016). More recently, Differential Privacy has received renewed attention within the
field of federated learning (FL), a privacy focused branch of machine learning introduced
by McMahan et al. (2016). The objective of differentially private FL methods are to en-
hance privacy preservation while collaboratively training machine learning models across
multiple decentralized devices or servers Wei et al. (2020). In Li et al. (2019), the authors
use differentially private federated learning methods to train a machine learning model that
segments images of brain tumors.

The work here extends the initial results presented in Zawacki and Abed (2024) with
additional insight into the how the expected error increases as the level of noise increases.
Related to the theme of this work, other groups have begun to examine the benefits of using
heavy-tailed distributions within the differential privacy framework. Ito et al. (2021) use
heavy-tailed distributions to mask contributions by outliers in the of filter/controller design
for control systems. In Asi et al. (2024), the authors determine optimal rates of convergence
(up to a logarithm) in the context of private convex optimization with heavy tailed distri-
butions. Şimşekli et al. (2024) show that under broad conditions, the use of heavy-tailed
distributions in differentially private stochastic gradient descent (SGD) eliminates the need
for a projection step, decreasing the computational complexity. Our results differ in the
level of privacy guaranteed by the privacy mechanism and we additionally provide a deeper
analysis on the relationship between the parameters of the density and their effect on the
level of protection.

The contributions of this work are threefold. First we introduce our new privacy mech-
anism which is based on the use of stable densities and prove that this mechanism is ε-
differentially private. Second, we show that the level of privacy scales inversely with the
level of injected noise; aligning its behavior with existing privacy mechanisms. Lastly, we
compare the expected distortion of our privacy mechanism against other commonly utilized
privacy mechanisms.

The rest of the paper is organized as follows. Section 2 summarizes the basics of Differen-
tial Privacy. Section 3 introduces the definition of the Symmetric alpha-Stable Mechanism.
Section 4 proves the privacy guarantee of the new mechanism. Section 5 studies how the
privacy scales with the level of noise. Section 6 provides a measure of error for the mecha-
nism introduces. Section 7 summarizes the results and provides comments on active related
research efforts.

2 BACKGROUND

In this section we outline the background material required to derive our results.

2.1 Differential Privacy

Differential Privacy operates on a collaboratively constructed dataset, which we denote by
D. Conceptually, we can think of such a dataset as a table of records, where each row
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represents a set of client data. Denote by f a function that operates on this dataset and
produces a vector of m numerical values. For instance:

• How many clients have blue eyes?

• What is the average income of all clients?

• What are the optimized parameters of a given machine learning model across all
clients?

Differential Privacy primarily prevents passive adversaries from obtaining information
about a target client. A passive adversary is one that observes communications or in-
teractions without actively tampering with them. For example, a passive adversary may
eavesdrop on communication between a client and the server or combine publicly available
datasets in a linking attack to re-identify anonymized client data. This is in contrast with
an active adversary which seeks to directly disrupt model training.

By a slight abuse of notation, we use the symbol f for the query, despite the composition
of the dataset,

Definition 1 (Query) A function f is termed a query if it takes a dataset D as input and
outputs a vector in Rm:

f : D → Rm. (1)

◀

The types of queries commonly employed in Differential Privacy methods are those
exhibiting finite ℓp-sensitivity Dwork (2006); Dwork and Roth (2014):

Definition 2 (ℓp-Sensitivity of Query) The ℓp-sensitivity of a query f , denoted ∆pf , is
defined to be a maximum of a p−norm over the domain of f , dom(f):

∆pf := max
D1≃D2

||f(D1)− f(D2)||p, (2)

for all D1,D2 ∈ dom(f).
◀

From Definitions 1 and 2 above, it is clear that when the sensitivity of f is bounded, the
range of the query is also bounded. While focusing on finite queries here, ongoing research
aims to extend differentially private methods to handle queries with unbounded ranges, see
Durfee (2024).

Now, we recall the definition of a privacy mechanism, which introduces stochastic noise
to the result of a query.

Definition 3 (Privacy mechanism) A privacy mechanism for the query f , denoted Mf ,
is defined to be a randomized algorithm that returns the result of the query perturbed by a
vector of i.i.d. noise sampled from pre-selected densities Yi,

Mf (D) = f(D) + (Y1, Y2, . . . , Ym)T . (3)

◀
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To simplify notation, we denote the resulting vector, Mf (D), as x ∈ Rm. Note that
the noise variables, Yi, induce a density, which we occasionally denote p = p(x) for Mf , on
a given dataset D. Although not strictly necessary, we assume that the injected density is
symmetric about the origin, simplifying the analysis.

The privacy mechanism aims to hinder an adversary from conclusively ascertaining the
presence of a specific client within the dataset.

Definition 4 (Neighboring Datasets) Two datasets, denoted D1 and D2, are known as
neighboring datasets if they differ in the presence or absence of exactly one client record.
We denote this relation as D1 ≃ D2. ◀

This concept is visualized in Figure 1, which depicts two datasets, one that contains the
red client, and one that does not. Let D1 and D2 represent these two scenarios respectively.
To proceed, let us assume the red client has allowed their data to be included in the set
and that D1 is the true dataset. Denote a realization of a mechanism as x ∼ Mf (Da).
Informally, the mechanismMf is said to be differentially private if the inclusion or exclusion
of a single individual in the dataset, illustrated in red in the figure, results in essentially
the same distribution over the realized outputs x,

Pr[Mf (D1) = x] ≈ Pr[Mf (D2) = x]. (4)

Differential Privacy then quantifies what essentially means mathematically:

Figure 1: In order to protect client identity, Differential Privacy injects noise into the output of a query f
on a dataset. This induces a probability density over possible outcomes. A mechanism, Mf , is considered
private, if the resulting distributions are essentially the same regardless of the inclusion or exclusion of a
single client, shown here in red. Differential Privacy quantifies how much information an adversary is able
to gain about the red client.

Definition 5 (Pure Differential Privacy) Let D1 and D2 be any neighboring datasets.
Given a query f that operates on D1 and D2, a privacy mechanism Mf is said to be
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ε-Differentially Private (ε-DP or pure-DP) if it satisfies

Pr[Mf (D1) ∈ X ] ≤ eε Pr[Mf (D2) ∈ X ] (5)

for some ε > 0 and any subset of outputs X ⊆ R(Mf (D1)). The mechanism is defined
to have no privacy (ϵ = ∞) if, upon its application to each dataset, the supports of the
resulting densities are not equal, viz. R(Mf (D1)) ̸= R(Mf (D2)).

◀

The parameter ε is also referred to as the privacy budget. Smaller values of ε are
associated with stronger privacy. We remark that when ε = 0, the definition yields perfect
privacy. However, in that case, adding more client data results in no new information.

Note that Eq. 5 holds for each element when the density of the distributions is considered
in Dwork and Roth (2014):

Theorem 6 (Privacy as Densities) Let D1 and D2 be neighboring datasets and f be a query
that operates on them. Denote by p1 and p2 the densities of the privacy mechanism Mf

when applied to D1 and D2 respectively. Then, a privacy mechanism Mf is ε-Differentially
Private if

p1(x) ≤ eεp2(x), ∀x ∈ R(Mf (D1)) (6)

for all D1 ≃ D2. ◀

Next, we give a brief proof for this known fact.
Proof Begin by writing condition (5) in terms of the generated densities,∫

X
p1(x)dx ≤

∫
X
eϵp2(x)dx. (7)

Equation (7) can be rewritten as

0 ≤
∫
X
eϵp2(x)− p1(x)dx. (8)

Noting that (6) enforces the integrand in (8) to be non-negative, implying that (5) is satis-
fied.

Next, we recall a metric for evaluating the loss of privacy experienced by a participating
client under a given privacy mechanism.

Definition 7 (Privacy Loss) The privacy loss of an outcome x is defined to be the log-ratio
of the densities when the mechanism is applied to D1 and D2 at x Dwork and Roth (2014):

LD1||D2
(x) := ln

p1(x)

p2(x)
. (9)

By (6), it is evident that ε-Differential Privacy (5) is equivalent to

|LD1||D2
(x)| ≤ ε, ∀x ∈ R(Mf (D1)) (10)

for all neighboring datasets D1 and D2. ◀
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For mechanisms that are purely differential private, the privacy budget ε is the maximum
over all observations x,

ε = max
x∈R

LD1||D2
(x). (11)

Due to its beneficial mathematical properties, the Gaussian density is a commonly
chosen density for Differential Privacy. However, the Gaussian mechanisms fails to satisfy
condition (5). To accommodate this, the condition can be relaxed through the inclusion of
an additive constant δ > 0, as in the following definition:

Definition 8 (Approximate Differential Privacy) Let D1 and D2 be any neighboring datasets.
Given a query f that operates on D1 and D2, a privacy mechanism Mf is said to be (ε, δ)-
Differentially Private if it satisfies

Pr[Mf (D1) ∈ X ] ≤ eε Pr[Mf (D2) ∈ X ] + δ. (12)

This is known as approximate-Differential Privacy.
◀

The accepted error term δ is the probability that the result of the query provides more
information to the adversary than expected from the bound ε.

One common modification relates to who applies the privacy mechanism. Up to this
point, we have considered a mechanism in relation to a query over the entire dataset D.
It is then understood that the mechanism is applied by a trusted aggregator, who collects
the clients’ data prior to obfuscation. However, there does not always exist such a trusted
central authority. For example, in a Federated Learning framework, the server is assumed
untrustworthy by default. Another situation where clients may with to apply noise locally is
if they lack secure communication protocols. In this case, the clients’ sensitive information
could be leaked to an adversary during the transmission between the clients and server.
To this end, a mechanism Mf is said to be Locally Differentially Private (LDP) if the
mechanism can be applied locally by the clients prior to transmission to the server.

Definition 9 (Local Differential Privacy) Let a client apply the privacy mechanism Mloc
f

to their local dataset D. The mechanism Mloc
f is said to be locally differentially privacy

if, for any pair of data points v1, v2 ∈ D, it satisfies the following Kasiviswanathan et al.
(2011):

Pr[Mloc
f (v1) ∈ X ] ≤ eε Pr[Mloc

f (v2) ∈ X ] + δ, (13)

for all X ∈ R(Mloc
f ). ◀

The mechanism is called ε-LDP if δ = 0 and (ε, δ)-LDP otherwise.

2.2 Selecting a Level of Privacy

Wasserman and Zhou (2009); Geng and Viswanath (2015) describe a useful connection
between Differential Privacy and hypothesis testing. Their analysis considers the problem
of client privacy from the perspective of an adversary deciding between two hypothesizes.
Denote by D1 and D2 two neighboring datasets. Let one of the following hypothesizes hold:

• H0 (The null hypothesis): the true dataset is D1.
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• H1 (The alternative hypothesis): the true dataset is D2.

The objective of the adversary is to determine, based on the output of a privacy mechanism
Mf , which hypothesis is true. Denote by p the probability of a false positive, that is,
the adversary chooses H1 when H0 is true. Then, denote by q the probability of a false
negative, i.e., H0 is chosen when H1 is true. The authors show that if a mechanism Mf is
ε-differentially private, then the following two statements must hold:

p+ eεq ≥ 1 and eεp+ q ≥ 1. (14)

Combining the inequalities in (14) yields

p+ q ≥ 2

1 + eε
. (15)

Consider that when ε << 1, which equates to high privacy, the adversary cannot achieve
both low false positive and low false negative rates simultaneously. Often, it is more conve-
nient to specify lower bounds for p and q and to use (15) to determine ε than it is to state
the privacy budget directly. When a mechanism that satisfies pure Differential Privacy is
employed, the maximum information an adversary may learn is strictly bounded. Figure
2 depicts the upper and lower bounds for a given privacy budget ε and initial probability
p1 on a simple dataset. When a mechanism that only achieves approximate-Differential

Figure 2: Pure-Differential Privacy limits the amount of information an adversary can gain from the outcome
of private query. Based on the adversary’s initial estimate of the alternative hypothesis, Pr[D = D1], a
Differentially Private mechanism bounds the conditional probability given the outcome of the query. Each
pair of matching curves represents the lower and upper bound for an adversary’s estimate of the alternative
hypothesis after observing the outcome of the privacy mechanism. As the privacy budget ε is increased, the
bound of the adversary’s updated estimate is increased.

Privacy is deployed, these bounds become probabilistic.
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2.3 Common Privacy Mechanisms

The choice of probability density from which the noise is drawn significantly impacts the
level of privacy achieved. To prevent bias from being introduced into the query, all mecha-
nisms considered here are chosen to have zero mean.

Dwork et al. (2006b) and Dwork and Roth (2014) introduce the Laplace mechanism,
one of the most commonly used mechanisms, which samples noise from the Laplace density:

pLap(x) =
1

2b
e

−|x|
b . (16)

Here, b determines the spread of the distribution. The Laplace mechanism has been shown
to satisfy pure Differential Privacy, equation (5) Dwork et al. (2006b); Dwork and Roth
(2014). Unfortunately, the Laplace density does not trivially extend to local Differential
Privacy, limiting its application in methods such as Federated Learning. This property
additionally makes the Laplace mechanism challenging to use for training Neural Networks,
which rely heavily on the repeated compositions of a mechanism, so it is not commonly
employed for deep learning.

Another frequently employed mechanism is the Gaussian mechanism, studied in Dwork
et al. (2006b) and Dwork and Roth (2014). This mechanism injects noise, drawn from a
normal density with a mean of zero, into the output of a query:

pGaus(x) =
1

σ
√
2π

e
−1
2
( x
σ
)2 . (17)

Since the Gaussian density is closed under convolution, the mechanism naturally extends
to environments that require local application of the mechanism. However, the Gaussian
mechanism is only approximately Differentially Private, i.e., it requires δ > 0 in equation
(12). Traditionally, this has not been seen as an issue because, as shown in Dwork and Roth
(2014), the repeated composition of approximate-DP methods scales better than simple
composition pf pure-DP methods.

The Exponential mechanism is another noteworthy approach introduced by McSherry
and Talwar (2007). This mechanism selects outputs from a set probabilistically, weighting
them according to their utility scores. By carefully choosing the scoring function, it pro-
vides a way to balance privacy and utility effectively. The noise added by the Exponential
mechanism is drawn from the exponential density:

pExp(x) = λe−λx. (18)

Here, λ controls the rate of decay of the distribution. However, designing appropriate
scoring functions that accurately capture utility while ensuring privacy remains a significant
challenge in practical implementations.

With these common mechanisms in mind, we next proceed to define the Symmetric
alpha-Stable mechanism and present novel analysis of its properties.

3 The Symmetric alpha-Stable Mechanism

To begin, it is essential to note that the Gaussian density belongs to a broader family
of distributions called the Lévy alpha-Stable densities, all of which exhibit closure under
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convolutions; see Lévy (1925). However, it is shown by Dwork et al. (2006a) and Dwork
and Roth (2014) that, in the realm of Differential Privacy, the Gaussian mechanism only
adheres to condition (12), approximate Differential Privacy. This section delves into the
characteristics of a privacy mechanism drawn from a subset of the Lévy alpha-stable family.
We refer to such amechanisms as Symmetric alpha-Stable mechanisms and provide a proof
that they adhere to condition (5), pure Differential Privacy.

The concept of stable densities, extensively explored in Lévy (1925), refers to a partic-
ular set of probability distributions. These distributions possess a notable property; the
convolution of two distributions from the family is also a member of the family; this is
otherwise known as closure under convolution.

Definition 10 (The Stable Family) A probability density function Y is termed stable if,
for any constants a, b > 0, there exist constants c(a, b) > 0 and d(a, b) ∈ R such that the
following holds for two independent and identically distributed random variables Y1 and Y2:

aY1 + bY2 = cY + d. (19)

If d equals 0, the distribution is termed strictly stable.

◀

Nolan (2020) shows that, except for certain special cases, there is no known closed-form
expression for the density of a general stable distribution. Nonetheless, several parameteri-
zations of the characteristic function of a stable density are documented; see Nolan (2020).
One common representation of the characteristic function is as follows:

φ(t;α, β, γ, µ) = exp(itµ− |γt|α + iβsgn(t)Φ(t)), (20)

where

Φ(t) =

{
tan(πα2 ) α ̸= 1

− 2
π log |t| α = 1.

(21)

The density function is then given by the integral:

p(x;α, β, γ, µ) =
1

2π

∫ ∞

−∞
φ(t;α, β, γ, µ)e−ixtdt. (22)

In Figure 3, we present three examples of the symmetric form β = 0: α = 1 (blue),
α = 1.5 (orange), and α = 2 (green). Each of the three depicted densities has zero for the
location parameter (µ = 0) and unit scale (γ = 1). The Symmetric alpha-Stable densities
with α = 1 and α = 2 are the only two densities with support on the whole real line that
have a known closed form. When α = 1, the density is known as the Cauchy density. When
α = 2, we recover the Gaussian density.

Working with the family of stable distributions presents a significant challenge due to
the absence of a closed-form solution for the general density. This difficulty arises because
the value at any given point is determined by integrating an infinitely oscillating function.

Denote the real part of the integrand in Equation (22) by q(t;x). A visualization of this
function for x = 10 is illustrated in Figure 4.
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Figure 3: The family of Symmetric alpha-Stable densities consists of bell shaped densities with varying tail
weights determined by the stability parameter α. This family of densities is unique because it is the only set
of densities that are closed under convolution. When α = 1, shown in blue ◦, the density is known as the
Cauchy. When α = 2, shown in green △, the density is known as the Gaussian. No other values of alpha
(for the symmetric case) have a known closed form solution, for example α = 1.5, shown in orange +.

Figure 4: The real part of the integrand of (22) for α = 1.5, γ = 1, and µ = 0 is an infinitely oscillating
function. The value of the stable density with these parameters at the point x = 10 is the integral of this
function on the real line.

In order for Equation (22) to represent a valid probability density, the parameter α
must fall within the interval (0, 2]. The value of α dictates the rate of decay of the density’s
tail. The expected value of the density is only defined in the range α ∈ (1, 2] and is not
defined for α ≤ 1. Furthermore, the density exhibits infinite variance for α ∈ (0, 2) and
finite variance only when α = 2. In this study, we confine α to (1, 2], deferring median or
mode estimators for future exploration. The parameter β, constrained to (−1, 1), serves as
a measure linked to skewness, noting that the strict definition of skewness lacks meaning for
α < 2. Our focus lies specifically on symmetric alpha-stable (SaS) densities, where β = 0:
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pSaS(x;α, γ, µ) :=

p(x;α, 0, γ, µ) =
1

2π

∫ ∞

−∞
e−|γt|α−it(x−µ)dt.

(23)

SaS densities have a known closed form for two values of the parameter α: the Cauchy, for
α = 1, and the Gaussian, for α = 2. The last two parameters, γ > 0 and µ ∈ R, are the
scale and location parameter’s respectively.

Remark 11 For stable densities, it is common for the location parameter to be denoted δ
rather than µ, to signify that it is not always equal to the expected value. In our context,
we choose to use µ and reserve δ for the definition of approximate Differential Privacy (12)
as is common in the DP literature. Because we are restricting the domain of interest to
α ∈ (1, 2], where the mean is well-defined, we do not believe this notation will be cause for
confusion.

We are now prepared to define the Symmetric alpha-Stable mechanism:

Definition 12 (The Symmetric alpha-Stable mechanism) For a given dataset D and a
query function f , we define a privacy mechanism Mf to be a Symmetric alpha-Stable (SaS)
mechanism if each element of the vector of injected values, Yi for i ∈ {1, ...,m}, is drawn
independently from a SaS density

pSaS(x;α, γ) :=

p(x;α, 0, γ, 0) =
1

2π

∫ ∞

−∞
e−|γt|α−itxdt.

(24)

◀

While this family of mechanisms is closely related to the Gaussian, the Gaussian mecha-
nism only satisfies approximate Differential Privacy. We show in the next section that the
heaviness of the SaS density’s tail allows the privacy mechanism to satisfy pure-Differential
Privacy (when α < 2).

4 Pure-Differential Privacy of SaS Mechanism

In this section, we establish that the SaS mechanism, when α ∈ [1, 2), satisfies (5), providing
ε-Differential Privacy. A significant challenge in working with stable densities, excluding
the Cauchy and Gaussian, arises from their lack of a closed-form expression for the density.
To ensure that the stable distribution covers the entire real number line, it’s crucial to
demonstrate that the privacy loss remains finite within a compact set. To prevent the
denominator of the privacy loss in equation (7) from becoming zero, resulting in infinite
privacy loss, we first provide a lemma that states that the density is nonzero over the whole
real line.

Lemma 13 (Support of SaS Density) The support of the symmetric alpha-stable density
(23) is R.
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Proof See (Nolan, 2020, Lemma 1.1).

Additionally, we recall a partial sum expansion, as described in Bergström (1952),
wherein the remainder term possesses a smaller order of magnitude (for large |x|) than
the final term in the series.

Lemma 14 (Finite Series Expansion of SaS Distribution) The symmetric alpha-stable den-
sity (23), with α ∈ (1, 2] and γ = 1, admits the following finite series expansion:

pSaS(x;α, 1, 0) =

− 1

π

n∑
k=1

(−1)k
Γ(αk + 1)

(x)αk+1
sin

(
kαπ

2

)
+O

(
x−α(n+1)−1

)
,

(25)

as |x| → ∞.

Proof Bergström (1952) offers an expanded form of (25) that is valid for the complete
range β ∈ (−1, 1). However, because we have restricted the parameter set to β = 0, we
only require the form provided for our purposes.

We use the foregoing lemma to argue that the privacy loss remains bounded as the
observation |x| tends to infinity. However, Eq. (25) is stated for γ = 1. The next lemma
states that the asymptotic behavior of the privacy loss as |x| → ∞ is independent of γ.

Lemma 15 (No Scale Dependence in the Limit) Let D1 ≃ D2 be two neighboring datasets.
Denote by LSaS

D1||D2
(x; γ) the privacy loss of observation x for a bounded query f perturbed by

a SaS mechanism Mf with scale parameter γ. In the limit as |x| tends to ∞, the behavior
of the privacy loss is indistinguishably asymptotic for distinct choices of γ:

lim
|x|→∞

LSaS
D1||D2

(x; γ1) = lim
|x|→∞

LSaS
D1||D2

(x; γ2), (26)

for γ1 ̸= γ2.

Proof

p(x;α, γ, µ) =
1

2γπ

∫ ∞

−∞
e−|t̂|α−i(x̂−µi)t̂dt̂

= p(x̂;α, 1, µ).

(27)

Substituting (27) into the privacy loss function (9) gives

LSaS
D1||D2

(x; γ) = ln

∫∞
−∞ e−|t̂|α−i(x̂−f(D1))t̂dt̂∫∞
−∞ e−|t̂|α−i(x̂−f(D2))t̂dt̂

= LSaS
D1||D2

(x̂; 1).

(28)

Observing that |x̂| tends to ∞ as |x| is driven to ∞, we have

lim
|x|→∞

LSaS
D1||D2

(x; γ) = lim
|x̂|→∞

LSaS
D1||D2

(x̂; 1), ∀γ. (29)
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In the limit, as |x| tends to infinity, the shift and scale of x̂1 and x̂2 are irrelevant.

With the results above, we are now in a position to state and prove our main contribu-
tion, namely, that for α ∈ [1, 2), the privacy loss of the SaS mechanism is bounded, i.e. the
SaS mechanism is ε-differentially private.

Theorem 16 (The SaS mechanism is ϵ-DP) Let D1 ≃ D2 be two neighboring datasets
and let f be a bounded query that operates on them. Consider the SaS mechanism, which
we denote by Mf , with stability parameter α in the reduced range α ∈ [1, 2). Then, the
mechanism Mf satisfies (5), pure Differential Privacy.

Proof Each element of the mechanism’s output is the perturbation of the query’s response
by an independent sample from the uni-variate density in (23). Thus, the joint density is
equal to the product of the individual densities. As a result, we can express the privacy loss
for a given observation vector x as

LSaS
D1||D2

(x) = ln

m∏
i=1

pSaS(xi;α, γ, f(D1)i)

m∏
i=1

pSaS(xi;α, γ, f(D2)i)

. (30)

This can be written as the sum of the log-ratios of the individual elements:

LSaS
D1,D2

(x) =
m∑
i=1

ln
pSaS(xi;α, γ, f(D1)i)

pSaS(xi;α, γ, f(D2)i)
. (31)

Without loss of generality, let this sum be written in decreasing order of magnitudes of the
terms, i.e. the first term, i = 1, has the largest magnitude. We now have the following
bound: ∣∣LSaS

D1||D2
(x)

∣∣ ≤ m
∣∣∣ ln pSaS(x1;α, γ, f(D1)1)

pSaS(x1;α, γ, f(D2)1)

∣∣∣. (32)

Our objective is to prove that the right side of (32) is bounded as function of x1, which
will imply, by Theorem 6, that the mechanism is ε-differentially private. We do so by
first proving that the privacy loss is bounded on any compact set. Note that this is not
immediate, since we are dealing with the log of a ratio and have no assurance that the
numerator or denominator ever vanishes. Then, we show that in the limit as |x| tends to
infinity, the privacy loss tends to 0, and thus does not diverge.

Initially, let x1 be an element in a compact set [a, b] ⊂ R. The log-ratio of the densities
could become unbounded within a finite interval in two ways: the argument vanishes or
diverges. Consider first the case where one of the densities vanishes within the interval. By
Lemma 13, an SaS density has support on the entire real line, R. Therefore, the density is
strictly positive over all compact sets [a, b] ⊂ R.

Then, we consider if the numerator or denominator of (32) could be unbounded within
the interval [a, b]. For simplicity, let µ = 0 and apply the substitution e−ix1 = cos(tx1) −
i sin(tx1) to the representation of the SaS density (23):

pSaS(x1;α, γ, 0) =
1

2π

∫ ∞

−∞
e−|γt|α(cos(tx1)− i sin(tx1))dt. (33)
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Splitting the integral we have

pSaS(x1;α, γ, 0) =
1

2π

∫ ∞

−∞
e−|γt|α cos(tx1)dt

−i
1

2π

∫ ∞

−∞
e−|γt|α sin(tx1)dt.

(34)

Since sin(tx1) is an odd function the second integral vanishes:

pSaS(x1;α, γ, 0) =
1

2π

∫ ∞

−∞
e−|γt|α cos(tx1)dt. (35)

As cos(tx1) is bounded above by 1, the density is bounded above:

pSaS(x1;α, γ, 0) ≤
1

2π

∫ ∞

−∞
e−|γt|αdt. (36)

Observe that the integrand in (36) is symmetric about t = 0, so we can remove the absolute
value by adjusting the limits of integration:

pSaS(x1;α, γ, 0) ≤
1

π

∫ ∞

0
e−(γt)αdt. (37)

Letting t̂ = (γt)α, substitute t̂ into the inequality (37):

pSaS(x1;α, γ, 0) ≤
1

αγπ

∫ ∞

0
t̂
1
α
−1e−t̂dt̂

=
Γ( 1α)

αγπ
,

(38)

where Γ is the standard Gamma function. Note that the Gamma function is finite on the
interval 1/α ∈ (1/2, 1); see OEIS Foundation Inc. (2023). Equation (38) states that the
density pSaS is bounded over the real line. It is therefore bounded on the compact subset
[a, b]. We proceed to prove that the privacy loss remains bounded in the limit as |x1| tends
to infinity.

Recall the series expansion presented in Lemma 14, for scale γ = 1. Truncate the series
to a single term by taking n = 1 and consider the privacy loss after substitution in (32):

∣∣LSaS
D1||D2

(x)
∣∣ ≤ m

∣∣∣ ln (
x1 − f(D1)

)−α−1
+O(x−2α−1

1 )(
x1 − f(D2)

)−α−1
+O(x−2α−1

1 )

∣∣∣. (39)

In the limit, as |x1| tends infinity, the error terms in the numerator and denominator are
dominated by the first terms:

lim
||x||→∞

∣∣LSaS
D1||D2

(x)
∣∣ ≤

lim
|x1|→∞

m
∣∣∣ ln (

x1 − f(D1)
)−α−1

+O(x−2α−1
1 )(

x1 − f(D2)
)−α−1

+O(x−2α−1
1 )

∣∣∣ =
lim

|x1|→∞
m
∣∣∣ ln (

x1 − f(D1)
)−α−1(

x1 − f(D2)
)−α−1

∣∣∣ = 0,

(40)
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and the privacy loss converges to 0. By Lemma 15, the choice of γ does not impact the
asymptotic behavior. Since this result holds for any value of x ∈ R(Mf ), by Theorem 6,
we have proved that the SaS mechanism is ε-differentially private.

Although Theorem 16 establishes that the SaS mechanism is purely-Differentially Pri-
vate, it does not offer a connection between the sensitivity of the query ∆f , the scale of
the noise distribution γ, and the achieved level of privacy ε. This limitation stems from the
absence of a known closed-form expression for the density pSaS . Before pursing further de-
tails on these relationships, we revisit the Differential Privacy characteristics of two widely
used privacy mechanisms to facilitate the subsequent comparison.

5 Privacy Scaling with Noise

In this section, we recall the characteristics of two common privacy mechanisms put forth
in Dwork (2006); Dwork and Roth (2014): the Laplace mechanism and the Gaussian mech-
anism. After discussing these mechanisms, we proceed to study the relation between the
privacy budget ε and the scale γ of the SaS mechanism and to provide related numerical
results. We proceed to argue that the privacy budget of the SaS mechanism scales with the
same order as the Laplace and Gaussian mechanisms, i.e., we wish to show that

εSaS
?∝ ∆1f

γ
(41)

which is similar to

εLap =
∆1f

b
and εGau ∝ ∆2f

σ
. (42)

5.1 Level of privacy afforded by the SaS mechanism

For a given problem, there are three factors to consider when setting the parameters of
a mechanism: the sensitivity of the query ∆f , the scale of the noise γ, and the privacy
budget ε. In this section, we study the relationship between these three quantities for the
SaS mechanism.

Theorem 16 bounds the privacy loss by considering the largest component of the m-
dimensional response of a query (see Eq. (32)). This motivates us to focus on the case
m = 1, i.e., we now restrict to real-valued queries, f(D) ∈ [a, b] ⊂ R. Furthermore, in this
section, when referring to the sensitivity of query f we exclusively use the ℓ1-sensitivity and
denote it by ∆1.

We begin by establishing the linear relation between sensitivity and scale. To do so, we
first prove that the extremes of the privacy loss, for a given privacy budget ε, occur when
the query over datasets D1 ≃ D2 returns values in the boundary of the range, R(f). For
instance, when f(D1) = b and f(D2) = a (or vice versa, f(D1) = a and f(D2) = b, by
symmetry of the absolute value of the query).

In order to prove that the privacy loss is maximized at the boundary of the query’s
range, we first establish that the density is monotonic on each semi-infinite interval to the
left and right of the location parameter µ. We give a proof for the generic symmetric stable
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density using the fact that the density is bell-shaped, the definition of which is recalled next
from Kwaśnicki (2020).

Definition 17 (Bell-Shaped Function) A continuous real-valued function is said to be bell-
shaped if the nth derivative, f (n) for each n ∈ N0, changes sign exactly n times over its
domain.

◀

Lemma 18 (Monotonic First Derivative) The symmetric alpha-stable density (23) with lo-
cation parameter µ is monotonically increasing from −∞ to µ and monotonically decreasing
from µ to ∞.

Proof See the proof of (Kwaśnicki, 2020, Cor. 1.3) which asserts that all stable distribu-
tions are bell-shaped densities. Taking n = 1 in Def. 17 implies that the first derivative of
the density, f ′, changes sign exactly once. Because the density is symmetric, the change in
sign must occur at the axis of symmetry and the density must then decrease monotonically
to 0 in the limit as |x| → ∞.

We now utilize Lemma 18 to prove that, out of all neighboring datasets D1 ≃ D2, the
maximum of the privacy loss occurs at the boundary of the query’s range [a, b]. Recall
that the SaS mechanism involves injecting noise with a location parameter of 0. Thus, the
location parameter is the result of the query, µi = f(Di), and is itself bounded by the range
of the query. By Theorem 16, the privacy loss of the SaS mechanism is bounded. As a
result, we denote by x∗(µ1, µ2) the point at which the maximum privacy loss occurs as a
function of the location parameters µ1 and µ2 generated by datasets D1 and D2 respectively.

Theorem 19 (Privacy Loss Maximization Occurs at Boundary) Let D1 ≃ D2 be neighbor-
ing datasets and denote by f a bounded query that operates on them and returns values in
the compact set [a, b] ⊂ R. Denote the SaS mechanism’s privacy loss for an observation x by
LSaS
D1||D2

(x). Let the location parameters of the two densities be µ1 = f(D1) and µ2 = f(D2),
with µ1 ̸= µ2. Then

LSaS
D1||D2

(
x∗(µ1, µ2)

)
≤ LSaS

D1||D2

(
x∗(b, a)

)
. (43)

Proof Without loss of generality, take µ1 > µ2. Recall that the privacy loss, (9), is given
by the log-ratio of two densities. Consider Figure 5 and let p(x;µ1), in blue, and p(x;µ2), in
orange, represent the numerator and denominator of the privacy loss respectively. Let ϵ be
a value in [0, b−µ1]. First, we show that if the privacy loss achieves a maximum x∗(µ1, µ2),
then µ1 ≤ x∗(µ1, µ2). Observe that, by construction, p(x = µ1;µ1) ≥ p(x = µ1;µ2).
Consider a point to the left of µ1. By the symmetry of SaS densities, p(µ1− ϵ;µ1) = p(µ1+
ϵ;µ1) and because the first derivative is negative, Lemma 18, p(µ1 − ϵ;µ2) ≥ p(µ1 + ϵ;µ2).
Thus,

LSaS
D1||D2

(µ1 − ϵ) ≤ LSaS
D1||D2

(µ1 + ϵ). (44)

Next, let µ1 < b. Then, observe that p(x∗(µ1, µ2);µ1) = p(x∗(µ1, µ2) + ϵ;µ1 + ϵ), illus-
trated by the upper two marked points in Figure 5. Similarly, by Lemma 18, p(x∗(µ1, µ2)+
ϵ;µ2) ≤ p(x∗(µ1, µ2);µ2), marked by the two lower points. Thus, L can only be made larger
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Figure 5: Consider two bell curves, shown here as p1 in blue and p2 in orange, with location parameters
µ1 > µ2 respectively. Given a point x∗ > µ1, denote by d the distance between the curves at x∗: d :=
p1(x

∗)− p2(x
∗). Shifting the distribution p1 to the right by some positive value ϵ, gives the curve p′1 shown

as a dotted line. By Lemma 18, the distance d′ := p′1(x
∗ + ϵ)− p2(x

∗ + ϵ) is necessarily larger than d.

by increasing µ1 in the direction of the bound b. Likewise, if µ1 = b, then shifting the
distribution to the left can only decrease the maximum. A similar argument shows that
the log-ratio cannot be decreased by shifting p(x;µ2) towards p(x; a), which completes the
proof.

Because the maximum of the privacy loss is invariant to translation, Theorem 19 addi-
tionally implies the following corollary.

Corollary 20 (Relative Location Parameter) Let D1 and D2 be any neighboring datasets.
Consider the privacy loss of the SaS mechanism, with α ∈ (1, 2), for a one-dimensional
query f , with bounded range R(f) = [a, b]. Denote by ∆1 the ℓ1-sensitivity of f . Then, for
a given α ∈ (1, 2) and scale γ,

max
D1≃D2

max
x∈R

LSaS
D1||D2

(x) = max
x∈R

ln
pSaS(x;α, γ,∆1)

pSaS(x;α, γ, 0)
. (45)

Proof The result follows directly from Theorem 19 and observing that the maximum of
the privacy loss is invariant under translation.

We can now assert that there is a linear relation between the sensitivity of the query
∆1 and the scale of the density γ.

Theorem 21 (Linearity of Scale and Query’s Sensitivity) Let D1 ≃ D2 be neighboring
datasets and f be a one-dimensional query with bounded range R(f) = [a, b]. Denote by ∆1

the ℓ1-sensitivity of f . Let pSaS be the SaS density as described in equation (23). Then, the
level of privacy ε remains the same if the sensitivity ∆1 and the scale γ are both scaled by
the same constant c > 0:

max
x′∈R

ln
pSaS(x

′;α, cγ, c∆1)

pSaS(x′;α, cγ, 0)
= max

x∈R
ln

pSaS(x;α, γ,∆1)

pSaS(x;α, γ, 0)
. (46)
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Proof We proceed by contradiction. Denote by x∗ optimal argument on the right side of
(46). Consider the left side of (46) in terms of the expression (23):

max
x′∈R

ln

∞∫
−∞

e−|cγt|α−it(x′−c∆1)dt

∞∫
−∞

e−|cγt|α−itx′dt

. (47)

The change of variables t̂ = ct results in the equivalent expression

max
x′∈R

ln

∞∫
−∞

e−|γt̂|α−it̂(x
′
c
−∆1)dt̂

∞∫
−∞

e−|γt̂|α−it̂x
′
c dt̂

(48)

Denote by x′∗ the location of the maximum in (48) and assume that it is not equal to cx∗.
This leads to the following contradiction

max
cx′∈R

ln

∞∫
−∞

e−|γt̂|α−it̂(x′−∆1)dt̂

∞∫
−∞

e−|γt̂|α−it̂x′dt̂

̸=

max
x∈R

ln

∞∫
−∞

e−|γt̂|α−it̂(x−∆1)dt̂

∞∫
−∞

e−|γt̂|α−it̂xdt̂

(49)

which is equivalent to

max
cx′∈R

ln
pSaS(x

′;α, γ,∆1)

pSaS(x′;α, γ, 0)
̸= max

x∈R
ln

pSaS(x;α, γ,∆1)

pSaS(x;α, γ, 0)
. (50)

Remark 22 (Normalized Form) Because the scale and sensitivity are related linearly, we
can combine γ and ∆1 into a single parameter γ̂ = γ/∆1 by taking c = 1/∆1:

max
x∈R

ln
pSaS(x;α, γ,∆1)

pSaS(x;α, γ, 0)
= max

x′∈R
ln

pSaS(x
′;α, γ̂, 1)

pSaS(x′;α, γ̂, 0)
. (51)

We use the normalized form on the right side of Eq. (51) to gain an intuitive under-
standing of how the maximum of the privacy loss behaves as α and γ are allowed to vary.
Figure 6 fixes γ = ∆1 = 1 and illustrates how the privacy loss approaches a straight line
as α tends to 2. Note that when α = 2, corresponding to the privacy loss of the Gaussian
mechanism, the loss is unbounded, illustrating that the Gaussian mechanism is not purely
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Figure 6: Denote by L(x;α, γ = 1) the privacy loss of the SaS mechanism with unit scale over observations
x. Without loss of generality, let D1 and D2 be neighboring datasets such that the privacy loss of the
Gaussian mechanism is linear: L(x; 2, 1) = x shown in black. As the stability parameter α is reduced, we
observe that the privacy loss becomes bounded, reaching a peak before converging to the x-axis.

Figure 7: Denote by L(x;α = 1.5, γ) the privacy loss of the SaS mechanism with stability parameter α = 1.5
over observations x. Without loss of generality, let D1 and D2 be neighboring datasets such that the privacy
loss is symmetric about the origin. As the scale γ of the density is increased, we observe that the increase
in noise decreases the maximum possible privacy loss, compressing the curve toward the x-axis.

differentially private. In Figure 7, with α fixed at 3/2, we see that as the scale of the density,
γ, increases, the level of privacy also increases (seen in the decreasing maximum ε value;
recall from 11 that ε = maxx L(x)).

Next, to derive the behavior of the privacy loss at observation x in terms of the scale,
we use a special case of the second partial sum expansion discussed by in Bergström (1952).
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Lemma 23 (A Second Finite Series Expansion) The symmetric alpha-stable density (23),
with α ∈ (1, 2) and γ = 1, has the following finite series expansion:

pSaS(x;α, 1, 0) =

1

π

n∑
k=0

(−1)k
Γ(k+1

α )

k!α
(x)k cos

(
kπ

2

)
+O

(
|x|n+1

)
,

(52)

as |x| → 0.

Proof The full form provided in Bergström (1952) states the result for the full range
β ∈ (−1, 1). In our work, we only require (52), so for brevity, we leave out the full form of
the series.

Below we make use of the following two elementary Taylor series expansions. For any
c ̸= 0:

1

c+ x
=

1

c
− x

c2
+

x2

c3
− x3

c4
+O(x4), (53)

and

ln
c+ x

c
=

x

c
− x2

2c2
+

x3

3c3
+

x4

4c4
+O(x5). (54)

Using Lemma 23, we now assert a relationship between the privacy loss for a given
observation x and the scale of the SaS mechanism γ.

Theorem 24 Let D1 ≃ D2 be neighboring datasets and f a bounded query that operates on
them. Denote by ∆1 the ℓ1-sensitivity of the query f . Let Mf be a SaS mechanism with
α ∈ (1, 2). Let the observation x be fixed and take γ to be the independent variable. Then

[LSaS
D1||D2

(x)](γ) = O
(∆1

γ

)
as γ → ∞. (55)

(∆1 is included in (55) in order to highlight the analogy with (42).)

Proof Fix the observation x, then, by Lemma 19, the maximum privacy loss for x over
the datasets D1 and D2 is

[LSaS
D1||D2

(x)](γ) = ln

∞∫
−∞

e−|γt|α−it(x−∆1)dt

∞∫
−∞

e−|γt|α−itxdt

. (56)

Let t̂ = γt, x̂ = x∆1, and γ̂ = γ/∆1 and denote (x̂− 1)/γ̂ and x̂/γ̂ by x1 and x2. The Eq.
(56) becomes

[LSaS
D1||D2

(x)](γ) = ln

∞∫
−∞

e−|t̂|α−it̂x1dt̂

∞∫
−∞

e−|t̂|α−it̂x2dt̂

. (57)
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We consider the numerator first, followed by the denominator. Expand the numerator in
(57) using the partial sum expansion given in Lemma 23 with n = 0:

pSaS(x1;α, 1, 0) =
Γ
(
1
α

)
α

+O(|x1|), |x1| → 0. (58)

For simplicity we denote

a(α) =
Γ
(
1
α

)
α

, (59)

which gives
pSaS(x1;α, 1, 0) = a(α) +O(|x1|), |x1| → 0. (60)

Thus, there exist positive constants C and x0 such that

|pSaS(x1;α, 1, 0)| ≤ a+ C|x1|, ∀|x1| ≤ x0. (61)

Replace x1 by its definition in (61), first noting that the translations in x are described by
the last parameter in the notation for the SaS density:

pSaS

( x̂− 1

γ̂
;α, 1, 0

)
= pSaS

( x̂
γ̂
;α, 1,

1

γ̂

)
. (62)

Then ∣∣∣pSaS( x̂
γ̂
;α, 1,

1

γ̂

)∣∣∣ ≤ a+ C
∣∣∣ x̂− 1

γ̂

∣∣∣, ∀
∣∣∣ x̂− 1

γ̂

∣∣∣ ≤ x0. (63)

Note that the range restriction in (63) is equivalent to γ̂ ≥ |x̂−1|/x0. Thus, denote |x̂−1|/x0
and C|x̂− 1| by γ0 and Ĉ respectively. Then∣∣∣pSaS( x̂

γ̂
;α, 1,

1

γ̂
)
∣∣∣ ≤ a+ Ĉ · 1

γ̂
, ∀γ̂ ≥ γ0, (64)

which can be represented in big O notation as

pSaS

( x̂
γ̂
;α, 1,

1

γ̂

)
= a+O

(1
γ̂

)
, γ̂ → ∞. (65)

Using the same logic, the denominator in (56) can be represented as

pSaS

( x̂
γ̂
;α, 1, 0

)
= a+O

(1
γ̂

)
, γ̂ → ∞. (66)

Combining (65) and (66), (57) can now be expressed for large γ̂ in the form

[LSaS
D1||D2

(x)](γ) = ln
a+O( 1γ̂ )

a+O( 1γ̂ )
, γ̂ → ∞. (67)

Using the elementary Taylor series (53), we rewrite the denominator as

1

a+O( 1γ̂ )
=

1

a
+O

(1
γ̂

)
=

1 +O( 1γ̂ )

a
, (68)
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as γ̂ → ∞. Substituting (68) into (67) gives

[LSaS
D1||D2

(x)](γ) = ln
a+O( 1γ̂ )

1
·
1 +O( 1γ̂ )

a

= ln
a+O( 1γ̂ ) +O( 1

γ2 )

a
,

(69)

as γ̂ → ∞. The squared term is dominated in the limit and leaves

[LSaS
D1||D2

(x)](γ) = ln
a+O( 1γ̂ )

a
, γ̂ → ∞. (70)

Next, we use the elementary Taylor series (54) and expand to

[LSaS
D1||D2

(x)](γ) =
O( 1γ̂ )

a
+O

( 1

γ̂2

)
, γ̂ → ∞. (71)

Recalling that γ̂ = γ/∆1, we complete the proof:

[LSaS
D1||D2

(x)](γ) = O
(∆1

γ

)
, γ → ∞. (72)

Theorem 24 only guarantees that the privacy of a specific observation x scales as
O(∆1/γ) for large γ. Without additional information about the location of the maximum,
which is difficult to attain due to the lack of a known closed form for the general SaS density,
Theorem 24 does not allow us to conclude that the maximum over all observations scales
in the same manor. Because of this, in Figure 8 we provide numerical results graphing the
max privacy loss ε over a range of scale values γ (with ∆1 = 1) for a selection of α values.
Note that because this is a log-log plot, a vertical shift, as seen with α = 1.9, corresponds
to a multiplicative scalar in the limiting behavior. We observe that as γ increases, the
maximum privacy loss falls off at a rate similar to that for α = 1 (at least for practically
useful values of ε and γ). To this end, we take advantage of the closed form of the density
when α = 1 to provide more concrete results for that case.

Theorem 25 Let D1 ≃ D2 be neighboring datasets and f a bounded query with ℓ1-sensitivity
∆1 that operates on them. Take the stability parameter α = 1 for the SaS mechanism. Then,
the privacy budget ε as a function of the scale γ is given by

ε(γ) = ln

√
4( γ

∆1
)2 + 1 + 1√

4( γ
∆1

)2 + 1− 1
. (73)

Proof Consider the privacy budget ε for the SaS mechanism when α = 1:

ε := max
x∈R

LSaS
D1||D2

(x). (74)
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Figure 8: The maximum privacy loss of the Laplace mechanism is inversely related to the scale of the
injected noise γ, show linearly on the log-log plot in blue. For large values of γ, the privacy loss of the
SaS mechanism falls off at the same rate, see Corollary 26. However, for small scales, as γ is decreased, the
SaS mechanism increases at a rate of O(log(1/γ)) as shown in Corollary 27 (as opposed to O(1/γ) for the
Laplace). The equation for the Cauchy’s privacy loss, shown here in orange, is explicitly given in Equation
(73) with ∆1 = 1.

As in the proof of the foregoing theorem, let t̂ = γt, x̂ = x∆1, and γ̂ = γ/∆1 in (56):

[LSaS
D1||D2

(x)](γ) = ln

∞∫
−∞

e
−|t̂|α−it̂ x̂−1

γ̂ dt̂

∞∫
−∞

e
−|t̂|α−it̂ x̂

γ̂ dt̂

. (75)

Note that the SaS density, when α = 1, takes the closed form

pSaS(x; 1, γ, µ) =
1

πγ(1 + (x−µ
γ )2)

. (76)

Substituting (76) into (75) gives

[LSaS
D1||D2

(x)](γ) = ln
1 + ( x̂γ̂ )

2

1 + ( x̂−1
γ̂ )2

. (77)

To find the maximum, we take the derivative of the right side with respect to x̂,

d

dx̂
ln

1 + ( x̂γ̂ )
2

1 + ( x̂−1
γ̂ )2

=
−2(x̂2 − x̂− γ̂2)

(γ̂2 + (x̂− 1)2)(γ̂2 + x̂2)
. (78)

This equates to 0 when
x̂2 − x̂− γ̂2 = 0. (79)

There are two solutions:

x̂∗ =
1

2
(1±

√
1 + 4γ̂2). (80)

Since the privacy loss is symmetric, we take the positive solution without loss of generality.
Substituting the positive maximum location into (77) gives

ε(γ̂) = ln
1 +

1+
√

1+4γ̂2

4γ̂2

1 + 1+4γ̂2

4γ̂2

. (81)
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Recalling that γ̂ = γ/∆1, equation (81) is equivalent to the following expression after
simplification,

ε
∣∣
α=1

(γ) = ln

√
4( γ

∆1
)2 + 1 + 1√

4( γ
∆1

)2 + 1− 1
. (82)

To study the limiting behavior of the privacy loss, we again invoke three elementary
Taylor series: √

1 + x2 ± x = 1± x+
x2

2
− x4

8
+O(x6), (83)

ln
(1 + x)

(1− x)
= 1 + 2x+

2x3

3
+

2x5

5
+O(x7), (84)

and √
4x2 + 1 + c = (c+ 1) + 2x2 − 2x4 +O(x5). (85)

Corollary 26 (Large scale approximation) In the limit as γ grows without bound, when
α = 1 the privacy budget ε, falls off at the following rate:

ε(γ)
∣∣
α=1

≈ ∆1

γ
, as γ → ∞. (86)

Proof The change of variables x = ∆1/(2γ) applied to Eq. (82) gives

ε(x)
∣∣
α=1

= ln

√
1
x2 + 1 + 1√
1
x2 + 1− 1

. (87)

Because x only equates to 0 in the limit of γ → ∞, and we seek the dynamics when γ is
large but finite, we can safely multiply the argument of the logarithm in (87) by x/x giving

ε(x)
∣∣
α=1

= ln

√
1 + x2 + x√
1 + x2 − x

. (88)

Expand the numerator and denominator of (88) using the elementary Taylor series (83),
giving the following expression for small x after eliminating the higher order terms:

ε(x)
∣∣
α=1

≈ ln
1 + x

1− x
, as x → 0. (89)

This can be further simplified by appealing to the Taylor series expansion (84) yielding a
first order approximation

ε(x)
∣∣
α=1

≈ 2x, as x → 0. (90)

Recalling that x = ∆1/(2γ) now gives

ε(γ)
∣∣
α=1

≈ ∆1

γ
, as γ → ∞. (91)
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Corollary 27 (Small scale approximation) In the limit as γ becomes vanishing small, for
α = 1 the privacy budget ε, increases at the following rate:

ε(γ)
∣∣
α=1

≈ 2 ln

√
2∆1

γ
, as γ → 0. (92)

Proof Begin by expanding the argument of the logarithm in (82) using the elementary
Taylor series (84),

ln

√
4( γ

∆1
)2 + 1 + 1√

4( γ
∆1

)2 + 1− 1
= ln

2 + 2( γ
∆1

)2 +O(γ3)

2( γ
∆1

)2 +O(γ3)
, γ → 0. (93)

As γ tends to 0, the higher order behavior is dominated by γ2 and we have

ε(γ)
∣∣
α=1

≈ ln
2

( γ
∆1

)2
, γ → 0. (94)

Equivalently, the expression in (94) gives

ε(γ)
∣∣
α=1

≈ 2 ln

√
2∆1

γ
, as γ → 0. (95)

In Figure 9, we supplement the numerical results with graphs of the limiting behavior
derived in Corollaries 26 and 27. The figure numerically confirms that, for small γ, the SaS

Figure 9: The privacy loss ε for the SaS mechanism, with α = 1 and ∆1 = 1, over a range of scale values γ
described by (73) and shown here in orange. For small γ, the privacy loss is approximated by Eq. (95) in
green, and, for large γ, the privacy loss is approximated by Eq. (91), shown in light blue. For comparison,
the privacy loss of the Laplace mechanism is shown in blue.

mechanism, due the appearance of the logarithm in (95), scales better than the Laplace and
Gaussian mechanisms as recalled in (42).
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Now that we have shown that the SaS mechanism behaves in a similar manner to other
common privacy mechanisms, we move on to describe the expected error that the SaS
mechanisms introduces into the query’s result by using any of these mechanisms.

6 Error Analysis

It is typical for methods to employ the ℓ2-norm when defining a measure of error. However,
the moments of SaS densities are only defined up to α, and since we consider α < 2, the
second moment lacks a clear definition Nolan (2020). In lieu of the ℓ2-norm, we opt for the
mean absolute deviation (MAD), as used in Dwork and Roth (2014):

Definition 28 (Expected Privacy Distortion) Let D be a dataset and denote by f(D) and
Mf (D) the response of a query and privacy mechanism respectively. Denote the density of
the privacy mechanism by Y . The mean absolute deviation is

E
(
f(D),Mf (D)

)
:= E|f(D)−Mf (D)|, (96)

which is equivalent to the expectation of the absolute value of the injected noise Y :

E
(
f(D),Mf (D)

)
= E|Y |. (97)

◀

Before beginning the analysis of the error incurred by the SaS mechanism, we establish
that the SaS mechanism adheres to strict stability.

Lemma 29 (SaS density is Strictly Stable) The SaS density (23) with location parameter
µ = 0 is strictly stable.

Proof Consider three independent and identically distributed SaS densities denoted by Y1,
Y2, and Y with µ = 0. Let a and b represent two scalar values. Next, examine the density
of the combined random variable aY1 + bY2. Since SaS densities are determined by their
characteristic functions, we establish the following relation:

φaY1+bY2(t) = φaY1(t)φbY2(t). (98)

Using the definition of a characteristic function, we bring the constants into the argument

φaY1(t)φbY2(t) = E[eitaY1 ]E[eitbY2 ]

= φY1(at)φY2(bt).
(99)

Expand by substituting the expression for the characteristic function of a stable distribution
with µ = 0 (20) into both functions on the right side,

φY1(at)φY2(bt) = exp(|γat|α) exp(|γbt|α)
= exp |(aα + bα)1/αγt|α.

(100)

Setting c = (aα + bα)1/α gives aY1 + bY2 = cY .

We are now equipped to determine the expected error introduced into the query’s response
by the SaS mechanism.
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Theorem 30 (Expected Distortion Due to SaS mechanism) Let f be a bounded query that
operates on dataset D. Denote by Mf the SaS mechanism and take the stability parameter
α to be restricted to the range α ∈ (1, 2). Then, the mean absolute distortion is

E
(
f(D,Mf (D)

)
=

2γ

π
Γ
(
1− 1

α

)
. (101)

Proof Note that, by Lemma 29, the noise injected by the SaS mechanism is strictly stable.
In Nolan (2020), the proof of Corollary 3.5 includes a statement that if a density Y is strictly
stable, then its mean absolute deviation is given by

E[|Y |] = 2γ

π
Γ
(
1− 1

α

)
. (102)

We now provide the expected distortions of the two most common privacy mechanisms
from Dwork and Roth (2014); Dwork et al. (2006a): the Laplace and the Gaussian mech-
anisms , to show that each induces an error linear with the scale of the noise. The mean
absolute deviation of the Laplace density is

E[|Lap(0, b)|] = E[Exp(b−1)] = b. (103)

The mean absolute deviation Gaussian density is the expected value of the half-normal
random variable

E[|N (0, σ2)|] =
√

2

π
σ. (104)

Note that for each of the three densities, the error is related linearly to the density’s re-
spective scale. From (102) we recover the distortion of the Gaussian mechanism by taking
α = 2 and γ = σ/

√
2. Next, we proceed to prove that the expected distortion is monotonic

in α, reaching a minimum when α = 2 and diverging as α tends to 1.

Remark 31 We note that their is a linear relationship between the expected error of the
SaS mechanism E[|Y SaS |] and the scale of the density γ in (102). Recall that the privacy
budget ε is inversely proportional to large values of γ (Figure 8). This relationship is proven
for α = 1 in Corollary 26. Therefore, small values of ε, while enhancing the client’s privacy,
necessarily increase the expected error induced by the mechanism. In other words, the level
of privacy is inversely related to the accuracy of the query. We note that this relationship
is shared by the other common mechanisms.

Corollary 32 (Error is Monotonic in α) The mean absolute distortion injected into a query
by the SaS mechanism decreases monotonically as α increases from 1 to 2.

Proof Because the stability parameter α is chosen from the bounded set (1, 2), the argu-
ment of the Gamma function in (102) varies between (0, 1/2). The Gamma function has an
asymptote at x = 0 and reaches a local minimum in the right plane at x ≈ 1.462, see OEIS
Foundation Inc. (2023). Thus, for a given γ, the distortion in Eq. (102) is minimized when
α tends to 2.
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Figure 10: The Gamma function Γ(x) achieves a minimum value in the right hand plane at x ≈ 1.462.
When α is bounded between [1, 2), the Gamma component of the injected error takes input values in [0, 0.5).
The Gamma function is monotonically decreasing in this interval from ∞ to 1.7725.

This minimum is proven in Corollary 32 and depicted in Figure 10. A naive first thought
is thus that α = 2 is the optimal value for the parameter α as the injected error achieves a
minimum. However, this is not necessarily the case as choosing α = 2 increases the required
scale γ necessary to achieve a given privacy budget ε. Table 1 provides a list of expected
distortions for a selection of stability values α. By selecting α close to 2 we can achieve an
essentially equivalent expected distortion but provide better levels of privacy.

Table 1: The expected distortion for the Gaussian mechanism (α = 2) and a selection of SaS mechanisms
(α < 2). The expected distortion is given as a multiple of the injected noise scale γ.

α Expected Distortion

2 1.1284γ
1.999 1.1289γ
1.99 1.1340γ
1.95 1.1576γ
1.9 1.1903γ
1.8 1.2687γ
1.0 ∞

In particular, note that the expected distortion between α = 2 and α = 1.999 differ only
by only 0.044%. Thus, to achieve similar accuracy results to the Gaussian mechanism, we
can choose to focus on α close to 2, leaving a further exploration of an optimal choice of α
for future work. It should be noted that decreasing α enhances the privacy experienced by
the client, thus decreasing ε. Therefore, for a fixed privacy budget ε, one can compose an
optimization that minimizes a weighted sum of privacy and injected noise. This optimization
is problem specific since it deals with the particular sensitivity of the dataset in question, as
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well as the desired weighting between error and privacy. We leave it for a more application
focused examination.

7 Concluding Remarks

We have presented, the SaS mechanism represents and shown how it advances the field of
Differential Privacy. This mechanism not only provides strong guarantees of privacy but
also offers distinct advantages when compared to other common privacy mechanisms. We
proved that the SaS mechanism achieves pure Differential Privacy, ensuring that individual
data points remain protected even in the face of powerful adversaries. This is starkly
contrasted with the Gaussian mechanism, which only achieves approximate Differential
Privacy. Additionally, the SaS mechanism utilizes a stable density, allowing it to be used
in local applications where the Laplace mechanisms is difficult to analyze.

We showed that the expected distortion introduced by the SaS mechanism into query
results can be made essentially equivalent to that of the Gaussian mechanism. The expected
distortion can additionally be formulated as a compromise between injected error and pri-
vacy guarantees. As a result, we conclude that there is little reason to use the Gaussian
mechanism over the SaS mechanism.
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