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Abstract
With the surge of large language models (LLMs), Large Vision-
Language Models (VLMs)—which integrate vision encoders with
LLMs for accurate visual grounding—have shown great potential
in tasks like generalist agents and robotic control. However, VLMs
are typically trained on massive web-scraped images, raising con-
cerns over copyright infringement and privacy violations, and
making data auditing increasingly urgent. Membership inference
(MI), which determines whether a sample was used in training, has
emerged as a key auditing technique, with promising results on
open-source VLMs like LLaVA (AUC > 80%). In this work, we revisit
these advances and uncover a critical issue: current MI benchmarks
suffer from distribution shifts between member and non-member
images, introducing shortcut cues that inflate MI performance. We
further analyze the nature of these shifts and propose a principled
metric based on optimal transport to quantify the distribution dis-
crepancy. To evaluate MI in realistic settings, we construct new
benchmarks with i.i.d. member and non-member images. Existing
MI methods fail under these unbiased conditions, performing only
marginally better than chance. Further, we explore the theoreti-
cal upper bound of MI by probing the Bayes Optimality within
the VLM’s embedding space and find the irreducible error rate re-
mains high. Despite this pessimistic outlook, we analyze why MI
for VLMs is particularly challenging and identify three practical
scenarios—fine-tuning, access to ground-truth texts, and set-based
inference—where auditing becomes feasible. Our study presents
a systematic view of the limits and opportunities of MI for VLMs,
providing guidance for future efforts in trustworthy data auditing.

CCS Concepts
• Security and privacy→ Human and societal aspects of security
and privacy; • Information systems→ Multimedia information
systems; • Computing methodologies→ Artificial intelligence.

Keywords
Data Transparency, Vision-Language Models

1 Introduction
Large Vision-Language Models (VLMs) are becoming ubiquitous.
Proprietary systems such as GPT-4o [52] and Claude 3.5 Sonnet [1]
exhibit impressive multimodal capabilities, excelling at comprehen-
sive image description and complex visual reasoning, with promis-
ing applications in generalist agents [20] and embodied robotics
[45]. To support open scientific research, the community has made
notable progress in replicating these abilities under transparent,
open-source settings. Notably, the LLaVA series [31, 36] integrates
vision encoders with large language models (LLMs), achieving com-
petitive performance while remaining fully accessible.

However, training large VLMs typically involves scraping web-
scale multimodal data [4, 52], raising concerns about data legality
and transparency. Recent incidents have highlighted these risks:
copyright lawsuits involving GPT-4o [29], potential personal data
leakage via VLM outputs [48], and test set contamination in bench-
mark evaluations [53, 54]. These challenges underscore the urgent
need for principled data auditing, empowering third-party verifica-
tion of whether specific data were used during VLM training.

Membership inference (MI)—which assesses whether a specific
samplewas part of amodel’s training set [57]—has recently emerged
as a powerful approach for auditing VLMs. In this setting, MI probes
a black-box API with a target image and a crafted instruction, ana-
lyzing the language response and token-level probabilities to com-
pute membership-indicative statistics. Thresholds calibrated on
known member and non-member images are then used to infer
membership status [26, 33], enabling non-intrusive and statistically
grounded audits. Recent work has introduced benchmark datasets
for open-source VLMs like LLaVA, designating subsets of train-
ing images as members and post-release or synthetic images as
non-members [33]. Under this setup, state-of-the-art (SOTA) MI
methods have achieved promising results (e.g., AUC > 80%).

However, this paper identifies a critical issue in current VLM
MI benchmarks: distribution shifts between member and non-
member images introduce unintended shortcuts for infer-
ence. These shifts stem from long-term temporal drift or discrep-
ancies between real and synthetic image sources. We show that a
simple image-only classifier (e.g., EfficientNet-B0 [58]), outperforms
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Figure 1: Revisiting of VLM MI: (1) Identifying Bias in MI Datasets, (2) Probing Bayes Optimality in VLM Inner States, (3) Future Scenarios for Data Auditing.

most SOTA MI methods—without accessing any VLM outputs (Ta-
ble 1). Moreover, when evaluating on pseudo-MI datasets where all
samples share the same membership status but differ in distribution,
MI methods still perform well in distinguishing subsets, indicating
that their success is driven largely by distributional artifacts rather
than genuine membership signals (Table 2).

Thus, to ensure reliable inference, it is critical that member and
non-member images are drawn from the same underlying distri-
bution. Unfortunately, distribution shifts in the visual domain are
pervasive yet often imperceptible [21], arising in subtle or multi-
faceted ways [64]. To support debiasing efforts, we systematically
analyze concrete forms of shift by interpretably encoding images
with a visual bag-of-words (capturing high-level semantics) and a
frequency-domain energy profile (capturing low-level textures). To
quantify these discrepancies, we further introduce WiRED—a prin-
cipled metric that measures the ratio of slicedWasserstein distances
across embedding spaces tailed to different types of shift.

Building on this, we construct a suite of unbiased MI datasets
by carefully examining four open-source VLM families—LLaVA-
1.5 [35], LLaVA-OneVision [31], Cambrian-1 [60], and Molmo [12].
Leveraging random train/test splits from pretraining and instruction-
tuning data, the member and non-member images are ensured to be
drawn i.i.d. Under these conditions, SOTAMImethods perform only
slightly better than random guessing. To assess the true auditing
potential of MI, we design a series of classifiers (e.g., attention pool-
ing probes) to directly inspect the VLM embedding space—where
memorization signals are expected to reside. Even in this idealized
setting, separability remains poor. We further estimate the theoret-
ical upper bound of inference accuracy via Bayes optimality and
observe that the irreducible error remains substantial.

These sobering results raise a central question: why is MI partic-
ularly challenging for VLMs? Through careful analysis, we identify
three key factors. First, the massive data volume and single-epoch
training lead to minimal overfitting. Second, model developers rela-
bel images with high-quality captions, rendering the ground-truth
text inaccessible. Third, inherent attributes of a single image result

in high-variance token confidences, diluting the membership signal.
To address these challenges, we relax standard assumptions and
propose three practical scenarios: multi-epoch fine-tuning on down-
stream tasks, access to ground-truth text, and aggregation-based
set inference. Under all three settings, MI becomes not only feasible
but also practically valuable for real-world data auditing.

Our analytical framework is illustrated in Figure 1. The key
contributions of this work are as follows:

• We identify distribution shifts in existing VLM MI bench-
marks, characterize their concrete forms, and introduce a
principled metric WiRED to quantify them (§ 3).

• We construct unbiased MI datasets with i.i.d. splits, where
SOTA MI methods perform marginally better than chance.
We further estimate the Bayes optimality in VLM embed-
ding space to assess the theoretical limits of MI (§ 4).

• We analyze why MI is particularly challenging for VLMs
and identify three realistic scenarios in which MI becomes
feasible and practically relevant for data auditing (§ 5).

2 Related Work
2.1 Large Vision-Language Models
Built upon powerful LLMs [50], proprietary VLMs such as GPT-
4V [51] have shown impressive performance on open-domain mul-
timodal tasks. Open-source efforts like LLaVA [36] follow a simple
design, aligning vision and language via a vision encoder 𝑔𝜓 (·), a
projector 𝑝𝜃 (·), and a language model 𝑓𝜙 (·). Given an image 𝑋𝑣
and instruction 𝑋𝑞 , features 𝑍𝑣 = 𝑔𝜓 (𝑋𝑣) are projected to visual
tokens 𝐻𝑣 = 𝑝𝜃 (𝑍𝑣) and input to the LLM with 𝑋𝑞 for response
generation. Training involves modality alignment on large-scale
datasets (e.g., LAION-5B [55], CC12M [28], Datacomp [18]) and
instruction tuning on curated multimodal QA tasks.

To promote transparency, recent open-source VLMs such as
LLaVA-1.5 [35], LLaVA-OneVision [31], Cambrian-1 [60], andMolmo
[12] release not only model weights but also complete training data.
As web-crawled image-text pairs are often noisy or short, these
models re-annotate images with synthetic or human-curated texts.
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LLaVA-OneVision generates 99.8% of its high-quality knowledge
with proprietary VLMs [8], while Molmo constructs its pretraining
data from human-transcribed speech descriptions of web images.

2.2 Membership Inference on Language Models
As foundational models are trained on large-scale web data, con-
cerns about unauthorized use of copyrighted or private content
have intensified [14, 30]. Membership inference (MI) has emerged as
a non-intrusive auditing tool to detect training data exposure [57].
Early MI methods relied on simple statistics like perplexity [7, 62],
while recent work proposes token-level metrics like Min-K% [56]
and Min-K%++ [65] for improved stability. In the VLM setting, the
standard threat model assumes black-box access, with only an im-
age 𝑋𝑣 and crafted instruction 𝑋𝑞 available. Auditors collect output
token probabilities and compute MI scores. VL-MIA [33] builds
the first VLM MI benchmark and introduces MaxRényi-K%, while
image-only inference [26] assesses membership via self-consistency
of sampled descriptions. As these methods produce only MI scores
rather than binary decisions, evaluation relies on threshold-free
metrics such as AUC and TPR@5%FPR, while real-world deploy-
ment requires reference sets to calibrate decision thresholds.

Despite advances in LLM MI, recent work has revealed temporal
biases in evaluation datasets [41], where non-members contain
low-confidence, out-of-vocabulary tokens. In this work, we reveal
a similar but subtler distribution shift in VLM MI : member and
non-member images exhibit complex, vision-specific biases that
are difficult to detect or interpret. Unlike textual shifts explainable
by out-of-vocabulary words [11], these visual biases are largely
opaque. We introduce a principled framework to quantify such
shifts and assess their impact on real-world data auditing.

3 Distribution Shortcuts in VLM Membership
Inference Benchmarks

We identify that in current VLM MI benchmarks, distribution shifts
between member and non-member images contribute significantly
more to their separability than the genuine membership signal.
Notably, on benchmarks such as VL-MIA/Flickr or VL-MIA/DALL-
E, an EfficientNet-B0 [58] trained solely on 300 images—without
any access to VLM outputs—achieves a test AUC well above most
SOTA MI methods. Moreover, MI methods yield high AUCs when
comparing subsets with identical membership status yet different
underlying distributions (§ 3.2).

This pervasive distribution shift not only compromises evalua-
tions but also limits the practical utility of MI. When target images
deviate in distribution from the reference set used to calibrate de-
cision thresholds, the derived criteria become misaligned, causing
substantial false positives and false negatives. To address this, we
provide a thorough analysis of the concrete form of distribution
shifts in VL-MIA/Flickr and VL-MIA/DALL-E (§ 3.3), and introduce
a principled measure of distribution discrepancy that facilitates
benchmark debiasing and reliable data auditing (§ 3.4).

3.1 Experimental Settings
3.1.1 Datasets. Our study builds upon the existing VLMMI bench-
mark: VL-MIA/Flickr and VL-MIA/DALL-E, each comprising 300
member and 300 non-member images [33]. In VL-MIA/Flickr, mem-
ber images are sourced fromMSCOCO [34], a dataset widely used in
training open-source VLMs, while non-member images are scraped

from Flickr [17] after 2024. This temporal split ensures that member
images were seen during VLM training, while non-members were
not. However, since MS COCO was collected from Flickr prior to
2014, the two subsets are separated by over a decade. Even with
identical collection pipelines, such a temporal gap naturally intro-
duces distribution shifts due to evolving societal context, technolog-
ical advancements, and user behavior [16]. In VL-MIA/DALL-E, the
member set is drawn from LAION [55], while non-members are syn-
thesized by DALL-E [49] using the exact captions associated with
member images. Although the two sets share identical textual de-
scriptions, a distribution gap persists due to the inherent differences
between real and synthesized images. This raises a fundamental
question: is the observed separability truly due to membership sig-
nals, or merely a result of distributional discrepancies? Our study
aims to disentangle the two sources of separability.

3.1.2 Vision-LanguageModels. We consider all representative VLM
families with fully open data and models, enabling complete train-
ing data traceability, as listed in [12]. In this section, we evalu-
ate LLaVA-1.5-7B [35, 36], LLaVA-OneVision-7B [31], Cambrian-1-
8B [60], and Molmo-7B-D [12].

3.1.3 Membership Inference Methods. We consider a range of MI
methods, from classical approaches such as perplexity and maxi-
mum probability gap [7, 62], to recent SOTA methods for LLMs,
Min-𝐾% [56] (ICLR 2024) and Min-𝐾%++ [65] (ICLR 2025). We also
include VLM-specific methods: MaxRényi-𝐾% and ModRényi [33]
(NeurIPS 2024), as well as the Image-only Inference [26] (USENIX
Security 2025). All methods interact with VLMs via their language
interface, simulating realistic black-box auditing: given the target
image and a crafted instruction, the auditor infers membership
from the VLM’s language response and its confidence scores.

3.1.4 The Blind Classifier. To isolate the impact of distribution shift
from genuine membership signals, we evaluate a blind classifier
without access to any VLM outputs. An EfficientNet-B0 [58] is
trained directly on images from VL-MIA/Flickr and VL-MIA/DALL-
E to distinguish members from non-members, using a 1:1 split of
300 training and 300 testing samples per dataset.

3.2 Distribution Shifts Surpass Membership
Signals in Separability

Table 1 reports the performance of MI methods on VL-MIA/Flickr
and VL-MIA/DALL-E. Following standard practice [26, 33, 56, 65],
the Area Under the ROC Curve (AUC) and True Positive Rate at 5%
False Positive Rate (TPR@5%FPR) are used as evaluation protocols,
where higher values indicate better inference. Surprisingly, most
of the times, the EfficientNet-B0 trained solely on images achieves
significantly higher scores than SOTA MI methods, indicating that
distribution shifts between member and non-member images alone
are sufficient for separation, independent of any memorization
signals from the VLM.

However, could the supervised training simply encourage Effi-
cientNet to exploit distributional cues, while SOTA MI methods
genuinely reflect the VLM’s overfitting behavior? To disentangle
the effects of distribution shift from true membership signals, we
construct two pseudo-MI datasets by swapping subsets between VL-
MIA/Flickr and VL-MIA/DALL-E: in VL-MIA/Member, all images
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Table 1: Performance of MI methods on Existing MI Datasets.

Dataset Method LLaVA-1.5 LLaVA-ov Molmo Cambrian

AUC TPR AUC TPR AUC TPR AUC TPR

Flickr
(WiRED
=2.10)

Perplexity inst 34.3 0.7 18.1 0.0 34.6 1.3 34.4 1.7
desp 57.4 16.0 14.5 0.0 55.8 12.0 43.3 4.0

Max-Prob-Gap inst 57.5 7.3 21.8 0.7 67.3 11.0 9.4 0.3
desp 61.0 16.7 62.1 9.3 56.8 10.3 36.7 1.3

Min-K% inst 48.2 1.7 59.9 10.0 65.1 12.7 55.1 4.0
desp 57.3 16.0 20.1 0.0 55.8 12.3 59.4 12.0

Min-K%++ inst 54.5 13.7 14.7 0.3 65.5 13.3 44.7 1.7
desp 61.8 21.7 80.1 14.0 67.9 16.3 50.7 1.0

MaxRényi-K% inst 66.6 18.7 48.3 8.3 69.3 18.7 68.4 16.3
desp 57.4 19.3 95.5 79.0 64.3 19.0 55.5 7.7

ModRényi inst 38.4 0.3 84.2 58.7 32.7 0.7 41.4 1.3
desp 57.1 12.3 15.7 0.0 53.0 10.0 45.5 3.7

Image-only Inference 64.0 8.7 21.6 6.5 66.8 13.5 76.1 31.6
Blind Classifier (ours) 99.1 97.4 99.1 97.4 99.1 97.4 99.1 97.4

DALL-E
(WiRED
=3.00)

Perplexity inst 37.7 2.0 58.4 17.0 59.0 11.3 24.6 1.0
desp 65.5 8.0 55.5 17.3 55.9 12.0 71.2 12.7

Max-Prob-Gap inst 58.9 9.3 63.3 16.3 67.8 15.3 89.3 66.3
desp 64.8 7.7 58.0 17.3 58.4 14.7 78.5 38.3

Min-K% inst 39.3 6.3 60.5 18.7 63.5 11.3 33.9 1.0
desp 65.6 8.0 65.7 18.0 55.9 12.0 70.8 12.0

Min-K%++ inst 58.5 10.3 54.7 12.7 48.2 7.0 87.7 66.7
desp 67.0 9.3 49.6 10.7 57.6 11.0 75.4 14.7

MaxRényi-K% inst 71.8 14.3 78.7 30.3 54.5 7.7 94.9 87.7
desp 70.3 9.0 64.0 14.3 57.9 14.7 87.1 56.3

ModRényi inst 38.4 3.0 71.9 29.0 51.0 9.3 25.5 5.0
desp 64.6 9.0 62.9 24.3 55.0 12.3 84.0 47.3

Image-only Inference 47.0 4.9 67.3 14.2 63.7 13.7 41.0 0.0
Blind Classifier (ours) 87.4 49.1 87.4 49.1 87.4 49.1 87.4 49.1

come from the training set—VL-MIA/Flickr members as members,
and VL-MIA/DALL-E members as pseudo-nonmembers. Similarly, in
VL-MIA/Nonmember, all images are unseen during training, with
VL-MIA/DALL-E nonmembers as nonmembers, and VL-MIA/Flickr
nonmembers as pseudo-members. While membership status is uni-
form within each dataset, distributional discrepancies remain.

Table 2: Performance of MI methods on Pseudo-MI Datasets

Dataset Method LLaVA-1.5 LLaVA-ov Molmo Cambrian

AUC TPR AUC TPR AUC TPR AUC TPR

Member
(WiRED
=2.42)

Perplexity inst 42.4 0.7 7.9 0.0 20.4 0.0 54.5 1.0
desp 63.9 7.0 20.4 0.0 51.9 2.0 27.2 1.3

Max-Prob-Gap inst 53.8 0.3 4.0 0.0 37.0 0.3 1.7 0.0
desp 58.9 9.3 60.1 1.0 46.7 0.7 14.9 0.0

Min-K% inst 42.6 1.0 48.2 0.0 39.1 0.7 65.1 6.3
desp 65.2 7.0 23.7 0.0 55.6 6.0 76.8 21.7

Min-K%++ inst 76.0 16.0 31.1 0.0 77.5 7.7 17.4 0.0
desp 65.2 19.7 81.7 30.0 45.2 3.7 29.5 0.0

MaxRényi-K% inst 84.8 38.0 66.0 11.0 82.0 29.7 54.8 3.0
desp 78.7 18.0 90.9 52.3 55.4 5.3 45.4 4.7

ModRényi inst 38.6 0.0 84.0 40.3 18.4 0.0 65.8 2.7
desp 63.9 7.3 18.7 0.0 53.4 3.0 37.3 1.3

Image-only Inference 68.2 19.7 20.0 4.4 41.6 2.0 59.9 14.9
Blind Classifier (ours) 97.3 85.5 97.3 85.5 97.3 85.5 97.3 85.5

Non
Member
(WiRED
=6.60)

Perplexity inst 35.0 1.3 34.9 4.3 41.7 0.3 37.0 0.0
desp 57.2 3.7 67.7 33.3 52.9 3.3 57.1 4.3

Max-Prob-Gap inst 55.0 2.7 22.9 0.3 41.8 1.3 50.8 7.7
desp 55.5 2.3 56.9 10.0 48.8 4.0 54.0 6.0

Min-K% inst 45.2 6.7 65.7 22.0 46.2 0.3 44.3 1.3
desp 57.3 4.3 72.2 34.0 60.1 8.7 57.0 8.0

Min-K%++ inst 75.0 18.0 75.6 18.7 63.6 6.0 66.4 16.7
desp 59.8 6.3 44.6 10.0 34.6 2.3 51.6 8.0

MaxRényi-K% inst 79.9 21.3 90.5 63.3 81.3 20.7 84.4 47.7
desp 66.9 13.3 79.9 36.3 49.6 4.0 55.9 7.7

ModRényi inst 35.2 0.7 44.4 4.7 43.4 0.0 36.1 3.7
desp 57.5 4.7 73.7 38.3 57.5 5.0 58.2 13.0

Image-only Inference 48.6 8.1 58.2 5.8 40.3 1.8 31.4 0.0
Blind Classifier (ours) 99.6 98.4 99.6 98.4 99.6 98.4 99.6 98.4

As shown in Table 2, despite the absence of genuine membership
differences, MI methods retain high performance on these pseudo-
MI datasets 1, matching or exceeding their performance on the
original benchmarks. The blind EfficientNet continues to perform
best, confirming that separability primarily stems from distribution
shifts. Notably, some methods yield AUCs well below 50% (random

1AUC > 65% and TPR > 15% are highlighted with underlines.

guessing), despite balanced datasets. This reflects the assumption
in MI methods that membership signals are directional—e.g., lower
perplexity implies membership. However, distribution shifts can in-
validate this assumption, resulting in inverted decisions. In general,
AUCs near 50% indicate low separability.

Finding 1: Current VLM MI benchmarks exhibit distri-
bution shifts between member and non-member images,
acting as unintended shortcuts. SOTA MI methods rely on
these shifts rather than genuine membership signals.

3.3 Understanding Distribution Discrepancy
The strong performance of a blind EfficientNet indicates the pres-
ence of distribution shifts. Yet, the exact nature of these shifts
remains unclear: what specific discrepancies are being exploited
by MI methods? Recent studies [37] show that shifts are common
in large-scale datasets like LAION [55] and DataComp [18], but
often imperceptible to humans [37]. Auditors may be unaware that
the target and reference images differ in distribution, undermin-
ing threshold calibration. Understanding the concrete forms of
shifts is therefore critical for debiasing. To this end, we analyze VL-
MIA/Flickr and VL-MIA/DALL-E from two perspectives: high-level
semantics and low-level textures.
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Figure 2: Distribution Shifts in Existing MI Datasets: (a) Flickr; (b) DALL-E.

VL-MIA/Flickr exhibits a temporal gap of over a decade be-
tween member and non-member images, leading to semantic shifts
in object content. Member images from MS COCO tend to depict
natural scenes and wildlife (e.g., giraffes) with a more concentrated
object distribution, while non-members—randomly crawled from
Flickr after 2024—contain more man-made objects (e.g., ships) and
a flatter distribution. To validate this, we train a YOLOv11 detec-
tor [61] on the LVIS dataset [22] (1,203 categories) and extract
object annotations from both subsets. As shown in Figure 2(a),
the category frequency distributions differ significantly. We fur-
ther encode each image as a 1,203-dimensional sparse vector of
object counts and train a random forest [6] to distinguish members
from non-members. This visual bag-of-words classifier achieves
an average test AUC of 81.96%—outperforming most SOTA MI
methods—demonstrating that high-level semantic shifts alone are
sufficient to separate the two subsets in VL-MIA/Flickr.

In contrast, VL-MIA/DALL-E controls high-level semantics
by generating non-member images with DALL-E using the same
captions as member images, resulting in minimal semantic varia-
tion. Thus, the visual bag-of-words classifier performs poorly, with
an AUC of 53.15%—near random guessing. However, real and AI-
generated images often differ significantly in low-level details [40].
To explore this, we analyze high-frequency features, which are
known to capture fine-grained visual cues [64]. Given an image
with pixel intensity matrix 𝐼 ∈ R𝐻×𝑊 , the centered magnitude
spectrum of its 2D discrete Fourier transform is computed as:
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F (𝑢, 𝑣) =
𝐻−1∑︁
𝑥=0

𝑊 −1∑︁
𝑦=0

𝐼 (𝑥,𝑦) · 𝑒−2𝜋𝑖 ( 𝑢𝑥𝐻 + 𝑣𝑦

𝑊 ) , 𝑀 (𝑢, 𝑣) = |F (𝑢, 𝑣) |

(1)
We divide the spectrum into𝐾 concentric frequency bands based

on ℓ2 distance from the center. The energy of the 𝑖-th band is:

𝐸𝑖 =
1

|B𝑖 |
∑︁

(𝑢,𝑣) ∈B𝑖

𝑀 (𝑢, 𝑣) (2)

where B𝑖 is the set of frequency coordinates in the 𝑖-th band. This
defines a frequency feature vector E = [𝐸0, 𝐸1, . . . , 𝐸𝐾−1] ∈ R𝐾 .
Figure 2(b) shows the distribution of high-frequency energy 𝐸10
for 𝐾 = 10, revealing clear separation between members and non-
members. Using E as a 10-dimensional input, a simple linear classi-
fier achieves a test AUC of 99.64%—far exceeding all MI baselines
and even the supervised EfficientNet (AUC ≈ 80%). Despite similar
high-level semantics, subtle texture differences are sufficient to
separate member and non-member images in VL-MIA/DALL-E.

Finding 2: Distribution shifts are ubiquitous yet hard to
detect. They can arise from temporal gaps or differences in
data collection, and manifest in diverse forms—from subtle
texture patterns to high-level semantic variations.

3.4 Quantifying Distribution Discrepancy
Accurately quantifying distribution shift is essential for building
fair MI benchmarks and thresholds calibration. While shifts are
pervasive in large-scale datasets, effective and interpretable metrics
remain underexplored [37, 64]. One straightforward approach is to
train a deep classifier (e.g., EfficientNet) to distinguish subsets—an
instantiation of classifier two-sample tests [39]. However, this is
computationally expensive for personal privacy auditing and often
underestimates subtle shifts, e.g., in VL-MIA/DALL-E, EfficientNet
yields a significantly lower AUC than a frequency-based linear
classifier.

Thus, to facilitate fair MI benchmarks and practical data auditing
for VLMs, we propose a principled, interpretable, and efficient
metric for quantifying distributional discrepancies. We introduce
WiRED—Wasserstein Ratio of Embedded Representations—which
measures the degree of shift between two image subsets 𝑆1 and 𝑆2.
Specifically, WiRED first embeds each image 𝐼 into a collection of
metric spaces via embedding functions 𝜙1, . . . , 𝜙𝑡 , each targeting a
distinct form of shift. Let 𝑝1 and 𝑝2 denote the probability densities
of 𝑆1 and 𝑆2 in the 𝑖-th embedding space. The Wasserstein distance
[46] between them is defined as:

𝑊𝑞 (𝑝1, 𝑝2) =
(

inf
𝛾 ∈Γ (𝑝1,𝑝2 )

E(𝑥1,𝑥2 )∼𝛾 ∥𝑥1 − 𝑥2∥𝑞
)1/𝑞

, (3)

where Γ(𝑝1, 𝑝2) denotes all couplings between 𝑝1 and 𝑝2. Intu-
itively,𝑊𝑞 captures the minimal cost of transporting one distri-
bution into the other, commonly referred to as the Earth Mover’s
Distance [46]. As computing𝑊𝑞 exactly requires solving the op-
timal transport problem with time complexity O(𝑁 3) for sample
size 𝑁 , we adopt the sliced Wasserstein distance (SWD) [5] as an

efficient approximation, which projects samples onto random di-
rections {𝜃 𝑗 }𝐾𝑗=1 ∈ R𝑑 , computes one-dimensional Wasserstein
distances, and averages them across all directions:

SWD(𝑆1, 𝑆2) =
1
𝐾

𝐾∑︁
𝑗=1

𝑊𝑞

(
𝜃⊤𝑗 𝜙𝑖 (𝑆1), 𝜃⊤𝑗 𝜙𝑖 (𝑆2)

)
. (4)

To normalize the discrepancy between 𝑆1 and 𝑆2, we compare
their distance to the internal variation within 𝑆1. Specifically, we
sample two disjoint subsets 𝑆11, 𝑆12 ⊂ 𝑆1, along with a size-matched
subset 𝑆 ′2 ⊂ 𝑆2. The WiRED score in the 𝑖-th embedding space is
then defined as:

WiRED𝑖 =
SWD(𝑆11, 𝑆′2)
SWD(𝑆11, 𝑆12)

. (5)

This highlights how distinguishable 𝑆2 is from 𝑆1, relative to 𝑆1’s
internal variation. A ratio close to 1 indicates similar distributions,
while a significantly higher value signals a notable shift. Since each
embedding function 𝜙𝑖 captures different aspects of the data, we
define the finalWiRED score as themaximum across all embeddings,
i.e., WiRED = max𝑖∈[𝑡 ] WiRED𝑖 .

In our experiments, we instantiate 𝜙𝑖 with two embedding func-
tions: (1) ImageNet-pretrained EfficientNet-B0 features to capture
high-level semantics, and (2) frequency-domain energy vectors
(§ 3.3) to capture low-level textures. WiRED is non-parametric,
makes no assumptions about distribution shapes, and is highly effi-
cient (e.g., taking 10 seconds for a 600-image MI dataset). We report
WiRED scores alongside each benchmark, clearly reflecting the
distributional biases identified in § 3.2 (e.g., WiRED ≫ 1), without
model training or prior knowledge of the shift.

4 Feasibility of Membership Inference on VLMs
In § 3, we show that current VLM MI benchmarks suffer from
distribution shifts, introducing unintended prediction shortcuts.
When such shifts are eliminated, can MI reliably detect membership
based on overfitting signals in VLM outputs?

In this section, we investigate this question and uncover that,
under strictly i.i.d. conditions, SOTA MI methods perform only
slightly better than random guessing (§ 4.2). Even with white-box
access to VLM internal features—the presumed source of mem-
orization—separability remains poor, and the theoretical upper
bound of performance, quantified by the estimated Bayes Error
Rate (BER), remains pessimistic (§ 4.3). These results suggest that
in the most realistic auditing scenario—where the auditor must de-
termine whether a single image appeared in VLM training—current
MI techniques are unlikely to yield reliable conclusions.

4.1 Towards Unbiased VLM MI Datasets
The most rigorous and straightforward way to construct i.i.d. sub-
sets is through random splits from the same data source [16]. Fol-
lowing this principle, we carefully inspect open-source VLMs to
identify datasets with standard training/testing splits. We focus on
the four fully openVLM families—LLaVA-1.5 [35], LLaVAOneVision
[31], Cambrian-1 [60], and Molmo [12]—all trained exclusively on
publicly available data. Unlike smaller task-specific models, VLMs
first align vision and language representations during pretraining,
and are further tuned for instruction following. These phases typi-
cally utilize all available data, without held-out validation or test
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sets. Fortunately, many VLMs incorporate widely used captioning
and VQA datasets that do provide standard splits. For instance,
all four families use MS COCO [34], primarily during pretraining,
and both LLaVA OneVision and Molmo include instruction-tuning
datasets built on clearly partitioned VQA benchmarks.
Table 3: Quantitative Debiasing Validation: Blind Clf Performance andWiRED.

datasets Models blind clf AUC blind clf TPR WiRED

COCO All models 49.0±0.6 8.3±1.0 0.97

ChartQA
LLaVA-ov

57.7±0.7 8.3±1.6 1.04
DocVQA 54.9±1.0 6.2±2.5 0.98
InfoVQA 57.0±1.4 7.2±0.9 1.25

PixMoChart
Molmo

48.4±0.1 1.7±0.6 1.00
PixMoDiagram 48.5±0.3 6.8±1.2 1.22
PixMoTable 57.1±1.2 9.8±0.3 0.94

To ensure that member images were seen during training while
non-members were not, we select only datasets explicitly used in
both training and evaluation, excluding any with evident distribu-
tion shifts between splits. The resulting datasets are listed in Table 3.
Following the VL-MIA setup [33], we sample 300 images each from
the training and testing splits to form the member and non-member
sets. We apply both EfficientNet and our proposedWiREDmetric to
assess distribution shifts. Across all selected datasets, EfficientNet
classifiers yield AUCs near 50%, and WiRED scores remain close to
1, confirming well-matched distributions. ChartQA [43], DocVQA
[44], and InfoVQA [44], show slightly elevated AUCs, though they
adhere to standard train/test splits. We attribute this to image re-
dundancy in the original VQA datasets; our strict de-duplication
may introduce minor residual imbalance. This effort represents an
initial step toward reliable VLM MI benchmarks, paving the way
for larger and more rigorous datasets in future research.

4.2 VLM MI Performance on Unbiased Datasets
Table 4: Performance of MI Methods on the Debiased COCO Dataset.

Method LLaVA-1.5 LLaVA-ov Molmo Cambrian

AUC TPR AUC TPR AUC TPR AUC TPR

Perplexity inst 51.2 6.3 50.7 7.0 49.3 5.7 55.3 8.3
desp 53.7 1.7 51.5 8.0 54.3 5.3 54.3 5.7

Max-Prob-Gap inst 50.0 6.0 53.5 8.3 45.5 3.0 50.6 5.3
desp 53.0 5.7 53.5 4.3 51.8 8.3 54.5 8.0

Min-K% inst 51.2 7.3 50.7 7.0 51.5 5.7 55.8 8.7
desp 54.2 3.3 52.6 8.0 54.8 7.0 54.1 7.3

Min-K%++ inst 50.3 4.3 52.4 6.3 51.6 6.3 52.5 7.3
desp 53.4 8.3 52.9 8.7 51.0 4.3 49.9 4.0

MaxRényi-K% inst 51.5 9.3 54.8 11.0 52.9 6.3 51.7 7.3
desp 54.3 5.0 56.8 6.3 53.0 5.0 52.2 7.7

ModRényi inst 52.4 7.3 53.1 7.7 48.8 8.0 54.8 7.3
desp 53.7 3.3 53.6 11.7 54.9 7.0 56.1 5.3

Image-only Inference 52.5 4.6 51.7 8.3 53.3 7.1 50.5 6.1
Blind Classifier (ours) 49.0 8.3 49.0 8.3 49.0 8.3 49.0 8.3

Table 4 reports the performance of MI methods on COCO across
four VLMs. AUCs hover around 50% (random guessing), never
exceeding 60%, while TPR@5%FPR remains below 10% in most
cases—indicating poor separability between members and non-
members. Table 5 presents results on the instruction-tuning datasets
of LLaVA OneVision and Molmo. Although these datasets are in-
troduced at later training stages—where catastrophic forgetting is
expected to be less severe—separability remains weak.

In contrast, as shown in § 3.2, when distribution shifts are present,
a simple classifier trained on just 300 samples can achieve near-
perfect separation (AUC ≈ 100%). This stark contrast highlights

Table 5: MI Methods Performance on Debiased Model-Specific MI Datasets.

Method
LLaVA-OneVision Molmo

ChartQA DocVQA InfoVQA PixChart PixDigram PixTable

AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR

Perpl in 47.8 2.0 47.8 1.0 39.3 1.4 48.8 1.7 49.3 3.0 51.0 6.0
de 53.9 4.3 54.2 2.7 50.7 4.8 53.1 5.0 52.2 9.3 46.7 5.0

Max
Gap

in 41.7 2.7 57.9 8.7 56.4 10.2 49.7 6.7 52.1 4.7 51.9 8.3
de 55.1 9.0 55.9 6.3 50.4 4.8 50.5 4.7 49.2 3.7 47.4 4.0

Min
K%

in 52.9 5.3 52.6 4.0 41.4 1.4 48.8 4.0 50.8 4.0 52.9 10.0
de 54.1 4.7 54.2 4.3 52.3 6.8 53.2 5.7 53.3 10.3 52.1 6.7

Min
K%++

in 53.7 8.0 50.5 4.0 58.7 10.2 52.6 7.7 48.6 4.0 50.4 7.7
de 53.9 7.0 52.4 6.7 52.8 5.4 47.1 4.3 50.4 5.3 47.0 4.7

Max
Rényi

in 48.6 5.3 56.6 14.7 58.4 8.8 51.9 7.7 55.1 7.0 49.2 6.7
de 53.3 4.7 54.0 4.7 53.4 8.2 52.3 8.7 54.7 7.3 51.5 6.7

Mod
Rényi

in 53.1 5.7 46.1 4.0 45.1 5.4 51.4 7.0 49.6 6.3 50.0 5.0
de 53.7 3.3 54.4 4.7 50.8 4.8 54.8 4.3 52.0 10.0 47.5 5.7

Img Infer 48.0 4.3 53.5 9.7 58.4 9.4 54.5 5.7 50.3 7.0 46.1 4.5

Blind Clf 57.7 8.3 54.9 6.2 57.0 7.2 48.4 1.7 48.5 6.8 57.1 9.8

how subtle the true membership signal is in VLM outputs compared
to distributional artifacts. In this context, a natural question arises:
is membership inference on VLMs truly feasible?

4.3 Probing the Envelope of MI Performance
To assess the feasibility of VLM membership inference, we consider
an idealized setting where the auditor has full white-box access to
the model’s internal embeddings—the source of potential memo-
rization signals. This enables us to examine whether members and
non-members are separable in the representation space, and to esti-
mate the theoretical upper bound of this separability, characterized
by Bayes optimality [19, 24].

4.3.1 Probing the VLM Embedding Space Given a target image
𝐼 ∈ (0, 255)3×𝐻×𝑊 , we extract all hidden states from the vision
encoder and language decoder during description generation. For
each layer 𝑣𝑖 in the vision encoder, we collect token-wise visual fea-
tures {h1

𝑣, h2
𝑣, . . .} ∈ R𝑑𝑣 ; for each layer 𝑙𝑖 in the language decoder,

we record hidden states generated during next-token prediction
𝑡𝑘+1 = 𝑝 (𝜃 ; 𝐼 , 𝑡≤𝑘 ), denoted as {h1

𝑙
, h2
𝑙
, . . .} ∈ R𝑑𝑙 . To evaluate the

separability between members and non-members in these hidden
states, we first apply average pooling to obtain fixed-size embed-
dings of dimension 𝑑𝑣 and 𝑑𝑙 for visual and language tokens, and
then adopt standard probing methods [38], training both linear clas-
sifiers and multi-layer perceptrons (MLPs) to distinguish member
(class 1) from non-member (class 0) samples.

To mitigate potential information loss from global pooling, we
further introduce an attention pooling classifier that adaptively
aggregates the most informative tokens:

𝑝 (𝑦𝑖 = 1 | 𝑢, 𝑥≤𝑖 ) = 𝜎 (w⊤h̄𝑖 ) (6)
where the aggregated representation h̄𝑖 is computed as:

h̄𝑖 =
𝑖∑︁
𝑗=1

𝛼𝑖, 𝑗h𝑗 , 𝛼𝑖, 𝑗 =
exp(q⊤h𝑗 )∑𝑖
𝑘=1 exp(q⊤h𝑘 )

(7)

Here, q ∈ R𝑑 is a learnable query vector that attends to infor-
mative tokens. This enables the classifier to capture fine-grained
membership signals that may be distributed across tokens.

4.3.2 Estimating MI Performance Against Bayes Optimality While
the probing methods assume full white-box access to the VLM—far
beyond what is feasible with real-world APIs—they remain em-
pirical in nature. One might conjecture that, as probing improves,
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Table 6: BER and Performance of Probing Methods using Visual and Language Tokens on the Debiased COCO Dataset.

Model Modal BER Linear MLP Attention

Original Calibrated ACC AUC TPR ACC AUC TPR ACC AUC TPR

LLaVA-1.5 Vision 33.8 22.3 53.3±3.8 55.4±2.1 8.0±2.2 53.6±3.4 55.3±0.3 10.8±3.0 52.2±5.3 53.4±2.8 4.5±1.5
Language 26.3 N/A 50.0±3.1 52.2±5.6 11.5±4.6 50.6±2.6 52.2±5.2 8.8±6.7 48.6±2.7 51.2±4.9 9.2±3.0

Cambrian Vision 36.8 22.3 52.8±2.4 50.4±3.5 5.3±1.4 52.2±3.7 50.1±3.0 3.6±2.6 50.0±2.4 50.7±1.5 11.1±4.9
Language 23.3 N/A 55.0±5.6 54.1±5.8 11.7±3.3 51.9±2.6 52.2±4.3 5.9±5.9 53.9±5.5 52.9±6.6 13.5±4.7

LLaVA-OneVision Vision 21.2 22.3 50.8±4.2 58.8±6.3 10.3±4.3 52.5±3.4 56.4±5.2 15.5±6.1 55.8±4.1 60.2±5.7 8.6±3.5
Language 23.2 N/A 63.3±5.7 63.4±4.8 8.6±2.4 60.8±4.7 63.8±5.3 5.9±3.2 62.5±4.1 65.0±4.3 6.9±3.7

Molmo Vision 25.5 22.3 55.3±3.7 56.3±4.2 13.0±1.3 52.8±2.1 53.4±4.2 14.0±6.3 51.7±5.6 55.6±3.9 15.3±4.8
Language 21.7 N/A 50.3±3.5 52.1±4.1 10.0±1.5 51.1±1.4 52.0±3.3 8.1±8.0 50.3±2.7 53.6±3.5 12.3±3.5

member and non-member samples may eventually become fully
separable. To investigate this, we consider the theoretical upper
bound of MI: the irreducible error in distinguishing members from
non-members based on VLM hidden representations, quantified
by the Bayes error rate (BER) [19, 24]. Formally, BER is defined as
the expected misclassification rate of the Bayes-optimal classifier
under the task distribution 𝐷 :

𝛽𝐷 = E(𝑥,𝑦)∼𝐷

[
1 − max

𝑘
𝑝 (𝑦 = 𝑘 | 𝑥)

]
(8)

Alternatively, it can be interpreted as the minimal error rate
achievable over all measurable functions ℎ:

𝛽𝐷 = min
measurable ℎ

E(𝑥,𝑦)∼𝐷 [I(ℎ(𝑥) ≠ 𝑦)] (9)

where I is the indicator function. Since VLM feature spaces do
not follow simple, tractable distributions that permit analytical
computation of BER, we adopt an efficient approximation [9] to
estimate BER in distinguishing membership in VLM hidden states.

Specifically, we compute pairwise ℓ2 distances between token
features to construct an adjacency matrix A, where 𝐴𝑖 𝑗 = 1 if x𝑖
and x𝑗 share the same label, and 0 otherwise. Connected compo-
nents representing confident regions are identified via breadth-first
search. Remaining unconnected samples are treated as uncertain
and labeled using Label Spreading [67]. BER is then estimated as the
fraction of incorrect predictions among these uncertain samples:

BER =
1
𝑛

∑︁
𝑖∈U
I(𝑦𝑖 ≠ 𝑦𝑖 ) (10)

where U denotes the set of uncertain samples, 𝑦𝑖 the predicted
label, and𝑦𝑖 the ground-truth label. Note that BER provides a highly
optimistic estimate of the lowest achievable error. The correspond-
ing Bayes-optimal classifier is not accessible in practice, and BER
does not account for generalization—it may reflect separability
based on spurious, non-transferable features.

4.3.3 Experimental Results Tables 6 and 7 report the performance
of three probing methods applied to visual and language tokens
across our unbiased datasets. In most cases, both accuracy and AUC
remain below 65%, and the sophisticated attention pooling classi-
fier fails to yield noticeable improvements, indicating that even at
the source of memorization signals—the internal representations
of VLMs—members and non-members remain weakly separable.
Furthermore, in most cases, BER falls between 20% and 30%, im-
plying that the theoretical upper bound for MI is only around 70%.
Notably, BER is an optimistic estimate that does not reflect practical
generalization. As a sanity check, we project the same images into

Table 7: Performance of ProbingMethods onModel-Specific Debiased Datasets.

Dataset Method Vision Language

ACC AUC TPR ACC AUC TPR

Chart
QA

Linear 51.7±1.4 53.2±1.4 0.6±0.8 56.1±0.8 56.0±0.8 5.4±3.9
MLP 49.2±1.8 53.0±0.7 6.4±2.8 57.2±4.2 56.0±2.7 2.3±3.3

Attention 51.9±1.6 52.9±1.1 4.1±3.0 53.3±1.2 53.5±1.2 5.3±2.4

Doc
VQA

Linear 52.8±0.8 54.7±3.0 6.5±0.9 46.1±1.7 46.8±1.3 6.4±2.8
MLP 54.4±5.5 56.0±7.0 7.0±2.7 46.9±2.2 46.3±1.7 0.0±0.0

Attention 53.3±0.0 55.8±2.6 4.7±2.2 46.7±0.7 46.7±0.1 7.1±1.6

Info
VQA

Linear 66.4±3.8 73.3±3.3 25.5±7.8 67.5±0.8 71.3±3.6 15.3±3.8
MLP 64.4±4.0 69.4±0.5 22.0±8.5 68.1±3.4 73.0±4.1 14.5±10.7

Attention 69.5±3.5 74.2±3.6 29.7±4.4 66.1±1.4 72.0±2.3 9.6±2.4

Pix
Chart

Linear 53.3±2.5 50.8±4.2 5.8±4.4 55.3±3.9 56.8±4.5 4.2±2.4
MLP 51.9±5.2 49.8±5.3 7.1±1.3 56.7±4.8 57.4±4.1 2.5±3.5

Attention 54.7±1.0 50.3±0.5 2.3±1.6 54.4±3.1 55.8±3.7 3.0±3.2

Pix
Digram

Linear 50.8±5.1 48.7±4.2 6.5±2.3 53.9±6.1 50.3±6.1 10.1±1.1
MLP 46.9±3.1 47.1±4.4 4.2±1.7 48.9±4.4 48.9±4.4 4.9±4.6

Attention 51.9±3.1 54.6±1.4 10.2±6.2 48.6±2.7 49.9±3.0 8.3±2.3

Pix
Table

Linear 46.4±4.0 49.2±5.0 5.3±1.3 46.4±1.6 46.1±0.9 5.9±4.6
MLP 51.1±4.4 49.3±4.5 5.3±1.4 46.7±2.5 46.5±2.6 0.6±0.9

Attention 50.0±6.2 50.0±4.9 3.5±3.7 45.3±1.4 45.7±1.6 8.2±4.5

the feature space of an ImageNet-pretrained EfficientNet. Although
all samples are non-members from EfficientNet’s perspective, the
calibrated BER (Cal) in Table 6 and 8 still ranges from 20% to 30%.
This suggests that even with genuine membership signals, VLM
representations offer only marginally better separation.

Table 8: BER on Debiased Model-Specific MI Datasets.

Dataset Vision Language Dataset Vision Language
Ori Cal Ori Cal Ori Cal Ori Cal

ChartQA 24.0 32.7 23.0 N/A PixChart 32.5 28.3 26.2 N/A
DocVQA 17.5 25.2 20.3 N/A PixDigram 33.3 27.5 26.2 N/A
InfoVQA 20.5 20.9 15.9 N/A PixTable 30.7 27.0 22.2 N/A

4.3.4 Ablations Our default setting uses final-layer features of 7B-
scale VLMs. To examine whether these choices limit separability,
we conduct ablations on COCO with the LLaVA OneVision family,
varying three key factors: layer depth, model scale, and output
length. Figures 3(a)(b) show the accuracy of pooling classifiers and
the corresponding Bayes optimality (100−BER) across different lay-
ers. While deeper layers offer slightly improved separability, results
remain near random guessing. Figure 3(c) evaluates models ranging
from 0.5B to 72B parameters; despite the substantial increase in
capacity, the largest model still fails to distinguish membership.
Figure 3(d) explores the effect of output length, revealing that gen-
erating longer descriptions also does not improve separability.
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Figure 3: Ablation Performance of Probing Methods(LLaVA-ov on COCO).

Finding 3: Even with oracle access to internal states, mem-
bership signals remain subtle. Probing classifiers on hidden
features yield only marginal gains, and Bayes optimality
remains low, indicating minimal room for improvement.

5 When Does VLM MI Become Feasible?
We analyze why MI struggles in large VLMs and construct targeted
scenarios to mitigate these challenges. Surprisingly, we find MI
becomes feasible in these realistic auditing settings.

5.1 Finetuning on Downstream Tasks
5.1.1 Challenge: Minimal Overfitting Traditional MI typically tar-
gets models trained for many epochs on specific downstream tasks.
In contrast, LLMs and VLMs adopt general-purpose training ob-
jectives and often see each example only once [47]. Early VLMs
like LLaVA-1 [36] performed multi-epoch training (e.g., 3), but re-
cent models have shifted toward data scaling—training on massive,
high-quality datasets for a single epoch—which enables general-
ization without severe overfitting [2, 59]. Moreover, due to the
sheer data volume, early examples are frequently forgotten during
training [27]. Theoretically, as dataset size grows, model behavior
converges across seen and unseen samples [42]. In § 4.3, we observe
unexpectedly better membership separability in LLaVA OneVision
on COCO, despite COCO being used during the more forgettable
alignment phase. Upon closer inspection, we identify substantial
image overlap among MS COCO [34], COCO Caption [10], and
RefCOCO [63] in the training corpus. We hypothesize that this
duplication amplifies MI signals and ask: can stronger MI emerge
when VLMs are fine-tuned for multiple epochs?

5.1.2 Scenario: Finetuning on Downstream Tasks To ensure i.i.d.
splits, we continue using instruction-tuning images with random
partitions. Since test splits provide only short text answers, we gen-
erate image descriptions using LLaVA OneVision-7B, then fine-tune
LLaVA-1.5-7B with LoRA [25] for 10 epochs. As shown in Table 9,
Table 9: MI Performance on LoRA LLava-1.5 (gt Refers to Ground Truth).

Method
ChartQA DocVQA

epoch 10 w/o gt epoch 3 w/ gt epoch10 w/o gt epoch 3 w/ gt

AUC TPR AUC TPR AUC TPR AUC TPR

Perplexity 60.8 16.3 78.2 8.3 65.2 18.7 75.3 19.0
Min-K% 60.9 16.7 78.7 14.3 65.2 18.7 76.2 26.7

ModRényi 60.8 16.7 79.3 14.3 64.9 18.0 76.7 20.7

MI performance improves markedly by the 10th epoch, with AUCs
surpassing 0.6. Notably, traditional MI approaches such as perplex-
ity emerge as competitive baselines, indicating substantial room
for improvement. This setting reflects realistic auditing scenarios,
where privacy-sensitive or proprietary data (e.g., in medical VQA
[32]) are commonly involved during fine-tuning.

5.2 Access to Ground-Truth Text
5.2.1 Challenge: Lack of Ground-Truth Captions In LLM-based
MI, auditors typically query the model with a suspicious text 𝑠 =
(token1, token2, . . . , token𝑡 ) and records the output probabilities
𝑝 (token𝑘 | 𝜃, token<𝑘 ) via teacher forcing for inference. However,
extending this to VLMs poses a key challenge: the training caption
for a suspicious image is usually inaccessible. Web-scraped image-
text pairs are noisy and short, while modern VLMs are trained
on high-quality, relabeled captions [12, 31]. As a result, in most
proprietary black-box VLMs, auditors cannot access the original
training text. To bypass this, MI methods like VL-MIA [33] rely
on the VLM’s own generated captions. However, these are merely
pseudo ground-truths. Due to snowballing prediction errors in au-
toregressive decoding [3], the outputs increasingly diverge from
the true training text. Given this gap, an open question is: would MI
attacks be more effective if ground-truth captions were available?

5.2.2 Scenario: Access to Ground-Truth Text Due to the lack of
i.i.d. train/test text splits in open datasets, we continue using the
fine-tuned LLaVA-1.5-7B and evaluate the 3rd-epoch checkpoint
with ground-truth text in Table 9. Since LoRA updates less than
3% of parameters, free-form generation at early epochs yields near-
random MI results. In contrast, ground-truth text enables signifi-
cantly stronger MI, with AUCs nearing 0.8—outperforming free-
form results even after 10 epochs. This underscores MI’s value in
detecting test set contamination [53] and verifying model owner-
ship via curated samples [66].

5.3 Aggregation-Based Set Inference
5.3.1 Challenge: Diverse Intrinsic Image Attributes § 3 shows that
MI is sensitive to distribution shifts. The diverse sources of VLM
training data introduce natural image-level variation—quality, noise,
object count, and complexity—that can dominate token distribu-
tions, overshadowing subtle membership signals. However, when
member and non-member images are drawn i.i.d., such high-variance
factors may average out at the set level. This motivates the question:
can aggregated MI signals across multiple images enable reliable
set-level inference?
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Figure 4: MI Performance in Aggregation-based Set Inference on LLaVA-ov.

5.3.2 Scenario: Aggregation-Based Set Inference We treat a group
of images as a single MI unit by averaging MI scores. Inspired by
bootstrapping [15], we sample 1,000 sets with replacement from
member and non-member pools, varying set sizes from 1 to 100.
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Figure 4 shows MI AUCs on LLaVA-OneVision. Even when single-
image AUCs are only slightly above chance, set-level performance
improves markedly. This approach is well-suited for auditing image
collections—e.g., social media albums or artist portfolios [23]—and
detecting unauthorized use of proprietary datasets [13]. Notably,
small per-image gains can translate into substantial set-level im-
provements, motivating further development of MI techniques.

Finding 4: VLMMI becomes feasible when: (1) fine-tuning
induces overfitting; (2) ground-truth text is available; or (3)
predictions are aggregated—key scenarios for auditing test
set contamination and collection copyright infringement.

6 Conclusion
In this work, we identify a critical issue in current MI bench-
marks for large VLMs: distribution shifts between member and
non-member images introduce spurious shortcuts that overshadow
true membership signals. We analyze these shifts and propose a
principled metric to quantify them, enabling practical MI auditing.
To build an unbiased testbed, we reconstruct i.i.d. member/non-
member splits from open-source VLMs. Under this setting, existing
MI methods perform only slightly above chance. We further assess
the theoretical upper bound of membership separability and find a
high irreducible Bayes error, underscoring the fundamental diffi-
culty of MI on VLMs. Despite these challenges, we identify three
practical scenarios where MI remains feasible and valuable for au-
diting: fine-tuning, access to ground-truth text, and aggregation
across samples. Future work will explore additional viable settings,
design stronger MI methods, and extend our study to closed-source
VLMs, such as auditing fine-tuned GPT-4o via API access.
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