
Quantum Lifting for Invertible Permutations and Ideal
Ciphers

Alexandru Cojocaru * Minki Hhan † Qipeng Liu ‡ Takashi Yamakawa §

Aaram Yun ¶

Abstract

In this work, we derive the first lifting theorems for establishing security in the quantum
random permutation and ideal cipher models. These theorems relate the success probability of
an arbitrary quantum adversary to that of a classical algorithm making only a small number of
classical queries.

By applying these lifting theorems, we improve previous results and obtain new quan-
tum query complexity bounds and post-quantum security results. Notably, we derive tight
bounds for the quantum hardness of the double-sided zero search game and establish the post-
quantum security for the preimage resistance, one-wayness, and multi-collision resistance of
constant-round sponge, as well as the collision resistance of the Davies-Meyer construction.

Contents

1 Introduction 2
1.1 Our Results . 4
1.2 Technical Overview . 5
1.3 Concurrent Work . 12
1.4 Paper Organization . 12

2 Preparation for Lifting Theorem 12
2.1 Algorithms with Permutation Oracles . 12
2.2 Reprogramming of Permutations . 13

3 Classical Lifting Theorem for Permutations 16
3.1 Measure and Reprogram Lemma for Permutations . 17
3.2 Proof of the Classical Lifting Theorem . 19

4 Quantum Lifting Theorem for Permutations 20

*University of Edinburgh
†The University of Texas at Austin
‡UC San Diego
§NTT Social Informatics Laboratories
¶Ewha Womans University

1

ar
X

iv
:2

50
4.

18
18

8v
1

 [
qu

an
t-

ph
]

 2
5

A
pr

 2
02

5

5 Quantum Lifting Theorem for Ideal Ciphers 28

6 Applications 31
6.1 Generalized Double-Sided Search . 31
6.2 Sponge Construction . 32
6.3 Davies-Meyer and PGV hash functions . 37

A Deferred Proofs 42

B Handling Interactive Setting 45

C Proof of Lemma 4.3 47

1 Introduction

The random permutation model (RPM) and the ideal cipher model (ICM) are idealized models
that provide simplified analyses for cryptographic constructions based on block ciphers and hash
function designs, which often lack rigorous security foundations. Similar to the random oracle
model (ROM), both RPM and ICM capture generic attacks — those that treat the underlying cryp-
tographic primitives as black boxes. Such models often offer insight into the best possible attacks
for many natural applications1. This approach is commonly referred to as the so-called RPM/ICM
methodology [CDG18]:

RPM/ICM methodology. For “natural” applications of hash functions and block ciphers, the concrete
security proven in the RPM/ICM is the right bound even in the standard model, assuming the “best

possible” instantiation for the idealized component (permutation or block cipher) is chosen.

In the random permutation model (RPM), every party has access to 𝜋 and 𝜋−1 for a uniformly
chosen random permutation 𝜋. In the ideal cipher model (ICM), each party has oracle access to
𝐸𝐾(·) and 𝐸−1𝐾 (·), where each 𝐸𝐾(·) is an independent random permutation. A wide range of
constructions and proofs have been developed within the RPM/ICM framework, leading to sig-
nificant successes. Many of these constructions have been standardized by the National Institute
of Standards and Technology, including the Even-Mansour cipher (AES), the Davies-Meyer hash
function (SHA-1/2 and MD5), the sponge construction (SHA-3).

Quantum RPM/ICM. While RPM/ICM provides a precise characterization of generic attacks, it
does not account for potential quantum attacks: i.e., the ability to compute the public function in
superposition. In the quantum random permutation model (or QRPM), a quantum algorithm can
query the following unitaries for one unit of cost:

𝑈𝜋 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 ⊕ 𝜋(𝑥)⟩ , and

𝑈𝜋−1 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 ⊕ 𝜋−1(𝑥)⟩ .
1While several studies have established separations between idealized models [GK03, CGH04, Bla06] and the stan-

dard model, these separations are often contrived (except for the very recent work [KRS25]) and rely on specific struc-
tures that can only be exploited by non-black-box attacks.

2

Similarly, in the quantum ideal cipher model (or QICM), a quantum algorithm can query the
function 𝐸(·, ·) in superposition (i.e., both the key 𝑘 and the input 𝑥):

𝑈𝐸 |𝐾⟩ |𝑥⟩ |𝑦⟩ = |𝐾⟩ |𝑥⟩ |𝑦 ⊕ 𝐸𝐾(𝑥)⟩ , and

𝑈𝐸−1 |𝐾⟩ |𝑥⟩ |𝑦⟩ = |𝐾⟩ |𝑥⟩ |𝑦 ⊕ 𝐸−1𝐾 (𝑥)⟩ .

Since the proposal of the quantum random oracle model (QROM) [BDF+11], the quantum ide-
alized models have received a lot of attention because it characterizes the “best-possible” quantum
generic attacks. Many tools have been developed in the QROM [AHU19, Zha19, YZ21] and al-
most all important constructions in the ROM, including the Fiat-Shamir transformation [DFMS19,
LZ19] and the Fujisaki-Okamoto transformation [TU16, HHK17, JZC+18], have their security shown
in the QROM.

However, the situation becomes far less clear in the QRPM and QICM. There are already two
major differences between the QROM and QRPM/QICM:

1. Random functions exhibit perfect independence; that is, the outputs for all inputs are pair-
wise independent. In contrast, while the outputs of a random permutation are close to inde-
pendent, the weak correlations between them completely invalidate or complicate almost all
methods used in the QROM. This issue persists even when an algorithm has oracle access
only to the forward permutation 𝜋 and not to its inverse 𝜋−1.

2. In both QRPM and QICM, an algorithm has quantum access not only to the original permu-
tation 𝜋 but also to its inverse 𝜋−1. The ability to query the backward oracle 𝜋−1 destroys
independence, making it significantly more challenging to extend QROM-based arguments
to these settings.

Various approaches have been proposed to establish security in QPRM and QICM, but each
comes with its own limitations. When an algorithm has oracle access only to the forward oracle of
a random permutation, one can leverage the indistinguishability between random permutations
and random functions [Yue13, Zha13] to argue security in QROM. This approach introduces a
small additive loss in the security analysis but nonetheless preserves the overall security guaran-
tees.

However, when an algorithm has oracle access to both the forward and inverse oracles, it can
immediately distinguish a random permutation from a random function, rendering the above
method ineffective. To address this, one line of work attempts to extend Zhandry’s compressed
oracle technique [Ros21, ABKM22, Unr23, ABK+24, MMW24], while another introduces novel
techniques [HY18, Zha21, ABPS23, CP24, CPZ24] for specific constructions.

These approaches, however, are often problem-specific and challenging to generalize. For
example, [MMW24] employs a strictly monotone factorization to represent permutations, estab-
lishing a lower bound for finding (𝑥, 𝜋(𝑥)) in a relation 𝑅. While their method is theoretically
generalizable, it quickly becomes complex as the underlying problem grows in complexity. Simi-
larly, [CP24] introduces a symmetrization technique to prove the one-wayness of the single-round
sponge construction, but this method does not easily extend to multiple rounds or to other prop-
erties of the sponge construction.

The difficulty described above in analyzing the QRPM/QICM is not merely a technical limita-
tion. Indeed, we can construct cryptographic schemes that are secure in the (classical) RPM/ICM

3

but insecure in the QRPM/QICM.2 In fact, a similar gap also exists between the QROM and the
ROM. Nonetheless, [YZ21] has proposed a “lifting theorem” which, albeit with some loss, up-
grades a proof in the ROM to one in the QROM. This leads to the following natural question:

Is there a general theorem that seamlessly lifts any classical RPM/ICM proof to a proof in QRPM/QICM?

We answer this question affirmatively, and reprove numerous results from previous works within
the QRPM/QICM framework as well as obtain new ones using simple arguments.

1.1 Our Results

Quantum Lifting Theorem for Interactive Search Games in RPM/ICM. Our central result pro-
poses a novel lifting theorem for interactive search games in RPM/ICM that relates the success prob-
ability of an arbitrary quantum algorithm with the success probability of a classical algorithm per-
forming a much smaller number of queries. More concretely, our main results for QRPM can be
stated as follows:

Theorem 1.1 (Quantum Lifting Theorem on Random Permutation). Let 𝒢 be an (interactive) search
game with a challenger 𝒞 that performs at most 𝑘 classical queries to the invertible random permutation
𝜋 : 𝑋 → 𝑋 , and let 𝒜 be an algorithm that performs 𝑞 quantum queries to 𝜋. Then there exists an
adversary ℬ making at most 𝑘 classical queries to 𝜋 such that:

Pr[ℬ wins 𝒢] ≥

(︁
1− 𝑘2

|𝑋|

)︁
(8𝑞 + 1)2𝑘

Pr[𝒜 wins 𝒢].

Note that in almost all games, the challenger 𝒞 is efficient and thus makes only a polynomial
number of queries. Consequently, we can safely assume that 1 − 𝑘2

|𝑋| ≥
1
2 , which does not affect

the asymptotic order of the success probability in the search game.
We demonstrate the power and simplicity of our lifting theorem through the example of double-

sided zero search [Unr23]. In this game 𝒢𝖽𝗈𝗎𝖻𝗅𝖾-𝗌𝗂𝖽𝖾𝖽, a random permutation 𝜋 : {0, 1}2𝑛 → {0, 1}2𝑛,
as well as its inverse 𝜋−1 are given, and the goal is to find 𝑥, 𝑦 such that 𝜋(𝑥) = 𝑦, where both 𝑥
and 𝑦 have at least 𝑛 leading zeros. Clearly, 𝑘 = 1, as the challenger makes only a single oracle
query to the random permutation.

For a single-classical-query algorithm𝒜, the probability that ℬwins 𝒢𝖽𝗈𝗎𝖻𝗅𝖾-𝗌𝗂𝖽𝖾𝖽 is at most 2/2𝑛.
This follows from two possibilities: either the algorithm queries a valid pair or it correctly guesses
one. The probabilities of these events sum to 1/2𝑛 + 1/2𝑛 = 2/2𝑛. Applying our main theorem
(Theorem 1.1), we obtain the following bound for any 𝑞-query quantum algorithm in QRPM.

Pr[𝒜wins 𝒢𝖽𝗈𝗎𝖻𝗅𝖾-𝗌𝗂𝖽𝖾𝖽] ≤ 2(8𝑞 + 1)2 Pr[ℬ wins 𝒢𝖽𝗈𝗎𝖻𝗅𝖾-𝗌𝗂𝖽𝖾𝖽] = 𝑂(𝑞2/2𝑛).

This bound is tight to that by [CP24]. Furthermore, this result can be easily generalized to the
game 𝒢𝑅 to find a pair (𝑥, 𝑦) in an arbitrary relation 𝑅:

Pr[𝒜wins 𝒢𝑅] ≤ (8𝑞 + 1)2 Pr[ℬ wins 𝒢𝑅] = 𝑂(𝑟𝗆𝖺𝗑 · 𝑞2/22𝑛)
2[YZ24] gave cryptographic schemes that are secure in the (classical) ROM but insecure in the QROM. This can

be extended to a separation between the QRPM/QICM and RPM/ICM by instantiating a random oracle using a
permutation-based hash function that is indifferentiable from a random oracle (e.g., sponge construction [BDPV11,
BDPV08]).

4

where 𝑟𝗆𝖺𝗑/2
2𝑛 is the probability that a single query reveals a pair (𝑥, 𝑦) ∈ 𝑅. This improves the

bound �̃�(𝑟𝗆𝖺𝗑𝑞
3/22𝑛) by [MMW24] and is also tight to Grover’s search.

We also prove a similar lifting theorem in the QICM.

Theorem 1.2 (Quantum Lifting Theorem on Ideal Ciphers). Let 𝒢 be an (interactive) search game with
a challenger 𝒞 that performs at most 𝑘 classical queries to an ideal cipher oracle 𝐸 : 𝒦 ×𝑋 → 𝑋 , and let
𝒜 be an algorithm that performs 𝑞 quantum queries to the ideal cipher. Then there exists an adversary ℬ
making at most 𝑘 classical queries to 𝐸 such that:

Pr[ℬ wins 𝒢] ≥

(︁
1− 𝑘2

|𝑋|

)︁
(8𝑞 + 1)2𝑘

Pr[𝒜 wins 𝒢].

Other Applications in QRPM/QICM. Beyond the generalized double-sided search, as previ-
ously mentioned, our lifting theorems also have many applications in the random permutation
and ideal cipher models.

Sponge construction. The sponge construction [BDPV11] is a permutation-based hashing al-
gorithm that underlies SHA-3. In the classical setting, it is known to be indifferentiable from a
random oracle [BDPV08], intuitively meaning it is as secure as a random oracle in the RPM. How-
ever, little is known about its security in the post-quantum setting. The current state of the art is
that the single-round sponge satisfies preimage-resistance and one-wayness [CP24, MMW24], and
also achieves reset indifferentiability (even with advice) under a certain parameter regime [Zha21,
CPZ24],3 implying that in this regime it is as secure as a random oracle against quantum adver-
saries. In contrast, no results were previously known for the multi-round sponge.

Using our lifting theorem, we reduce the post-quantum security of sponge to its classical coun-
terpart. As a result, we obtain non-trivial security bounds for preimage-resistance, one-wayness,
and (multi-)collision-resistance of constant-round sponge. Although these bounds are not tight,
this work represents the first non-trivial security result for multi-round sponge constructions.

Davies-Meyer and PGV hash functions. The Davies-Meyer construction [Win84] is a block-
cipher-based hashing algorithm that underlies SHA-1, SHA-2, and MD5. In the classical setting,
it is proven to satisfy one-wayness and collision-resistance in the ICM [Win84, BRS02, BRSS10].
In the quantum setting, although it is shown to be one-way in the QICM [HY18], its collision-
resistance remained an open question.

By applying our lifting theorem, we prove that the Davies-Meyer construction satisfies collision-
resistance in the QICM, albeit our result is not tight. We remark that our analysis is not specific
to the Davies-Mayer construction, and applicable to, say, any of the PGV-hash functions [PGV93,
BRS02, BRSS10].

1.2 Technical Overview

In this section, we revisit the approaches from [YZ21], outlining the barriers in QRPM/QICM and
the novel ideas to overcome them. Given the similarities between QRPM and QICM, we focus on
QRPM in this overview, deferring the details of QICM to the main body.

3Specifically, 𝑟 ≤ 𝑐 where 𝑟 is the rate and 𝑐 is the capacity.

5

The Lifting Theorem in the (Q)ROM. We begin by reviewing the idea behind the lifting theo-
rem in QROM from [YZ21], which builds on the measure-and-reprogram lemma first introduced
in [DFMS19] and later improved in [DFM20]. To make the ideas more intuitive, we focus on the
function inversion problem: given a random oracle 𝐻 : {0, 1}𝑚 → {0, 1}𝑛, the goal is to find an
𝑥 such that 𝐻(𝑥) = 0𝑛. Before proceeding, we introduce the notation for a reprogrammed oracle:
given a random oracle 𝐻 , we define 𝐻[𝑥→ 𝑦] as the function that behaves identically to 𝐻 except
that it outputs 𝑦 on input 𝑥.

We will first look at a lemma that reduces a classical 𝑞-query algorithm to another classical
query algorithm with a much smaller number of queries; this will provide some intuition for the
lifting theorem. Consider a classical 𝑞-query algorithm𝒜. Let 𝑥* be the final outcome of𝒜 under a
random oracle 𝐻 . There are two possibilities: (i) 𝑥* is queried by𝒜 among one of the 𝑞 queries; or
(ii) 𝑥* is never queried. Let 𝑖* ∈ {1, 2, . . . , 𝑞,⊥} be the index of that query where ⊥ indicates that
𝑥* is never queried. The key observation in [YZ21] is that, the algorithm cannot distinguish these
two cases for 𝑦* ∈ {0, 1}𝑛:

1. 𝒜 has oracle access to 𝐻[𝑥* → 𝑦*] for all these 𝑞 queries;
2. 𝒜 has oracle access to𝐻 for the first 𝑖*−1 queries, then𝐻[𝑥* → 𝑦*] for the rest of the queries.

This is simply because without querying on 𝑥*, the algorithm will have identical views on the
transcript (and thus the computation). With the above observation, [YZ21] defines the following
simulator 𝑆[𝒜, 𝐻,𝐻*] that only makes one query to 𝐻*: 𝑆[𝒜, 𝐻,𝐻*] randomly guesses a uniform
𝑖* ← {1, 2, . . . , 𝑞,⊥}. If 𝑖* = ⊥, it returns what 𝒜𝐻 returns. Otherwise, it runs 𝒜 with a random
oracle 𝐻 for the first 𝑖* − 1 steps, and runs the rest of the computation with 𝐻[𝑥→ 𝐻*(𝑥)] where
𝑥 is the input of the 𝑖*-th query.

They show the following classical measure-and-reprogram lemma:

Lemma 1.3 (Measure and Reprogram Lemma). Let 𝐻 and 𝐻* be any two functions (not random
functions). Let 𝒜 be an arbitrary classical algorithm equipped with 𝑞 classical queries to the oracle 𝐻 .

Let 𝑥* ∈ 𝑋 be an input and 𝑦* = 𝐻*(𝑥*). Then there exists a simulator algorithm 𝑆 that given
oracle access to 𝐻 , 𝐻*, making at most one query to 𝐻*, such that for any 𝒜, and for any output 𝑧 (can
be arbitrarily dependent on 𝐻,𝐻*, 𝑥*), simulates the output of 𝒜 having oracle access to 𝐻[𝑥* → 𝑦*] (the
reprogrammed version of 𝐻) with probability:

Pr [𝑆[𝒜, 𝐻,𝐻*] outputs 𝑧] ≥ 1

(𝑞 + 1)
Pr
[︁
𝒜𝐻[𝑥*→𝑦*] outputs 𝑧

]︁
.

By taking expectation over 𝐻,𝐻*, and summing over all 𝑧 such that 𝑧 = 𝑥* and 𝐻*(𝑧) = 0𝑛,
the left-hand side is equal to the success probability of a one-classical-query algorithm ℬ finding
a pre-image:∑︁

𝑥*

𝔼𝐻,𝐻* [Pr[𝑆[𝒜, 𝐻,𝐻*]→ 𝑥* s.t. 𝐻*(𝑥*) = 0𝑛]] = Pr[ℬ finds a pre-image of 0𝑛].

Here we simply treat 𝑆 as the one query algorithm who simulates 𝐻 itself and makes a single
oracle query to 𝐻*.

The right-hand side is equal to the success probability of a 𝑞-classical-query algorithm 𝒜 find-
ing a pre-image, since∑︁

𝑥*

𝔼𝐻,𝐻*

[︁
Pr[𝒜𝐻[𝑥*→𝑦*] → 𝑥* s.t. 𝐻*(𝑥*) = 0𝑛]

]︁
= Pr[𝒜 finds a pre-image of 0𝑛].

6

Using the measure-and-reprogram lemma and the linearity of expectation, we have:

Pr[ℬ finds a pre-image of 0𝑛] ≥ 1

(𝑞 + 1)
Pr[𝒜 finds a pre-image of 0𝑛].

Finally, since the winning probability of ℬ is at most 𝑂(1/𝑁), we establish an upper bound for the
success probability of 𝒜 as 𝑂(𝑞/𝑁).

The above inequality is the basic form of the lifting theorem. The similar idea applies to the
quantum setting, as well as a general (interactive) search game.

The Classical Lifting in the RPM. The above approach fails even in the classical RPM/ICM
setting. To illustrate this issue, consider a simple setting where an algorithm has no oracle access
to the inverse of a permutation 𝜋 : {0, 1}𝑛 → {0, 1}𝑛 and its goal is to find an 𝑥 such that both 𝑥
and 𝜋(𝑥) have enough leading zeros (the double-sided search problem). For any classical 𝑞-query
algorithm 𝒜, similar to the argument in ROM, there must exist some 𝑖* ∈ {1, 2, . . . , 𝑞,⊥} such
that the final output 𝑥* is either queried as the 𝑖*-th query or never queried at all (when 𝑖* = ⊥).
Following the approach of [YZ21], we consider the following simulator 𝑆[𝒜, 𝜋, 𝜋*]:

• It randomly selects 𝑖* ← {1, 2, . . . , 𝑞,⊥}.
• If 𝑖* = ⊥, it returns whatever 𝒜𝜋 outputs.
• Otherwise, it runs𝒜with 𝜋 for the first 𝑖*− 1 steps, then completes the remaining computa-

tion using 𝜋[𝑥→ 𝜋*(𝑥)], where 𝑥 is the input of the 𝑖*-th query.

Ideally, we would like to argue that 𝑆[𝒜, 𝜋, 𝜋*] behaves similarly to 𝒜𝜋*
, up to a multiplicative

loss of (𝑞 + 1), which is coming from guessing a correct 𝑖*. However, this no longer holds due to
the weak dependence inherent in permutations. Even if 𝑆 correctly guesses 𝑖*, it remains possible
that an earlier query (before the 𝑖*-th query) returns 𝜋*(𝑥); i.e., some input 𝑥′ under permutation
𝜋 evaluates to 𝜋(𝑥′) = 𝜋*(𝑥), which makes 𝜋[𝑥 → 𝜋*(𝑥)] is not even a permutation. In this case,
even if 𝑥 itself is only queried at the 𝑖*-th step, the algorithm can still detect an inconsistency —
two distinct queries producing the same output contradicts the structure of a permutation. This
issue becomes even more pronounced when access to the inverse oracle is provided, making such
inconsistencies easier to detect.

Our first contribution is to identify this issue as well as provide a solution to enable the classical
reprogram lemma in the RPM/ICM. For a forward oracle query, we call a query 𝑥 “hit” (or just 𝑥𝗁𝗂𝗍)
with respect to the final outcome 𝑥* if 𝑥 = 𝑥*, just as in the random oracle case; we call a query 𝑥
“miss” (or just 𝑥𝗆𝗂𝗌𝗌) with respect to 𝑥* if 𝜋(𝑥) = 𝜋*(𝑥*). When we reprogram a permutation 𝜋 with
[𝑥* → 𝜋*(𝑥*)], we will maintain its injective structure. We define the reprogrammed permutation
as:

𝜋[𝑥* → 𝜋*(𝑥*)](𝑥) =

⎧⎪⎨⎪⎩
𝜋*(𝑥*) if 𝑥 = 𝑥𝗁𝗂𝗍

𝜋(𝑥*) if 𝑥 = 𝑥𝗆𝗂𝗌𝗌

𝜋(𝑥) otherwise

.

In other words, when we only hardcode [𝑥* → 𝜋*(𝑥*)], it violates the injective structure of the
permutation. Thus, we will have to find the element with more than one preimage and reprogram
that as well.4 This corresponds to Figure 1, where to maintain the injectiveness, we have to repro-
gram both 𝑥𝗁𝗂𝗍 and 𝑥𝗆𝗂𝗌𝗌. This corresponds to removing the two solid edges 𝑥𝗁𝗂𝗍 to 𝜋*(𝑥*) and 𝑥𝗆𝗂𝗌𝗌

to 𝜋(𝑥*) in Figure 1 and adding two edges as in Figure 2.
4The idea of reprogramming a permutation by swapping two outputs is also used in [ABKM22].

7

𝜋−1(𝜋*(𝑥*)) = 𝑥𝗆𝗂𝗌𝗌 𝑦* = 𝑦𝗁𝗂𝗍 = 𝜋*(𝑥*)

𝑥* = 𝑥𝗁𝗂𝗍 𝜋(𝑥*) = 𝑦𝗆𝗂𝗌𝗌

𝜋

𝜋*

𝜋

Figure 1: An illustration of hit and miss inputs regarding 𝑥*, 𝑦*

𝜋−1(𝜋*(𝑥*)) = 𝑥𝗆𝗂𝗌𝗌 𝑦* = 𝑦𝗁𝗂𝗍 = 𝜋*(𝑥*)

𝑥* = 𝑥𝗁𝗂𝗍 𝜋(𝑥*) = 𝑦𝗆𝗂𝗌𝗌

Figure 2: An illustration of mappings in the reprogrammed permutation 𝜋[𝑥* → 𝜋*(𝑥*)]

Similarly, for a backward query to 𝜋−1, we call a query 𝑦 “hit” (or just 𝑦𝗁𝗂𝗍) with respect to the
final outcome 𝑦* = 𝜋*(𝑥*) if 𝑦𝗁𝗂𝗍 = 𝑦*. We call a query 𝑦 “miss” (or just 𝑦𝗆𝗂𝗌𝗌) if 𝑦 = 𝜋(𝑥*) as
in Figure 1.

Giving the above definition, we consider the following simulator that not only guesses the
index 𝑖* but also whether the 𝑖*-th query is a hit or a miss query. 𝑆[𝒜, 𝜋, 𝜋*] is defined as:

1. 𝑆 samples (𝑖*, 𝑏)← ({1, 2, . . . , 𝑞} × {0, 1}) ∪ {(⊥,⊥)}
2. If 𝑖* = ⊥, it returns whatever 𝒜𝜋 outputs;
3. Otherwise, it runs 𝒜 using 𝜋 (both the forward and the inverse) for the first 𝑖* − 1 queries;

for the 𝑖*-th query:

• If 𝑏 = 0 (indicating a hit query):
– A forward query on input 𝑥: compute 𝑦 = 𝜋*(𝑥) and reprogram 𝜋[𝑥→ 𝑦].
– A backward query on input 𝑦: compute 𝑥 = 𝜋*−1(𝑦) and reprogram 𝜋[𝑥→ 𝑦].

• If 𝑏 = 1 (indicating a miss query):
– A forward query on input 𝑥: compute 𝑦 = 𝜋(𝜋*−1(𝜋(𝑥))) and reprogram 𝜋[𝑥→ 𝑦].
– A backward query on input 𝑦: compute 𝑥 = 𝜋−1(𝜋*(𝜋−1(𝑦))) and reprogram 𝜋[𝑥→
𝑦].

Then it runs the rest of 𝒜’s computation under 𝜋[𝑥→ 𝑦] (and its inverse).

We show that, by defining both hit and miss queries, it captures the first query that “touches”
the final outcome 𝑥*— either by querying the miss query or the hit query. This modified simulator
allows us to establish a similar reprogram lemma in the classical RPM. For example, we can show
that for any 𝑞-query 𝒜 for the double-sided search problem, there always exists a one-query ℬ
such that

Pr[ℬ wins] ≥ 1

(2𝑞 + 1)
Pr[𝒜wins].

8

This can be further generalized to any search game, for which we will discuss the quantum setting.

State Decomposition. With the above idea in the classical setting, we are now ready to general-
ize it to the quantum setting and give a lifting theorem for QRPM. To explain the high level idea
for our measure-and-reprogram lemma in the QRPM setting, we start with the following example.
Let 𝒜 be a 𝑞-quantum-query algorithm that solves the double-sided search game, and let 𝑥*, 𝑦* be
some pair. Consider𝒜with oracle access to 𝜋[𝑥* → 𝑦*] and its inverse, whose computation can be
written as:

𝑈𝑞+1𝑂𝜋[𝑥*→𝑦*] 𝑈𝑞 · · ·𝑂(𝜋[𝑥*→𝑦*])−1 𝑈2𝑂𝜋[𝑥*→𝑦*] 𝑈1 |0⟩ .

Without loss of generality, we assume the first query is a forward query. We start by considering
the state up to the first query: 𝑂𝜋[𝑥*→𝑦*]𝑈1 |0⟩. We insert an additional identity operator and have,

𝑂𝜋[𝑥*→𝑦*]𝑈1 |0⟩ = 𝑂𝜋[𝑥*→𝑦*] 𝐼 𝑈1 |0⟩

= 𝑂𝜋[𝑥*→𝑦*]

(︁
𝐼 − |𝑥*𝗁𝗂𝗍⟩⟨𝑥*𝗁𝗂𝗍|+ |𝑥*𝗁𝗂𝗍⟩⟨𝑥*𝗁𝗂𝗍| − |𝑥*𝗆𝗂𝗌𝗌⟩⟨𝑥*𝗆𝗂𝗌𝗌|+ |𝑥*𝗆𝗂𝗌𝗌⟩⟨𝑥*𝗆𝗂𝗌𝗌|

)︁
𝑈1 |0⟩

= 𝑂𝜋[𝑥*→𝑦*]

(︁
𝐼 − |𝑥*𝗁𝗂𝗍⟩⟨𝑥*𝗁𝗂𝗍| − |𝑥*𝗆𝗂𝗌𝗌⟩⟨𝑥*𝗆𝗂𝗌𝗌|

)︁
𝑈1 |0⟩⏟ ⏞

(𝑖)

+𝑂𝜋[𝑥*→𝑦*] |𝑥*𝗁𝗂𝗍⟩⟨𝑥*𝗁𝗂𝗍|𝑈1 |0⟩⏟ ⏞
(𝑖𝑖)

+𝑂𝜋[𝑥*→𝑦*] |𝑥*𝗆𝗂𝗌𝗌⟩⟨𝑥*𝗆𝗂𝗌𝗌|𝑈1 |0⟩⏟ ⏞
(𝑖𝑖𝑖)

.

Here 𝑥*𝗁𝗂𝗍 and 𝑥*𝗆𝗂𝗌𝗌 are defined according to 𝜋 as in Figure 1.
The first term (𝑖) equals to

𝑂𝜋[𝑥*→𝑦*]

(︁
𝐼 − |𝑥*𝗁𝗂𝗍⟩⟨𝑥*𝗁𝗂𝗍| − |𝑥*𝗆𝗂𝗌𝗌⟩⟨𝑥*𝗆𝗂𝗌𝗌|

)︁
𝑈1 |0⟩

=𝑂𝜋

(︁
𝐼 − |𝑥*𝗁𝗂𝗍⟩⟨𝑥*𝗁𝗂𝗍| − |𝑥*𝗆𝗂𝗌𝗌⟩⟨𝑥*𝗆𝗂𝗌𝗌|

)︁
𝑈1 |0⟩

=𝑂𝜋𝑈1 |0⟩ −𝑂𝜋 |𝑥*𝗁𝗂𝗍⟩⟨𝑥*𝗁𝗂𝗍|𝑈1 |0⟩ −𝑂𝜋 |𝑥*𝗆𝗂𝗌𝗌⟩⟨𝑥*𝗆𝗂𝗌𝗌|𝑈1 |0⟩ .

This is because on inputs that are neither hit nor miss inputs, 𝑂𝜋 and 𝑂𝜋[𝑥*→𝑦*] are identical.
Combining with other terms, we have that the state after the first query is equal to:

𝑂𝜋[𝑥*→𝑦*]𝑈1 |0⟩ = 𝑂𝜋𝑈1 |0⟩ −𝑂𝜋 |𝑥*𝗁𝗂𝗍⟩⟨𝑥*𝗁𝗂𝗍|𝑈1 |0⟩ −𝑂𝜋 |𝑥*𝗆𝗂𝗌𝗌⟩⟨𝑥*𝗆𝗂𝗌𝗌|𝑈1 |0⟩

+𝑂𝜋[𝑥*→𝑦*] |𝑥*𝗁𝗂𝗍⟩⟨𝑥*𝗁𝗂𝗍|𝑈1 |0⟩+𝑂𝜋[𝑥*→𝑦*] |𝑥*𝗆𝗂𝗌𝗌⟩⟨𝑥*𝗆𝗂𝗌𝗌|𝑈1 |0⟩ .

These five terms can be interpreted in the following way:

1. 𝑂𝜋𝑈1 |0⟩: the first term corresponds to the case that we do not measure the first query and
use 𝜋 for this query.

2. 𝑂𝜋 |𝑥*𝗁𝗂𝗍⟩⟨𝑥*𝗁𝗂𝗍|𝑈1 |0⟩ and 𝑂𝜋 |𝑥*𝗆𝗂𝗌𝗌⟩⟨𝑥*𝗆𝗂𝗌𝗌|𝑈1 |0⟩: both terms correspond to the case that
we measure the first query and it is either a hit or miss query; but we still use 𝜋 for the first
query. Looking ahead, these two terms will correspond to |𝜑1,0,1⟩ and |𝜑1,1,1⟩ in the final
decomposition defined below.

9

3. 𝑂𝜋[𝑥*→𝑦*] |𝑥*𝗁𝗂𝗍⟩⟨𝑥*𝗁𝗂𝗍|𝑈1 |0⟩ and𝑂𝜋[𝑥*→𝑦*] |𝑥*𝗆𝗂𝗌𝗌⟩⟨𝑥*𝗆𝗂𝗌𝗌|𝑈1 |0⟩: both terms correspond to the
case that we measure the first query and it is either a hit or miss query; we use the repro-
grammed 𝜋[𝑥* → 𝑦*] for the first query. Looking ahead, these two terms will correspond to
|𝜑1,0,0⟩ and |𝜑1,1,0⟩ in the final decomposition defined below.

The similar argument extends to the second query, where we will decompose the component
𝑂𝜋𝑈1 |0⟩. Similar to the first query case, this decomposition introduces four more terms. By de-
composing the state to the last query, eventually we will have (4𝑞 + 1) terms. Among them:

• There is one term |𝜑⊥⟩ for the case that we do not measure any query and run 𝒜 under 𝜋.
• There are 𝑞 terms |𝜑𝑖,0,0⟩ for the case that we measure the 𝑖-th query for 𝑖 ∈ {1, 2, . . . , 𝑞}, it is
𝑥*𝗁𝗂𝗍 (or 𝑦*𝗁𝗂𝗍, if it is a backward query). The remaining queries (including the 𝑖-th query) are
under 𝜋[𝑥* → 𝑦*].

• There are 𝑞 terms |𝜑𝑖,1,0⟩ for the case that we measure the 𝑖-th query for 𝑖 ∈ {1, 2, . . . , 𝑞}, it is
𝑥*𝗆𝗂𝗌𝗌 (or 𝑦*𝗆𝗂𝗌𝗌, if it is a backward query). The remaining queries (including the 𝑖-th query)
are under 𝜋[𝑥* → 𝑦*].

• Similarly, we have 2𝑞 terms |𝜑𝑖,𝑏,1⟩ for 𝑏 ∈ {0, 1}. They stand for the case that we measure
the 𝑖-th query for 𝑖 ∈ {1, 2, . . . , 𝑞}, it is either a miss or hit (depending on 𝑏). The 𝑖-th query
is under 𝜋 and the remaining queries are under 𝜋[𝑥* → 𝑦*].

By induction on the state decomposition, we can show that the original computation is equal
to the summation of all these 4𝑞 + 1 terms:

𝑈𝑞+1𝑂𝜋[𝑥*→𝑦*] 𝑈𝑞 · · ·𝑂(𝜋[𝑥*→𝑦*])−1 𝑈2𝑂𝜋[𝑥*→𝑦*] 𝑈1 |0⟩ = |𝜑⊥⟩+
𝑞∑︁

𝑖=1

∑︁
𝑏,𝑐∈{0,1}

(−1)𝑐 |𝜑𝑖,𝑏,𝑐⟩ .

Thus for a projection Π (representing the winning condition), from the above identity and Cauchy-
Schwarz, we have

‖Π𝑈𝑞+1𝑂𝜋[𝑥*→𝑦*] 𝑈𝑞 · · · 𝑂𝜋[𝑥*→𝑦*] 𝑈1 |0⟩ ‖2

≤(4𝑞 + 1) ·

⎛⎝‖Π |𝜑⊥⟩ ‖2 + 𝑞∑︁
𝑖=1

∑︁
𝑏,𝑐∈{0,1}

‖Π |𝜑𝑖,𝑏,𝑐⟩ ‖2
⎞⎠ .

Here each term ‖Π |𝜑⊥⟩ ‖2 or ‖Π |𝜑𝑖,𝑏,𝑐⟩ ‖2 has an operational meaning: the probability that the final
outcome is in Π, where the execution will use oracles specified by ⊥ or 𝑖, 𝑏, 𝑐. We give a formal
description of the simulator below.

The Quantum Lifting Theorem in the QRPM. We define the following simulator in the quan-
tum setting for RPM. 𝑆[𝒜, 𝜋, 𝜋*] is defined as:

1. 𝑆 samples (𝑖, 𝑏, 𝑐) ← ({1, 2, . . . , 𝑞} × {0, 1} × {0, 1}) ∪ {(⊥,⊥,⊥)}, where 𝑏 stands for if it
is “hit” or “miss” and 𝑐 stands for whether the reprogramming happens before or after the
query.

2. If 𝑖 = ⊥, it returns whatever 𝒜𝜋 outputs;
3. Otherwise, it runs𝒜 using 𝜋 (both the forward and the inverse) for the first 𝑖− 1 queries; for

the 𝑖-th query, 𝑆 measures the input register :

10

• If 𝑏 = 0 (indicating a hit query):
– A forward query on input 𝑥: compute 𝑦 = 𝜋*(𝑥).
– A backward query on input 𝑦: compute 𝑥 = 𝜋*−1(𝑦).

• If 𝑏 = 1 (indicating a miss query):
– A forward query on input 𝑥: compute 𝑦 = 𝜋(𝜋*−1(𝜋(𝑥))).
– A backward query on input 𝑦: compute 𝑥 = 𝜋−1(𝜋*(𝜋−1(𝑦))).

Then for the remaining queries,

• If 𝑐 = 0, it answers all 𝒜’s remaining queries using 𝜋[𝑥→ 𝑦].
• If 𝑐 = 1, it answers 𝒜’s 𝑖-th query using 𝜋 and the remaining queries using 𝜋[𝑥→ 𝑦].

𝑆 outputs whatever 𝒜 outputs.

If the first step samples (𝑖, 𝑏, 𝑐), then the probability that the simulator produces 𝑧 is at least
‖Π |𝜑𝑖,𝑏,𝑐⟩ ‖2 (or ‖Π |𝜑⊥⟩ ‖2 if (𝑖, 𝑏, 𝑐) = (⊥,⊥,⊥)). Building on the previous discussion, we con-
clude that for any outcome 𝑧, the probability of the simulator producing 𝑧 is at least 1

(4𝑞+1)2
times

the probability of 𝒜 producing 𝑧.
This simulator can be easily generalized to any number of reprogramming. In the simulator,

we will choose 𝑘 coordinates instead of one to measure and reprogram, one for each final output
𝑥*𝑖 ; similarly to the 𝑘 = 1 case, there are (4𝑞 + 1) such possibilities for each 𝑥*𝑖 . One subtlety is
that, when we sequentially reprogram a permutation multiple times, these reprogramming may
interfere with each other, which makes the analysis more involved. To avoid this, we introduce
the "goodness" condition, which ensures that such interference does not occur. (See Definition 2.7
for the formal definition of the goodness). Fortunately, we show that the goodness condition is
satisfied except for an exponentially small probability.

Now we propose the measure-and-reprogram lemma. In order to describe the formal measure-
and-reprogram result, we need to additionally introduce the following notions. We will denote
the reprogrammed permutation on 𝑘 pairs 𝑝1 = (𝑥1, 𝑦1), ..., 𝑝𝑘 = (𝑥𝑘, 𝑦𝑘) by 𝜋[𝑥1 → 𝑦1]...[𝑥𝑘 → 𝑦𝑘].

Lemma 1.4 (Measure and Reprogram Lemma, Informal). Let 𝜋 and 𝜋* be two fixed permutations (not
random permutations). Let 𝒜 be an arbitrary quantum algorithm equipped with 𝑞 quantum queries to the
oracle 𝜋, 𝜋−1.

Let �⃗�* = (𝑥*1, ..., 𝑥
*
𝑘) ∈ 𝑋𝑘 be any 𝑘-vector of inputs and �⃗�* = (𝑦*1, ..., 𝑦

*
𝑘) = (𝜋*(𝑥*1), ..., 𝜋

*(𝑥*𝑘)),
such that the 𝑘-tuple (𝑥*1, 𝑦

*
1), ..., (𝑥

*
𝑘, 𝑦
*
𝑘) is “good”5 with respect to 𝜋. Then there exists a simulator

algorithm 𝑆 that given oracle access to 𝜋, 𝜋* and 𝒜, for any 𝑧 (can be arbitrarily dependent on 𝜋, 𝜋*, �⃗�*),
simulates the output of 𝒜 having oracle access to 𝜋[𝑥*1 → 𝑦*1]...[𝑥

*
𝑘 → 𝑦*𝑘] (the reprogrammed version of 𝜋)

with probability:

Pr
𝜋,𝜋*

[𝑆[𝒜, 𝜋, 𝜋*] outputs 𝑧] ≥ 1

(8𝑞 + 1)2𝑘
Pr
𝜋,𝜋*

[︁
𝒜𝜋[𝑥*

1→𝑦*1]...[𝑥
*
𝑘→𝑦*𝑘] outputs 𝑧

]︁
.

Here, we have (8𝑞 + 1) instead of (4𝑞 + 1) because we consider the most general algorithm,
which can make superposition queries to 𝜋 and 𝜋−1 within a single query. To handle this, we
decompose each query into two: one querying only 𝜋 and the other querying only 𝜋−1. This
transformation introduces an additional multiplicative factor of 2.

5For simplicity, we do not state the formal definition of “good” in the introduction.

11

Finally, for any game 𝒢, by summing over all valid �⃗�*, 𝜋(�⃗�*) ∈ 𝑋𝑘×𝑋𝑘, when take expectation
over 𝜋, 𝜋*, we have for any 𝑞-quantum-query 𝒜, there exists a 𝑘-classical-query ℬ such that

Pr[ℬ wins 𝒢] ≥ (1− 𝑘2/|𝑋|)
(8𝑞 + 1)2𝑘

Pr[𝒜wins 𝒢].

Here (1− 𝑘2/|𝑋|) comes from the probability that the goodness condition holds for uniform 𝜋, 𝜋*.
This completes the high level idea of our lifting theorem in the QRPM.

1.3 Concurrent Work

A concurrent work by Alagic, Carolan, Majenz, and Tokat [ACMT25] establishes quantum indif-
ferentiability for the (multi-round) sponge construction. Although their bounds are still not tight,
their results encompass ours in most settings, with a few exceptions, such as preimage-resistance
in the single- and two-round cases, and collision-resistance in the single-round case. However,
their approach is tailored specifically to sponge, whereas our lifting theorem applies more broadly
to any permutation-based construction.

1.4 Paper Organization

In Section 2 we introduce a series of intermediate results that are going to be used to prove the
main lifting theorems. Part of the proofs of these results are deferred to Appendix A. Section 3
contains the classical lifting for permutations as a classical analogue of our main quantum lifting
theorem, shown in Section 4, while the extension of the quantum lifting to the interactive setting
is proven in Appendix B. The quantum lifting theorem in the ideal cipher model is shown in
Section 5. Finally, the applications of our quantum lifting theorems can be found in Section 6.

2 Preparation for Lifting Theorem

In this section, we introduce notations, definitions and easy lemmas, that are used in the proofs of
the (classical and quantum) lifting theorem for permutations in Sections 3 and 4.

2.1 Algorithms with Permutation Oracles

We define basic notations for algorithms with oracle access to an invertible permutation.
Let 𝜋 : 𝑋 → 𝑋 be a permutation and 𝜋−1 be its inverse. A 𝑞-query classical algorithm with per-

mutation oracles 𝜋 can query both 𝜋 and 𝜋−1, but in total 𝑞 times. A 𝑞-query quantum algorithm
can query the following unitary in total 𝑞 times:

𝑈𝜋 |𝑏⟩ |𝑥⟩ |𝑦⟩ =

{︃
|𝑏⟩ ⊗𝑂𝜋 (|𝑥⟩ |𝑦⟩) if 𝑏 = 0

|𝑏⟩ ⊗𝑂𝜋−1 (|𝑥⟩ |𝑦⟩) if 𝑏 = 1,

where 𝑂𝜋, 𝑂𝜋−1 are the coherent computation for 𝜋 and 𝜋−1, We will typically denote a quantum
(or classical) query algorithm by 𝒜. By 𝒜𝜋 we mean that 𝒜 has quantum (or classical) access to
the permutation 𝜋, as well as to its inverse, 𝜋−1.

12

Lemma 2.1 (Normal form). Let 𝒜 be a quantum algorithm making at most 𝑞 quantum queries to a
permutation 𝜋 (i.e., 𝑈𝜋). There always exists a quantum algorithm whose output is identical to that of 𝒜,
making at most 2𝑞 quantum queries to 𝑂𝜋 and 𝑂𝜋−1 , and of the following normal form:

𝑂𝜋−1𝑈2𝑞𝑂𝜋𝑈2𝑞−1 · · ·𝑂𝜋−1𝑈2𝑂𝜋𝑈1 |0⟩ ;

i.e., making exactly 𝑞 queries to 𝑂𝜋 (for odd-numbered queries) and 𝑞 queries to 𝑂𝜋−1 (for even-numbered
queries).

Proof. Every oracle access to 𝑈𝜋 can be replaced with one query access to 𝑂𝜋 and one query access
to 𝑂𝜋−1 (by introducing dummy queries).

2.2 Reprogramming of Permutations

Our lifting theorems are established using simulators that gradually reprogram a permutation
given to an algorithm. We introduce notation for reprogramming of permutations and show their
basic properties.

Definition 2.2. For a permutation 𝜋 : 𝑋 → 𝑋 and �⃗� = (𝑥1, ..., 𝑥𝑘) ∈ 𝑋𝑘, we define 𝜋(�⃗�) = (𝜋(𝑥1), ..., 𝜋(𝑥𝑘)).

Definition 2.3 (Reprogramming permutations). Let a permutation 𝜋 : 𝑋 → 𝑋 and (𝑥, 𝑦) ∈ 𝑋 ×𝑋
be an arbitrary pair. Then we denote the reprogramming of 𝜋 by (𝑥, 𝑦) as:

𝜋[𝑥→ 𝑦](𝑧) =

⎧⎪⎨⎪⎩
𝑦 if 𝑧 = 𝑥

𝜋(𝑥) if 𝑧 = 𝜋−1(𝑦)

𝜋(𝑧) if 𝑧 ̸∈ {𝑥, 𝜋−1(𝑦)}
(1)

If we denote (𝑥, 𝑦) by a pair 𝑝, we also use 𝜋[𝑝] for 𝜋[𝑥→ 𝑦].
Similarly, for 𝑘 pairs 𝑝1 = (𝑥1, 𝑦1), ..., 𝑝𝑘 = (𝑥𝑘, 𝑦𝑘) we can define the reprogramming of 𝜋 by

𝑝1, ..., 𝑝𝑘, denoted by 𝜋[𝑥1 → 𝑦1]...[𝑥𝑘 → 𝑦𝑘] (or 𝜋[𝑝1] . . . [𝑝𝑘]) in a recursive manner by 𝜋[𝑥1 →
𝑦1]...[𝑥𝑘 → 𝑦𝑘] := (𝜋[𝑥1 → 𝑦1]...[𝑥𝑘−1 → 𝑦𝑘−1])[𝑥𝑘 → 𝑦𝑘]. We often denote 𝜋[𝑥1 → 𝑦1] . . . [𝑥𝑘 → 𝑦𝑘] by
𝜋[�⃗�→ �⃗�] for brevity.

Lemma 2.4. For any permutation 𝜋 and pairs (𝑥1, 𝑦1), . . . , (𝑥𝑘, 𝑦𝑘), we have

(𝜋[𝑥1 → 𝑦1] . . . [𝑥𝑘 → 𝑦𝑘])
−1 = 𝜋−1[𝑦1 → 𝑥1] . . . [𝑦𝑘 → 𝑥𝑘].

Proof. The proof is trivial: it suffices to check the statement for the case 𝑘 = 1, which we skip.

Definition 2.5 (Disjoint pairs). For 𝑘 pairs 𝑝1 = (𝑥1, 𝑦1), ..., 𝑝𝑘 = (𝑥𝑘, 𝑦𝑘), we say they are disjoint pairs
(or simply disjoint) if there is no duplicated 𝑥 or 𝑦 entries: for any 𝑖 < 𝑗, we have 𝑥𝑖 ̸= 𝑥𝑗 and 𝑦𝑖 ̸= 𝑦𝑗 . We
say �⃗�, �⃗� ∈ 𝑋𝑘 ×𝑋𝑘 are disjoint if (𝑥1, 𝑦1), . . . , (𝑥𝑘, 𝑦𝑘) are disjoint.

Similarly, we say �⃗� (or �⃗�) is disjoint if there are no duplicated entries.

Lemma 2.6 (Commutativity of reprogramming for disjoint pairs). For every permutation 𝜋 : 𝑋 →
𝑋 , disjoint �⃗�, �⃗� ∈ 𝑋𝑘 ×𝑋𝑘, and any permutation 𝜎 : [𝑘]→ [𝑘], we have:

𝜋[𝑥1 → 𝑦1] . . . [𝑥𝑘 → 𝑦𝑘] = 𝜋[𝑥𝜎(1) → 𝑦𝜎(1)] . . . [𝑥𝜎(𝑘) → 𝑦𝜎(𝑘)].

The proof of this will be given in the Appendix, page 42.

13

Good Tuples of Permutations

In our lifting theorems, we consider a simulator that gradually reprograms a permutation 𝜋 ac-
cording to disjoint pairs 𝑝*1 = (𝑥*1, 𝑦

*
1), . . . , 𝑝

*
𝑘 = (𝑥*𝑘, 𝑦

*
𝑘). In its analysis, it is useful to ensure that,

if one reprogramming changes the value of the permutation on some input, no subsequent re-
programming changes that value. To guarantee this property, we define the goodness condition for
(𝑝*1, . . . , 𝑝

*
𝑘) as follows:

Definition 2.7 (Good tuples). We say that a 𝑘-tuple of pairs (𝑝*1, ..., 𝑝
*
𝑘), where 𝑝*1 = (𝑥*1, 𝑦

*
1), . . . , 𝑝

*
𝑘 =

(𝑥*𝑘, 𝑦
*
𝑘), is good w.r.t. 𝜋 if the following hold:

• 𝑝*1, . . . , 𝑝
*
𝑘 are disjoint (Definition 2.5), and

• 𝜋(𝑥*𝑖) ̸= 𝑦*𝑗 for any 𝑖, 𝑗 ∈ [𝑘].

Definition 2.8 (Good pairs of permutations). For any distinct �⃗�* = (𝑥*1, ..., 𝑥
*
𝑘), let 𝐺[�⃗�*] be the set

consisting of all pairs (𝜋, 𝜋*) such that the 𝑘-tuple (𝑝*1 = (𝑥*1, 𝜋
*(𝑥*1)), ..., 𝑝

*
𝑘 = (𝑥*𝑘, 𝜋

*(𝑥*𝑘))) is good w.r.t.
𝜋.

Then the following lemmas are easy to prove.

Lemma 2.9 (Reprogramming on good tuples). Consider any permutation 𝜋 and 𝑘 pairs 𝑝*1, . . . , 𝑝
*
𝑘 with

𝑝*𝑗 = (𝑥*𝑗 , 𝑦
*
𝑗) for 𝑗 = 1, . . . , 𝑘. Suppose the tuple of pairs (𝑝*1, . . . , 𝑝

*
𝑘) is good w.r.t. 𝜋. Then we have:

𝜋[�⃗�* → �⃗�*](𝑧) =

⎧⎪⎨⎪⎩
𝑦*𝑗 if 𝑧 = 𝑥*𝑗 for some 𝑗 ∈ [𝑘],
𝜋(𝑥*𝑗) if 𝑧 = 𝜋−1(𝑦*𝑗) for some 𝑗 ∈ [𝑘],
𝜋(𝑧) otherwise.

The proof of this lemma is given in the Appendix, page 44.

Lemma 2.10 (Bad probability). Let 𝜋 be a (fixed) permutation and �⃗�* = (𝑥*1, ..., 𝑥
*
𝑘) be a (fixed) distinct

tuple. Then we have

Pr
𝜋*
[(𝜋, 𝜋*) /∈ 𝐺[�⃗�*]] ≤ 𝑘2

|𝑋|

Proof. Recall that (𝜋, 𝜋*) ∈ 𝐺[�⃗�*] means that (𝑝*1 = (𝑥*1, 𝑦
*
1 = 𝜋*(𝑥*1)), . . . , 𝑝

*
𝑘 = (𝑥*𝑘, 𝑦

*
𝑘 = 𝜋*(𝑥*𝑘)))

is good with respect to 𝜋, i.e., (𝑝*1, ..., 𝑝
*
𝑗) is disjoint and 𝜋(𝑥*𝑖) ̸= 𝑦*𝑗 for all 𝑖, 𝑗 ∈ [𝑘]. Since �⃗�* is

assumed to be distinct, the disjointness of (𝑝*1, ..., 𝑝
*
𝑗) is always satisfied.

The only condition that might fail is the other one. We aim to find an upper bound on the
probability that 𝜋(𝑥*𝑖) = 𝑦*𝑗 for some 𝑖, 𝑗.

For each pair (𝑖, 𝑗), consider the event 𝐸𝑖,𝑗 that 𝜋(𝑥*𝑖) = 𝑦*𝑗 holds. Since 𝜋(𝑥*𝑖) is a fixed element
in 𝑋 , and 𝑦*𝑗 = 𝜋*(𝑥*𝑗) is uniformly random over 𝑋 , the probability that 𝜋(𝑥*𝑖) = 𝑦*𝑗 is:

Pr[𝐸𝑖,𝑗] =
1

|𝑋|
.

There are 𝑘2 such pairs (𝑖, 𝑗). By the union bound, the probability that at least one of these
events occurs is at most the sum of their individual probabilities:

Pr

⎛⎝⋃︁
𝑖 ̸=𝑗

𝐸𝑖,𝑗

⎞⎠ ≤∑︁
𝑖,𝑗

Pr[𝐸𝑖,𝑗] =
𝑘2

|𝑋|
.

14

Therefore, the probability that (𝜋, 𝜋*) ∈ 𝐺[�⃗�*] is at most
𝑘2

|𝑋|
.

Lemma 2.11 (Uniformity of reprogrammed permutation). For any distinct �⃗�* = (𝑥*1, ..., 𝑥
*
𝑘), suppose

that we uniformly take (𝜋, 𝜋*) ← 𝐺[�⃗�*] and set �⃗�* = 𝜋*(�⃗�*). Then 𝜋[�⃗�* → �⃗�*] is distributed uniformly
randomly.

Proof. Observe that for any permutation 𝜎, ((𝑥*1, 𝜎𝜋
*(𝑥*1)), ..., (𝑥

*
𝑘, 𝜎𝜋

*(𝑥*𝑘))) is good w.r.t. 𝜎𝜋 if and
only if ((𝑥*1, 𝜋

*(𝑥*1)), ..., (𝑥
*
𝑘, 𝜋
*(𝑥*𝑘))) is good w.r.t. 𝜋. This means that for any 𝜎, if we take uniform

(𝜋, 𝜋*)← 𝐺[�⃗�*], then (𝜎𝜋, 𝜎𝜋*) is also distributed uniformly on 𝐺[�⃗�*].
For any 𝜎, we have the following equivalence of distributions:

{𝜎 (𝜋[𝑥*1 → 𝜋*(𝑥*1)]...[𝑥
*
𝑘 → 𝜋*(𝑥*𝑘)]) : (𝜋, 𝜋

)← 𝐺[�⃗�]}
≡ {(𝜎𝜋)[𝑥*1 → 𝜎𝜋*(𝑥*1)]...[𝑥

*
𝑘 → 𝜎𝜋*(𝑥*𝑘)] : (𝜋, 𝜋

)← 𝐺[�⃗�]}
≡ {𝜋[𝑥*1 → 𝜋*(𝑥*1)]...[𝑥

*
𝑘 → 𝜋*(𝑥*𝑘)] : (𝜋, 𝜋

)← 𝐺[�⃗�]}

where the first equivalence easily follows from the definition of reprogramming and the second
equivalence follows from the above observation. The above equivalence means that the distribu-
tion of 𝜋[𝑥*1 → 𝜋*(𝑥*1)]...[𝑥

*
𝑘 → 𝜋*(𝑥*𝑘)] for (𝜋, 𝜋*) ← 𝐺[�⃗�*] is invariant under left multiplication

by any permutation 𝜎. This means that the distribution of 𝜋[�⃗�* → �⃗�*] = 𝜋[𝑥*1 → 𝜋*(𝑥*1)]...[𝑥
*
𝑘 →

𝜋*(𝑥*𝑘)] is uniform.

Hit and Miss Queries

In the proof of our main theorems, we will need the following definition.

Definition 2.12 (Hit and Miss queries). Fix any distinct �⃗�* = (𝑥*1, ..., 𝑥
*
𝑘) ∈ 𝑋𝑘, permutations (𝜋, 𝜋*) ∈

𝐺[�⃗�*], �⃗�* = 𝜋*(�⃗�*), and 𝑗 ∈ [𝑘], we define the Hit and Miss input for forward queries as follows:

𝑥𝗁𝗂𝗍𝑗 = 𝑥*𝑗 ,

𝑥𝗆𝗂𝗌𝗌
𝑗 = 𝜋−1(𝑦*𝑗).

Similarly, we define the Hit and Miss input for backward queries as follows:

𝑦𝗁𝗂𝗍𝑗 = 𝑦*𝑗 ,

𝑦𝗆𝗂𝗌𝗌
𝑗 = 𝜋(𝑥*𝑗).

Remark 2.13. Since we assume (𝜋, 𝜋*) ∈ 𝐺[�⃗�*], there is not duplicate entry in (𝑥𝗁𝗂𝗍1 , 𝑥𝗆𝗂𝗌𝗌
1 , ..., 𝑥𝗁𝗂𝗍𝑘 , 𝑥𝗆𝗂𝗌𝗌

𝑘)
or (𝑦𝗁𝗂𝗍1 , 𝑦𝗆𝗂𝗌𝗌

1 , ..., 𝑦𝗁𝗂𝗍𝑘 , 𝑦𝗆𝗂𝗌𝗌
𝑘).

The following corollary immediately follows from Lemma 2.9.

Corollary 2.14. Let �⃗�* = (𝑥*1, ..., 𝑥
*
𝑘) ∈ 𝑋𝑘 be a distinct tuple, (𝜋, 𝜋*) ∈ 𝐺[�⃗�*], �⃗�* = (𝑦*1, ..., 𝑦

*
𝑘) =

𝜋*(�⃗�*), and (𝑥𝗁𝗂𝗍𝑗 , 𝑥𝗆𝗂𝗌𝗌
𝑗 , 𝑦𝗁𝗂𝗍𝑗 , 𝑦𝗆𝗂𝗌𝗌

𝑗) be as defined in Definition 2.12 for 𝑗 ∈ [𝑘]. Then we have:

𝜋[�⃗�* → �⃗�*](𝑧) =

⎧⎪⎨⎪⎩
𝑦𝗁𝗂𝗍𝑗 if 𝑧 = 𝑥𝗁𝗂𝗍𝑗 for some 𝑗 ∈ [𝑘],
𝑦𝗆𝗂𝗌𝗌
𝑗 if 𝑧 = 𝑥𝗆𝗂𝗌𝗌

𝑗 for some 𝑗 ∈ [𝑘],
𝜋(𝑧) otherwise.

15

Partial Reprogramming

We define partial reprogramming. Looking ahead, this corresponds to a "snapshot" of the oracle
simulated by the simulator at some point of its execution.

Definition 2.15 (Partial reprogramming). Let �⃗�* = (𝑥*1, ..., 𝑥
*
𝑘) ∈ 𝑋𝑘 and �⃗�* = (𝑦*1, ..., 𝑦

*
𝑘) ∈ 𝑋𝑘 be

distinct tuples and 𝜋 : 𝑋 → 𝑋 be a permutation. We say that 𝜋′ is a partial reprogramming of 𝜋 w.r.t.
(�⃗�*, �⃗�*) if 𝜋′ = 𝜋[𝑥*𝑗1 → 𝑦*𝑗1]...[𝑥

*
𝑗ℓ
→ 𝑦*𝑗ℓ] for some distinct sequence 𝑗1, ..., 𝑗ℓ ∈ [𝑘] and ℓ ≤ 𝑘. For 𝑗 ∈ [𝑘],

we say that 𝜋′ is reprogrammed on 𝑗 if 𝑗 ∈ {𝑗1, ..., 𝑗ℓ}.

The following lemma immediately follows from Corollary 2.14.

Lemma 2.16 (Partial reprogramming on good tuples). Let �⃗�* = (𝑥*1, ..., 𝑥
*
𝑘) ∈ 𝑋𝑘 be a distinct tuple,

(𝜋, 𝜋*) ∈ 𝐺[�⃗�*], �⃗�* = (𝑦*1, ..., 𝑦
*
𝑘) = 𝜋*(�⃗�*), 𝜋′ be a partial reprogramming of 𝜋 w.r.t. (�⃗�*, �⃗�*), and

(𝑥𝗁𝗂𝗍𝑗 , 𝑥𝗆𝗂𝗌𝗌
𝑗 , 𝑦𝗁𝗂𝗍𝑗 , 𝑦𝗆𝗂𝗌𝗌

𝑗) be as defined in Definition 2.12 for 𝑗 ∈ [𝑘]. Then the following hold.

1. For any 𝑥 ∈ 𝑋 ∖
⋃︀

𝑗∈[𝑘]{𝑥𝗁𝗂𝗍𝑗 , 𝑥𝗆𝗂𝗌𝗌
𝑗 },

𝜋′(𝑥) = 𝜋[�⃗�* → �⃗�*](𝑥) = 𝜋(𝑥).

2. For any 𝑥 ∈ {𝑥𝗁𝗂𝗍𝑗 , 𝑥𝗆𝗂𝗌𝗌
𝑗 } for some 𝑗 ∈ [𝑘], if 𝜋′ is reprogrammed on 𝑗, then

𝜋′(𝑥) = 𝜋[�⃗�* → �⃗�*](𝑥).

3. For any 𝑦 ∈ 𝑋 ∖
⋃︀

𝑗∈[𝑘]{𝑦𝗁𝗂𝗍𝑗 , 𝑦𝗆𝗂𝗌𝗌
𝑗 },

𝜋′
−1

(𝑦) = 𝜋[�⃗�* → �⃗�*]−1(𝑦) = 𝜋−1(𝑦).

4. For any 𝑦 ∈ {𝑦𝗁𝗂𝗍𝑗 , 𝑦𝗆𝗂𝗌𝗌
𝑗 } for some 𝑗 ∈ [𝑘], if 𝜋′ is reprogrammed on 𝑗, then

𝜋′
−1

(𝑦) = 𝜋[�⃗�* → �⃗�*]−1(𝑦).

3 Classical Lifting Theorem for Permutations

In this section, as a warm-up, we prove a classical analogue of our main lifting theorem. While we
encourage the readers to read this section for intuition before moving on to the quantum lifting
theorem, it is also possible to skip directly to Section 4.

We prove the following theorem:

Theorem 3.1 (Classical Lifting Theorem). Let 𝒜 be an algorithm that makes 𝑞 classical queries to an
(invertible) random permutation oracle on 𝑋 and 𝑅 is a relation on 𝑋𝑘 × 𝑋𝑘 × 𝑍. Then there exists an
algorithm ℬ making at most 𝑘 classical queries such that

Pr
𝜋*

[︁
(𝑥1, ..., 𝑥𝑘, 𝜋

*(𝑥1), ..., 𝜋
*(𝑥𝑘), 𝑧) ∈ 𝑅 : (𝑥1, ..., 𝑥𝑘, 𝑧)← ℬ𝜋

*
]︁

≥

(︁
1− 𝑘2

|𝑋|

)︁
(2𝑞 + 1)𝑘

Pr
𝜋*

[︁
(𝑥1, ..., 𝑥𝑘, 𝜋

*(𝑥1), ..., 𝜋
(𝑥𝑘), 𝑧) ∈ 𝑅 : (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋

]︁
.

16

3.1 Measure and Reprogram Lemma for Permutations

For proving Theorem 3.1, we first prove a lemma which we call the measure and reprogram lemma.
The lemma is stated using the simulator 𝑆[𝒜, 𝜋, 𝜋*] defined below. Looking ahead, the algorithm
ℬ in the lifting theorem runs 𝑆[𝒜, 𝜋, 𝜋*] where 𝜋* is ℬ’s own oracle while 𝜋 is internally uniformly
chosen.

Definition 3.2 (Permutation Measure-and-Reprogram Experiment, Classical). For two permutations
𝜋 : 𝑋 → 𝑋 , 𝜋* : 𝑋 → 𝑋 let 𝑆[𝒜, 𝜋, 𝜋*] be an algorithm that has oracle access to 𝜋 and 𝜋* and runs 𝒜
with a stateful oracle 𝑂 as follows:

1. Pick �⃗� ∈ ([𝑞] ∪ {⊥})𝑘 and �⃗� ∈ {0, 1,⊥}𝑘 uniformly at random, conditioned that

• there is no duplicate entry for �⃗� other than ⊥, and
• for any 𝑗 ∈ [𝑘], 𝑏𝑗 = ⊥ if and only if 𝑣𝑗 = ⊥.

2. Initialize 𝑂 := 𝜋; here 𝑂 provides both forward and backward queries.
3. Run 𝒜𝑂 where when 𝒜 makes its 𝑖-th query, the oracle is simulated as follows:

(a) If 𝑖 = 𝑣𝑗 for some 𝑗 ∈ [𝑘], we denote the 𝑖-th query by 𝑥′𝑣𝑗 if it is a forward query and by 𝑦′𝑣𝑗 if it
is a backward query. Then reprogram 𝑂 as follows according to the value of 𝑏𝑗 and answer the
query using the reprogrammed oracle.

i. If 𝑏𝑗 = 0 (hit),
• If 𝒜’s 𝑣𝑗-th query is a forward query 𝑥′𝑣𝑗 , then query 𝑥′𝑣𝑗 to 𝜋* to get 𝑦′𝑣𝑗 = 𝜋*(𝑥′𝑣𝑗)

and reprogram 𝑂 to 𝑂[𝑥′𝑣𝑗 → 𝑦′𝑣𝑗].
• If 𝒜’s 𝑣𝑗-th query is a backward query 𝑦′𝑣𝑗 , then query 𝑦′𝑣𝑗 to 𝜋*−1 to get 𝑥′𝑣𝑗 =

𝜋*−1(𝑦′𝑣𝑗) and reprogram 𝑂 to 𝑂[𝑥′𝑣𝑗 → 𝑦′𝑣𝑗].
ii. If 𝑏𝑗 = 1 (miss),

• if𝒜’s 𝑣𝑗-th query is a forward query 𝑥′𝑣𝑗 , then query 𝜋(𝑥′𝑣𝑗) to 𝜋*−1 to get 𝜋*−1(𝜋(𝑥′𝑣𝑗))
and reprogram 𝑂 to 𝑂[𝜋*−1(𝜋(𝑥′𝑣𝑗))→ 𝜋(𝑥′𝑣𝑗)].

• if𝒜’s 𝑣𝑗-th query is a backward query 𝑦′𝑣𝑗 , then query 𝜋−1(𝑦′𝑣𝑗) to 𝜋* to get 𝜋*(𝜋−1(𝑦′𝑣𝑗))
and reprogram 𝑂 to 𝑂[𝜋−1(𝑦′𝑣𝑗)→ 𝜋*(𝜋−1(𝑦′𝑣𝑗))].

(b) Else, answer 𝒜’s 𝑖-th query by just using the stateful oracle 𝑂 without any measurement or
reprogramming;

4. Let (�⃗� = (𝑥1, ..., 𝑥𝑘), 𝑧) be 𝒜’s output;
5. Output (𝑥1, ..., 𝑥𝑘, 𝑧).

First, we observe the following easy lemma about 𝑆[𝒜, 𝜋, 𝜋*].

Lemma 3.3. Let �⃗�* ∈ 𝑋𝑘 be a distinct tuple, �⃗�* = 𝜋*(�⃗�*), (𝜋, 𝜋*) ∈ 𝐺[�⃗�*], and (𝑥𝗁𝗂𝗍𝑗 , 𝑥𝗆𝗂𝗌𝗌
𝑗 , 𝑦𝗁𝗂𝗍𝑗 , 𝑦𝗆𝗂𝗌𝗌

𝑗) be
as defined in Definition 2.12. In an execution of 𝑆[𝒜, 𝜋, 𝜋*], suppose that 𝑣𝑗 ̸= ⊥ and one of the following
holds:

• 𝑏𝑗 = 0 and the 𝑣𝑗-th query is a forward query 𝑥′𝑣𝑗 = 𝑥𝗁𝗂𝗍𝑗 ;
• 𝑏𝑗 = 0 and the 𝑣𝑗-th query is a backward query 𝑦′𝑣𝑗 = 𝑦𝗁𝗂𝗍𝑗 ;
• 𝑏𝑗 = 1 and the 𝑣𝑗-th query is a forward query 𝑥′𝑣𝑗 = 𝑥𝗆𝗂𝗌𝗌

𝑗 ;
• 𝑏𝑗 = 1 and the 𝑣𝑗-th query is a backward query 𝑦′𝑣𝑗 = 𝑦𝗆𝗂𝗌𝗌

𝑗 .

17

Then 𝑆[𝒜, 𝜋, 𝜋*] reprograms 𝑂 to 𝑂[𝑥*𝑗 → 𝑦*𝑗] at the 𝑣𝑗-th query.

The proof of the above lemma is straightforward based on Definition 2.12 and the definition of
𝑆[𝒜, 𝜋, 𝜋*].

Then we prove the "measure and reprogram lemma" below:

Lemma 3.4 (Measure and Reprogram Lemma, Classical). Let𝒜 be an algorithm that makes 𝑞 classical
queries, �⃗�* = (𝑥*1, ..., 𝑥

*
𝑘) ∈ 𝑋𝑘 be a distinct tuple, (𝜋, 𝜋*) ∈ 𝐺[�⃗�*], �⃗�* = (𝑦*1, ..., 𝑦

*
𝑘) = 𝜋*(�⃗�*), and

𝑅 ⊆ 𝑋𝑘 ×𝑋𝑘 × 𝑍 be a relation. Then we have

Pr

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝒜, 𝜋, 𝜋*]

]︂
≥ 1

(2𝑞 + 1)𝑘
Pr

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋[�⃗�*→�⃗�*]

]︂
.

Proof. In an execution of 𝒜𝜋[�⃗�*→�⃗�*], we say that a query 𝜋-touches 𝑝*𝑗 = (𝑥*𝑗 , 𝑦
*
𝑗) if the query is

either a forward query 𝑥 ∈ 𝑋𝑗 := {𝑥𝗁𝗂𝗍𝑗 , 𝑥𝗆𝗂𝗌𝗌
𝑗 } or a backward query 𝑦 ∈ 𝑌𝑗 := {𝑦𝗁𝗂𝗍𝑗 , 𝑦𝗆𝗂𝗌𝗌

𝑗 } where
𝑥𝗁𝗂𝗍𝑗 , 𝑥𝗆𝗂𝗌𝗌

𝑗 , 𝑦𝗁𝗂𝗍𝑗 , 𝑦𝗆𝗂𝗌𝗌
𝑗 are defined in Definition 2.12. We say that (�⃗�, �⃗�) is a correct guess if for all

𝑗 ∈ [𝑘], either of the following hold:

• 𝒜’s 𝑣𝑗-th query is the first query that 𝜋-touches 𝑝*𝑗 , and moreover the way of touching it is
as specified by 𝑏𝑗 (𝑏𝑗 = 0 refers to a Hit query and 𝑏𝑗 = 1 refers to a Miss query), i.e., if
𝑏𝑗 = 0, then the query is either 𝑥 = 𝑥𝗁𝗂𝗍𝑗 in the forward direction or 𝑦 = 𝑦𝗁𝗂𝗍𝑗 in the backward
direction, and if 𝑏𝑗 = 1, then the query is either 𝑥 = 𝑥𝗆𝗂𝗌𝗌

𝑗 in the forward direction or 𝑦 = 𝑦𝗆𝗂𝗌𝗌
𝑗

in the backward direction;
• 𝒜 never makes a query that 𝜋-touches 𝑝*𝑗 and 𝑣𝑗 = ⊥.

Then we have

Pr
�⃗�,⃗𝑏

⎡⎣ (𝑥*1, ..., 𝑥
*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
∧ (�⃗�, �⃗�) is the correct guess

: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋[�⃗�*→�⃗�*]

⎤⎦
≥ 1

(2𝑞 + 1)𝑘
Pr

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋[�⃗�*→�⃗�*]

]︂
since for an execution of 𝒜𝜋[�⃗�*→�⃗�*], there is a unique correct guess among at most (2𝑞 + 1)𝑘 possi-
bilities,6 and the choice of (�⃗�, �⃗�) is independent of the execution of 𝒜.

We also have

Pr

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝒜, 𝜋, 𝜋*]

]︂

≥Pr
�⃗�,⃗𝑏

⎡⎣ (𝑥*1, ..., 𝑥
*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
∧ (�⃗�, �⃗�) is the correct guess

: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋[�⃗�*→�⃗�*]

⎤⎦ .
6For each 𝑗 ∈ [𝑘], we have (𝑣𝑗 , 𝑏𝑗) ∈ ([𝑞]× {0, 1}) ∪ {(⊥,⊥)}, and thus there are at most (2𝑞 + 1) possibilities.

18

since conditioned on that (�⃗�, �⃗�) is the correct guess, 𝑂 simulated by 𝑆[𝒜, 𝜋, 𝜋*] behaves exactly
in the same way as 𝜋[�⃗�* → �⃗�*]. Indeed, if the guess is correct, at the 𝑣𝑗-th query, 𝑆[𝒜, 𝜋, 𝜋*]
reprograms 𝑂 as 𝑥*𝑗 → 𝑦*𝑗 by Lemma 3.3, and any query 𝑥 ∈ 𝑋𝑗 in the forward direction or 𝑦 ∈ 𝑌𝑗
in the backward direction is answered after this reprogramming is done. In this case the response
from 𝑂 is identical to that from 𝜋[�⃗�* → �⃗�*] by Lemma 2.16. Combining the above, we obtain
Lemma 3.4.

3.2 Proof of the Classical Lifting Theorem

We prove Theorem 3.1 based on Lemma 3.4.

Proof of Theorem 3.1. ℬ𝜋*
runs 𝑆[𝒜, 𝜋, 𝜋*] for uniformly random 𝜋. Then one can see that for any

𝜋*,

Pr
[︁
(𝑥1, ..., 𝑥𝑘, 𝜋

*(𝑥1), ..., 𝜋
*(𝑥𝑘), 𝑧) ∈ 𝑅 : (𝑥1, ..., 𝑥𝑘, 𝑧)← ℬ𝜋

*
]︁

=
∑︁

(𝑥*
1,...,𝑥

*
𝑘)

Pr
𝜋

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝒜, 𝜋, 𝜋*]

]︂

where 𝑦*𝑗 = 𝜋*(𝑥*𝑗). By taking an average over random 𝜋*, we have

Pr
𝜋*

[︁
(𝑥1, ..., 𝑥𝑘, 𝜋

*(𝑥1), ..., 𝜋
*(𝑥𝑘), 𝑧) ∈ 𝑅 : (𝑥1, ..., 𝑥𝑘, 𝑧)← ℬ𝜋

*
]︁

=
∑︁

(𝑥*
1,...,𝑥

*
𝑘)

Pr
𝜋,𝜋*

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝒜, 𝜋, 𝜋*]

]︂
≥

∑︁
(𝑥*

1,...,𝑥
*
𝑘)

Pr
𝜋,𝜋*

[(𝜋, 𝜋*) ∈ 𝐺[�⃗�*]]

· Pr
(𝜋,𝜋*)←𝐺[�⃗�*]

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝒜, 𝜋, 𝜋*]

]︂
≥

∑︁
(𝑥*

1,...,𝑥
*
𝑘)

(︂
1− 𝑘2

|𝑋|

)︂

· Pr
(𝜋,𝜋*)←𝐺[�⃗�*]

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝒜, 𝜋, 𝜋*]

]︂
≥

∑︁
(𝑥*

1,...,𝑥
*
𝑘)

(︂
1− 𝑘2

|𝑋|

)︂
1

(2𝑞 + 1)𝑘

· Pr
(𝜋,𝜋*)←𝐺[�⃗�*]

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋[𝑥*

1→𝑦*1]...[𝑥
*
𝑘→𝑦*𝑘]

]︂
=

∑︁
(𝑥*

1,...,𝑥
*
𝑘)

(︂
1− 𝑘2

|𝑋|

)︂
1

(2𝑞 + 1)𝑘
Pr
𝜋

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝜋(𝑥

*
1), ..., 𝜋(𝑥

*
𝑘), 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋

]︂

=

(︂
1− 𝑘2

|𝑋|

)︂
1

(2𝑞 + 1)𝑘
Pr
𝜋
[(𝑥1, ..., 𝑥𝑘, 𝜋(𝑥1), ..., 𝜋(𝑥𝑘), 𝑧) ∈ 𝑅 : (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋]

19

where the second inequality follows from Lemma 2.10, the third inequality follows from Lemma 3.4,
and the second-to-last equality follows from Lemma 2.11.

4 Quantum Lifting Theorem for Permutations

We first state the main quantum lifting result:

Theorem 4.1 (Quantum Lifting Theorem). Let𝒜 be a quantum algorithm that makes 𝑞 quantum queries
to an (invertible) random permutation oracle on 𝑋 and 𝑅 is a relation on 𝑋𝑘 ×𝑋𝑘 × 𝑍. Then there exists
an algorithm ℬ making at most 𝑘 classical queries such that

Pr
𝜋*

[︁
(𝑥1, ..., 𝑥𝑘, 𝜋

*(𝑥1), ..., 𝜋
*(𝑥𝑘), 𝑧) ∈ 𝑅 : (𝑥1, ..., 𝑥𝑘, 𝑧)← ℬ𝜋

*
]︁

≥

(︁
1− 𝑘2

|𝑋|

)︁
(8𝑞 + 1)2𝑘

Pr
𝜋*

[︁
(𝑥1, ..., 𝑥𝑘, 𝜋

*(𝑥1), ..., 𝜋
(𝑥𝑘), 𝑧) ∈ 𝑅 : (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋

]︁
.

Similarly to the classical case in Section 3, we first define a simulator 𝑆[𝒜, 𝜋, 𝜋*]. This simula-
tor works similarly to the classical setting (Definition 3.2) except that it measures the 𝑣𝑗-th query
for each 𝑗 to determine the point on which the oracle is reprogrammed, and incorporates addi-
tional randomness �⃗�, which determines whether reprogramming occurs before or after answering
a query.

Definition 4.2 (Permutation Measure-and-Reprogram Experiment). For two permutations 𝜋 : 𝑋 →
𝑋 , 𝜋* : 𝑋 → 𝑋 let 𝑆[𝒜, 𝜋, 𝜋*] be an algorithm that has oracle access to 𝜋 and 𝜋* and runs 𝒜 with a
stateful oracle 𝑂 as follows:

1. Pick �⃗� ∈ ([𝑞] ∪ {⊥})𝑘, �⃗� ∈ {0, 1,⊥}𝑘, and �⃗� ∈ {0, 1,⊥}𝑘 uniformly at random, conditioned that

• there is no duplicate entry for �⃗� other than ⊥, and
• for any 𝑗 ∈ [𝑘], if 𝑣𝑗 = ⊥, then 𝑏𝑗 = 𝑐𝑗 = ⊥ and otherwise 𝑏𝑗 ̸= ⊥ and 𝑐𝑗 ̸= ⊥.

2. Initialize 𝑂 := 𝜋; here 𝑂 provides both forward and backward queries.
3. Run 𝒜𝑂 where when 𝒜 makes its 𝑖-th query, the oracle is simulated as follows:

(a) If 𝑖 = 𝑣𝑗 for some 𝑗 ∈ [𝑘], measure 𝒜’s query register. We denote the measurement outcome by
𝑥′𝑣𝑗 if it is a forward query and by 𝑦′𝑣𝑗 if it is a backward query.
If 𝑐𝑗 = 0, first do the following reprogramming (according to the value of 𝑏𝑗) and then answer
𝒜’s 𝑣𝑗-th query using the reprogrammed oracle. Else if 𝑐𝑗 = 1, answer 𝒜’s 𝑣𝑗-th query using
oracle before reprogramming, and then do the following reprogramming.

i. If 𝑏𝑗 = 0 (hit),
• If the measurement outcome is a forward query 𝑥′𝑣𝑗 , then query 𝑥′𝑣𝑗 to 𝜋* to get 𝑦′𝑣𝑗 =
𝜋*(𝑥′𝑣𝑗) and reprogram 𝑂 to 𝑂[𝑥′𝑣𝑗 → 𝑦′𝑣𝑗].

• If the measurement outcome is a backward query 𝑦′𝑣𝑗 , then query 𝑦′𝑣𝑗 to 𝜋*−1 to get
𝑥′𝑣𝑗 = 𝜋*−1(𝑦′𝑣𝑗) and reprogram 𝑂 to 𝑂[𝑥′𝑣𝑗 → 𝑦′𝑣𝑗].

ii. If 𝑏𝑗 = 1 (miss),
• If the measurement outcome is a forward query 𝑥′𝑣𝑗 , then query 𝜋(𝑥′𝑣𝑗) to 𝜋*−1 to get
𝜋*−1(𝜋(𝑥′𝑣𝑗)) and reprogram 𝑂 to 𝑂[𝜋*−1(𝜋(𝑥′𝑣𝑗))→ 𝜋(𝑥′𝑣𝑗)].

20

• If the measurement outcome is a backward query 𝑦′𝑣𝑗 , then query 𝜋−1(𝑦′𝑣𝑗) to 𝜋* to get
𝜋*(𝜋−1(𝑦′𝑣𝑗)) and reprogram 𝑂 to 𝑂[𝜋−1(𝑦′𝑣𝑗)→ 𝜋*(𝜋−1(𝑦′𝑣𝑗))].

(b) Else, answer 𝒜’s 𝑖-th query by just using the stateful oracle 𝑂 without any measurement or
reprogramming;

4. Let (�⃗� = (𝑥1, ..., 𝑥𝑘), 𝑧) be 𝒜’s output;
5. Output (𝑥1, ..., 𝑥𝑘, 𝑧).

Similarly to the classical case, we observe the following lemma:

Lemma 4.3. Let �⃗�* ∈ 𝑋𝑘 be a distinct tuple, �⃗�* = 𝜋*(�⃗�*), (𝜋, 𝜋*) ∈ 𝐺[�⃗�*], and (𝑥𝗁𝗂𝗍𝑗 , 𝑥𝗆𝗂𝗌𝗌
𝑗 , 𝑦𝗁𝗂𝗍𝑗 , 𝑦𝗆𝗂𝗌𝗌

𝑗) be
as defined in Definition 2.12. In an execution of 𝑆[𝒜, 𝜋, 𝜋*], suppose that 𝑣𝑗 ̸= ⊥ and one of the following
holds:

• 𝑏𝑗 = 0 and the measured 𝑣𝑗-th query is a forward query 𝑥′𝑣𝑗 = 𝑥𝗁𝗂𝗍𝑗 ;
• 𝑏𝑗 = 0 and the measured 𝑣𝑗-th query is a backward query 𝑦′𝑣𝑗 = 𝑦𝗁𝗂𝗍𝑗 ;
• 𝑏𝑗 = 1 and the measured 𝑣𝑗-th query is a forward query 𝑥′𝑣𝑗 = 𝑥𝗆𝗂𝗌𝗌

𝑗 ;
• 𝑏𝑗 = 1 and the measured 𝑣𝑗-th query is a backward query 𝑦′𝑣𝑗 = 𝑦𝗆𝗂𝗌𝗌

𝑗 .

Then 𝑆[𝒜, 𝜋, 𝜋*] reprograms 𝑂 to 𝑂[𝑥*𝑗 → 𝑦*𝑗] at the 𝑣𝑗-th query (before or after answering the query).

The proof of the above lemma is straightforward based on Definition 2.12 and the definition of
𝑆[𝒜, 𝜋, 𝜋*]. For completeness, we give a proof in Appendix C.

Then we prove the following quantum measure-and-reprogram lemma.

Lemma 4.4 (Quantum Measure-and-Reprogram Lemma). Let 𝒜 be an algorithm that makes 𝑞 quan-
tum queries, �⃗�* = (𝑥*1, ..., 𝑥

*
𝑘) ∈ 𝑋𝑘 be a distinct tuple, (𝜋, 𝜋*) ∈ 𝐺[�⃗�*], �⃗�* = (𝑦*1, ..., 𝑦

*
𝑘) = 𝜋*(�⃗�*), and

𝑅 ⊆ 𝑋𝑘 ×𝑋𝑘 × 𝑍 be a relation. Then, we have:

Pr

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝒜, 𝜋, 𝜋*]

]︂
≥ 1

(8𝑞 + 1)2𝑘
Pr

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋[�⃗�*→�⃗�*]

]︂
.

Proof of Lemma 4.4. By relying on the normal form in Lemma 2.1 7, we can assume the algorithm
is in the normal form and makes 2𝑞 queries.

We will use the following notation. Similar to the notations defined in Section 2.1, we will
denote a forward quantum query to the original permutation 𝜋, by the query operator 𝑂𝜋; a back-
ward quantum query to the original permutation 𝜋, by the query operator 𝑂𝜋−1 . A forward (or
backward) quantum query to the reprogrammed permutation 𝜋[𝑥*𝑗 → 𝑦*𝑗] will be referred to, as
standard, by the operator 𝑂𝜋[𝑥*

𝑗→𝑦*𝑗]
(or 𝑂𝜋[𝑥*

𝑗→𝑦*𝑗]
−1 respectively) and a forward quantum query to

the reprogrammed permutation 𝜋[�⃗�* → �⃗�*], by the vectors �⃗�* and �⃗�* will be denoted by 𝑂𝜋[�⃗�*→�⃗�*]

(or 𝑂𝜋[�⃗�*→�⃗�*]−1 respectively).
Fix a permutation 𝜋, any �⃗�* ∈ 𝑋𝑘 without duplicate entries and �⃗�* = 𝜋*(�⃗�*) ∈ 𝑋𝑘, let⃒⃒⃒

𝜓
𝜋[�⃗�*→�⃗�*]
2𝑞

⟩
denote the state of the algorithm𝒜 after making all its queries to 𝜋[�⃗�* → �⃗�*]. Now, we

7Using this definition allows us to assume w.l.o.g. each query is already fixed as a forward or backward query before
the execution (causing only a constant loss).

21

will analyze the execution of an algorithm 𝒜 that has oracle access to the reprogrammed permu-
tation 𝜋[�⃗�* → �⃗�*].

Then the final state
⃒⃒⃒
𝜓
𝜋[�⃗�*→�⃗�*]
2𝑞

⟩
of the algorithm 𝒜 (before applying the final measurement)

can be described by the following quantum state:⃒⃒⃒
𝜓
𝜋[�⃗�*→�⃗�*]
2𝑞

⟩
= 𝑂𝜋[�⃗�*→�⃗�*]−1𝑈2𝑞𝑂𝜋[�⃗�*→�⃗�*] · · ·𝑂𝜋[�⃗�*→�⃗�*]−1𝑈2𝑂𝜋[�⃗�*→�⃗�*]𝑈1 |0⟩ . (2)

In the next step, we decompose this quantum state, so that each component in the decomposi-
tion corresponds to one of the cases in the quantum simulator; i.e., each component corresponds
to a set of possible parameters �⃗�, �⃗�, �⃗� and the simulator with these parameters outputs �⃗�* and some
𝑧.

More formally, we will show the following:⃒⃒⃒
𝜓
𝜋[�⃗�*→�⃗�*]
2𝑞

⟩
=
∑︁
�⃗�,⃗𝑏,⃗𝑐

(−1)𝛽�⃗�,⃗𝑏,�⃗� |𝜑
�⃗�,⃗𝑏,⃗𝑐
⟩ (3)

where 𝛽
�⃗�,⃗𝑏,⃗𝑐
∈ {0, 1} and the sum is taken over all (�⃗�, �⃗�, �⃗�) that satisfies the conditions in Item 1 of

Definition 4.2. Here, |𝜑
�⃗�,⃗𝑏,⃗𝑐
⟩ is a subnormalized state corresponding to the final state of 𝑆[𝒜, 𝜋, 𝜋*]

(before applying the final measurement) with the fixed choice of (�⃗�, �⃗�, �⃗�), where we insert the
following projections: for all 𝑗 ∈ [𝑘] such that 𝑣𝑗 ̸= ⊥, insert the following projections right after
receiving the 𝑣𝑗-th query:8

• If 𝑣𝑗 is odd and 𝑏𝑗 = 0, the 𝑣𝑗-th query resister is projected onto |𝑥𝗁𝗂𝗍𝑗 ⟩;
• If 𝑣𝑗 is odd and 𝑏𝑗 = 1, the 𝑣𝑗-th query resister is projected onto |𝑥𝗆𝗂𝗌𝗌

𝑗 ⟩;
• If 𝑣𝑗 is even and 𝑏𝑗 = 0, the 𝑣𝑗-th query resister is projected onto |𝑦𝗁𝗂𝗍𝑗 ⟩;
• If 𝑣𝑗 is even and 𝑏𝑗 = 1, the 𝑣𝑗-th query resister is projected onto |𝑦𝗆𝗂𝗌𝗌

𝑗 ⟩;

where 𝑥𝗁𝗂𝗍𝑗 , 𝑥𝗆𝗂𝗌𝗌
𝑗 𝑦𝗁𝗂𝗍𝑗 , and 𝑦𝗆𝗂𝗌𝗌

𝑗 are defined in Definition 2.12.
We will proceed to show Equation (3) by induction over the index of the query of the algorithm

𝒜. More specifically, we will show that for any 1 ≤ 𝑡 ≤ 2𝑞, the state of the algorithm 𝒜 right after
the 𝑡-th query can be written as:⃒⃒⃒

𝜓
𝜋[�⃗�*→�⃗�*]
𝑡

⟩
=
∑︁
�⃗�,⃗𝑏,⃗𝑐

(−1)𝛽
(𝑡)

�⃗�,⃗𝑏,�⃗� |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩ (4)

where 𝛽(𝑡)
�⃗�,⃗𝑏,⃗𝑐
∈ {0, 1} and the sum is taken over all �⃗� ∈ ([𝑡]∪{⊥})𝑘, �⃗� ∈ {0, 1,⊥}𝑘, and �⃗� ∈ {0, 1,⊥}𝑘

that satisfy the conditions in Item 1 of Definition 4.2, and |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩ is defined similarly to |𝜑

�⃗�,⃗𝑏,⃗𝑐
⟩

except that we consider the state after the 𝑡-th query rather than the final state. Note that |𝜑(2𝑞)
�⃗�,⃗𝑏,⃗𝑐
⟩ =

|𝜑
�⃗�,⃗𝑏,⃗𝑐
⟩, thus it suffices to prove Equation (4) holds for all 1 ≤ 𝑡 ≤ 2𝑞.

We will first analyze the base case, i.e. the state of the algorithm after the first query.

8Recall that the 𝑣𝑗-th query is a forward query if 𝑣𝑗 is odd and is a backward query if 𝑣𝑗 is even.

22

The first query. Without loss of generality, we assume the first query is a forward query. We
start by considering the state up to the first query:

⃒⃒⃒
𝜓
𝜋[�⃗�*→�⃗�*]
1

⟩
= 𝑂𝜋[�⃗�*→�⃗�*]𝑈1 |0⟩. We insert an

additional identity operator and have,

𝑂𝜋[�⃗�*→�⃗�*]𝑈1 |0⟩ = 𝑂𝜋[�⃗�*→�⃗�*] 𝐼 𝑈1 |0⟩

= 𝑂𝜋[�⃗�*→�⃗�*]

⎛⎝𝐼 − 𝑘∑︁
𝑗=1

|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |+
𝑘∑︁

𝑗=1

|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 | −
𝑘∑︁

𝑗=1

|𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |+
𝑘∑︁

𝑗=1

|𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |

⎞⎠𝑈1 |0⟩

= 𝑂𝜋[�⃗�*→�⃗�*]

⎛⎝𝐼 − 𝑘∑︁
𝑗=1

|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 | −
𝑘∑︁

𝑗=1

|𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |

⎞⎠𝑈1 |0⟩⏟ ⏞
(𝑖)

+𝑂𝜋[�⃗�*→�⃗�*]

𝑘∑︁
𝑗=1

|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈1 |0⟩⏟ ⏞
(𝑖𝑖)

+𝑂𝜋[�⃗�*→�⃗�*]

𝑘∑︁
𝑗=1

|𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |𝑈1 |0⟩⏟ ⏞
(𝑖𝑖𝑖)

.

The first term (𝑖) equals to

𝑂𝜋[�⃗�*→�⃗�*]

⎛⎝𝐼 − 𝑘∑︁
𝑗=1

|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 | −
𝑘∑︁

𝑗=1

|𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |

⎞⎠𝑈1 |0⟩

=𝑂𝜋

⎛⎝𝐼 − 𝑘∑︁
𝑗=1

|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 | −
𝑘∑︁

𝑗=1

|𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |

⎞⎠𝑈1 |0⟩

=𝑂𝜋𝑈1 |0⟩ −
𝑘∑︁

𝑗=1

𝑂𝜋 |𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈1 |0⟩ −
𝑘∑︁

𝑗=1

𝑂𝜋 |𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |𝑈1 |0⟩ .

This is because 𝑥𝗁𝗂𝗍𝑗 ̸= 𝑥𝗆𝗂𝗌𝗌
𝑗 for all 𝑗 ∈ [𝑘] by (𝜋, 𝜋*) ∈ 𝐺[�⃗�*], and on inputs that are neither hit nor

miss inputs, 𝑂𝜋 and 𝑂𝜋[�⃗�*→�⃗�*] are identical.
The second term (𝑖𝑖) is

𝑂𝜋[�⃗�*→�⃗�*]

𝑘∑︁
𝑗=1

|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈1 |0⟩ =
𝑘∑︁

𝑗=1

𝑂𝜋[𝑥*
𝑗→𝑦*𝑗]

|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈1 |0⟩ .

Similarly, the third term (𝑖𝑖𝑖) is

𝑂𝜋[�⃗�*→�⃗�*]

𝑘∑︁
𝑗=1

|𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |𝑈1 |0⟩ =
𝑘∑︁

𝑗=1

𝑂𝜋[𝑥*
𝑗→𝑦*𝑗]

|𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |𝑈1 |0⟩ .

23

Combining everything together, we have,

𝑂𝜋[�⃗�*→�⃗�*]𝑈1 |0⟩ = 𝑂𝜋𝑈1 |0⟩ −
𝑘∑︁

𝑗=1

𝑂𝜋 |𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈1 |0⟩ −
𝑘∑︁

𝑗=1

𝑂𝜋 |𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |𝑈1 |0⟩

+
𝑘∑︁

𝑗=1

𝑂𝜋[𝑥*
𝑗→𝑦*𝑗]

|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈1 |0⟩+
𝑘∑︁

𝑗=1

𝑂𝜋[𝑥*
𝑗→𝑦*𝑗]

|𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |𝑈1 |0⟩ .

Each term corresponds to either (1) do not measure the current query, or (2) measure the current
query (which is a hit or miss query) and reprogram before or after the query. More specifically, we
have

𝑂𝜋𝑈1 |0⟩ = |𝜑(1)⊥𝑘,⊥𝑘,⊥𝑘⟩

and for any 𝑗 ∈ [𝑘],

𝑂𝜋 |𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈1 |0⟩ = |𝜑(1)⊥𝑘
𝑗→1,⊥𝑘

𝑗→0,⊥𝑘
𝑗→1

⟩ ,

𝑂𝜋 |𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |𝑈1 |0⟩ = |𝜑(1)⊥𝑘
𝑗→1,⊥𝑘

𝑗→1,⊥𝑘
𝑗→1

⟩ ,

𝑂𝜋[𝑥*
𝑗→𝑦*𝑗]

|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈1 |0⟩ = |𝜑(1)⊥𝑘
𝑗→1,⊥𝑘

𝑗→0,⊥𝑘
𝑗→0

⟩ ,

𝑂𝜋[𝑥*
𝑗→𝑦*𝑗]

|𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |𝑈1 |0⟩ = |𝜑(1)⊥𝑘
𝑗→1,⊥𝑘

𝑗→1,⊥𝑘
𝑗→0

⟩ ,

where for 𝑑 ∈ {0, 1}, ⊥𝑘
𝑗→𝑑 is the sequence whose 𝑗-th entry is 𝑑 and all other entries are ⊥.

Thus,
⃒⃒⃒
𝜓
𝜋[�⃗�*→�⃗�*]
1

⟩
can be decomposed as in Equation (4) (by trivially observing that 𝛽(1)⊥𝑘,⊥𝑘,⊥𝑘 =

𝛽
(1)

⊥𝑘
𝑗→1,⊥𝑘

𝑗→0,⊥𝑘
𝑗→0

= 𝛽
(1)

⊥𝑘
𝑗→1,⊥𝑘

𝑗→1,⊥𝑘
𝑗→0

= 0, 𝛽
(1)

⊥𝑘
𝑗→1,⊥𝑘

𝑗→0,⊥𝑘
𝑗→1

= 𝛽
(1)

⊥𝑘
𝑗→1,⊥𝑘

𝑗→1,⊥𝑘
𝑗→1

= 1). Next, we will

show the inductive step.

The general case. Assume that
⃒⃒⃒
𝜓
𝜋[�⃗�*→�⃗�*]
𝑡

⟩
is decomposed as in Equation (4). Below, we show

that
⃒⃒⃒
𝜓
𝜋[�⃗�*→�⃗�*]
𝑡+1

⟩
can also be decomposed as in Equation (4). We only give the proof for even 𝑡, in

which case the (𝑡+ 1)-th query is the forward query, but the proof is similar for the case of odd 𝑡.9

For a fixed subnormalized state |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩ that appears in the decomposition of

⃒⃒⃒
𝜓
𝜋[�⃗�*→�⃗�*]
𝑡

⟩
in

Equation (4), let 𝐽 = {𝑗1, 𝑗2, . . . , 𝑗ℓ} ⊆ [𝑘] be the set of all indices on which �⃗� takes a non-⊥ entry,
i.e., 𝑣𝑗𝑖 ̸= ⊥ for 𝑖 ∈ [ℓ].

9We only have to replace 𝑂𝜋[�⃗�*→𝑦*] with 𝑂−1
𝜋[�⃗�*→𝑦*] and (𝑥𝗁𝗂𝗍

𝑗 , 𝑥𝗆𝗂𝗌𝗌
𝑗) with (𝑦𝗁𝗂𝗍

𝑗 , 𝑦𝗆𝗂𝗌𝗌
𝑗), and then we can see that this

yields the desired decomposition by a similar argument.

24

After applying the next internal unitary and the (forward) query operator, the overall state is:10

𝑂𝜋[�⃗�*→�⃗�*]𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩ = 𝑂𝜋[�⃗�*→�⃗�*] 𝐼 𝑈𝑡+1 |𝜑(𝑡)

�⃗�,⃗𝑏,⃗𝑐
⟩

= 𝑂𝜋[�⃗�*→�⃗�*]

⎛⎝𝐼 −∑︁
𝑗 ̸∈𝐽
|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |+

∑︁
𝑗 ̸∈𝐽
|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 | −

∑︁
𝑗 ̸∈𝐽
|𝑥𝗆𝗂𝗌𝗌

𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌
𝑗 |

+
∑︁
𝑗 ̸∈𝐽
|𝑥𝗆𝗂𝗌𝗌

𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌
𝑗 |

⎞⎠𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩

= 𝑂𝜋[�⃗�*→�⃗�*]

⎛⎝𝐼 −∑︁
𝑗 ̸∈𝐽
|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 | −

∑︁
𝑗 ̸∈𝐽
|𝑥𝗆𝗂𝗌𝗌

𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌
𝑗 |

⎞⎠𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩

⏟ ⏞
(𝑖)

+

+𝑂𝜋[�⃗�*→�⃗�*]

∑︁
𝑗 ̸∈𝐽
|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈𝑡+1 |𝜑(𝑡)

�⃗�,⃗𝑏,⃗𝑐
⟩⏟ ⏞

(𝑖𝑖)

+𝑂𝜋[�⃗�*→�⃗�*]

∑︁
𝑗 ̸∈𝐽
|𝑥𝗆𝗂𝗌𝗌

𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌
𝑗 |𝑈𝑡+1 |𝜑(𝑡)

�⃗�,⃗𝑏,⃗𝑐
⟩⏟ ⏞

(𝑖𝑖𝑖)

.

The term (𝑖) is equal to

𝑂𝜋[�⃗�*
𝐽→�⃗�*𝐽]

𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩ −

∑︁
𝑗 ̸∈𝐽

𝑂𝜋[�⃗�*
𝐽→�⃗�*𝐽]

|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩

−
∑︁
𝑗 ̸∈𝐽

𝑂𝜋[�⃗�*
𝐽→�⃗�*𝐽]

|𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩

where 𝜋[�⃗�*𝐽 → �⃗�*𝐽] = 𝜋[𝑥*𝑗1 → 𝑦*𝑗1]...[𝑥
*
𝑗ℓ
→ 𝑦*𝑗ℓ].

11 This is because 𝑥𝗁𝗂𝗍𝑗 ̸= 𝑥𝗆𝗂𝗌𝗌
𝑗 for all 𝑗 ∈ [𝑘] by

(𝜋, 𝜋*) ∈ 𝐺[�⃗�*], and for any 𝑥 /∈
⋃︀

𝑗 /∈𝐽{𝑥𝗁𝗂𝗍𝑗 , 𝑥𝗆𝗂𝗌𝗌
𝑗 }, we have 𝜋[�⃗�* → �⃗�*](𝑥) = 𝜋[�⃗�*𝐽 → �⃗�*𝐽](𝑥) by

Items 1 and 2 of Lemma 2.16.
The second term (𝑖𝑖) is

𝑂𝜋[�⃗�*→�⃗�*]

∑︁
𝑗 ̸∈𝐽
|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈𝑡+1 |𝜑(𝑡)

�⃗�,⃗𝑏,⃗𝑐
⟩ =

∑︁
𝑗 ̸∈𝐽

𝑂𝜋[�⃗�*
𝐽∪{𝑗}→�⃗�*

𝐽∪{𝑗}]
|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈𝑡+1 |𝜑(𝑡)

�⃗�,⃗𝑏,⃗𝑐
⟩ ,

and the third term (𝑖𝑖𝑖) is

𝑂𝜋[�⃗�*→�⃗�*]

∑︁
𝑗 ̸∈𝐽
|𝑥𝗆𝗂𝗌𝗌

𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌
𝑗 |𝑈𝑡+1 |𝜑(𝑡)

�⃗�,⃗𝑏,⃗𝑐
⟩ =

∑︁
𝑗 ̸∈𝐽

𝑂𝜋[�⃗�*
𝐽∪{𝑗}→�⃗�*

𝐽∪{𝑗}]
|𝑥𝗆𝗂𝗌𝗌

𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌
𝑗 |𝑈𝑡+1 |𝜑(𝑡)

�⃗�,⃗𝑏,⃗𝑐
⟩

where 𝜋[�⃗�*𝐽∪{𝑗} → �⃗�*𝐽∪{𝑗}] = 𝜋[𝑥*𝐽 → 𝑦*𝐽][𝑥
*
𝑗 → 𝑦*𝑗]. This is because 𝜋[�⃗�* → �⃗�*](𝑥𝗁𝗂𝗍𝑗) = 𝜋[�⃗�*𝐽∪{𝑗} →

�⃗�*𝐽∪{𝑗}](𝑥
𝗁𝗂𝗍
𝑗) and 𝜋[�⃗�* → �⃗�*](𝑥𝗆𝗂𝗌𝗌

𝑗) = 𝜋[�⃗�*𝐽∪{𝑗} → �⃗�*𝐽∪{𝑗}](𝑥
𝗆𝗂𝗌𝗌
𝑗) by Item 2 of Lemma 2.16.

10Whenever we write 𝑗 /∈ 𝐽 , it means 𝑗 ∈ [𝑘] ∖ 𝐽 .
11This is well-defined since the sequential reprogramming does not depend on the order by Lemma 2.6.

25

Combining all the cases, 𝑂𝜋[�⃗�*→�⃗�*]𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩ can be decomposed as:

𝑂𝜋[�⃗�*
𝐽→�⃗�*𝐽]

𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩

−
∑︁
𝑗 ̸∈𝐽

𝑂𝜋[�⃗�*
𝐽→�⃗�*𝐽]

|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩ −

∑︁
𝑗 ̸∈𝐽

𝑂𝜋[�⃗�*
𝐽→�⃗�*𝐽]

|𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩

+
∑︁
𝑗 ̸∈𝐽

𝑂𝜋[�⃗�*
𝐽∪{𝑗}→�⃗�*

𝐽∪{𝑗}]
|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈𝑡+1 |𝜑(𝑡)

�⃗�,⃗𝑏,⃗𝑐
⟩

+
∑︁
𝑗 ̸∈𝐽

𝑂𝜋[�⃗�*
𝐽∪{𝑗}→�⃗�*

𝐽∪{𝑗}]
|𝑥𝗆𝗂𝗌𝗌

𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌
𝑗 |𝑈𝑡+1 |𝜑(𝑡)

�⃗�,⃗𝑏,⃗𝑐
⟩ .

(5)

We observe that each term of Equation (5) can be written as |𝜑(𝑡+1)

�⃗�′ ,⃗𝑏′ ,⃗𝑐′
⟩ for some (�⃗�′, �⃗�′, �⃗�′).

• The first term 𝑂𝜋[�⃗�*
𝐽→�⃗�*𝐽]

𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩ corresponds to the case that there is no measure-and-

reprogram happened for the (𝑡+1)-th query, which intuitively means that after the (𝑡+1)-th
query, the sequences �⃗�, �⃗�, �⃗� are going to remain unchanged. That is, we have

𝑂𝜋[�⃗�*
𝐽→�⃗�*𝐽]

𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩ = |𝜑(𝑡+1)

�⃗�,⃗𝑏,⃗𝑐
⟩ .

• The second and the third terms correspond to the case that a measure-and-reprogram occurs
for the (𝑡+ 1)-th query, but the reprogramming is done after the measurement. Specifically,
for each 𝑗 /∈ 𝐽 and 𝑑 ∈ {0, 1}, let �⃗�𝑗→𝑡+1 be the sequence obtained by replacing the 𝑗-th entry
of �⃗� (which must be ⊥) with 𝑡 + 1, let �⃗�𝑗→𝑑 be the sequence obtained by replacing the 𝑗-th
entry of �⃗� (which must be ⊥) with 𝑑. and let �⃗�𝑗→𝑑 be the sequence obtained by replacing the
𝑗-th entry of �⃗� (which must be ⊥) with 𝑑. Then for any 𝑗 /∈ 𝐽 , we have

𝑂𝜋[�⃗�*
𝐽→�⃗�*𝐽]

|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩ = |𝜑(𝑡+1)

�⃗�𝑗→𝑡+1 ,⃗𝑏𝑗→0 ,⃗𝑐𝑗→1
⟩ ,

𝑂𝜋[�⃗�*
𝐽→�⃗�*𝐽]

|𝑥𝗆𝗂𝗌𝗌
𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌

𝑗 |𝑈𝑡+1 |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩ = |𝜑(𝑡+1)

�⃗�𝑗→𝑡+1 ,⃗𝑏𝑗→1 ,⃗𝑐𝑗→1
⟩ .

This is because under the inserted projections corresponding to |𝜑(𝑡)
�⃗�,⃗𝑏,⃗𝑐
⟩, the oracle kept by

𝑆[𝒜, 𝜋, 𝜋*] after the 𝑡-th query is 𝜋[�⃗�*𝐽 → �⃗�*𝐽] by Lemma 4.3.
• The fourth and the last terms correspond to the case that a measure-and-reprogram occurs

for the (𝑡 + 1)-th query, and the reprogramming is done before the measurement. Similarly
to the above item, for any 𝑗 /∈ 𝐽 , we have

𝑂𝜋[�⃗�*
𝐽∪{𝑗}→�⃗�*

𝐽∪{𝑗}]
|𝑥𝗁𝗂𝗍𝑗 ⟩⟨𝑥𝗁𝗂𝗍𝑗 |𝑈𝑡+1 |𝜑(𝑡)

�⃗�,⃗𝑏,⃗𝑐
⟩ = |𝜑(𝑡+1)

�⃗�𝑗→𝑡+1 ,⃗𝑏𝑗→0 ,⃗𝑐𝑗→0
⟩ ,

𝑂𝜋[�⃗�*
𝐽∪{𝑗}→�⃗�*

𝐽∪{𝑗}]
|𝑥𝗆𝗂𝗌𝗌

𝑗 ⟩⟨𝑥𝗆𝗂𝗌𝗌
𝑗 |𝑈𝑡+1 |𝜑(𝑡)

�⃗�,⃗𝑏,⃗𝑐
⟩ = |𝜑(𝑡+1)

�⃗�𝑗→𝑡+1 ,⃗𝑏𝑗→1 ,⃗𝑐𝑗→0
⟩ .

This is because if 𝑏𝑗 = 0 and the measured (𝑡+1)-th query is 𝑥𝗁𝗂𝗍𝑗 or 𝑏𝑗 = 1 and the measured
(𝑡+ 1)-th query is 𝑥𝗆𝗂𝗌𝗌

𝑗 , then 𝑆[𝒜, 𝜋, 𝜋*] reprograms the oracle as 𝑥*𝑗 → 𝑦*𝑗 by Lemma 4.3.

By the above argument, we can see that
⃒⃒⃒
𝜓
𝜋[�⃗�*→�⃗�*]
𝑡+1

⟩
can be written as a sum of states of the form

± |𝜑(𝑡+1)

�⃗�′ ,⃗𝑏′ ,⃗𝑐′
⟩ for (�⃗�′, �⃗�′, �⃗�′) that satisfy the required conditions (�⃗�′ ∈ ([𝑡 + 1] × {⊥})𝑘, �⃗�′ ∈ {0, 1,⊥}𝑘,

26

�⃗�′ ∈ {0, 1,⊥}𝑘, and they satisfy the conditions in Item 1 of Definition 4.2).12 Moreover, it is easy
to see that each term may appear only at most once in the sum. Thus, the induction hypothesis
holds for the state after the (𝑡+1)-th query, i.e.,

⃒⃒⃒
𝜓
𝜋[�⃗�*→�⃗�*]
𝑡+1

⟩
can be decomposed as in Equation (4).

This completes the proof of Equation (3).

Bounding the loss. For (𝑥1, ..., 𝑥𝑘, 𝑧) ∈ 𝑋𝑘 × 𝑍, let Π𝑥1,...,𝑥𝑘,𝑧 be the projector that projects the
output of 𝒜 onto |𝑥1, ..., 𝑥𝑘, 𝑧⟩. By Equation (3) and Triangle and Cauchy-Schwarz inequalities,⃦⃦⃦

Π𝑥1,...,𝑥𝑘,𝑧

⃒⃒⃒
𝜑
𝜋[�⃗�*→�⃗�*]
2𝑞

⟩⃦⃦⃦2
≤ (8𝑞 + 1)𝑘

∑︁
�⃗�,⃗𝑏,⃗𝑐

⃦⃦⃦
Π𝑥1,...,𝑥𝑘,𝑧 |𝜑�⃗�,⃗𝑏,⃗𝑐⟩

⃦⃦⃦2
where we used the fact that there are at most (8𝑞 + 1)𝑘 possible choices for (�⃗�, �⃗�, �⃗�).13 Since |𝜑

�⃗�,⃗𝑏,⃗𝑐
⟩

corresponds to the final state of 𝑆[𝒜, 𝜋, 𝜋*] for the fixed choices of (�⃗�, �⃗�, �⃗�) with some inserted
projections, the above implies that

Pr[(𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋*
] ≤ (8𝑞 + 1)2𝑘 Pr[(𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝒜, 𝜋, 𝜋*]].

Since this holds for all (𝑥1, ..., 𝑥𝑘, 𝑧), Lemma 4.4 follows.

We then use Lemma 4.4 to prove Theorem 4.1.

Proof of Theorem 4.1. We define ℬ𝜋*
as an algorithm that runs 𝑆[𝒜, 𝜋, 𝜋*] for a uniformly random

12We can easily see that (�⃗�′, �⃗�′, �⃗�′) satisfies the required condition for the (𝑡+1)-th query by the induction hypothesis
that (�⃗�, �⃗�, �⃗�) satisfies the required condition for the 𝑡-th query.

13For each 𝑗 ∈ [𝑘], we have (𝑣𝑗 , 𝑏𝑗 , 𝑐𝑗) ∈ ([2𝑞] × {0, 1} × {0, 1}) ∪ {(⊥,⊥,⊥)}, and thus there are at most (8𝑞 + 1)
possibilities.

27

𝜋. Then we have:

Pr
𝜋*

[︁
(𝑥1, ..., 𝑥𝑘, 𝜋

*(𝑥1), ..., 𝜋
*(𝑥𝑘), 𝑧) ∈ 𝑅 : (𝑥1, ..., 𝑥𝑘, 𝑧)← ℬ𝜋

*
]︁

=
∑︁

(𝑥*
1,...,𝑥

*
𝑘)

Pr
𝜋,𝜋*

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝒜, 𝜋, 𝜋*]

]︂
≥

∑︁
(𝑥*

1,...,𝑥
*
𝑘)

Pr
𝜋,𝜋*

[(𝜋, 𝜋*) ∈ 𝐺[�⃗�*]]

· Pr
(𝜋,𝜋*)←𝐺[�⃗�*]

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗}
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝒜, 𝜋, 𝜋*]

]︂
≥

∑︁
(𝑥*

1,...,𝑥
*
𝑘)

(︂
1− 𝑘2

|𝑋|

)︂

· Pr
(𝜋,𝜋*)←𝐺[�⃗�*]

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗}
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝒜, 𝜋, 𝜋*]

]︂
≥

∑︁
(𝑥*

1,...,𝑥
*
𝑘)

(︂
1− 𝑘2

|𝑋|

)︂
1

(8𝑞 + 1)2𝑘

· Pr
(𝜋,𝜋*)←𝐺[�⃗�*]

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋[�⃗�*→�⃗�*]

]︂
=

∑︁
(𝑥*

1,...,𝑥
*
𝑘)

(︂
1− 𝑘2

|𝑋|

)︂
1

(8𝑞 + 1)2𝑘
Pr
𝜋

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝜋(𝑥

*
1), ..., 𝜋(𝑥

*
𝑘), 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋

]︂

=

(︂
1− 𝑘2

|𝑋|

)︂
1

(8𝑞 + 1)2𝑘
Pr
𝜋
[(𝑥1, ..., 𝑥𝑘, 𝜋(𝑥1), ..., 𝜋(𝑥𝑘), 𝑧) ∈ 𝑅 : (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝜋]

where the second inequality follows from Lemma 2.10, the third inequality follows from Lemma 4.4,
and the second-to-last equality follows from Lemma 2.11. This completes the proof of Theo-
rem 4.1.

5 Quantum Lifting Theorem for Ideal Ciphers

In this section, we generalize our lifting theorem to ideal ciphers. We may show the following
theorem given in the Introduction.

Theorem 1.2 (Quantum Lifting Theorem on Ideal Ciphers). Let 𝒢 be an (interactive) search game with
a classical challenger 𝒞 that performs at most 𝑘 queries to an ideal cipher oracle 𝐸 : 𝒦 ×𝑋 → 𝑋 , and let
𝒜 be an algorithm that performs 𝑞 quantum queries to the ideal cipher. Then there exists an adversary ℬ
making at most 𝑘 classical queries to 𝐸 such that:

Pr[ℬ wins 𝒢] ≥

(︁
1− 𝑘2

|𝑋|

)︁
(8𝑞 + 1)2𝑘

Pr[𝒜 wins 𝒢].

Since the proof and the proof methodology are very similar to those of random permutations,
instead of providing a formal proof, we will give a brief sketch how we can adapt the proofs for
random permutations to ideal ciphers.

28

Just like the random permutation case, we rely on reprogramming of ciphers to prove Theo-
rem 1.2. First, let us define some terminologies.

Given two finite sets 𝒦, 𝑋 , a cipher over 𝒦 and 𝑋 is a function 𝐸 : 𝒦 × 𝑋 → 𝑋 such that for
each 𝐾 ∈ 𝒦, the function 𝐸𝐾 : 𝑋 → 𝑋 defined by 𝐸𝐾(𝑥) := 𝐸(𝐾,𝑥) is invertible. We then define
the inverse cipher 𝐸−1 as the cipher defined by 𝐸−1(𝐾,𝑥) := 𝐸−1𝐾 (𝑥).

An ideal cipher over 𝒦 and 𝑋 is a cipher chosen uniform randomly over the set of all ciphers
over 𝒦 and 𝑋 . When an algorithm has oracle access to a cipher 𝐸, it may make both forward
(𝐸) and backward (𝐸−1) queries. Also, a quantum algorithm may make quantum superposition
queries to a cipher oracle 𝐸 via the following unitary 𝑈𝐸 :

𝑈𝐸 |𝑏⟩ |𝐾⟩ |𝑥⟩ |𝑦⟩ :=

{︃
|𝑏⟩ ⊗𝑂𝐸(|𝐾⟩ |𝑥⟩ |𝑦⟩) if 𝑏 = 0,
|𝑏⟩ ⊗𝑂𝐸−1(|𝐾⟩ |𝑥⟩ |𝑦⟩) if 𝑏 = 1,

with 𝑂𝐸 |𝐾⟩ |𝑥⟩ |𝑦⟩ := |𝐾⟩ |𝑥⟩ |𝑦 + 𝐸𝐾(𝑥)⟩ and 𝑂𝐸−1 |𝐾⟩ |𝑥⟩ |𝑦⟩ := |𝐾⟩ |𝑥⟩ |𝑦 + 𝐸−1𝐾 (𝑥)⟩.
Just like Lemma 2.1, if𝒜 is a 𝑞-query algorithm having quantum access to a cipher oracle, then

we may assume that it is in the normal form and makes 2𝑞 queries to 𝑂𝐸 and 𝑂𝐸−1 , alternatingly.
Now, we define how we can reprogram a cipher, using reprogramming of a permutation, as

follows.

Definition 5.1. Let 𝐸 : 𝒦×𝑋 → 𝑋 be a cipher, and (𝐾,𝑥, 𝑦) ∈ 𝒦×𝑋 ×𝑋 be an arbitrary tuple. Then
we denote the reprogramming of 𝐸 by (𝐾,𝑥, 𝑦) as:

𝐸[𝑥→
𝐾
𝑦](𝐾 ′, 𝑥′) =

{︃
𝐸𝐾 [𝑥→ 𝑦](𝑥′) if 𝐾 ′ = 𝐾,
𝐸(𝐾 ′, 𝑥′) otherwise.

(6)

Essentially, we may understand a cipher as a function which maps a key 𝐾 to a permutation
𝐸𝐾 , and an ideal cipher as a function which maps a key 𝐾 to an independent random permuta-
tion 𝐸𝐾 . Here, we see that reprogramming occurs with respect to a key 𝐾: 𝐸[𝑥 →

𝐾
𝑦] leaves all

‘components’ of 𝐸 unchanged, except that it reprograms the permutation 𝐸𝐾 to 𝐸𝐾 [𝑥→ 𝑦].
Also, given �⃗� = (𝐾1, . . . ,𝐾𝑘), �⃗� = (𝑥1, . . . , 𝑥𝑘), �⃗� = (𝑦1, . . . , 𝑦𝑘), we may denote by 𝐸[�⃗� →

�⃗�
�⃗�]

the reprogrammed cipher
𝐸[𝑥1 →

𝐾1

𝑦1] . . . [𝑥𝑘 →
𝐾𝑘

𝑦𝑘].

In order to prove the lifting theorem for ideal ciphers, we need to define when a 𝑘-tuple input
(𝑡*1, . . . , 𝑡

*
𝑘) of tuples 𝑡*𝑖 = (𝐾*𝑖 , 𝑥

*
𝑖 , 𝑦
*
𝑖) is good with respect to a cipher 𝐸.

Definition 5.2 (Good tuples). Suppose we have a 𝑘-tuple 𝑡* = (𝑡*1, . . . , 𝑡
*
𝑘) of tuples 𝑡*𝑖 = (𝐾*𝑖 , 𝑥

*
𝑖 , 𝑦
*
𝑖).

Then we say that the tuple 𝑡* is good with respect to a cipher 𝐸, if the following hold:

• For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, if 𝐾*𝑖 = 𝐾*𝑗 , then we have 𝑥*𝑖 ̸= 𝑥*𝑗 and 𝑦*𝑖 ̸= 𝑦*𝑗 . (In other words, 𝑥*𝑖 which
share the same key are distinct, and so are 𝑦*𝑖 .)

• For any 𝑖, 𝑗 ∈ [𝑘], 𝐸𝐾*
𝑖
(𝑥*𝑖) ̸= 𝑦*𝑗 .

Definition 5.3 (Good pairs of ciphers). For any vectors �⃗�* = (𝐾*1 , . . . ,𝐾
*
𝑘) ∈ 𝒦𝑘 and �⃗�* = (𝑥*1, . . . , 𝑥

*
𝑘) ∈

𝑋𝑘 satisfying
∀𝑖 < 𝑗,𝐾*𝑖 = 𝐾*𝑗 =⇒ 𝑥*𝑖 ̸= 𝑥*𝑗 ,

we define 𝐺[�⃗�*, �⃗�*] as the set consisting of all pairs (𝐸,𝐸*) such that the tuple (𝑡*1, . . . , 𝑡
*
𝑘) with 𝑡*𝑖 =

(𝐾*𝑖 , 𝑥
*
𝑖 , 𝐸

*(𝐾*𝑖 , 𝑥
*
𝑖)) is good with respect to 𝐸.

29

Just as in the case of permutations, we may show that if we pick ciphers randomly, then with
high probability we get good pairs of ciphers.

Lemma 5.4 (Bad probability for ciphers). Let 𝐸 be a (fixed) permutation and let �⃗�* = (𝐾*1 , . . . ,𝐾
*
𝑘) ∈

𝒦𝑘 and �⃗�* = (𝑥*1, . . . , 𝑥
*
𝑘) ∈ 𝑋𝑘 be (fixed) vectors satisfying

∀𝑖 < 𝑗,𝐾*𝑖 = 𝐾*𝑗 =⇒ 𝑥*𝑖 ̸= 𝑥*𝑗 .

Then we have

Pr
𝐸*

[(𝐸,𝐸*) /∈ 𝐺[�⃗�*, �⃗�*]] ≤ 𝑘2

|𝑋|
In fact, we may show that the bad probability is maximized when all keys are identical, 𝐾*1 =

· · · = 𝐾*𝑘 , and in that case we have the same upper bound as in Lemma 2.10.
When we prove the lifting theorem for ideal ciphers, we follow essentially the same analysis

as in the lifting theorem for permutations. For this, we need to define the hit and miss inputs,
incorporating the cipher keys as follows.

Definition 5.5 (Hit and Miss queries for ciphers). Fix any �⃗�* = (𝐾*1 , . . . ,𝐾
*
𝑘) ∈ 𝒦𝑘 and �⃗�* =

(𝑥*1, . . . , 𝑥
*
𝑘) ∈ 𝑋𝑘 satisfying

∀𝑖 < 𝑗,𝐾*𝑖 = 𝐾*𝑗 =⇒ 𝑥*𝑖 ̸= 𝑥*𝑗 ,

ciphers 𝐸,𝐸* ∈ 𝐺[�⃗�*, �⃗�*], and �⃗�* = (𝑦*1, . . . , 𝑦
*
𝑘) with 𝑦*𝑖 = 𝐸*𝐾*

𝑖
(𝑥*𝑖). For the 𝑗-th tuple (𝐾*𝑗 , 𝑥

*
𝑗 , 𝑦
*
𝑗),

we define the Hit and Miss input for forward queries as follows:

(𝐾hit
𝑗 , 𝑥hit

𝑗) := (𝐾*𝑗 , 𝑥
*
𝑗),

(𝐾miss
𝑗 , 𝑥miss

𝑗) := (𝐾*𝑗 , 𝐸
−1
𝐾*

𝑗
(𝑦*𝑗)).

Similarly, for the 𝑗-th tuple (𝐾*𝑗 , 𝑥
*
𝑗 , 𝑦
*
𝑗), we define the Hit and Miss input for backward queries as

follows:

(𝐾hit
𝑗 , 𝑦hit

𝑗) := (𝐾*𝑗 , 𝑦
*
𝑗),

(𝐾miss
𝑗 , 𝑦miss

𝑗) := (𝐾*𝑗 , 𝐸𝐾*
𝑗
(𝑥*𝑗)).

Now, we may prove the following lemma, which is essentially Lemma 4.4 for ciphers.

Lemma 5.6 (Quantum Measure-and-Reprogram Lemma for Ciphers). Let 𝒜 be a 𝑞-query quantum
algorithm, and 𝐸,𝐸* be ciphers over 𝒦 and 𝑋 . And let �⃗�* = (𝐾*1 , . . . ,𝐾

*
𝑘) ∈ 𝒦𝑘, �⃗�* = (𝑥*1, . . . , 𝑥

*
𝑘) ∈

𝑋𝑘 be vectors satisfying
∀𝑖 < 𝑗,𝐾*𝑖 = 𝐾*𝑗 =⇒ 𝑥*𝑖 ̸= 𝑥*𝑗 ,

such that (𝐸,𝐸*) ∈ 𝐺[�⃗�*, �⃗�*], �⃗�* := (𝑦*1, . . . , 𝑦
*
𝑘) with 𝑦*𝑖 := 𝐸*𝐾*

𝑖
(𝑥*𝑖), and 𝑅 ⊆ 𝒦𝑘 ×𝑋𝑘 ×𝑋𝑘 × 𝑍 be

a relation. Then, we have:

Pr

[︂
(𝐾*1 , . . . ,𝐾

*
𝑘 , 𝑥
*
1, . . . , 𝑥

*
𝑘, 𝑦
*
1, . . . , 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘]𝐾𝑗 = 𝐾*𝑗 ∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝐾1, . . . ,𝐾𝑘, 𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝒜, 𝐸,𝐸*]

]︂
≥ 1

(8𝑞 + 1)2𝑘
Pr

[︂
(𝐾*1 , . . . ,𝐾

*
𝑘 , 𝑥
*
1, . . . , 𝑥

*
𝑘, 𝑦
*
1, . . . , 𝑦

*
𝑘, 𝑧) ∈ 𝑅

∧ ∀𝑗 ∈ [𝑘]𝐾𝑗 = 𝐾*𝑗 ∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗

: (𝐾1, . . . ,𝐾𝑘, 𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜
𝐸[�⃗�*→

�⃗�*
�⃗�*]
]︂
.

30

In Lemma 4.4, we had a simulator 𝑆[𝒜, 𝜋, 𝜋*] which tries to guess the first query of 𝒜 which
touches (𝑥*𝑗 , 𝑦

*
𝑗), for each 𝑗 ∈ [𝑘]. For Lemma 5.6, we define a similar simulator 𝑆[𝒜, 𝐸,𝐸*] which

works essentially the same as 𝑆[𝒜, 𝜋, 𝜋*] of Lemma 4.4, except that cipher keys are also involved,
and we use the definition of the hit and miss queries given in Definition 5.5. Then, the proof is
essentially a duplicate of that of Lemma 4.4.

Finally, using Lemma 5.6, we prove the lifting theorem for ideal ciphers.

Theorem 5.7 (Quantum Lifting Theorem for Ideal Ciphers). Let𝒜 be a quantum algorithm that makes
𝑞 quantum queries to an ideal cipher oracle over 𝒦 and 𝑋 , and 𝑅 is a relation on 𝒦𝑘×𝑋𝑘×𝑋𝑘×𝑍. Then
there exists an algorithm ℬ making at most 𝑘 classical queries such that

Pr
𝐸*

[︁
(𝐾1, . . . ,𝐾𝑘, 𝑥1, ..., 𝑥𝑘, 𝐸

*
𝐾1

(𝑥1), ..., 𝐸
*
𝐾𝑘

(𝑥𝑘), 𝑧) ∈ 𝑅 : (𝐾1, . . . ,𝐾𝑘, 𝑥1, ..., 𝑥𝑘, 𝑧)← ℬ𝐸
*
]︁

≥

(︁
1− 𝑘2

|𝑋|

)︁
(8𝑞 + 1)2𝑘

Pr
𝐸*

[︀
(𝐾1, . . . ,𝐾𝑘, 𝑥1, ..., 𝑥𝑘, 𝐸

*
𝐾1

(𝑥1), ..., 𝐸
*
𝐾𝑘

(𝑥𝑘), 𝑧) ∈ 𝑅 :

(𝐾1, . . . ,𝐾𝑘, 𝑥1, ..., 𝑥𝑘, 𝑧)← 𝒜𝐸*
]︁
.

Again, the proof is almost a duplicate of that of Theorem 4.1. We use Lemma 5.6 instead of
Lemma 4.4, and we use the bound for the bad probability for ciphers given in Lemma 5.4.

Also, the interactive case can be extended to the ideal ciphers, in a similar way.

6 Applications

In this section, we discuss applications of our lifting theorem (Theorem 4.1).

6.1 Generalized Double-Sided Search

We give an improved bound for the generalized double-sided search problem considered in [MMW24,
Theorem 6.11] as a generalization of Unruh’s double-sided zero-search conjecture [Unr23].

Theorem 6.1 (Generalized Double-Sided Search). Let 𝑁 ≥ 2 be an integer, 𝒜 be a quantum algorithm
that makes 𝑞 quantum queries to a uniformly random permutation 𝜋 on [𝑁] and its inverse, and 𝑅 ⊆
[𝑁]× [𝑁] be an arbitrary relation. Then it holds that

Pr
𝜋
[(𝑥, 𝜋(𝑥)) ∈ 𝑅 : 𝑥← 𝒜𝜋] ≤ 8 · (8𝑞 + 1)2 · 𝑟max

𝑁

where 𝑟max = max{max𝑥 |𝑅𝑥|,max𝑦 |𝑅inv
𝑦 |} with 𝑅𝑥 = {𝑦 : (𝑥, 𝑦) ∈ 𝑅} and 𝑅inv

𝑦 = {𝑥 : (𝑥, 𝑦) ∈ 𝑅}.

Proof. By Theorem 4.1, there is a one-classical-query algorithm ℬ such that

Pr
𝜋
[(𝑥, 𝜋(𝑥)) ∈ 𝑅 : 𝑥← 𝒜𝜋] ≤ (8𝑞 + 1)2

(1− 1
𝑁)

Pr
𝜋
[(𝑥, 𝜋(𝑥)) ∈ 𝑅 : 𝑥← ℬ𝜋] .

To analyze ℬ’s success probability, suppose that ℬ’s query forms an input-output pair (𝑥*, 𝑦*),
that is, ℬ queries 𝑥* to 𝜋 or queries 𝑦* to 𝜋−1. If ℬ outputs 𝑥 = 𝑥*, (𝑥, 𝜋(𝑥)) ∈ 𝑅 holds with
probability at most 𝑟max/𝑁 . If ℬ outputs 𝑥 ̸= 𝑥*, then (𝑥, 𝜋(𝑥)) ∈ 𝑅 holds with probability at most
max𝑥 |𝑅𝑥|/(𝑁 − 1). By the union bound, (𝑥, 𝜋(𝑥)) ∈ 𝑅 holds with probability at most 2𝑟max/(𝑁 −
1) ≤ 4𝑟max/𝑁 . Noting that 1− 1/𝑁 ≥ 1/2, we obtain the theorem.

31

Theorem 6.1 improves upon the bound of 914𝑟max·𝑞3·(ln(𝑁)+2)
𝑁 established by [MMW24]. In par-

ticular, ours is tight up to a constant factor since it matches a straightforward algorithm based on
Grover’s search [Gro96].

As an application of Theorem 6.1, we provide an alternative proof of the correctness of Unruh’s
double-sided zero-search conjecture.

Corollary 6.2 (Double-Sided Zero-Search). Let 𝑛 be a positive integer and 𝒜 be a quantum algorithm
that makes 𝑞 quantum queries to a uniformly random permutation 𝜋 on {0, 1}2𝑛 and its inverse. Then it
holds that

Pr
𝜋
[𝜋(𝑥||0𝑛) = 𝑦||0𝑛 : (𝑥, 𝑦)← 𝒜𝜋] ≤ 8 · (8𝑞 + 1)2

2𝑛
.

Proof. Define relation 𝑅 := {𝑥 ∈ {0, 1}𝑛 : ∃ 𝑦 ∈ {0, 1}𝑛 𝑠.𝑡. 𝜋(𝑥||0𝑛) = 𝑦||0𝑛}. Then we clearly have
𝑟max = 2𝑛. Substituting this into Theorem 6.1 yields Corollary 6.2.

The bound in Corollary 6.2 is tight up to a constant factor, though [CP24] provides a slightly
better constant factor; their bound is 50(𝑞 + 1)2/2𝑛.

As another application of Theorem 6.1, we show an improved bound for the fixed point finding
problem studied in [HY18].

Corollary 6.3 (Fixed Point Finding). Let 𝑁 be a positive integer and 𝒜 be a quantum algorithm that
makes 𝑞 quantum queries to a uniformly random permutation 𝜋 on [𝑁] and its inverse. Then it holds that

Pr
𝜋
[𝜋(𝑥) = 𝑥 : 𝑥← 𝒜𝜋] ≤ 8 · (8𝑞 + 1)2

𝑁
.

Proof. Define relation 𝑅 := {𝑥 ∈ {0, 1}𝑛 : 𝑥 = 𝜋(𝑥)}. Then we clearly have 𝑟max = 1. Substituting
this into Theorem 6.1 yields Corollary 6.3.

The bound in Corollary 6.3 is tight up to a constant factor, and improves the existing bound of
𝑂(𝑞/

√
𝑁) shown by [HY18].

Similarly to [MMW24], we can also use Theorem 6.1 to show preimage-resistance of single-
round sponge, but we omit this since we discuss (not necessarily single-round) sponge in detail in
Section 6.2.

6.2 Sponge Construction

The sponge construction [BDPV11] is a hashing algorithm that underlies SHA-3.
The sponge construction makes use of a permutation 𝜋 on {0, 1}𝑟+𝑐, where 𝑟 and 𝑐 are positive

integers called rate and capacity, respectively. We fix 𝑟 and 𝑐 throughout this subsection. While
the sponge construction is designed to support unbounded-length inputs and outputs, we focus
on fixed input and output lengths, as our security bounds degrade with them. For input length
𝑚 and output length 𝑛, the sponge construction, which we denote by 𝖲𝗉𝜋[𝑚,𝑛], works as follows
(see also Figure 3):1415

Input: 𝑥 ∈ {0, 1}𝑚

14The sponge construction supports more general padding functions. We adopt the simplest one that simply appends
1||0...0.

15Figure 3 is made based on the one taken from [Jea16].

32

Figure 3: Sponge construction

Absorbing phase Squeezing phase

𝑥1

𝑐 bits

𝑟 bits
𝜋

𝑥2

𝜋 . . . 𝜋

𝑥ℓ𝑎

𝜋 𝜋

𝑧1

𝜋

𝑧2

. . .

• Let ℓ𝑎 := ⌈𝑚+1
𝑟 ⌉ and ℓ𝑠 := ⌈𝑛𝑟 ⌉.

• Parse 𝑥||1||0ℓ𝑎𝑟−𝑚−1 to 𝑥1||𝑥2|| . . . ||𝑥ℓ𝑎 where each 𝑥𝑖 is a 𝑟-bit string.
• 𝑠← 0𝑟+𝑐.
• For 𝑖 = 1 to ℓ𝑎, do the following:

– 𝑠← 𝑠⊕ (𝑥𝑖||0𝑐).
– 𝑠← 𝜋(𝑠).

• For 𝑖 = 1 to ℓ𝑠, do the following:

– Let 𝑧𝑖 be the first 𝑟-bit of 𝑠.
– 𝑠← 𝜋(𝑠).

• Output the first 𝑛-bit of 𝑧1||𝑧2||...||𝑧ℓ𝑠 .

We note that 𝖲𝗉𝜋[𝑚,𝑛] calls 𝜋 a total of ℓ := ℓ𝑎 + ℓ𝑠 − 1 times.
We prove the following lifting theorem for the sponge construction.

Theorem 6.4 (Lifting Theorem for Sponge). Let 𝑅 ⊆ ({0, 1}𝑚)𝑘 × ({0, 1}𝑛)𝑘 be any relation. Define
𝑃𝑅
max as

𝑃𝑅
max := max

𝐵
Pr
𝐻

[︀
(𝑥1, ..., 𝑥𝑘, 𝐻(𝑥1), ...,𝐻(𝑥𝑘)) ∈ 𝑅 : (𝑥1, ..., 𝑥𝑘)← 𝐵𝐻

]︀
where 𝐻 : {0, 1}𝑚 → {0, 1}𝑛 is a uniformly random function and the max is taken over all 𝑘-classical-
query algorithms 𝐵. Let 𝐴 be a quantum algorithm that makes 𝑞 quantum queries to a uniformly random
permutation 𝜋 on {0, 1}𝑟+𝑐 and its inverse. Then it holds that

Pr
𝜋
[(𝑥1, ..., 𝑥𝑘, 𝖲𝗉

𝜋[𝑚,𝑛](𝑥1), ...,𝖲𝗉
𝜋[𝑚,𝑛](𝑥𝑘)) ∈ 𝑅 : (𝑥1, ..., 𝑥𝑘)← 𝐴𝜋]

≤ 2 · (8𝑞 + 1)2𝑘ℓ
(︂
𝑃𝑅
max +

(𝑘ℓ+ 𝑘 + 1)2

2𝑐

)︂
where we recall that ℓ = ℓ𝑎 + ℓ𝑠 − 1 is the number of calls to 𝜋 made by 𝖲𝗉𝜋[𝑚,𝑛].

33

Remark 6.5. The above theorem is meaningful only if (8𝑞 + 1)2𝑘ℓ(𝑘ℓ + 𝑘 + 1)2 ≪ 2𝑐. However, this
condition does not generally hold in typical usage scenarios for hash functions, where the input length
can be arbitrarily large. On the other hand, as discussed e.g., in [Lef23], hash functions with fixed input
lengths are sufficient for certain applications, such as Fiat-Shamir transforms and password hashing. In
particular, by using the security parameter 𝜆, if 𝑐 = Ω(𝜆), 𝑞 = 𝗉𝗈𝗅𝗒(𝜆), and ℓ and 𝑘 are constant, then
(8𝑞 + 1)2𝑘ℓ(𝑘ℓ+ 𝑘 + 1)2 · 2−𝑐 = 2−Ω(𝜆), providing a meaningful bound.

We defer the proof of Theorem 6.4 to the end of this subsection.
It is typically easy to upper bound 𝑃𝑅

max since it is just a bound in the classical random oracle
model. In particular, we show two examples where 𝑃𝑅

max can be upper bounded by a simple term.

Lemma 6.6 (Upper Bounds of 𝑃𝑅
max). Let 𝑅 ⊆ ({0, 1}𝑚)𝑘 × ({0, 1}𝑛)𝑘 be any relation, and 𝑃𝑅

max be as
in Theorem 6.4. Then the following hold:

• If 𝑘 = 1, it holds that 𝑃𝑅
max ≤ 2max𝑥 Pr𝑦[(𝑥, 𝑦) ∈ 𝑅].

• If 𝑅 does not depend on (𝑥1, ..., 𝑥𝑘), i.e., 𝑅 can be written as 𝑅 = ({0, 1}𝑚)𝑘 ×𝑅𝑜𝑢𝑡 by using some
relation 𝑅𝑜𝑢𝑡 ⊆ ({0, 1}𝑛)𝑘, then it holds that:
𝑃𝑅
max ≤

(︀
2𝑘
𝑘

)︀
Pr𝑦1,...,𝑦𝑘 [∃𝜋 𝑠.𝑡. (𝑦𝜋(1), ..., 𝑦𝜋(𝑘)) ∈ 𝑅𝑜𝑢𝑡] where 𝜋 is a permutation on [𝑘].

Proof.

First item. Let 𝐵 be an algorithm that makes a single classical query to a random function
𝐻 : {0, 1}𝑚 → {0, 1}𝑛. Let 𝑥* ∈ {0, 1}𝑚 be 𝐵’s query. The probability that (𝑥*, 𝐻(𝑥*)) ∈ 𝑅 is
Pr𝑦* [(𝑥

, 𝑦) ∈ 𝑅]. If does not occur, the best choice for 𝐵 is to output some 𝑥 ̸= 𝑥*. Again, the
probability that (𝑥,𝐻(𝑥)) ∈ 𝑅 is Pr𝑦[(𝑥, 𝑦) ∈ 𝑅]. Thus, by the union bound, the probability that
𝐵’s output 𝑥 satisfies (𝑥,𝐻(𝑥)) ∈ 𝑅 is at most 2max𝑥 Pr𝑦[(𝑥, 𝑦) ∈ 𝑅]. This completes the proof of
the first item.

Second item. Let 𝐵 be an algorithm that makes 𝑘 classical queries to a random function 𝐻 :
{0, 1}𝑚 → {0, 1}𝑛. By modifying 𝐵 to query its outputs to 𝐻 before outputting them, we can
assume that the outputs (𝑥1, ..., 𝑥𝑘) of 𝐵 are queried to 𝐻 if we increase the number of queries to
2𝑘. In this case, 𝐵’s output satisfies (𝑥1, ..., 𝑥𝑘, 𝐻(𝑥1), ...,𝐻(𝑥𝑘)) ∈ 𝑅𝑜𝑢𝑡 only if a permutation of
a 𝑘-subset of its queries satisfies it. For any fixed input (𝑥1, ..., 𝑥𝑘), the probability that it holds is
Pr𝑦1,...,𝑦𝑘 [∃𝜋 𝑠.𝑡. (𝑦𝜋(1), ..., 𝑦𝜋(𝑘)) ∈ 𝑅𝑜𝑢𝑡]. Thus, the second item follows from the union bound.

As examples, we show that the above immediately implies preimage-resistance and (multi-
)collision resistance.

Corollary 6.7 (Preimage-Resistance of Sponge). Let 𝐴 be a quantum algorithm that makes 𝑞 quantum
queries to a uniformly random permutation 𝜋 on {0, 1}𝑟+𝑐 and its inverse. For any 𝑦 ∈ {0, 1}𝑛, it holds
that

Pr
𝜋
[𝖲𝗉𝜋[𝑚,𝑛](𝑥) = 𝑦 : 𝑥← 𝐴𝜋] ≤ (8𝑞 + 1)2ℓ

(︂
4

2𝑛
+

2(ℓ+ 2)2

2𝑐

)︂
.

Proof. Define𝑅 := {0, 1}𝑚×{𝑦}. By the first (or second) item of Lemma 6.6, we have 𝑃𝑅
max ≤ 2·2−𝑛.

Substituting this and 𝑘 = 1 to Theorem 6.4 gives the corollary.

34

For the single-round case where ℓ = 1, Corollary 6.7 gives a bound of (8𝑞 + 1)2
(︀

4
2𝑛 + 18

2𝑐

)︀
. In

particular, Ω(2min{𝑛,𝑐}) quantum queries are needed to succeed with constant probability, which is
tight due to Grover’s algorithm [Gro96]. This matches the bound shown in [CP24] up to a constant
factor. More generally, when ℓ = 𝑂(1), 𝑛 = Ω(𝜆), 𝑐 = Ω(𝜆), and 𝑞 = 𝗉𝗈𝗅𝗒(𝜆), the RHS is 2−Ω(𝜆).
This is the first non-trivial bound for the preimage-resistance of sponge with more than one round
though it is non-tight.

Note that the above corollary does not imply one-wayness of sponge since the target output 𝑦
is fixed independently of 𝜋 rather than being set to be 𝜋(𝑥) for a random input 𝑥. For obtaining a
bound for one-wayness, we can invoke the interactive version of the lifting lemma (Theorem B.1),
albeit with a looser bound.

Corollary 6.8 (One-Wayness of Sponge). Let 𝐴 be a quantum algorithm that makes 𝑞 quantum queries
to a uniformly random permutation 𝜋 on {0, 1}𝑟+𝑐 and its inverse. Then it holds that

Pr
𝜋

⎡⎣𝖲𝗉𝜋[𝑚,𝑛](𝑥′) = 𝑦 :
𝑥← {0, 1}𝑚
𝑦 := 𝖲𝗉𝜋[𝑚,𝑛](𝑥)
𝑥′ ← 𝐴𝜋(𝑦)

⎤⎦ ≤ (8𝑞 + 1)4ℓ
(︂

12

2min{𝑚,𝑛} +
2(2ℓ+ 3)2

2𝑐

)︂
.

We omit its proof since this can be proven similarly by using Theorem B.1 instead of Theo-
rem 4.1. Note that this is non-tight even in the single-round case due to the quartic loss in 𝑞. We
note that a tight bound in the single-round setting is shown in [CP24].

Next, we show the collision-resistance.

Corollary 6.9 (Collision-Resistance of Sponge). Let 𝐴 be a quantum algorithm that makes 𝑞 quantum
queries to a uniformly random permutation 𝜋 on {0, 1}𝑟+𝑐 and its inverse. Then it holds that

Pr
𝜋
[𝖲𝗉𝜋[𝑚,𝑛](𝑥1) = 𝖲𝗉𝜋[𝑚,𝑛](𝑥2) : (𝑥1, 𝑥2)← 𝐴𝜋] ≤ (8𝑞 + 1)4ℓ

(︂
12

2𝑛
+

2(2ℓ+ 3)2

2𝑐

)︂
.

Proof. Define 𝑅 := ({0, 1}𝑛)2 × ∪𝑦∈{0,1}𝑛 {(𝑦, 𝑦)}. By the second item of Lemma 6.6, we have
𝑃𝑅
max ≤ 6 · 2−𝑛. Substituting this and 𝑘 = 2 to Theorem 6.4 gives the corollary.

For the single-round case where ℓ = 1, Corollary 6.9 gives a bound of (8𝑞+1)4
(︀
12
2𝑛 + 50

2𝑐

)︀
. This is

unlikely to be tight since the BHT algorithm [BHT98] would find a collision with 𝑂(2𝑛/3) queries.
[CPZ24] showed that single-round sponge satisfies quantum indifferentiability (even with pre-
computation) when 𝑟 ≤ 𝑐, which would give a tight bound for collision-resistance. However, to
our knowledge, ours is the first non-trivial bound in the regime of 𝑟 > 𝑐 even for the single-round
case. More generally, when ℓ = 𝑂(1), 𝑛 = Ω(𝜆), 𝑐 = Ω(𝜆), and 𝑞 = 𝗉𝗈𝗅𝗒(𝜆), the RHS is 2−Ω(𝜆).
This is the first non-trivial bound for the collision-resistance of sponge with more than one round
though it is non-tight.

The above corollary can be easily generalized to the multi-collision case.

Corollary 6.10 (Multi-Collision-Resistance of Sponge). Let 𝑘 be a positive integer and 𝐴 be a quantum
algorithm that makes 𝑞 quantum queries to a uniformly random permutation 𝜋 on {0, 1}𝑟+𝑐 and its inverse.
Then it holds that

Pr
𝜋
[𝖲𝗉𝜋(𝑥1) = ... = 𝖲𝗉𝜋(𝑥𝑘) : (𝑥1, ..., 𝑥𝑘)← 𝐴𝜋]

≤ 2 · (8𝑞 + 1)2𝑘ℓ

(︃ (︀
2𝑘
𝑘

)︀
2(𝑘−1)𝑛

+
(𝑘ℓ+ 𝑘 + 1)2

2𝑐

)︃
.

35

where we write 𝖲𝗉𝜋 to mean 𝖲𝗉𝜋[𝑚,𝑛].

Since its proof is similar to that of Corollary 6.9, we omit it.

Proof of Theorem 6.4 Finally, we prove Theorem 6.4. We prove it by using Theorem 3.1 to
reduce quantum security to classical security. To analyze classical security of sponge, we recall the
following lemma.

Lemma 6.11 (Classical Indifferentiability of Sponge [BDPV08]). There exists a stateful algorithm 𝑆
such that for any algorithm 𝐷 that makes 𝑞1 classical queries to the sponge function 𝖲𝗉𝜋[𝑚,𝑛] and 𝑞2
classical queries to 𝜋 (in either forward or backward direction), it holds that⃒⃒⃒⃒

Pr
𝜋
[𝐷𝖲𝗉𝜋 [𝑚,𝑛],𝜋 = 1]− Pr

𝐻
[𝐷𝐻,𝑆𝐻

= 1]

⃒⃒⃒⃒
≤ 𝑁(𝑁 + 1)

2𝑐

where 𝜋 is a uniformly random permutation on {0, 1}𝑟+𝑐, 𝐻 is a uniformly random function from {0, 1}𝑚
to {0, 1}𝑛, and 𝑁 := 𝑞1ℓ+ 𝑞2. Moreover 𝑆 makes at most one classical query to 𝐻 whenever it is queried.

Remark 6.12. [BDPV08, Theorem 1] shows a bound 1 −
∏︀𝑁

𝑖=1

(︂
1− 𝑖+1

2𝑐

1− 𝑖
2𝑟2𝑐

)︂
when 𝑁 < 2𝑐. This can be

further upper bounded as follows:

1−
𝑁∏︁
𝑖=1

(︃
1− 𝑖+1

2𝑐

1− 𝑖
2𝑟2𝑐

)︃
≤ 1−

(︂
1− 𝑁 + 1

2𝑐

)︂𝑁

≤ 1−
(︂
1− 𝑁(𝑁 + 1)

2𝑐

)︂
=
𝑁(𝑁 + 1)

2𝑐
.

Moreover, the bound in the lemma trivially holds when 𝑁 ≥ 2𝑐 since in this case 𝑁(𝑁+1)
2𝑐 ≥ 1. Thus, we

obtain the above lemma.

Then we prove Theorem 6.4.

Proof of Theorem 6.4. When (𝑘ℓ+𝑘+1)2

2𝑐 ≥ 1, the inequality trivially holds. Thus, we only have to

prove the theorem assuming (𝑘ℓ+𝑘+1)2

2𝑐 ≤ 1. In this case, we have 𝑘2ℓ2

2𝑐 ≤ 1 and thus 𝑘2ℓ2

2𝑟+𝑐 ≤ 1
2 .

Noting that each invocation of 𝖲𝗉𝜋[𝑛,𝑚] makes ℓ queries to 𝜋, Theorem 3.1 directly gives the
following: There exists a 𝑘-classical-query algorithm 𝐵 such that

Pr
𝜋
[(𝑥1, ..., 𝑥𝑘,𝖲𝗉

𝜋[𝑚,𝑛](𝑥1), ...,𝖲𝗉
𝜋[𝑚,𝑛](𝑥𝑘)) ∈ 𝑅 : (𝑥1, ..., 𝑥𝑘)← 𝐴𝜋]

≤ 2 · (8𝑞 + 1)2𝑘ℓ Pr
𝜋
[(𝑥1, ..., 𝑥𝑘, 𝖲𝗉

𝜋[𝑚,𝑛](𝑥1), ...,𝖲𝗉
𝜋[𝑚,𝑛](𝑥𝑘)) ∈ 𝑅 : (𝑥1, ..., 𝑥𝑘)← 𝐵𝜋]

where we used 𝑘2ℓ2

2𝑟+𝑐 ≤ 1
2 . Let 𝑃𝐵 the probability in the second line. To upper bound 𝑃𝐵 , consider

the following algorithm 𝐷:

𝐷𝖲𝗉𝜋 [𝑚,𝑛],𝜋: It runs 𝐵𝜋 to obtain an output (𝑥1, ..., 𝑥𝑘). Then it outputs 1 if and only if

(𝑥1, ..., 𝑥𝑘, 𝖲𝗉
𝜋[𝑚,𝑛](𝑥1), ...,𝖲𝗉

𝜋[𝑚,𝑛](𝑥𝑘)) ∈ 𝑅.

36

Then we clearly have
𝑃𝐵 = Pr[𝐷𝖲𝗉𝜋 [𝑚,𝑛],𝜋 = 1].

Note that 𝐷 makes at most 𝑘 classical queries to 𝖲𝗉𝜋[𝑚,𝑛] and at most 𝑘 queries to 𝜋 and 𝜋−1.
Thus, by Lemma 6.11, there is 𝑆 = (𝑆0, 𝑆1) that makes at most one classical query such that⃒⃒⃒⃒

Pr
𝜋
[𝐷𝖲𝗉𝜋 [𝑚,𝑛],𝜋 = 1]− Pr

𝐻
[𝐷𝐻,𝑆𝐻

= 1]

⃒⃒⃒⃒
≤ (𝑘ℓ+ 𝑘)(𝑘ℓ+ 𝑘 + 1)

2𝑐
≤ (𝑘ℓ+ 𝑘 + 1)2

2𝑐
.

By the definition of 𝐷 and 𝑃𝑅
max, we have Pr𝐻 [𝐷𝐻,𝑆𝐻

= 1] ≤ 𝑃𝑅
max. Combining the above we

obtain Theorem 6.4.

Remark 6.13. The above proof only relies on the fact that the sponge construction satisfies classical indif-
ferentiability. Thus, a similar argument works for any construction that satisfies classical indifferentiability
in the invertible permutation model or ideal cipher model (e.g., [GBJ+23]).

6.3 Davies-Meyer and PGV hash functions

The Merkle-Damgård hash function is a class of hash functions which uses a ‘compression func-
tion’ 𝑓(,𝑚) and use it iteratively to process a long message 𝑀 block-by-block to compute the
hash of the message. One benefit of the Merkle-Damgård construction is that, as long as 𝑓(,𝑚) is
collision-resistant, the Merkle-Damgård hash function constructed from 𝑓 is also collision-resistant.
Hence, the job of designing a collision-resistant hash function is reduced to designing a secure
compression function, which is a fixed-input-length hash function.

The Davies-Meyer construction [Win84] is a block-cipher-based compression function that un-
derlies SHA-1, SHA-2, and MD5. When 𝐸 is a block cipher, then the Davies-Meyer construction
turns 𝐸 into a compression function 𝑓 by

𝑓(,𝑚) := 𝐸𝑚()⊕ .

In other words, in the Davies-Meyer construction, the previous state is first ‘encrypted’ by
𝐸, using the message block 𝑚 as the cipher key, and the resulting ciphertext is XORed with
(feed-forward).

Since we cannot expect the cipher key 𝑚 to be uniform random in this scenario, it would be
difficult to prove the security of Davies-Meyer by modeling the block cipher 𝐸 as a pseudoran-
dom permutation. But, in the classical setting, it is proven to satisfy one-wayness and collision-
resistance in the ideal cipher model [Win84, BRS02, BRSS10].

In the quantum setting, although it is shown to be one-way in the QICM [HY18], its collision-
resistance remained an open question.

In fact, the Davies-Meyer construction can be considered as a special case of a family of block-
cipher-based compression functions. Preneel, Govaerts, and Vandewalle [PGV93] studied block-
cipher-based compression functions of the following form:

𝑓(,𝑚) = 𝐸𝑘(𝑥)⊕ 𝑠, where 𝑘, 𝑥, 𝑠 ∈ {𝑐, ,𝑚, ⊕𝑚}.

Here, 𝑐 is an arbitrarily fixed constant. We may call the resulting 64 functions as PGV functions.
PGV studied them from the point of view of cryptanalysis. They regarded 12 of them as secure,

37

and showed that 39 of them are insecure by exhibiting damaging attacks. The rest of 13 functions
are subject to not very severe potential attacks.

Black, Rogaway, and Shrimpton [BRS02] studied the classical security of the PGV hash func-
tions from the point of view of provable security. Let 𝑓1, . . . , 𝑓64 be the PGV compression func-
tions, and 𝐻1, . . . ,𝐻64 be the corresponding Merkle-Damgård hash functions. They classified
these hash functions into three groups. Group-1 consists of 12 hash functions 𝐻1, . . . ,𝐻12, for
which they have proved optimal one-wayness and collision-resistance in the ideal cipher model.
In fact, for group-1, the underlying compression functions 𝑓1, . . . , 𝑓12 have optimal one-wayness
and collision-resistance. Davies-Meyer is 𝐻5 in group-1, according to this classification.

Their group-2 consists of 8 hash functions 𝐻13, . . . ,𝐻20, for which they have also proved
one-wayness and collision-resistance in the ideal cipher model, but group-2 hash functions have
suboptimal one-wayness: the adversarial advantage for breaking one-wayness is bounded by
Θ(𝑞2/2𝑛), where 𝑞 is the total number of queries. In case of group-2, the underlying compression
functions do not have one-wayness or collision-resistance: they are easily invertible and also allow
quick collision-finding. But, using the Merkle-Damgård construction, the compression functions
can be turned into secure hash functions.

The rest, group-3, consists of 44 hash functions 𝐻21, . . . ,𝐻64, for which there are damaging
collision-finding attacks.

We may lift the security proofs of Black et al. on PGV functions to quantum adversaries in the
quantum ideal cipher model. For example, consider the following classical collision-resistance of
the group-1 compression functions given in [BRS02].

Lemma 6.14. Let 𝑓 be a group-1 PGV compression function of 𝑛-bit output. Then, if 𝒜 is a collision-
finding algorithm making 𝑞 classical queries to the ideal cipher 𝐸, then the collision-finding probability of
𝒜 is bounded above by 𝑞(𝑞 + 1)/2𝑛.

Given a potential collsion pair (,𝑚) ̸= (′,𝑚′), it takes 𝑘 = 2 classical queries to the cipher
𝐸 to compute 𝑓(,𝑚) and 𝑓(′,𝑚′) and verify whether it is indeed a collision pair or not. Hence,
using Theorem 1.2, we obtain the following theorem.

Theorem 6.15. Let 𝑓 be a group-1 PGV compression function of 𝑛-bit output. Then, if 𝒜 is a collision-
finding algorithm making 𝑞 quantum queries to the ideal cipher 𝐸, then the collision-finding probability of
𝒜 is bounded above by

6(8𝑞 + 1)4

2𝑛 − 4
= 𝑂

(︂
𝑞4

2𝑛

)︂
.

While the bound is not tight (when we compare it with the BHT quantum collsion-finding
algorithm), still the collsion-resistance of Davies-Meyer or other secure PGV functions in QICM
was not known before.

References

[ABK+24] Gorjan Alagic, Chen Bai, Jonathan Katz, Christian Majenz, and Patrick Struck. “Post-
quantum Security of Tweakable Even-Mansour, and Applications”. In: Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques. Springer.
2024, pp. 310–338 (cit. on p. 3).

38

[ABKM22] Gorjan Alagic, Chen Bai, Jonathan Katz, and Christian Majenz. “Post-quantum secu-
rity of the Even-Mansour cipher”. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer. 2022, pp. 458–487 (cit. on pp. 3, 7).

[ABPS23] Gorjan Alagic, Chen Bai, Alexander Poremba, and Kaiyan Shi. “On the Two-sided
Permutation Inversion Problem”. In: arXiv preprint arXiv:2306.13729 (2023) (cit. on
p. 3).

[ACMT25] Gorjan Alagic, Joseph Carolan, Christian Majenz, and Saliha Tokat. The Sponge is
Quantum Indifferentiable. Cryptology ePrint Archive, Paper 2025/731. 2025. URL: https:
//eprint.iacr.org/2025/731 (cit. on p. 12).

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. “Quantum security proofs
using semi-classical oracles”. In: Annual International Cryptology Conference. Springer.
2019, pp. 269–295 (cit. on p. 3).

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. “Random Oracles in a Quantum World”. In: Advances in Cryptol-
ogy - ASIACRYPT 2011 - 17th International Conference on the Theory and Application of
Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings.
Vol. 7073. 2011, pp. 41–69. DOI: 10.1007/978-3-642-25385-0_3 (cit. on p. 3).

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “On the Indif-
ferentiability of the Sponge Construction”. In: Advances in Cryptology – EUROCRYPT
2008. 2008, pp. 181–197 (cit. on pp. 4, 5, 36).

[BDPV11] Guidoand Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “Sponge
Functions”. In: (2011). URL: https://keccak.team/files/CSF-0.1.pdf (cit. on pp. 4,
5, 32).

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. “Quantum Cryptanalysis of Hash and
Claw-Free Functions”. In: LATIN: : Theoretical Informatics, Latin American Symposium.
1998, pp. 163–169 (cit. on p. 35).

[Bla06] John Black. “The ideal-cipher model, revisited: An uninstantiable blockcipher-based
hash function”. In: Fast Software Encryption: 13th International Workshop, FSE 2006,
Graz, Austria, March 15-17, 2006, Revised Selected Papers 13. Springer. 2006, pp. 328–
340 (cit. on p. 2).

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. “Black-Box Analysis of the
Block-Cipher-Based Hash-Function Constructions from PGV”. In: Advances in Cryp-
tology - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings. Vol. 2442. 2002, pp. 320–335. DOI:
10.1007/3-540-45708-9_21. URL: https://doi.org/10.1007/3-540-45708-
9%5C_21 (cit. on pp. 5, 37, 38).

[BRSS10] J. Black, P. Rogaway, T. Shrimpton, and M. Stam. “An Analysis of the Blockcipher-
Based Hash Functions from PGV”. In: Journal of Cryptology 23.4 (2010), pp. 519–545.
DOI: 10.1007/s00145-010-9071-0. URL: https://doi.org/10.1007/s00145-010-
9071-0 (cit. on pp. 5, 37).

39

https://eprint.iacr.org/2025/731
https://eprint.iacr.org/2025/731
https://doi.org/10.1007/978-3-642-25385-0_3
https://keccak.team/files/CSF-0.1.pdf
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9%5C_21
https://doi.org/10.1007/3-540-45708-9%5C_21
https://doi.org/10.1007/s00145-010-9071-0
https://doi.org/10.1007/s00145-010-9071-0
https://doi.org/10.1007/s00145-010-9071-0

[CDG18] Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. “Non-uniform bounds in the random-
permutation, ideal-cipher, and generic-group models”. In: Advances in Cryptology–
CRYPTO 2018: 38th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19–23, 2018, Proceedings, Part I 38. Springer. 2018, pp. 693–721 (cit. on p. 2).

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. “On the random-oracle methodology
as applied to length-restricted signature schemes”. In: Theory of Cryptography: First
Theory of Cryptography Conference, TCC 2004, Cambridge, MA, USA, February 19-21,
2004. Proceedings 1. Springer. 2004, pp. 40–57 (cit. on p. 2).

[CP24] Joseph Carolan and Alexander Poremba. “Quantum One-Wayness of the Single-Round
Sponge with Invertible Permutations”. In: Advances in Cryptology – CRYPTO 2024:
44th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18–22,
2024, Proceedings, Part VI. 2024, pp. 218–252. DOI: 10.1007/978-3-031-68391-6_7.
URL: https://doi.org/10.1007/978-3-031-68391-6_7 (cit. on pp. 3–5, 32, 35).

[CPZ24] Joseph Carolan, Alexander Poremba, and Mark Zhandry. (Quantum) Indifferentiability
and Pre-Computation. Cryptology ePrint Archive, Paper 2024/1727. 2024. URL: https:
//eprint.iacr.org/2024/1727 (cit. on pp. 3, 5, 35).

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. “The Measure-and-Reprogram Tech-
nique 2.0: Multi-round Fiat-Shamir and More”. In: Lecture Notes in Computer Science.
2020, pp. 602–631. DOI: 10.1007/978-3-030-56877-1_21. URL: http://dx.doi.org/
10.1007/978-3-030-56877-1_21 (cit. on p. 6).

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. “Security of the
Fiat-Shamir Transformation in the Quantum Random-Oracle Model”. In: Advances in
Cryptology – CRYPTO 2019. 2019, pp. 356–383 (cit. on pp. 3, 6).

[GBJ+23] Aldo Gunsing, Ritam Bhaumik, Ashwin Jha, Bart Mennink, and Yaobin Shen. “Re-
visiting the Indifferentiability of the Sum of Permutations”. In: Advances in Cryptology
– CRYPTO 2023. 2023, pp. 628–660 (cit. on p. 37).

[GK03] Shafi Goldwasser and Yael Tauman Kalai. “On the (in) security of the Fiat-Shamir
paradigm”. In: 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.
Proceedings. IEEE. 2003, pp. 102–113 (cit. on p. 2).

[Gro96] Lov K Grover. “A fast quantum mechanical algorithm for database search”. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing. 1996, pp. 212–
219 (cit. on pp. 32, 35).

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modular Analysis of the
Fujisaki-Okamoto Transformation”. In: Theory of Cryptography - 15th International Con-
ference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I. Vol. 10677.
2017, pp. 341–371. DOI: 10.1007/978-3-319-70500-2_12. URL: https://doi.org/
10.1007/978-3-319-70500-2%5C_12 (cit. on p. 3).

[HY18] Akinori Hosoyamada and Kan Yasuda. “Building Quantum-One-Way Functions from
Block Ciphers: Davies-Meyer and Merkle-Damgård Constructions”. In: Advances in
Cryptology - ASIACRYPT 2018 - 24th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part I. Vol. 11272. 2018, pp. 275–304. DOI: 10.1007/978-3-030-03326-

40

https://doi.org/10.1007/978-3-031-68391-6_7
https://doi.org/10.1007/978-3-031-68391-6_7
https://eprint.iacr.org/2024/1727
https://eprint.iacr.org/2024/1727
https://doi.org/10.1007/978-3-030-56877-1_21
http://dx.doi.org/10.1007/978-3-030-56877-1_21
http://dx.doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2%5C_12
https://doi.org/10.1007/978-3-319-70500-2%5C_12
https://doi.org/10.1007/978-3-030-03326-2_10
https://doi.org/10.1007/978-3-030-03326-2_10

2_10. URL: https://doi.org/10.1007/978-3-030-03326-2%5C_10 (cit. on pp. 3, 5,
32, 37).

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/. 2016
(cit. on p. 32).

[JZC+18] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. “IND-CCA-
Secure Key Encapsulation Mechanism in the Quantum Random Oracle Model, Re-
visited”. In: Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III.
Vol. 10993. 2018, pp. 96–125. DOI: 10.1007/978-3-319-96878-0_4. URL: https:
//doi.org/10.1007/978-3-319-96878-0%5C_4 (cit. on p. 3).

[KRS25] Dmitry Khovratovich, Ron D Rothblum, and Lev Soukhanov. “How to Prove False
Statements: Practical Attacks on Fiat-Shamir”. In: Cryptology ePrint Archive (2025) (cit.
on p. 2).

[Lef23] Charlotte Lefevre. Indifferentiability of the Sponge Construction with a Restricted Number
of Message Blocks. Cryptology ePrint Archive, Paper 2023/217. 2023. URL: https://
eprint.iacr.org/2023/217 (cit. on p. 34).

[LZ19] Qipeng Liu and Mark Zhandry. “Revisiting Post-Quantum Fiat-Shamir.” In: IACR
Cryptology ePrint Archive 2019 (2019), p. 262 (cit. on p. 3).

[MMW24] Christian Majenz, Giulio Malavolta, and Michael Walter. Permutation Superposition
Oracles for Quantum Query Lower Bounds. Cryptology ePrint Archive, Paper 2024/1140.
2024. URL: https://eprint.iacr.org/2024/1140 (cit. on pp. 3, 5, 31, 32).

[PGV93] Bart Preneel, René Govaerts, and Joos Vandewalle. “Hash Functions Based on Block
Ciphers: A Synthetic Approach”. In: Advances in Cryptology - CRYPTO ’93, 13th An-
nual International Cryptology Conference, Santa Barbara, California, USA, August 22-26,
1993, Proceedings. Vol. 773. 1993, pp. 368–378. DOI: 10.1007/3-540-48329-2_31.
URL: https://doi.org/10.1007/3-540-48329-2%5C_31 (cit. on pp. 5, 37).

[Ros21] Ansis Rosmanis. “Tight bounds for inverting permutations via compressed oracle
arguments”. In: arXiv preprint arXiv:2103.08975 (2021) (cit. on p. 3).

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. “Post-Quantum Security of the Fujisaki-
Okamoto and OAEP Transforms”. In: Theory of Cryptography - 14th International Con-
ference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part II.
Vol. 9986. 2016, pp. 192–216. DOI: 10.1007/978-3-662-53644-5_8 (cit. on p. 3).

[Unr23] Dominique Unruh. “Towards Compressed Permutation Oracles”. In: Advances in Cryp-
tology - ASIACRYPT 2023 - 29th International Conference on the Theory and Application of
Cryptology and Information Security, Guangzhou, China, December 4-8, 2023, Proceedings,
Part IV. Vol. 14441. 2023, pp. 369–400. DOI: 10.1007/978-981-99-8730-6_12. URL:
https://doi.org/10.1007/978-981-99-8730-6%5C_12 (cit. on pp. 3, 4, 31).

[Win84] Robert S. Winternitz. “A Secure One-Way Hash Function Built from DES”. In: 1984
IEEE Symposium on Security and Privacy. 1984, pp. 88–88. DOI: 10.1109/SP.1984.
10027 (cit. on pp. 5, 37).

[Yue13] Henry Yuen. “A quantum lower bound for distinguishing random functions from
random permutations”. In: arXiv preprint arXiv:1310.2885 (2013) (cit. on p. 3).

41

https://doi.org/10.1007/978-3-030-03326-2_10
https://doi.org/10.1007/978-3-030-03326-2_10
https://doi.org/10.1007/978-3-030-03326-2_10
https://doi.org/10.1007/978-3-030-03326-2%5C_10
https://www.iacr.org/authors/tikz/
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-319-96878-0%5C_4
https://doi.org/10.1007/978-3-319-96878-0%5C_4
https://eprint.iacr.org/2023/217
https://eprint.iacr.org/2023/217
https://eprint.iacr.org/2024/1140
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1007/3-540-48329-2%5C_31
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-981-99-8730-6_12
https://doi.org/10.1007/978-981-99-8730-6%5C_12
https://doi.org/10.1109/SP.1984.10027
https://doi.org/10.1109/SP.1984.10027

[YZ21] Takashi Yamakawa and Mark Zhandry. “Classical vs Quantum Random Oracles”.
In: Advances in Cryptology – EUROCRYPT 2021. 2021, pp. 568–597 (cit. on pp. 3–7, 45).

[YZ24] Takashi Yamakawa and Mark Zhandry. “Verifiable Quantum Advantage without
Structure”. In: J. ACM 71.3 (2024), p. 20. DOI: 10 . 1145 / 3658665. URL: https : / /
doi.org/10.1145/3658665 (cit. on p. 4).

[Zha13] Mark Zhandry. “A note on the quantum collision and set equality problems”. In:
arXiv preprint arXiv:1312.1027 (2013) (cit. on p. 3).

[Zha19] Mark Zhandry. “How to record quantum queries, and applications to quantum indif-
ferentiability”. In: Annual International Cryptology Conference. Springer. 2019, pp. 239–
268 (cit. on p. 3).

[Zha21] Mark Zhandry. “Redeeming Reset Indifferentiability and Applications to Post-quantum
Security”. In: Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference
on the Theory and Application of Cryptology and Information Security, Singapore, Decem-
ber 6-10, 2021, Proceedings, Part I. Vol. 13090. 2021, pp. 518–548. DOI: 10.1007/978-3-
030-92062-3_18. URL: https://doi.org/10.1007/978-3-030-92062-3%5C_18
(cit. on pp. 3, 5).

A Deferred Proofs

In this section, we present some proofs deferred for better readability.

Lemma 2.6 (Commutativity of reprogramming for disjoint pairs). For every permutation 𝜋 : 𝑋 →
𝑋 , disjoint �⃗�, �⃗� ∈ 𝑋𝑘 ×𝑋𝑘, and any permutation 𝜎 : [𝑘]→ [𝑘], we have:

𝜋[𝑥1 → 𝑦1] . . . [𝑥𝑘 → 𝑦𝑘] = 𝜋[𝑥𝜎(1) → 𝑦𝜎(1)] . . . [𝑥𝜎(𝑘) → 𝑦𝜎(𝑘)].

Proof. We need only to show that

𝜋[𝑥→ 𝑦][𝑥′ → 𝑦′] = 𝜋[𝑥′ → 𝑦′][𝑥→ 𝑦],

for any 𝑥 ̸= 𝑥′, 𝑦 ̸= 𝑦′, and 𝜋.
For this, let us denote by (𝑎1 𝑎2 . . . 𝑎𝑘) the cycle, which is the permutation which maps 𝑎𝑖 to

𝑎𝑖+1 for 𝑖 = 1, . . . , 𝑘 − 1, and also maps 𝑎𝑘 to 𝑎1, and leaves everything else. The special case (𝑎 𝑏),
is the transposition of 𝑎 and 𝑏, and (𝑎 𝑎) is the identity permutation for any 𝑎.

Now, observe that 𝜋[𝑥→ 𝑦] = 𝜋 ∘ (𝑥 𝜋−1(𝑦)). Then, 𝜋[𝑥→ 𝑦]−1 = (𝑥 𝜋−1(𝑦)) ∘ 𝜋−1.
Then,

𝜋[𝑥→ 𝑦][𝑥′ → 𝑦′] = 𝜋 ∘ (𝑥 𝜋−1(𝑦)) ∘ (𝑥′ 𝜋[𝑥→ 𝑦]−1(𝑦′))

= 𝜋 ∘ (𝑥 𝜋−1(𝑦)) ∘ (𝑥′ (𝑥 𝜋−1(𝑦))(𝜋−1(𝑦′))).

Similarly, we have

𝜋[𝑥′ → 𝑦′][𝑥→ 𝑦] = 𝜋 ∘ (𝑥′ 𝜋−1(𝑦′)) ∘ (𝑥 (𝑥′ 𝜋−1(𝑦′))(𝜋−1(𝑦))).

So, we need only to show that

(𝑥 𝜋−1(𝑦)) ∘ (𝑥′ (𝑥 𝜋−1(𝑦))(𝜋−1(𝑦′))) = (𝑥′ 𝜋−1(𝑦′)) ∘ (𝑥 (𝑥′ 𝜋−1(𝑦′))(𝜋−1(𝑦))).

42

https://doi.org/10.1145/3658665
https://doi.org/10.1145/3658665
https://doi.org/10.1145/3658665
https://doi.org/10.1007/978-3-030-92062-3_18
https://doi.org/10.1007/978-3-030-92062-3_18
https://doi.org/10.1007/978-3-030-92062-3%5C_18

For this, we perform case analysis. We will consider four cases:
First, when 𝑦′ = 𝜋(𝑥) and 𝑦 = 𝜋(𝑥′), then

LHS = (𝑥 𝑥′) ∘ (𝑥′ 𝜋−1(𝑦)) = (𝑥 𝑥′) ∘ (𝑥′ 𝑥′) = (𝑥 𝑥′),

RHS = (𝑥′ 𝑥) ∘ (𝑥 𝜋−1(𝑦′)) = (𝑥′ 𝑥) ∘ (𝑥 𝑥) = (𝑥′ 𝑥).

Here, (𝑥 𝜋−1(𝑦))(𝜋−1(𝑦′)) = 𝜋−1(𝑦) = 𝑥′, because 𝑦′ = 𝜋(𝑥) =⇒ 𝜋−1(𝑦′) = 𝑥. Similarly we have
(𝑥′ 𝜋−1(𝑦′))(𝜋−1(𝑦)) = 𝜋−1(𝑦′). So we see that the two sides are equal in this case.

Next, consider the case when 𝑦′ = 𝜋(𝑥) but 𝑦 ̸= 𝜋(𝑥′). Then,

LHS = (𝑥 𝜋−1(𝑦)) ∘ (𝑥′ 𝜋−1(𝑦)) = (𝜋−1(𝑦) 𝑥′ 𝑥),

RHS = (𝑥′ 𝑥) ∘ (𝑥 𝜋−1(𝑦)) = (𝜋−1(𝑦) 𝑥′ 𝑥).

Here, (𝑥′ 𝜋−1(𝑦′))(𝜋−1(𝑦)) = 𝜋−1(𝑦), because 𝑦 ̸= 𝑦′ and 𝑦 ̸= 𝜋(𝑥′). Again, the two sides are equal.
The other case when 𝑦′ ̸= 𝜋(𝑥) but 𝑦 = 𝜋(𝑥′) can be done symmetrically.
Finally, when 𝑦′ ̸= 𝜋(𝑥) and 𝑦 ̸= 𝜋(𝑥′),

LHS = (𝑥 𝜋−1(𝑦)) ∘ (𝑥′ 𝜋−1(𝑦′)),
RHS = (𝑥′ 𝜋−1(𝑦′)) ∘ (𝑥 𝜋−1(𝑦)).

Since it is easy to check that (𝑎 𝑏) ∘ (𝑐 𝑑) = (𝑐 𝑑) ∘ (𝑎 𝑏), if {𝑎, 𝑏} ∩ {𝑐, 𝑑} = ∅, and in this case we
have {𝑥, 𝜋−1(𝑦)} ∩ {𝑥′, 𝜋−1(𝑦′)} = ∅, we see that the two sides agree.

Therefore, we see that 𝜋[𝑥→ 𝑦][𝑥′ → 𝑦′] = 𝜋[𝑥′ → 𝑦′][𝑥→ 𝑦] holds, if 𝑥 ̸= 𝑥′ and 𝑦 ̸= 𝑦′.

In order to prove Lemma 2.9, we first prove a few simple properties of the reprogramming.

Lemma A.1. For any permutation 𝜋 and any tuple (𝑝*1, . . . , 𝑝
*
𝑘) of pairs 𝑝*𝑖 = (𝑥*𝑖 , 𝑦

*
𝑖) which is good w.r.t.

𝜋, the following are all true:

1. 𝜋[𝑥*1 → 𝑦*1] . . . [𝑥
*
𝑘 → 𝑦*𝑘](𝑥

*
𝑘) = 𝑦*𝑘.

2. 𝜋[𝑥*1 → 𝑦*1] . . . [𝑥
*
𝑘−1 → 𝑦*𝑘−1](𝑥

*
𝑘) = 𝜋(𝑥*𝑘).

3. 𝜋[𝑥*1 → 𝑦*1] . . . [𝑥
*
𝑘−1 → 𝑦*𝑘−1]

−1(𝑦*𝑘) = 𝜋−1(𝑦*𝑘).
4. 𝜋[𝑥*1 → 𝑦*1] . . . [𝑥

*
𝑘 → 𝑦*𝑘](𝜋

−1(𝑦*𝑘)) = 𝜋(𝑥*𝑘).

Proof. Let us prove the above statements one by one.

• Statement 1: It directly follows from the definition of the permutation reprogramming.
• Statement 2: It can be proved by mathematical induction.

The base case is where 𝑘 = 1, and in that case the equality holds trivially.
Now, suppose that this statement holds for some 𝑘 − 1, and we prove it for 𝑘.
Consider the permutation 𝜋′ = 𝜋[𝑥*1 → 𝑦*1]. Then, we can see that the tuple (𝑝*2, . . . , 𝑝

*
𝑘) is

good w.r.t. 𝜋′: for any 𝑖, 𝑗 > 1, since 𝑥*𝑖 ̸= 𝑥*1 and also 𝑥*𝑖 ̸= 𝜋−1(𝑦*1) (due to goodness), we
get 𝜋′(𝑥*𝑖) = 𝜋[𝑥*1 → 𝑦*1](𝑥

*
𝑖) = 𝜋(𝑥*𝑖) ̸= 𝑦*𝑗 by the definition of reprogramming and also by

goodness.
Then, according to the induction hypothesis applied to 𝜋′ and (𝑝*2, . . . , 𝑝

*
𝑘), a tuple of length

𝑘 − 1, we have
𝜋′[𝑥*2 → 𝑦*2] . . . [𝑥

*
𝑘−1 → 𝑦*𝑘−1](𝑥

*
𝑘) = 𝜋′(𝑥*𝑘).

This shows that 𝜋[𝑥*1 → 𝑦*1] . . . [𝑥
*
𝑘−1 → 𝑦*𝑘−1](𝑥

*
𝑘) = 𝜋′(𝑥*𝑘), which we have already seen to

be equal to 𝜋(𝑥*𝑘), finishing the mathematical induction.

43

• Statement 3: This is a direct consequence of Statement 2, after we invert the reprogramming
using Lemma 2.4.

• Statement 4: Let us define 𝜋′ = 𝜋[𝑥*1 → 𝑦*1] . . . [𝑥
*
𝑘−1 → 𝑦*𝑘−1]. Then, Statement 2 says that

𝜋′(𝑥*𝑘) = 𝜋(𝑥*𝑘), and Statement 3 says that 𝜋′−1(𝑦*𝑘) = 𝜋−1(𝑦*𝑘). Then,

𝜋[𝑥*1 → 𝑦*1] . . . [𝑥
*
𝑘 → 𝑦*𝑘](𝜋

−1(𝑦*𝑘)) = 𝜋′[𝑥*𝑘 → 𝑦*𝑘](𝜋
−1(𝑦*𝑘))

= 𝜋′[𝑥*𝑘 → 𝑦*𝑘](𝜋
′−1(𝑦*𝑘))

= 𝜋′(𝑥*𝑘) = 𝜋(𝑥𝑘).

Lemma 2.9 (Reprogramming on good tuples). Consider any permutation 𝜋 and 𝑘 pairs 𝑝*1, . . . , 𝑝
*
𝑘 with

𝑝*𝑗 = (𝑥*𝑗 , 𝑦
*
𝑗) for 𝑗 = 1, . . . , 𝑘. Suppose the tuple of pairs (𝑝*1, . . . , 𝑝

*
𝑘) is good w.r.t. 𝜋. Then we have:

𝜋[�⃗�* → �⃗�*](𝑧) =

⎧⎪⎨⎪⎩
𝑦*𝑗 if 𝑧 = 𝑥*𝑗 for some 𝑗 ∈ [𝑘],
𝜋(𝑥*𝑗) if 𝑧 = 𝜋−1(𝑦*𝑗) for some 𝑗 ∈ [𝑘],
𝜋(𝑧) otherwise.

Proof. We have to prove this case by case.
First, for the case 𝑧 = 𝑥*𝑗 for some 𝑗 ∈ [𝑘], we need to show

𝜋[𝑥*1 → 𝑦*1] . . . [𝑥
*
𝑘 → 𝑦*𝑘](𝑥

*
𝑗) = 𝑦*𝑗 .

In fact, Statement 1 of Lemma A.1 already shows this equation for the case 𝑗 = 𝑘, but since
we can shuffle the order or reprogramming arbitrarily, thanks to Lemma 2.6, the general case also
follows from Statement 1.

Second, for the case 𝑧 = 𝜋−1(𝑦*𝑗) for some 𝑗 ∈ [𝑘], we need to show

𝜋[𝑥*1 → 𝑦*1] . . . [𝑥
*
𝑘 → 𝑦*𝑘](𝜋

−1(𝑦*𝑗)) = 𝜋(𝑥*𝑗).

Again, Statement 4 of Lemma A.1, together with Lemma 2.6, proves this equality.
Finally, for the case 𝑧 ̸= 𝑥*𝑗 and 𝑧 ̸= 𝜋−1(𝑦*𝑗) for any 𝑗 ∈ [𝑘], we need to show

𝜋[𝑥*1 → 𝑦*1] . . . [𝑥
*
𝑘 → 𝑦*𝑘](𝑧) = 𝜋(𝑧).

Observe that we need only to prove that it is possible to get rid of just one reprogramming:

𝜋[𝑥*1 → 𝑦*1] . . . [𝑥
*
𝑘 → 𝑦*𝑘](𝑧) = 𝜋[𝑥*1 → 𝑦*1] . . . [𝑥

*
𝑘−1 → 𝑦*𝑘−1](𝑧).

From this, we get the desired equality by repeatedly removing one reprogramming at a time.
Let 𝜋′ = 𝜋[𝑥*1 → 𝑦*1] . . . [𝑥

*
𝑘−1 → 𝑦*𝑘−1]. Then we need to show

𝜋′[𝑥*𝑘 → 𝑦*𝑘](𝑧) = 𝜋′(𝑧).

But since 𝑧 ̸= 𝑥*𝑘 and 𝑧 ̸= 𝜋′−1(𝑦*𝑘), this just comes from the definition of reprogramming. (Note
that Statement 3 of Lemma A.1 says that 𝜋′−1(𝑦*𝑘) = 𝜋−1(𝑦*𝑘).)

44

B Handling Interactive Setting

In this section, we extend our lifting theorem in order to show that the lifting also holds in the in-
teractive setting, when 𝒞 and𝒜 are allowed send multiple messages and their queries can depend
on the interaction. At a high level, we can show this by suitably adapting the strategy of [YZ21]
to the permutation setting. More formally, we can show that:

Theorem B.1. Let 𝐺 be any search-type classically verifiable game (as defined in [YZ21]) played with a
Challenger that performs at most 𝑘 classical queries to a random permutation 𝜋* : 𝑋 → 𝑋 . Then for
any adversary 𝒜 equipped with 𝑞 quantum queries against the game 𝐺, we can construct a simulator ℬ
performing at most 𝑘 classical queries such that:

Pr
𝜋*
[ℬ𝜋*

wins 𝐺] ≥

(︁
1− 𝑘2

|𝑋|

)︁
(8𝑞 + 1)2𝑘

Pr
𝜋
[𝒜𝜋*

wins 𝐺]

Proof. The algorithmℬ𝜋*
will follow exactly the simulator in the permutation measure-and-reprogram

experiment in Definition 4.2 for uniformly chosen 𝜋 , with the only difference that in the interac-
tive setting, ℬ will run the algorithm𝒜 by forwarding all messages supposed to be sent to 𝒞 to the
external challenger and forwarding all messages sent back from the external challenger to 𝒜.

As argued in [YZ21], we can assume that the challenger 𝒞 is deterministic without loss of
generality. We define 𝒞’s view as consisting of the set of 𝑘 query response pairs together with the
transcript consisting of the messages exchanged with 𝒜. More formally, we will denote the view
by: 𝑣 := (�⃗� = (𝑥1, ..., 𝑥𝑘), �⃗� = (𝑦1, ..., 𝑦𝑘), 𝑡), where 𝑦𝑖 = 𝜋*(𝑥𝑖) and 𝑡 denotes the transcript.

Additionally, we define the relation 𝑅𝗏𝗂𝖾𝗐 corresponding to all accepting views of 𝒞, in other
words, all possible views of the challenger that would result in 𝒞 outputting accept. More con-
cretely, we say 𝑣 = (�⃗�, �⃗�, 𝑡) ∈ 𝑅𝗏𝗂𝖾𝗐 if and only if the following view verification algorithm
𝖵𝖾𝗋𝖵𝗂𝖾𝗐(�⃗�, �⃗�, 𝑡) accepts.
𝖵𝖾𝗋𝖵𝗂𝖾𝗐(�⃗�, �⃗�, 𝑡):

• Run 𝒞 such that the messages supposed to be sent from 𝒜 and its query responses are con-
sistent with the view 𝑣;

• If 𝒞 cannot be consistent with 𝑣, then output reject;
• Else output 𝒞’s output.

The goal is to apply the measure and reprogram lemma with the target relation instantiated
as 𝑅𝗏𝗂𝖾𝗐 and where the target algorithm will be an algorithm 𝑆𝜋′

𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍 simulating the interaction
between 𝒜 and 𝒞. Specifically, for any permutation 𝜋′ : 𝑋 → 𝑋 , we define 𝑆𝜋′

𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍 as follows.
𝑆𝜋′
𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍:

• 𝒜’s queries are forwarded to 𝜋′ and responded using 𝜋′;
• For every query 𝑥𝑖 of 𝒞 respond with the original 𝜋*(𝑥𝑖) , for 𝑖 ∈ [𝑘];
• Output 𝒞’s queries �⃗� = (𝑥1, ..., 𝑥𝑘) and the transcript 𝑡′ between 𝒜 and 𝒞.

By Lemma 4.4 where we instantiate 𝑅 with 𝑅𝗏𝗂𝖾𝗐 and the adversary 𝒜 with 𝑆𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍, for any
distinct �⃗�* and (𝜋, 𝜋*) ∈ 𝐺[�⃗�*], we have:

45

Pr

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅𝗏𝗂𝖾𝗐

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝑆𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍, 𝜋, 𝜋

*]

]︂
(7)

≥ 1

(8𝑞 + 1)2𝑘
Pr

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅𝗏𝗂𝖾𝗐

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆

𝜋[�⃗�*→�⃗�*]
𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍

]︂
where 𝑦*𝑖 = 𝜋*(𝑥*𝑖) for any 𝑖 ∈ [𝑘].

Now let us examine the simulator 𝑆𝜋[�⃗�*→�⃗�*]
𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍 . By construction, 𝑆𝜋[�⃗�*→�⃗�*]

𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍 (where we instantiate
𝜋′ = 𝜋[�⃗�* → �⃗�*]) will simulate the interaction between the original adversary𝒜 and the challenger
𝒞 of the game 𝐺, where now 𝒜’s oracle queries are simulated by 𝜋[�⃗�* → �⃗�*], 𝒞’s queries are sim-
ulated by the original permutation 𝜋*, and 𝑆

𝜋[�⃗�*→�⃗�*]
𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍 will output 𝒞’s queries �⃗� and the transcript

𝑧 := 𝑡′ (between 𝒜 and 𝒞).
Additionally, conditioned on �⃗� = �⃗�*, 𝑆𝜋[�⃗�*→�⃗�*]

𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍 will simulate the interaction between 𝒜 and
𝒞 where now 𝒜 and 𝒞 are going to query exactly the same oracle 𝜋[�⃗�* → �⃗�*], as for any 𝑥* ∈
�⃗�* we have: 𝜋[�⃗�* → �⃗�*](𝑥*) = 𝜋*(𝑥*) = 𝑦*. Moreover, conditioned on �⃗� = �⃗�*, the condition
(�⃗�, 𝜋*(�⃗�*), 𝑧) ∈ 𝑅𝗏𝗂𝖾𝗐 is equivalent to𝒜𝜋[�⃗�*→𝜋*(�⃗�*)] wins 𝒞𝜋[�⃗�*→𝜋*(�⃗�*)] in the executed simulation of
𝑆
𝜋[�⃗�*→𝜋*(�⃗�*)]
𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍 .

Therefore, we can rewrite Equation (7) as:

Pr

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅𝗏𝗂𝖾𝗐

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝑆𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍, 𝜋, 𝜋

*]

]︂
(8)

≥ 1

(8𝑞 + 1)2𝑘
Pr
[︁
�⃗� = �⃗�* ∧ 𝒜𝜋[�⃗�*→�⃗�*] wins 𝐺 with 𝒞𝜋[�⃗�*→�⃗�*]

]︁
where �⃗� denotes the queries made by 𝒞.

By Lemma 2.11, for any fixed �⃗�*, if 𝜋 and 𝜋* are uniformly picked from 𝐺[�⃗�*], then 𝜋[�⃗�* →
𝜋*(�⃗�*)] is also uniform over all permutations. Then, by taking the average over (𝜋, 𝜋*) ∈ 𝐺[�⃗�*]
and by summing over all �⃗�* in Equation (8), we get:

∑︁
�⃗�*

Pr
𝜋,𝜋*←𝐺[�⃗�*]

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅𝗏𝗂𝖾𝗐

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝑆𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍, 𝜋, 𝜋

*]

]︂
(9)

≥ 1

(8𝑞 + 1)2𝑘
Pr
𝜋*

[︁
𝒜𝜋*

wins 𝐺 with 𝒞𝜋*
]︁
.

46

On the other hand, we have:

Pr
𝜋*
[ℬ𝜋*

wins 𝐺]

=
∑︁

(𝑥*
1,...,𝑥

*
𝑘)

Pr
𝜋,𝜋*

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅𝗏𝗂𝖾𝗐

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝑆𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍, 𝜋, 𝜋

*]

]︂
≥

∑︁
(𝑥*

1,...,𝑥
*
𝑘)

Pr
𝜋,𝜋*

[(𝜋, 𝜋*) ∈ 𝐺[�⃗�*]]

· Pr
(𝜋,𝜋*)←𝐺[�⃗�*]

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅𝗏𝗂𝖾𝗐

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗}
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝑆𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍, 𝜋, 𝜋

*]

]︂
≥

∑︁
(𝑥*

1,...,𝑥
*
𝑘)

(︂
1− 𝑘2

|𝑋|

)︂

· Pr
(𝜋,𝜋*)←𝐺[�⃗�*]

[︂
(𝑥*1, ..., 𝑥

*
𝑘, 𝑦
*
1, ..., 𝑦

*
𝑘, 𝑧) ∈ 𝑅𝗏𝗂𝖾𝗐

∧ ∀𝑗 ∈ [𝑘] 𝑥𝑗 = 𝑥*𝑗}
: (𝑥1, ..., 𝑥𝑘, 𝑧)← 𝑆[𝑆𝗂𝗇𝗍𝖾𝗋𝖺𝖼𝗍, 𝜋, 𝜋

*]

]︂
where the second inequality follows from Lemma 2.10. Combining the above with Equation (9),
we conclude the proof of Theorem B.1.

C Proof of Lemma 4.3

Proof of Lemma 4.3. By the assumption, 𝑣𝑗 ∈ [𝑞]. We analyze the behavior of 𝑆[𝒜, 𝜋, 𝜋*] at the 𝑣𝑗-th
query for each case:

First case. In this case, 𝑏𝑗 = 0, and the measured query is a forward query 𝑥′𝑣𝑗 = 𝑥𝗁𝗂𝗍𝑗 . By the
definition of 𝑥𝗁𝗂𝗍𝑗 (Definition 6), this means that 𝑥′𝑣𝑗 = 𝑥*𝑗 . By the description of 𝑆[𝒜, 𝜋, 𝜋*], the
simulator queries 𝑥′𝑣𝑗 to 𝜋* to obtain 𝑦′𝑣𝑗 = 𝜋*(𝑥′𝑣𝑗) = 𝜋*(𝑥*𝑗) = 𝑦*𝑗 . Then the simulator reprograms
𝑂 to 𝑂[𝑥′𝑣𝑗 → 𝑦′𝑣𝑗] (before or after answering𝒜’s query according to 𝑐𝑗 .) As shown above, 𝑥′𝑣𝑗 = 𝑥*𝑗
and 𝑦′𝑣𝑗 = 𝑦*𝑗 . Thus, the claim of the lemma is satisfied.

Second case. In this case, 𝑏𝑗 = 0, and the measured query is a backward query 𝑦′𝑣𝑗 = 𝑦𝗁𝗂𝗍𝑗 . By
the definition of 𝑦𝗁𝗂𝗍𝑗 (Definition 6), this means that 𝑦′𝑣𝑗 = 𝑦*𝑗 . By the description of 𝑆[𝒜, 𝜋, 𝜋*], the
simulator queries 𝑦′𝑣𝑗 to 𝜋*−1 to obtain 𝑥′𝑣𝑗 = 𝜋*−1(𝑦′𝑣𝑗) = 𝜋*−1(𝑦*𝑗) = 𝑥*𝑗 . Then the simulator
reprograms 𝑂 to 𝑂[𝑥′𝑣𝑗 → 𝑦′𝑣𝑗] (before or after answering 𝒜’s query according to 𝑐𝑗 .) As shown
above, 𝑥′𝑣𝑗 = 𝑥*𝑗 and 𝑦′𝑣𝑗 = 𝑦*𝑗 . Thus, the claim of the lemma is satisfied.

Third case. In this case, 𝑏𝑗 = 1, and the measured query is a forward query 𝑥′𝑣𝑗 = 𝑥𝗆𝗂𝗌𝗌
𝑗 . By

the definition of 𝑥𝗆𝗂𝗌𝗌
𝑗 (Definition 6), this means that 𝑥′𝑣𝑗 = 𝜋−1(𝑦*𝑗) and thus 𝜋(𝑥′𝑣𝑗) = 𝑦*𝑗 . By the

description of 𝑆[𝒜, 𝜋, 𝜋*], the simulator queries 𝜋(𝑥′𝑣𝑗) to 𝜋*−1 to obtain 𝜋*−1(𝜋(𝑥′𝑣𝑗)) = 𝜋*−1(𝑦*𝑗) =

𝑥*𝑗 . Then the simulator reprograms 𝑂 to 𝑂[𝜋*−1(𝜋(𝑥′𝑣𝑗)) → 𝜋(𝑥′𝑣𝑗)] (before or after answering 𝒜’s
query according to 𝑐𝑗 .) As shown above, 𝜋*−1(𝜋(𝑥′𝑣𝑗)) = 𝑥*𝑗 and 𝜋(𝑥′𝑣𝑗) = 𝑦*𝑗 . Thus, the claim of
the lemma is satisfied.

47

Fourth case. In this case, 𝑏𝑗 = 1, and the measured query is a backward query 𝑦′𝑣𝑗 = 𝑦𝗆𝗂𝗌𝗌
𝑗 . By

the definition of 𝑦𝗆𝗂𝗌𝗌
𝑗 (Definition 6), this means that 𝑦′𝑣𝑗 = 𝜋(𝑥*𝑗) and thus 𝜋−1(𝑦′𝑣𝑗) = 𝑥*𝑗 . By the

description of 𝑆[𝒜, 𝜋, 𝜋*], the simulator queries 𝜋−1(𝑦′𝑣𝑗) to 𝜋* to obtain 𝜋*(𝜋−1(𝑦′𝑣𝑗)) = 𝜋*(𝑥*𝑗) =

𝑦*𝑗 . Then the simulator reprograms𝑂 to𝑂[𝜋−1(𝑦′𝑣𝑗)→ 𝜋*(𝜋−1(𝑦′𝑣𝑗))] (before or after answering𝒜’s
query according to 𝑐𝑗 .) As shown above, 𝜋−1(𝑦′𝑣𝑗) = 𝑥*𝑗 and 𝜋*(𝜋−1(𝑦′𝑣𝑗)) = 𝑦*𝑗 . Thus, the claim of
the lemma is satisfied.

48

	Introduction
	Our Results
	Technical Overview
	Concurrent Work
	Paper Organization

	Preparation for Lifting Theorem
	Algorithms with Permutation Oracles
	Reprogramming of Permutations

	Classical Lifting Theorem for Permutations
	Measure and Reprogram Lemma for Permutations
	Proof of the Classical Lifting Theorem

	Quantum Lifting Theorem for Permutations
	Quantum Lifting Theorem for Ideal Ciphers
	Applications
	Generalized Double-Sided Search
	Sponge Construction
	Davies-Meyer and PGV hash functions

	Deferred Proofs
	Handling Interactive Setting
	Proof of lem:quantumcorrectnessofreprogramming

